xref: /titanic_44/usr/src/stand/lib/sock/socket.c (revision f56c1286e5113aa46bd6e723da14d30c123153f2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * socket.c, Code implementing a simple socket interface.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/types.h>
32 #include "socket_impl.h"
33 #include <sys/isa_defs.h>
34 #include <sys/sysmacros.h>
35 #include <sys/bootconf.h>
36 #include <sys/socket.h>
37 #include <netinet/in.h>
38 #include <netinet/ip.h>
39 #include <netinet/tcp.h>
40 #include <sys/uio.h>
41 #include <sys/salib.h>
42 #include "socket_inet.h"
43 #include "ipv4.h"
44 #include "ipv4_impl.h"
45 #include "udp_inet.h"
46 #include "tcp_inet.h"
47 #include "mac.h"
48 #include "mac_impl.h"
49 #include <sys/promif.h>
50 
51 struct inetboot_socket	sockets[MAXSOCKET] = { 0 };
52 
53 /* Default send and receive socket buffer size */
54 #define	SO_DEF_SNDBUF	48*1024
55 #define	SO_DEF_RCVBUF	48*1024
56 
57 /* Default max socket buffer size */
58 #define	SO_MAX_BUF	4*1024*1024
59 
60 static ssize_t dgram_sendto(int, const void *, size_t, int,
61     const struct sockaddr *, int);
62 static ssize_t stream_sendto(int, const void *, size_t, int);
63 static int bind_check(int, const struct sockaddr *);
64 static int quickbind(int);
65 
66 /* Check the validity of a fd and return the socket index of that fd. */
67 int
68 so_check_fd(int fd, int *errno)
69 {
70 	int i;
71 
72 	i = FD_TO_SOCKET(fd);
73 	if (i < 0 || i >= MAXSOCKET) {
74 		*errno = ENOTSOCK;
75 		return (-1);
76 	}
77 	if (sockets[i].type == INETBOOT_UNUSED) {
78 		*errno = ENOTSOCK;
79 		return (-1);
80 	}
81 	return (i);
82 }
83 
84 /*
85  * Create an endpoint for network communication. Returns a descriptor.
86  *
87  * Notes:
88  *	Only PF_INET communication domains are supported. Within
89  * 	this domain, only SOCK_RAW, SOCK_DGRAM and SOCK_STREAM types are
90  *	supported.
91  */
92 int
93 socket(int domain, int type, int protocol)
94 {
95 	static int sock_initialized;
96 	int i;
97 
98 	errno = 0;
99 
100 	if (!sock_initialized) {
101 		for (i = 0; i < MAXSOCKET; i++)
102 			sockets[i].type = INETBOOT_UNUSED;
103 		sock_initialized = B_TRUE;
104 	}
105 	if (domain != AF_INET) {
106 		errno = EPROTONOSUPPORT;
107 		return (-1);
108 	}
109 
110 	/* Find available socket */
111 	for (i = 0; i < MAXSOCKET; i++) {
112 		if (sockets[i].type == INETBOOT_UNUSED)
113 			break;
114 	}
115 	if (i >= MAXSOCKET) {
116 		errno = EMFILE;	/* No slots left. */
117 		return (-1);
118 	}
119 
120 	/* Some socket initialization... */
121 	sockets[i].so_rcvbuf = SO_DEF_RCVBUF;
122 	sockets[i].so_sndbuf = SO_DEF_SNDBUF;
123 
124 	/*
125 	 * Note that we ignore the protocol field for SOCK_DGRAM and
126 	 * SOCK_STREAM.  When we support different protocols in future,
127 	 * this needs to be changed.
128 	 */
129 	switch (type) {
130 	case SOCK_RAW:
131 		ipv4_raw_socket(&sockets[i], (uint8_t)protocol);
132 		break;
133 	case SOCK_DGRAM:
134 		udp_socket_init(&sockets[i]);
135 		break;
136 	case SOCK_STREAM:
137 		tcp_socket_init(&sockets[i]);
138 		break;
139 	default:
140 		errno = EPROTOTYPE;
141 		break;
142 	}
143 
144 	if (errno != 0)
145 		return (-1);
146 
147 	/* IPv4 generic initialization. */
148 	ipv4_socket_init(&sockets[i]);
149 
150 	/* MAC generic initialization. */
151 	mac_socket_init(&sockets[i]);
152 
153 	return (i + SOCKETTYPE);
154 }
155 
156 int
157 getsockname(int s, struct sockaddr *name,  socklen_t *namelen)
158 {
159 	int i;
160 
161 	errno = 0;
162 	if ((i = so_check_fd(s, &errno)) == -1)
163 		return (-1);
164 
165 	if (*namelen < sizeof (struct sockaddr_in)) {
166 		errno = ENOMEM;
167 		return (-1);
168 	}
169 
170 	/* Structure assignment... */
171 	*((struct sockaddr_in *)name) = sockets[i].bind;
172 	*namelen = sizeof (struct sockaddr_in);
173 	return (0);
174 }
175 
176 /*
177  * The socket options we support are:
178  * SO_RCVTIMEO	-	Value is in msecs, and is of uint32_t.
179  * SO_DONTROUTE	-	Value is an int, and is a boolean (nonzero if set).
180  * SO_REUSEADDR -	Value is an int boolean.
181  * SO_RCVBUF -		Value is an int.
182  * SO_SNDBUF -		Value is an int.
183  */
184 int
185 getsockopt(int s, int level, int option, void *optval, socklen_t *optlen)
186 {
187 	int i;
188 
189 	errno = 0;
190 	if ((i = so_check_fd(s, &errno)) == -1)
191 		return (-1);
192 
193 	switch (level) {
194 	case SOL_SOCKET: {
195 		switch (option) {
196 		case SO_RCVTIMEO:
197 			if (*optlen == sizeof (uint32_t)) {
198 				*(uint32_t *)optval = sockets[i].in_timeout;
199 			} else {
200 				*optlen = 0;
201 				errno = EINVAL;
202 			}
203 			break;
204 		case SO_DONTROUTE:
205 			if (*optlen == sizeof (int)) {
206 				*(int *)optval =
207 				    (sockets[i].out_flags & SO_DONTROUTE);
208 			} else {
209 				*optlen = 0;
210 				errno = EINVAL;
211 			}
212 			break;
213 		case SO_REUSEADDR:
214 			if (*optlen == sizeof (int)) {
215 				*(int *)optval =
216 				    (sockets[i].so_opt & SO_REUSEADDR);
217 			} else {
218 				*optlen = 0;
219 				errno = EINVAL;
220 			}
221 			break;
222 		case SO_RCVBUF:
223 			if (*optlen == sizeof (int)) {
224 				*(int *)optval = sockets[i].so_rcvbuf;
225 			} else {
226 				*optlen = 0;
227 				errno = EINVAL;
228 			}
229 			break;
230 		case SO_SNDBUF:
231 			if (*optlen == sizeof (int)) {
232 				*(int *)optval = sockets[i].so_sndbuf;
233 			} else {
234 				*optlen = 0;
235 				errno = EINVAL;
236 			}
237 			break;
238 		case SO_LINGER:
239 			if (*optlen == sizeof (struct linger)) {
240 				/* struct copy */
241 				*(struct linger *)optval = sockets[i].so_linger;
242 			} else {
243 				*optlen = 0;
244 				errno = EINVAL;
245 			}
246 		default:
247 			errno = ENOPROTOOPT;
248 			break;
249 		}
250 		break;
251 	} /* case SOL_SOCKET */
252 	case IPPROTO_TCP:
253 	case IPPROTO_IP: {
254 		switch (option) {
255 		default:
256 			*optlen = 0;
257 			errno = ENOPROTOOPT;
258 			break;
259 		}
260 		break;
261 	} /* case IPPROTO_IP or IPPROTO_TCP */
262 	default:
263 		errno = ENOPROTOOPT;
264 		break;
265 	} /* switch (level) */
266 
267 	if (errno != 0)
268 		return (-1);
269 	else
270 		return (0);
271 }
272 
273 /*
274  * Generate a network-order source port from the privileged range if
275  * "reserved" is true, dynamic/private range otherwise. We consider the
276  * range of 512-1023 privileged ports as ports we can use. This mirrors
277  * historical rpc client practice for privileged port selection.
278  */
279 in_port_t
280 get_source_port(boolean_t reserved)
281 {
282 	static in_port_t	dynamic = IPPORT_DYNAMIC_START - 1,
283 				    rsvdport = (IPPORT_RESERVED / 2) - 1;
284 	in_port_t		p;
285 
286 	if (reserved) {
287 		if (++rsvdport >= IPPORT_RESERVED)
288 			p = rsvdport = IPPORT_RESERVED / 2;
289 		else
290 			p = rsvdport;
291 	} else
292 		p = ++dynamic;
293 
294 	return (htons(p));
295 }
296 
297 /*
298  * The socket options we support are:
299  * SO_RECVTIMEO	-	Value is uint32_t msecs.
300  * SO_DONTROUTE	-	Value is int boolean (nonzero == TRUE, zero == FALSE).
301  * SO_REUSEADDR -	value is int boolean.
302  * SO_RCVBUF -		Value is int.
303  * SO_SNDBUF -		Value is int.
304  */
305 int
306 setsockopt(int s, int level, int option, const void *optval, socklen_t optlen)
307 {
308 	int i;
309 
310 	errno = 0;
311 	if ((i = so_check_fd(s, &errno)) == -1)
312 		return (-1);
313 
314 	switch (level) {
315 	case SOL_SOCKET: {
316 		switch (option) {
317 		case SO_RCVTIMEO:
318 			if (optlen == sizeof (uint32_t))
319 				sockets[i].in_timeout = *(uint32_t *)optval;
320 			else {
321 				errno = EINVAL;
322 			}
323 			break;
324 		case SO_DONTROUTE:
325 			if (optlen == sizeof (int)) {
326 				if (*(int *)optval)
327 					sockets[i].out_flags |= SO_DONTROUTE;
328 				else
329 					sockets[i].out_flags &= ~SO_DONTROUTE;
330 			} else {
331 				errno = EINVAL;
332 			}
333 			break;
334 		case SO_REUSEADDR:
335 			if (optlen == sizeof (int)) {
336 				if (*(int *)optval)
337 					sockets[i].so_opt |= SO_REUSEADDR;
338 				else
339 					sockets[i].so_opt &= ~SO_REUSEADDR;
340 			} else {
341 				errno = EINVAL;
342 			}
343 			break;
344 		case SO_RCVBUF:
345 			if (optlen == sizeof (int)) {
346 				sockets[i].so_rcvbuf = *(int *)optval;
347 				if (sockets[i].so_rcvbuf > SO_MAX_BUF)
348 					sockets[i].so_rcvbuf = SO_MAX_BUF;
349 				(void) tcp_opt_set(sockets[i].pcb,
350 				    level, option, optval, optlen);
351 			} else {
352 				errno = EINVAL;
353 			}
354 			break;
355 		case SO_SNDBUF:
356 			if (optlen == sizeof (int)) {
357 				sockets[i].so_sndbuf = *(int *)optval;
358 				if (sockets[i].so_sndbuf > SO_MAX_BUF)
359 					sockets[i].so_sndbuf = SO_MAX_BUF;
360 				(void) tcp_opt_set(sockets[i].pcb,
361 				    level, option, optval, optlen);
362 			} else {
363 				errno = EINVAL;
364 			}
365 			break;
366 		case SO_LINGER:
367 			if (optlen == sizeof (struct linger)) {
368 				/* struct copy */
369 				sockets[i].so_linger = *(struct linger *)optval;
370 				(void) tcp_opt_set(sockets[i].pcb,
371 				    level, option, optval, optlen);
372 			} else {
373 				errno = EINVAL;
374 			}
375 			break;
376 		default:
377 			errno = ENOPROTOOPT;
378 			break;
379 		}
380 		break;
381 	} /* case SOL_SOCKET */
382 	case IPPROTO_TCP:
383 	case IPPROTO_IP: {
384 		switch (option) {
385 		default:
386 			errno = ENOPROTOOPT;
387 			break;
388 		}
389 		break;
390 	} /* case IPPROTO_IP  or IPPROTO_TCP */
391 	default:
392 		errno = ENOPROTOOPT;
393 		break;
394 	} /* switch (level) */
395 
396 	if (errno != 0)
397 		return (-1);
398 	else
399 		return (0);
400 }
401 
402 /*
403  * Shut down part of a full-duplex connection.
404  *
405  * Only supported for TCP sockets
406  */
407 int
408 shutdown(int s, int how)
409 {
410 	int sock_id;
411 	int i;
412 
413 	errno = 0;
414 	if ((sock_id = so_check_fd(s, &errno)) == -1)
415 		return (-1);
416 
417 	/* shutdown only supported for TCP sockets */
418 	if (sockets[sock_id].type != INETBOOT_STREAM) {
419 		errno = EOPNOTSUPP;
420 		return (-1);
421 	}
422 
423 	if (!(sockets[sock_id].so_state & SS_ISCONNECTED)) {
424 		errno = ENOTCONN;
425 		return (-1);
426 	}
427 
428 	switch (how) {
429 	case 0:
430 		sockets[sock_id].so_state |= SS_CANTRCVMORE;
431 		break;
432 	case 1:
433 		sockets[sock_id].so_state |= SS_CANTSENDMORE;
434 		break;
435 	case 2:
436 		sockets[sock_id].so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE);
437 		break;
438 	default:
439 		errno = EINVAL;
440 		return (-1);
441 	}
442 
443 	switch (sockets[sock_id].so_state &
444 				(SS_CANTRCVMORE | SS_CANTSENDMORE)) {
445 	case (SS_CANTRCVMORE | SS_CANTSENDMORE):
446 		/* Call lower level protocol close routine. */
447 		for (i = TRANSPORT_LVL; i >= MEDIA_LVL; i--) {
448 			if (sockets[sock_id].close[i] != NULL) {
449 				(void) sockets[sock_id].close[i](sock_id);
450 			}
451 		}
452 		nuke_grams(&sockets[sock_id].inq);
453 		break;
454 	case SS_CANTRCVMORE:
455 		nuke_grams(&sockets[sock_id].inq);
456 		break;
457 	case SS_CANTSENDMORE:
458 		/* Call lower level protocol close routine. */
459 		if (tcp_shutdown(sock_id) < 0)
460 			return (-1);
461 		break;
462 	default:
463 		errno = EINVAL;
464 		return (-1);
465 	}
466 
467 	return (0);
468 }
469 
470 /*
471  * "close" a socket.
472  */
473 int
474 socket_close(int s)
475 {
476 	int sock_id, i;
477 
478 	errno = 0;
479 	if ((sock_id = so_check_fd(s, &errno)) == -1)
480 		return (-1);
481 
482 	/* Call lower level protocol close routine. */
483 	for (i = TRANSPORT_LVL; i >= MEDIA_LVL; i--) {
484 		if (sockets[sock_id].close[i] != NULL) {
485 			/*
486 			 * Note that the close() routine of other
487 			 * layers can return an error.  But right
488 			 * now, the only mechanism to report that
489 			 * back is for the close() routine to set
490 			 * the errno and socket_close() will return
491 			 * an error.  But the close operation will
492 			 * not be stopped.
493 			 */
494 			(void) sockets[sock_id].close[i](sock_id);
495 		}
496 	}
497 
498 	/*
499 	 * Clear the input queue.  This has to be done
500 	 * after the lower level protocol close routines have been
501 	 * called as they may want to do something about the queue.
502 	 */
503 	nuke_grams(&sockets[sock_id].inq);
504 
505 	bzero((caddr_t)&sockets[sock_id], sizeof (struct inetboot_socket));
506 	sockets[sock_id].type = INETBOOT_UNUSED;
507 
508 	return (0);
509 }
510 
511 /*
512  * Read up to `nbyte' of data from socket `s' into `buf'; if non-zero,
513  * then give up after `read_timeout' seconds.  Returns the number of
514  * bytes read, or -1 on failure.
515  */
516 int
517 socket_read(int s, void *buf, size_t nbyte, int read_timeout)
518 {
519 	ssize_t	n;
520 	uint_t	start, diff;
521 
522 	/*
523 	 * keep calling non-blocking recvfrom until something received
524 	 * or an error occurs
525 	 */
526 	start = prom_gettime();
527 	for (;;) {
528 		n = recvfrom(s, buf, nbyte, MSG_DONTWAIT, NULL, NULL);
529 		if (n == -1 && errno == EWOULDBLOCK) {
530 			diff = (uint_t)((prom_gettime() - start) + 500) / 1000;
531 			if (read_timeout != 0 && diff > read_timeout) {
532 				errno = EINTR;
533 				return (-1);
534 			}
535 		} else {
536 			return (n);
537 		}
538 	}
539 }
540 
541 /*
542  * Write up to `nbyte' bytes of data from `buf' to the address pointed to
543  * `addr' using socket `s'.  Returns the number of bytes writte on success,
544  * or -1 on failure.
545  */
546 int
547 socket_write(int s, const void *buf, size_t nbyte, struct sockaddr_in *addr)
548 {
549 	return (sendto(s, buf, nbyte, 0, (struct sockaddr *)addr,
550 	    sizeof (*addr)));
551 }
552 
553 static int
554 bind_check(int sock_id, const struct sockaddr *addr)
555 {
556 	int k;
557 	struct sockaddr_in *in_addr = (struct sockaddr_in *)addr;
558 
559 	/* Do not check for duplicate bind() if SO_REUSEADDR option is set. */
560 	if (! (sockets[sock_id].so_opt & SO_REUSEADDR)) {
561 		for (k = 0; k < MAXSOCKET; k++) {
562 			if (sockets[k].type != INETBOOT_UNUSED &&
563 			    sockets[k].proto == sockets[sock_id].proto &&
564 			    sockets[k].bound) {
565 				if ((sockets[k].bind.sin_addr.s_addr ==
566 				    in_addr->sin_addr.s_addr) &&
567 				    (sockets[k].bind.sin_port ==
568 				    in_addr->sin_port)) {
569 					errno = EADDRINUSE;
570 					return (-1);
571 				}
572 			}
573 		}
574 	}
575 	return (0);
576 }
577 
578 /* Assign a name to an unnamed socket. */
579 int
580 bind(int s, const struct sockaddr *name, socklen_t namelen)
581 {
582 	int i;
583 
584 	errno = 0;
585 
586 	if ((i = so_check_fd(s, &errno)) == -1)
587 		return (-1);
588 
589 	if (name == NULL) {
590 		/* unbind */
591 		if (sockets[i].bound) {
592 			bzero((caddr_t)&sockets[i].bind,
593 			    sizeof (struct sockaddr_in));
594 			sockets[i].bound = B_FALSE;
595 		}
596 		return (0);
597 	}
598 	if (namelen != sizeof (struct sockaddr_in) || name == NULL) {
599 		errno = EINVAL;
600 		return (-1);
601 	}
602 	if (name->sa_family != AF_INET) {
603 		errno = EAFNOSUPPORT;
604 		return (-1);
605 	}
606 	if (sockets[i].bound) {
607 		if (bcmp((caddr_t)&sockets[i].bind, (caddr_t)name,
608 		    namelen) == 0) {
609 			/* attempt to bind to same address ok... */
610 			return (0);
611 		}
612 		errno = EINVAL;	/* already bound */
613 		return (-1);
614 	}
615 
616 	if (errno != 0) {
617 		return (-1);
618 	}
619 
620 	/* Check for duplicate bind(). */
621 	if (bind_check(i, name) < 0)
622 		return (-1);
623 
624 	bcopy((caddr_t)name, (caddr_t)&sockets[i].bind, namelen);
625 	if (sockets[i].type == INETBOOT_STREAM) {
626 		if (tcp_bind(i) < 0) {
627 			return (-1);
628 		}
629 	}
630 	sockets[i].bound = B_TRUE;
631 
632 	return (0);
633 }
634 
635 static int
636 quickbind(int sock_id)
637 {
638 	int i;
639 	struct sockaddr_in addr;
640 
641 	/*
642 	 * XXX This needs more work.  Right now, if ipv4_setipaddr()
643 	 * have not been called, this will be wrong.  But we need
644 	 * something better.  Need to be revisited.
645 	 */
646 	ipv4_getipaddr(&addr.sin_addr);
647 	addr.sin_family = AF_INET;
648 
649 	for (i = SMALLEST_ANON_PORT; i <= LARGEST_ANON_PORT; i++) {
650 		addr.sin_port = htons(i);
651 		if (bind_check(sock_id, (struct sockaddr *)&addr) == 0)
652 			break;
653 	}
654 	/* Need to clear errno as it is probably set by bind_check(). */
655 	errno = 0;
656 
657 	if (i <= LARGEST_ANON_PORT) {
658 		bcopy((caddr_t)&addr, (caddr_t)&sockets[sock_id].bind,
659 		    sizeof (struct sockaddr_in));
660 		sockets[sock_id].bound = B_TRUE;
661 #ifdef DEBUG
662 		printf("quick bind done addr %s port %d\n",
663 		    inet_ntoa(sockets[sock_id].bind.sin_addr),
664 			ntohs(sockets[sock_id].bind.sin_port));
665 #endif
666 		return (0);
667 	} else {
668 		return (-1);
669 	}
670 }
671 
672 int
673 listen(int fd, int backlog)
674 {
675 	int sock_id;
676 
677 	errno = 0;
678 	if ((sock_id = so_check_fd(fd, &errno)) == -1)
679 		return (-1);
680 
681 	if (sockets[sock_id].type != INETBOOT_STREAM) {
682 		errno = EOPNOTSUPP;
683 		return (-1);
684 	}
685 	if (sockets[sock_id].so_error != 0) {
686 		errno = sockets[sock_id].so_error;
687 		return (-1);
688 	}
689 	return (tcp_listen(sock_id, backlog));
690 }
691 
692 int
693 accept(int fd, struct sockaddr *addr,  socklen_t *addr_len)
694 {
695 	int sock_id;
696 	int new_sd;
697 
698 	errno = 0;
699 	if ((sock_id = so_check_fd(fd, &errno)) == -1)
700 		return (-1);
701 
702 	if (sockets[sock_id].type != INETBOOT_STREAM) {
703 		errno = EOPNOTSUPP;
704 		return (-1);
705 	}
706 	if (sockets[sock_id].so_error != 0) {
707 		errno = sockets[sock_id].so_error;
708 		return (-1);
709 	}
710 	if ((new_sd = tcp_accept(sock_id, addr, addr_len)) == -1)
711 		return (-1);
712 	sock_id = so_check_fd(new_sd, &errno);
713 	sockets[sock_id].so_state |= SS_ISCONNECTED;
714 	return (new_sd);
715 }
716 
717 int
718 connect(int fd, const  struct sockaddr *addr, socklen_t addr_len)
719 {
720 	int sock_id;
721 	int so_type;
722 
723 	errno = 0;
724 	if ((sock_id = so_check_fd(fd, &errno)) == -1)
725 		return (-1);
726 
727 	so_type = sockets[sock_id].type;
728 
729 	if (addr == NULL || addr_len == 0) {
730 		errno = EINVAL;
731 		return (-1);
732 	}
733 	/* Don't allow connect for raw socket. */
734 	if (so_type == INETBOOT_RAW) {
735 		errno = EPROTONOSUPPORT;
736 		return (-1);
737 	}
738 
739 	if (sockets[sock_id].so_state & SS_ISCONNECTED) {
740 		errno = EINVAL;
741 		return (-1);
742 	}
743 
744 	if (sockets[sock_id].so_error != 0) {
745 		errno = sockets[sock_id].so_error;
746 		return (-1);
747 	}
748 
749 	/* If the socket is not bound, we need to do a quick bind. */
750 	if (!sockets[sock_id].bound) {
751 		/* For TCP socket, just call tcp_bind(). */
752 		if (so_type == INETBOOT_STREAM) {
753 			if (tcp_bind(sock_id) < 0)
754 				return (-1);
755 		} else {
756 			if (quickbind(sock_id) < 0) {
757 				errno = EADDRNOTAVAIL;
758 				return (-1);
759 			}
760 		}
761 	}
762 	/* Should do some sanity check for addr .... */
763 	bcopy((caddr_t)addr, &sockets[sock_id].remote,
764 	    sizeof (struct sockaddr_in));
765 
766 	if (sockets[sock_id].type == INETBOOT_STREAM) {
767 		/* Call TCP connect routine. */
768 		if (tcp_connect(sock_id) == 0)
769 			sockets[sock_id].so_state |= SS_ISCONNECTED;
770 		else {
771 			if (sockets[sock_id].so_error != 0)
772 				errno = sockets[sock_id].so_error;
773 			return (-1);
774 		}
775 	} else {
776 		sockets[sock_id].so_state |= SS_ISCONNECTED;
777 	}
778 	return (0);
779 }
780 
781 /* Just a wrapper around recvfrom(). */
782 ssize_t
783 recv(int s, void *buf, size_t len, int flags)
784 {
785 	return (recvfrom(s, buf, len, flags, NULL, NULL));
786 }
787 
788 /*
789  * Receive messages from a connectionless socket. Legal flags are 0 and
790  * MSG_DONTWAIT. MSG_WAITALL is not currently supported.
791  *
792  * Returns length of message for success, -1 if error occurred.
793  */
794 ssize_t
795 recvfrom(int s, void *buf, size_t len, int flags, struct sockaddr *from,
796     socklen_t *fromlen)
797 {
798 	int			sock_id, i;
799 	ssize_t			datalen, bytes = 0;
800 	struct inetgram		*icp;
801 	enum SockType		so_type;
802 	char			*tmp_buf;
803 	mblk_t			*mp;
804 
805 	errno = 0;
806 
807 	if ((sock_id = so_check_fd(s, &errno)) == -1) {
808 		errno = EINVAL;
809 		return (-1);
810 	}
811 
812 	if (sockets[sock_id].type == INETBOOT_STREAM &&
813 	    !(sockets[sock_id].so_state & SS_ISCONNECTED)) {
814 		errno = ENOTCONN;
815 		return (-1);
816 	}
817 
818 	if (buf == NULL || len == 0) {
819 		errno = EINVAL;
820 		return (-1);
821 	}
822 	/* Yup - MSG_WAITALL not implemented */
823 	if ((flags & ~MSG_DONTWAIT) != 0) {
824 		errno = EINVAL;
825 		return (-1);
826 	}
827 
828 retry:
829 	if (sockets[sock_id].inq == NULL) {
830 		/* Go out and check the wire */
831 		for (i = MEDIA_LVL; i < APP_LVL; i++) {
832 			if (sockets[sock_id].input[i] != NULL) {
833 				if (sockets[sock_id].input[i](sock_id) < 0) {
834 					if (sockets[sock_id].so_error != 0) {
835 						errno =
836 						    sockets[sock_id].so_error;
837 					}
838 					return (-1);
839 				}
840 			}
841 		}
842 	}
843 
844 	so_type = sockets[sock_id].type;
845 
846 	/* Remove unknown inetgrams from the head of inq.  Can this happen? */
847 	while ((icp = sockets[sock_id].inq) != NULL) {
848 		if ((so_type == INETBOOT_DGRAM ||
849 		    so_type == INETBOOT_STREAM) &&
850 		    icp->igm_level != APP_LVL) {
851 #ifdef	DEBUG
852 			printf("recvfrom: unexpected level %d frame found\n",
853 			    icp->igm_level);
854 #endif	/* DEBUG */
855 			del_gram(&sockets[sock_id].inq, icp, B_TRUE);
856 			continue;
857 		} else {
858 			break;
859 		}
860 	}
861 
862 
863 	if (icp == NULL) {
864 		/*
865 		 * Checking for error should be done everytime a lower layer
866 		 * input routing is called.  For example, if TCP gets a RST,
867 		 * this should be reported asap.
868 		 */
869 		if (sockets[sock_id].so_state & SS_CANTRCVMORE) {
870 			if (sockets[sock_id].so_error != 0) {
871 				errno = sockets[sock_id].so_error;
872 				return (-1);
873 			} else {
874 				return (0);
875 			}
876 		}
877 
878 		if ((flags & MSG_DONTWAIT) == 0)
879 			goto retry;	/* wait forever */
880 
881 		/* no data */
882 		errno = EWOULDBLOCK;
883 		return (-1);
884 	}
885 
886 	if (from != NULL && fromlen != NULL) {
887 		switch (so_type) {
888 		case INETBOOT_STREAM:
889 			/* Need to copy from the socket's remote address. */
890 			bcopy(&(sockets[sock_id].remote), from, MIN(*fromlen,
891 			    sizeof (struct sockaddr_in)));
892 			break;
893 		case INETBOOT_RAW:
894 		case INETBOOT_DGRAM:
895 		default:
896 			if (*fromlen > sizeof (icp->igm_saddr))
897 				*fromlen = sizeof (icp->igm_saddr);
898 			bcopy((caddr_t)&(icp->igm_saddr), (caddr_t)from,
899 			    MIN(*fromlen, sizeof (struct sockaddr_in)));
900 			break;
901 		}
902 	}
903 
904 	mp = icp->igm_mp;
905 	switch (so_type) {
906 	case INETBOOT_STREAM:
907 		/*
908 		 * If the message has igm_id == TCP_CALLB_MAGIC_ID, we need
909 		 * to drain the data held by tcp and try again.
910 		 */
911 		if (icp->igm_id == TCP_CALLB_MAGIC_ID) {
912 			del_gram(&sockets[sock_id].inq, icp, B_TRUE);
913 			tcp_rcv_drain_sock(sock_id);
914 			goto retry;
915 		}
916 
917 		/* TCP should put only user data in the inetgram. */
918 		tmp_buf = (char *)buf;
919 		while (len > 0 && icp != NULL) {
920 			datalen = mp->b_wptr - mp->b_rptr;
921 			if (len < datalen) {
922 				bcopy(mp->b_rptr, tmp_buf, len);
923 				bytes += len;
924 				mp->b_rptr += len;
925 				break;
926 			} else {
927 				bcopy(mp->b_rptr, tmp_buf, datalen);
928 				len -= datalen;
929 				bytes += datalen;
930 				tmp_buf += datalen;
931 				del_gram(&sockets[sock_id].inq, icp, B_TRUE);
932 
933 				/*
934 				 * If we have any embedded magic messages just
935 				 * drop them.
936 				 */
937 				while ((icp = sockets[sock_id].inq) != NULL) {
938 					if (icp->igm_id != TCP_CALLB_MAGIC_ID)
939 						break;
940 					del_gram(&sockets[sock_id].inq, icp,
941 						B_TRUE);
942 				}
943 
944 				if (icp == NULL)
945 					break;
946 				mp = icp->igm_mp;
947 			}
948 		}
949 		sockets[sock_id].so_rcvbuf += (int32_t)bytes;
950 		break;
951 	case INETBOOT_DGRAM:
952 		datalen = mp->b_wptr - mp->b_rptr;
953 		if (len < datalen)
954 			bytes = len;
955 		else
956 			bytes = datalen;
957 		bcopy(mp->b_rptr, buf, bytes);
958 		del_gram(&sockets[sock_id].inq, icp, B_TRUE);
959 		break;
960 	case INETBOOT_RAW:
961 	default:
962 		datalen = mp->b_wptr - mp->b_rptr;
963 		if (len < datalen)
964 			bytes = len;
965 		else
966 			bytes = datalen;
967 		bcopy(mp->b_rptr, buf, bytes);
968 		del_gram(&sockets[sock_id].inq, icp, B_TRUE);
969 		break;
970 	}
971 
972 #ifdef	DEBUG
973 	printf("recvfrom(%d): data: (0x%x,%d)\n", sock_id,
974 	    (icp != NULL) ? icp->igm_mp : 0, bytes);
975 #endif	/* DEBUG */
976 	return (bytes);
977 }
978 
979 
980 /* Just a wrapper around sendto(). */
981 ssize_t
982 send(int s, const void *msg, size_t len, int flags)
983 {
984 	return (sendto(s, msg, len, flags, NULL, 0));
985 }
986 
987 /*
988  * Transmit a message through a socket.
989  *
990  * Supported flags: MSG_DONTROUTE or 0.
991  */
992 ssize_t
993 sendto(int s, const void *msg, size_t len, int flags, const struct sockaddr *to,
994     socklen_t tolen)
995 {
996 	enum SockType so_type;
997 	int sock_id;
998 	ssize_t bytes;
999 
1000 	errno = 0;
1001 
1002 	if ((sock_id = so_check_fd(s, &errno)) == -1) {
1003 		return (-1);
1004 	}
1005 	if (msg == NULL) {
1006 		errno = EINVAL;
1007 		return (-1);
1008 	}
1009 	so_type = sockets[sock_id].type;
1010 	if ((flags & ~MSG_DONTROUTE) != 0) {
1011 		errno = EINVAL;
1012 		return (-1);
1013 	}
1014 	if (sockets[sock_id].so_error != 0) {
1015 		errno = sockets[sock_id].so_error;
1016 		return (-1);
1017 	}
1018 	if (to != NULL && to->sa_family != AF_INET) {
1019 		errno = EAFNOSUPPORT;
1020 		return (-1);
1021 	}
1022 
1023 	switch (so_type) {
1024 	case INETBOOT_RAW:
1025 	case INETBOOT_DGRAM:
1026 		if (!(sockets[sock_id].so_state & SS_ISCONNECTED) &&
1027 		    (to == NULL || tolen != sizeof (struct sockaddr_in))) {
1028 			errno = EINVAL;
1029 			return (-1);
1030 		}
1031 		bytes = dgram_sendto(sock_id, msg, len, flags, to, tolen);
1032 		break;
1033 	case INETBOOT_STREAM:
1034 		if (!((sockets[sock_id].so_state & SS_ISCONNECTED) ||
1035 		    (sockets[sock_id].so_state & SS_ISCONNECTING))) {
1036 			errno = EINVAL;
1037 			return (-1);
1038 		}
1039 		if (sockets[sock_id].so_state & SS_CANTSENDMORE) {
1040 			errno = EPIPE;
1041 			return (-1);
1042 		}
1043 		bytes = stream_sendto(sock_id, msg, len, flags);
1044 		break;
1045 	default:
1046 		/* Should not happen... */
1047 		errno = EPROTOTYPE;
1048 		return (-1);
1049 	}
1050 	return (bytes);
1051 }
1052 
1053 static ssize_t
1054 dgram_sendto(int i, const void *msg, size_t len, int flags,
1055     const struct sockaddr *to, int tolen)
1056 {
1057 	struct inetgram		oc;
1058 	int			l, offset;
1059 	size_t			tlen;
1060 	mblk_t			*mp;
1061 
1062 #ifdef	DEBUG
1063 	{
1064 	struct sockaddr_in *sin = (struct sockaddr_in *)to;
1065 	printf("sendto(%d): msg of length: %d sent to port %d and host: %s\n",
1066 	    i, len, ntohs(sin->sin_port), inet_ntoa(sin->sin_addr));
1067 	}
1068 #endif	/* DEBUG */
1069 
1070 	nuke_grams(&sockets[i].inq); /* flush the input queue */
1071 
1072 	/* calculate offset for data */
1073 	offset = sockets[i].headerlen[MEDIA_LVL](NULL) +
1074 	    (sockets[i].headerlen[NETWORK_LVL])(NULL);
1075 
1076 	bzero((caddr_t)&oc, sizeof (oc));
1077 	if (sockets[i].type != INETBOOT_RAW) {
1078 		offset += (sockets[i].headerlen[TRANSPORT_LVL])(NULL);
1079 		oc.igm_level = TRANSPORT_LVL;
1080 	} else
1081 		oc.igm_level = NETWORK_LVL;
1082 	oc.igm_oflags = flags;
1083 
1084 	if (to != NULL) {
1085 		bcopy((caddr_t)to, (caddr_t)&oc.igm_saddr, tolen);
1086 	} else {
1087 		bcopy((caddr_t)&sockets[i].remote, (caddr_t)&oc.igm_saddr,
1088 		    sizeof (struct sockaddr_in));
1089 	}
1090 
1091 	/* Get a legal source port if the socket isn't bound. */
1092 	if (sockets[i].bound == B_FALSE &&
1093 	    ntohs(oc.igm_saddr.sin_port == 0)) {
1094 		((struct sockaddr_in *)&oc.igm_saddr)->sin_port =
1095 		    get_source_port(B_FALSE);
1096 	}
1097 
1098 	/* Round up to 16bit value for checksum purposes */
1099 	if (sockets[i].type == INETBOOT_DGRAM) {
1100 		tlen = ((len + sizeof (uint16_t) - 1) &
1101 		    ~(sizeof (uint16_t) - 1));
1102 	} else
1103 		tlen = len;
1104 
1105 	if ((oc.igm_mp = allocb(tlen + offset, 0)) == NULL) {
1106 		errno = ENOMEM;
1107 		return (-1);
1108 	}
1109 	mp = oc.igm_mp;
1110 	mp->b_rptr = mp->b_wptr += offset;
1111 	bcopy((caddr_t)msg, mp->b_wptr, len);
1112 	mp->b_wptr += len;
1113 	for (l = TRANSPORT_LVL; l >= MEDIA_LVL; l--) {
1114 		if (sockets[i].output[l] != NULL) {
1115 			if (sockets[i].output[l](i, &oc) < 0) {
1116 				freeb(mp);
1117 				if (errno == 0)
1118 					errno = EIO;
1119 				return (-1);
1120 			}
1121 		}
1122 	}
1123 	freeb(mp);
1124 	return (len);
1125 }
1126 
1127 /* ARGSUSED */
1128 static ssize_t
1129 stream_sendto(int i, const void *msg, size_t len, int flags)
1130 {
1131 	int cnt;
1132 
1133 	assert(sockets[i].pcb != NULL);
1134 
1135 	/*
1136 	 * Call directly TCP's send routine.  We do this because TCP
1137 	 * needs to decide whether to send out the data.
1138 	 *
1139 	 * Note also that currently, TCP ignores all flags passed in for
1140 	 * TCP socket.
1141 	 */
1142 	if ((cnt = tcp_send(i, sockets[i].pcb, msg, len)) < 0) {
1143 		if (sockets[i].so_error != 0)
1144 			errno = sockets[i].so_error;
1145 		return (-1);
1146 	} else {
1147 		return (cnt);
1148 	}
1149 }
1150 
1151 /*
1152  * Returns ptr to the last inetgram in the list, or null if list is null
1153  */
1154 struct inetgram *
1155 last_gram(struct inetgram *igp)
1156 {
1157 	struct inetgram	*wp;
1158 	for (wp = igp; wp != NULL; wp = wp->igm_next) {
1159 		if (wp->igm_next == NULL)
1160 			return (wp);
1161 	}
1162 	return (NULL);
1163 }
1164 
1165 /*
1166  * Adds an inetgram or list of inetgrams to the end of the list.
1167  */
1168 void
1169 add_grams(struct inetgram **igpp, struct inetgram *newgp)
1170 {
1171 	struct inetgram	 *wp;
1172 
1173 	if (newgp == NULL)
1174 		return;
1175 
1176 	if (*igpp == NULL)
1177 		*igpp = newgp;
1178 	else {
1179 		wp = last_gram(*igpp);
1180 		wp->igm_next = newgp;
1181 	}
1182 }
1183 
1184 /*
1185  * Nuke a whole list of grams.
1186  */
1187 void
1188 nuke_grams(struct inetgram **lgpp)
1189 {
1190 	while (*lgpp != NULL)
1191 		del_gram(lgpp, *lgpp, B_TRUE);
1192 }
1193 
1194 /*
1195  * Remove the referenced inetgram. List is altered accordingly. Destroy the
1196  * referenced inetgram if freeit is B_TRUE.
1197  */
1198 void
1199 del_gram(struct inetgram **lgpp, struct inetgram *igp, int freeit)
1200 {
1201 	struct inetgram	*wp, *pp = NULL;
1202 
1203 	if (lgpp == NULL || igp == NULL)
1204 		return;
1205 
1206 	wp = *lgpp;
1207 	while (wp != NULL) {
1208 		if (wp == igp) {
1209 			/* detach wp from the list */
1210 			if (*lgpp == wp)
1211 				*lgpp = (*lgpp)->igm_next;
1212 			else
1213 				pp->igm_next = wp->igm_next;
1214 			igp->igm_next = NULL;
1215 
1216 			if (freeit) {
1217 				if (igp->igm_mp != NULL)
1218 					freeb(igp->igm_mp);
1219 				bkmem_free((caddr_t)igp,
1220 				    sizeof (struct inetgram));
1221 			}
1222 			break;
1223 		}
1224 		pp = wp;
1225 		wp = wp->igm_next;
1226 	}
1227 }
1228 
1229 struct nct_t nct[] = {
1230 	"bootp",	NCT_BOOTP_DHCP,
1231 	"dhcp",		NCT_BOOTP_DHCP,
1232 	"rarp",		NCT_RARP_BOOTPARAMS,
1233 	"manual",	NCT_MANUAL
1234 };
1235 int	nct_entries = sizeof (nct) / sizeof (nct[0]);
1236 
1237 /*
1238  * Figure out from the bootpath what kind of network configuration strategy
1239  * we should use. Returns the network config strategy.
1240  */
1241 int
1242 get_netconfig_strategy(void)
1243 {
1244 	int	i;
1245 #if !defined(__i386)
1246 	/* sparc */
1247 #define	ISSPACE(c) (c == ' ' || c == '\t' || c == '\n' || c == '\0')
1248 	char	lbootpath[OBP_MAXPATHLEN];
1249 	char	net_options[NCT_BUFSIZE];
1250 	char	*op, *nop, *sp;
1251 	pnode_t	cn;
1252 	int	proplen;
1253 
1254 	/* If the PROM DHCP cache exists, we're done */
1255 	if (prom_cached_reply(B_TRUE))
1256 		return (NCT_BOOTP_DHCP);
1257 
1258 	/*
1259 	 *	Newer (version 4) PROMs will put the name in the
1260 	 *	"net-config-strategy" property.
1261 	 */
1262 	cn = prom_finddevice("/chosen");
1263 	if ((proplen = prom_getproplen(cn, "net-config-strategy")) <
1264 	    sizeof (net_options)) {
1265 		(void) prom_getprop(cn, "net-config-strategy", net_options);
1266 		net_options[proplen] = '\0';
1267 	} else {
1268 
1269 		/*
1270 		 * We're reduced to sacanning bootpath for the prototol to use.
1271 		 * Since there was no "net-config-strategy" property, this is
1272 		 * an old PROM, so we need to excise any extraneous key/value
1273 		 * initializations from bootpath[].
1274 		 */
1275 		for (op = prom_bootpath(), sp = lbootpath; op != NULL &&
1276 		    !ISSPACE(*op); sp++, op++)
1277 			*sp = *op;
1278 		*sp = '\0';
1279 		/* find the last '/' (in the device path) */
1280 		if ((op = strrchr(lbootpath, '/')) == NULL)	/* last '/' */
1281 			op = lbootpath;
1282 		else
1283 			op++;
1284 		/* then look for the ':' separating it from the protocol */
1285 		while (*op != ':' && *op != '\0')
1286 			op++;
1287 
1288 		if (*op == ':') {
1289 			for (nop = net_options, op++;
1290 			    *op != '\0' && *op != '/' && !ISSPACE(*op) &&
1291 			    nop < &net_options[NCT_BUFSIZE]; nop++, op++)
1292 				*nop = *op;
1293 			*nop = '\0';
1294 		} else
1295 			net_options[0] = '\0';
1296 	}
1297 
1298 #undef	ISSPACE
1299 #else
1300 	/* i86 */
1301 	extern struct bootops bootops;
1302 	extern int bgetprop(struct bootops *, char *, caddr_t, int, phandle_t);
1303 	char	net_options[MAXNAMELEN];
1304 
1305 	/*
1306 	 * Look at net-config-strategy boot property to determine what protocol
1307 	 * will be used.
1308 	 */
1309 	(void) bgetprop(&bootops, "net-config-strategy", net_options,
1310 	    sizeof (net_options), 0);
1311 
1312 #endif	/* __i386 */
1313 
1314 	for (i = 0; i < nct_entries; i++)
1315 		if (strcmp(net_options, nct[i].p_name) == 0)
1316 			return (nct[i].p_id);
1317 
1318 	return (NCT_DEFAULT);
1319 }
1320 
1321 /* Modified STREAM routines for ease of porting core TCP code. */
1322 
1323 /*ARGSUSED*/
1324 mblk_t *
1325 allocb(size_t size, uint_t pri)
1326 {
1327 	unsigned char *base;
1328 	mblk_t *mp;
1329 
1330 	if ((mp = (mblk_t *)bkmem_zalloc(sizeof (mblk_t))) == NULL)
1331 		return (NULL);
1332 	if ((base = (unsigned char *)bkmem_zalloc(size)) == NULL)
1333 		return (NULL);
1334 
1335 	mp->b_next = mp->b_prev = mp->b_cont = NULL;
1336 	mp->b_rptr = mp->b_wptr = mp->b_datap = (unsigned char *)base;
1337 	mp->b_size = size;
1338 
1339 	return (mp);
1340 }
1341 
1342 void
1343 freeb(mblk_t *mp)
1344 {
1345 #ifdef DEBUG
1346 	printf("freeb datap %x\n", mp->b_datap);
1347 #endif
1348 	bkmem_free((caddr_t)(mp->b_datap), mp->b_size);
1349 #ifdef DEBUG
1350 	printf("freeb mp %x\n", mp);
1351 #endif
1352 	bkmem_free((caddr_t)mp, sizeof (mblk_t));
1353 }
1354 
1355 void
1356 freemsg(mblk_t *mp)
1357 {
1358 	while (mp) {
1359 		mblk_t *mp_cont = mp->b_cont;
1360 
1361 		freeb(mp);
1362 		mp = mp_cont;
1363 	}
1364 }
1365 
1366 mblk_t *
1367 copyb(mblk_t *bp)
1368 {
1369 	mblk_t *nbp;
1370 	unsigned char *ndp;
1371 
1372 	assert((uintptr_t)(bp->b_wptr - bp->b_rptr) >= 0);
1373 
1374 	if (!(nbp = allocb(bp->b_size, 0)))
1375 		return (NULL);
1376 	nbp->b_cont = NULL;
1377 	ndp = nbp->b_datap;
1378 
1379 	nbp->b_rptr = ndp + (bp->b_rptr - bp->b_datap);
1380 	nbp->b_wptr = nbp->b_rptr + (bp->b_wptr - bp->b_rptr);
1381 	bcopy(bp->b_datap, nbp->b_datap, bp->b_size);
1382 	return (nbp);
1383 }
1384 
1385 /* To simplify things, dupb() is implemented as copyb(). */
1386 mblk_t *
1387 dupb(mblk_t *mp)
1388 {
1389 	return (copyb(mp));
1390 }
1391 
1392 /*
1393  * get number of data bytes in message
1394  */
1395 size_t
1396 msgdsize(mblk_t *bp)
1397 {
1398 	size_t count = 0;
1399 
1400 	for (; bp != NULL; bp = bp->b_cont) {
1401 		assert(bp->b_wptr >= bp->b_rptr);
1402 		count += bp->b_wptr - bp->b_rptr;
1403 	}
1404 	return (count);
1405 }
1406