xref: /titanic_44/usr/src/stand/lib/fs/hsfs/hsfsops.c (revision 883ea9afc38ffb738e12a4a9e49833f7fa69b54a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/vnode.h>
30 #include <sys/fs/ufs_fsdir.h>
31 #include <sys/fs/ufs_fs.h>
32 #include <sys/fs/ufs_inode.h>
33 #include <sys/sysmacros.h>
34 #include <sys/promif.h>
35 #include <sys/filep.h>
36 #include <sys/salib.h>
37 #include <sys/sacache.h>
38 
39 #include <sys/fs/hsfs_spec.h>
40 #include <sys/fs/hsfs_isospec.h>
41 #include <sys/fs/hsfs_node.h>
42 #include <sys/fs/hsfs_susp.h>
43 #include <sys/fs/hsfs_rrip.h>
44 
45 #include "hsfs_sig.h"
46 
47 #include <sys/stat.h>
48 #include <sys/bootvfs.h>
49 #include <sys/bootconf.h>
50 #include <sys/bootdebug.h>
51 
52 #define	hdbtodb(n)	((ISO_SECTOR_SIZE / DEV_BSIZE) * (n))
53 
54 #define	THE_EPOCH	1970
55 #define	END_OF_TIME	2099
56 
57 /* May not need this... */
58 static uint_t	sua_offset = 0;
59 
60 /* The root inode on an HSFS filesystem can be anywhere! */
61 static uint_t	root_ino = 0;		/* This is both a flag and a value */
62 
63 static fileid_t *head;
64 
65 /* Only got one of these...ergo, only 1 fs open at once */
66 static devid_t *devp;
67 
68 struct dirinfo {
69 	int 	loc;
70 	fileid_t *fi;
71 };
72 
73 struct hs_direct {
74     struct	direct	hs_ufs_dir;
75     struct	hs_direntry hs_dir;
76 };
77 
78 /*
79  *  Function prototypes
80  */
81 
82 static int	boot_hsfs_mountroot(char *str);
83 static int	boot_hsfs_unmountroot(void);
84 static int	boot_hsfs_open(char *filename, int flags);
85 static int	boot_hsfs_close(int fd);
86 static ssize_t	boot_hsfs_read(int fd, caddr_t buf, size_t size);
87 static off_t	boot_hsfs_lseek(int, off_t, int);
88 static int	boot_hsfs_fstat(int fd, struct bootstat *stp);
89 static void	boot_hsfs_closeall(int flag);
90 static int	boot_hsfs_getdents(int fd, struct dirent *dep, unsigned size);
91 
92 struct boot_fs_ops boot_hsfs_ops = {
93 	"hsfs",
94 	boot_hsfs_mountroot,
95 	boot_hsfs_unmountroot,
96 	boot_hsfs_open,
97 	boot_hsfs_close,
98 	boot_hsfs_read,
99 	boot_hsfs_lseek,
100 	boot_hsfs_fstat,
101 	boot_hsfs_closeall,
102 	boot_hsfs_getdents
103 };
104 
105 static 	ino_t	find(fileid_t *, char *);
106 static	ino_t	dlook(fileid_t *, char *);
107 static	int	opendir(fileid_t *, ino_t);
108 static	struct	hs_direct *readdir(struct dirinfo *);
109 static	uint_t	parse_dir(fileid_t *, int, struct hs_direct *);
110 static	uint_t	parse_susp(char *, uint_t *, struct hs_direct *);
111 static	void	hs_seti(fileid_t *,  struct hs_direct *, ino_t);
112 static void	hs_dodates(enum hs_vol_type, struct hs_direntry *, char *);
113 static time_t	hs_date_to_gmtime(int, int, int, int);
114 
115 /*
116  *	There is only 1 open (mounted) device at any given time.
117  *	So we can keep a single, global devp file descriptor to
118  *	use to index into the di[] array.  This is not true for the
119  *	fi[] array.  We can have more than one file open at once,
120  *	so there is no global fd for the fi[].
121  *	The user program must save the fd passed back from open()
122  *	and use it to do subsequent read()'s.
123  */
124 
125 static int
126 opendir(fileid_t *filep, ino_t inode)
127 {
128 	struct hs_direct hsdep;
129 	int retval;
130 
131 	/* Set up the saio request */
132 	filep->fi_offset = 0;
133 	filep->fi_blocknum = hdbtodb(inode);
134 	filep->fi_count = ISO_SECTOR_SIZE;
135 
136 	/* Maybe the block is in the disk block cache */
137 	if ((filep->fi_memp = get_bcache(filep)) == NULL) {
138 		/* Not in the block cache so read it from disk */
139 		if (retval = set_bcache(filep)) {
140 			return (retval);
141 		}
142 	}
143 
144 	filep->fi_offset = 0;
145 	filep->fi_blocknum = hdbtodb(inode);
146 
147 	if (inode != root_ino)
148 		return (0);
149 
150 	if ((int)(parse_dir(filep, 0, &hsdep)) > 0) {
151 		hs_seti(filep, &hsdep, inode);
152 		return (0);
153 	}
154 	return (1);
155 }
156 
157 static ino_t
158 find(fileid_t *filep, char *path)
159 {
160 	register char *q;
161 	char c;
162 	ino_t inode;
163 
164 	if (path == NULL || *path == '\0') {
165 		printf("null path\n");
166 		return (0);
167 	}
168 
169 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
170 		printf("find(): path=<%s>\n", path);
171 
172 	/* Read the ROOT directory */
173 	if (opendir(filep, inode = root_ino)) {
174 		printf("find(): root_ino opendir() failed!\n");
175 		return ((ino_t)-1);
176 	}
177 
178 	while (*path) {
179 		while (*path == '/')
180 			path++;
181 		if (*(q = path) == '\0')
182 			break;
183 		while (*q != '/' && *q != '\0')
184 			q++;
185 		c = *q;
186 		*q = '\0';
187 
188 		if ((inode = dlook(filep, path)) != 0) {
189 			if (c == '\0')
190 				break;
191 			if (opendir(filep, inode)) {
192 				printf("find(): opendir(%d) failed!\n", inode);
193 				*q = c;
194 				return ((ino_t)-1);
195 			}
196 			*q = c;
197 			path = q;
198 			continue;
199 		} else {
200 			*q = c;
201 			return (0);
202 		}
203 	}
204 	return (inode);
205 }
206 
207 static fileid_t *
208 find_fp(int fd)
209 {
210 	fileid_t *filep = head;
211 
212 	if (fd >= 0) {
213 		while ((filep = filep->fi_forw) != head)
214 			if (fd == filep->fi_filedes)
215 				return (filep->fi_taken ? filep : 0);
216 	}
217 
218 	return (0);
219 }
220 
221 static ino_t
222 dlook(fileid_t *filep, char *path)
223 {
224 	int dv = filep->fi_devp->di_dcookie;
225 	register struct hs_direct *hsdep;
226 	register struct direct *udp;
227 	register struct inode *ip;
228 	struct dirinfo dirp;
229 	register int len;
230 	ino_t in;
231 
232 	ip = filep->fi_inode;
233 	if (path == NULL || *path == '\0')
234 		return (0);
235 	if ((ip->i_smode & IFMT) != IFDIR) {
236 		return (0);
237 	}
238 	if (ip->i_size == 0) {
239 		return (0);
240 	}
241 	len = strlen(path);
242 	/* first look through the directory entry cache */
243 	if (in = get_dcache(dv, path, ip->i_number)) {
244 		if ((filep->fi_inode = get_icache(dv, in)) != NULL) {
245 			filep->fi_offset = 0;
246 			filep->fi_blocknum = hdbtodb(in);
247 			return (in);
248 		}
249 	}
250 	dirp.loc = 0;
251 	dirp.fi = filep;
252 	for (hsdep = readdir(&dirp); hsdep != NULL; hsdep = readdir(&dirp)) {
253 		udp = &hsdep->hs_ufs_dir;
254 		if (udp->d_namlen == 1 &&
255 		    udp->d_name[0] == '.' &&
256 		    udp->d_name[1] == '\0')
257 			continue;
258 		if (udp->d_namlen == 2 &&
259 		    udp->d_name[0] == '.' &&
260 		    udp->d_name[1] == '.' &&
261 		    udp->d_name[2] == '\0')
262 			continue;
263 		if (udp->d_namlen == len && (strcmp(path, udp->d_name) == 0)) {
264 			set_dcache(dv, path, ip->i_number, udp->d_ino);
265 			hs_seti(filep, hsdep, udp->d_ino);
266 			filep->fi_offset = 0;
267 			filep->fi_blocknum = hdbtodb(udp->d_ino);
268 			/* put this entry into the cache */
269 			return (udp->d_ino);
270 		}
271 		/* Allow "*" to print all names at that level, w/out match */
272 		if (strcmp(path, "*") == 0)
273 			printf("%s\n", udp->d_name);
274 	}
275 	return (0);
276 }
277 
278 /*
279  * get next entry in a directory.
280  */
281 static struct hs_direct *
282 readdir(struct dirinfo *dirp)
283 {
284 	static struct hs_direct hsdep;
285 	register struct direct *udp = &hsdep.hs_ufs_dir;
286 	register struct inode *ip;
287 	register fileid_t *filep;
288 	register daddr_t lbn;
289 	register int off;
290 
291 	filep = dirp->fi;
292 	ip = filep->fi_inode;
293 	for (;;) {
294 		if (dirp->loc >= ip->i_size) {
295 			return (NULL);
296 		}
297 		off = dirp->loc & ((1 << ISO_SECTOR_SHIFT) - 1);
298 		if (off == 0) {
299 			lbn = hdbtodb(dirp->loc >> ISO_SECTOR_SHIFT);
300 			filep->fi_blocknum = lbn + hdbtodb(ip->i_number);
301 			filep->fi_count = ISO_SECTOR_SIZE;
302 			/* check the block cache */
303 			if ((filep->fi_memp = get_bcache(filep)) == 0)
304 				if (set_bcache(filep))
305 					return ((struct hs_direct *)-1);
306 		}
307 		dirp->loc += parse_dir(filep, off, &hsdep);
308 		if (udp->d_reclen == 0 && dirp->loc <= ip->i_size) {
309 			dirp->loc = roundup(dirp->loc, ISO_SECTOR_SIZE);
310 			continue;
311 		}
312 		return (&hsdep);
313 	}
314 }
315 
316 /*
317  * Get the next block of data from the file.  If possible, dma right into
318  * user's buffer
319  */
320 static int
321 getblock(fileid_t *filep, caddr_t buf, int count, int *rcount)
322 {
323 	register struct inode *ip;
324 	register caddr_t p;
325 	register int off, size, diff;
326 	register daddr_t lbn;
327 	static int	pos;
328 	static char 	ind[] = "|/-\\";	/* that's entertainment? */
329 	static int	blks_read;
330 
331 	ip = filep->fi_inode;
332 	p = filep->fi_memp;
333 	if ((signed)filep->fi_count <= 0) {
334 
335 		/* find the amt left to be read in the file */
336 		diff = ip->i_size - filep->fi_offset;
337 		if (diff <= 0) {
338 			printf("Short read\n");
339 			return (-1);
340 		}
341 
342 		/* which block (or frag) in the file do we read? */
343 		lbn = hdbtodb(filep->fi_offset >> ISO_SECTOR_SHIFT);
344 
345 		/* which physical block on the device do we read? */
346 		filep->fi_blocknum = lbn + hdbtodb(ip->i_number);
347 
348 		off = filep->fi_offset & ((1 << ISO_SECTOR_SHIFT) - 1);
349 
350 		size = sizeof (filep->fi_buf);
351 		if (size > ISO_SECTOR_SIZE)
352 			size = ISO_SECTOR_SIZE;
353 
354 		filep->fi_count = size;
355 		filep->fi_memp = filep->fi_buf;
356 
357 		/*
358 		 * optimization if we are reading large blocks of data then
359 		 * we can go directly to user's buffer
360 		 */
361 		*rcount = 0;
362 		if (off == 0 && count >= size) {
363 			filep->fi_memp = buf;
364 			if (diskread(filep)) {
365 				return (-1);
366 			}
367 			*rcount = size;
368 			filep->fi_count = 0;
369 			read_opt++;
370 			if ((blks_read++ & 0x3) == 0)
371 				printf("%c\b", ind[pos++ & 3]);
372 			return (0);
373 		} else
374 			if (diskread(filep))
375 				return (-1);
376 
377 		/*
378 		 * round and round she goes (though not on every block..
379 		 * - OBP's take a fair bit of time to actually print stuff)
380 		 */
381 		if ((blks_read++ & 0x3) == 0)
382 			printf("%c\b", ind[pos++ & 3]);
383 
384 		if (filep->fi_offset - off + size >= ip->i_size)
385 			filep->fi_count = diff + off;
386 		filep->fi_count -= off;
387 		p = &filep->fi_memp[off];
388 	}
389 	filep->fi_memp = p;
390 	return (0);
391 }
392 
393 
394 /*
395  *  This is the high-level read function.  It works like this.
396  *  We assume that our IO device buffers up some amount of
397  *  data ant that we can get a ptr to it.  Thus we need
398  *  to actually call the device func about filesize/blocksize times
399  *  and this greatly increases our IO speed.  When we already
400  *  have data in the buffer, we just return that data (with bcopy() ).
401  */
402 
403 static ssize_t
404 boot_hsfs_read(int fd, caddr_t buf, size_t count)
405 {
406 	size_t i, j;
407 	struct inode *ip;
408 	caddr_t	n;
409 	fileid_t *filep;
410 	int rcount;
411 
412 	if (!(filep = find_fp(fd))) {
413 		return (-1);
414 	}
415 
416 	ip = filep->fi_inode;
417 
418 	if (filep->fi_offset + count > ip->i_size)
419 		count = ip->i_size - filep->fi_offset;
420 
421 	/* that was easy */
422 	if ((i = count) == 0)
423 		return (0);
424 
425 	n = buf;
426 	while (i > 0) {
427 		/* If we need to reload the buffer, do so */
428 		if ((j = filep->fi_count) == 0) {
429 			getblock(filep, buf, i, &rcount);
430 			i -= rcount;
431 			buf += rcount;
432 			filep->fi_offset += rcount;
433 		} else {
434 			/* else just bcopy from our buffer */
435 			j = MIN(i, j);
436 			bcopy(filep->fi_memp, buf, (unsigned)j);
437 			buf += j;
438 			filep->fi_memp += j;
439 			filep->fi_offset += j;
440 			filep->fi_count -= j;
441 			i -= j;
442 		}
443 	}
444 	return (buf - n);
445 }
446 
447 /*
448  *	This routine will open a device as it is known by the
449  *	V2 OBP.
450  *	Interface Defn:
451  *	err = mountroot(string);
452  *	err:	0 on success
453  *		-1 on failure
454  *	string:	char string describing the properties of the device.
455  *	We must not dork with any fi[]'s here.  Save that for later.
456  */
457 
458 static int
459 boot_hsfs_mountroot(char *str)
460 {
461 	ihandle_t	h;
462 	struct hs_volume *fsp;
463 	char 		*bufp;
464 
465 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
466 		printf("mountroot()\n");
467 
468 	/*
469 	 * If already mounted, just return success.
470 	 */
471 	if (root_ino != 0) {
472 		return (0);
473 	}
474 
475 	h = prom_open(str);
476 
477 	if (h == 0) {
478 		printf("Cannot open %s\n", str);
479 		return (-1);
480 	}
481 
482 	devp = (devid_t *)bkmem_alloc(sizeof (devid_t));
483 	devp->di_taken = 1;
484 	devp->di_dcookie = h;
485 	devp->di_desc = (char *)bkmem_alloc(strlen(str) + 1);
486 	(void) strcpy(devp->di_desc, str);
487 	bzero(devp->un_fs.dummy, sizeof (devp->un_fs.dummy));
488 	head = (fileid_t *)bkmem_alloc(sizeof (fileid_t));
489 	head->fi_back = head->fi_forw = head;
490 	head->fi_filedes = 0;
491 	head->fi_taken = 0;
492 
493 	/* Setup read of the "superblock" */
494 	bzero(head->fi_buf, sizeof (head->fi_buf));
495 	head->fi_devp = devp;
496 	head->fi_blocknum = hdbtodb(ISO_VOLDESC_SEC);
497 	head->fi_count = ISO_SECTOR_SIZE;
498 	head->fi_memp = head->fi_buf;
499 	head->fi_offset = 0;
500 
501 	if (diskread(head)) {
502 		printf("mountroot(): read super block failed!\n");
503 		boot_hsfs_closeall(1);
504 		return (-1);
505 	}
506 
507 	bufp = head->fi_memp;
508 	fsp = (struct hs_volume *)devp->un_fs.dummy;
509 	/* Since RRIP is based on ISO9660, that's where we start */
510 
511 	if (ISO_DESC_TYPE(bufp) != ISO_VD_PVD ||
512 	    strncmp((char *)(ISO_std_id(bufp)), (char *)(ISO_ID_STRING),
513 	    ISO_ID_STRLEN) != 0 || ISO_STD_VER(bufp) != ISO_ID_VER) {
514 		boot_hsfs_closeall(1);
515 		return (-1);
516 	}
517 
518 	/* Now we fill in the volume descriptor */
519 	fsp->vol_size = ISO_VOL_SIZE(bufp);
520 	fsp->lbn_size = ISO_BLK_SIZE(bufp);
521 	fsp->lbn_shift = ISO_SECTOR_SHIFT;
522 	fsp->lbn_secshift = ISO_SECTOR_SHIFT;
523 	fsp->vol_set_size = (ushort_t)ISO_SET_SIZE(bufp);
524 	fsp->vol_set_seq = (ushort_t)ISO_SET_SEQ(bufp);
525 
526 	/* Make sure we have a valid logical block size */
527 	if (fsp->lbn_size & ~(1 << fsp->lbn_shift)) {
528 		printf("%d byte logical block size invalid.\n", fsp->lbn_size);
529 		boot_hsfs_closeall(1);
530 		return (-1);
531 	}
532 
533 	/* Since an HSFS root could be located anywhere on the media! */
534 	root_ino = IDE_EXT_LBN(ISO_root_dir(bufp));
535 
536 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE)) {
537 		int	i;
538 
539 		printf("root_ino=%d\n", root_ino);
540 		printf("ID=");
541 		for (i = 0; i < ISO_ID_STRLEN; i++)
542 			printf("%c", *(ISO_std_id(bufp)+i));
543 		printf(" VS=%d\n", fsp->vol_size);
544 	}
545 
546 	return (0);
547 }
548 
549 /*
550  * Unmount the currently mounted root fs.  In practice, this means
551  * closing all open files and releasing resources.  All of this
552  * is done by boot_hsfs_closeall().
553  */
554 
555 int
556 boot_hsfs_unmountroot(void)
557 {
558 	if (root_ino == 0)
559 		return (-1);
560 
561 	boot_hsfs_closeall(1);
562 
563 	return (0);
564 }
565 
566 /*
567  *	We allocate an fd here for use when talking
568  *	to the file itself.
569  */
570 
571 /*ARGSUSED*/
572 static int
573 boot_hsfs_open(char *filename, int flags)
574 {
575 	fileid_t	*filep;
576 	ino_t		inode;
577 	static int	filedes = 1;
578 
579 	/* build and link a new file descriptor */
580 	filep = (fileid_t *)bkmem_alloc(sizeof (fileid_t));
581 	filep->fi_back = head->fi_back;
582 	filep->fi_forw = head;
583 	head->fi_back->fi_forw = filep;
584 	head->fi_back = filep;
585 
586 	filep->fi_filedes = filedes++;
587 	filep->fi_taken = 1;
588 	filep->fi_path = (char *)bkmem_alloc(strlen(filename) + 1);
589 	(void) strcpy(filep->fi_path, filename);
590 	filep->fi_devp = devp; /* dev is already "mounted" */
591 
592 	filep->fi_inode = 0;
593 
594 	inode = find(filep, filename);
595 	if (inode == (ino_t)0) {
596 		if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
597 			printf("open(%s) ENOENT\n", filename);
598 		(void) boot_hsfs_close(filep->fi_filedes);
599 		return (-1);
600 	}
601 
602 	filep->fi_blocknum = hdbtodb(inode);
603 	filep->fi_offset = filep->fi_count = 0;
604 
605 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
606 		printf("open(%s) fd=%d\n", filename, filep->fi_filedes);
607 	return (filep->fi_filedes);
608 }
609 
610 /*
611  * hsfs_fstat() only supports size, mode and times at present time.
612  */
613 
614 static int
615 boot_hsfs_fstat(int fd, struct bootstat *stp)
616 {
617 	fileid_t	*filep;
618 	struct inode	*ip;
619 
620 	if (!(filep = find_fp(fd)))
621 		return (-1);
622 
623 	ip = filep->fi_inode;
624 
625 	stp->st_mode = 0;
626 	stp->st_size = 0;
627 
628 	if (ip == NULL)
629 		return (0);
630 
631 	switch (ip->i_smode & IFMT) {
632 	case IFDIR:
633 		stp->st_mode = S_IFDIR;
634 		break;
635 	case IFREG:
636 		stp->st_mode = S_IFREG;
637 		break;
638 	default:
639 		break;
640 	}
641 	stp->st_size = ip->i_size;
642 
643 	/* file times */
644 	stp->st_atim.tv_sec = ip->i_atime.tv_sec;
645 	stp->st_atim.tv_nsec = ip->i_atime.tv_usec * 1000;
646 	stp->st_mtim.tv_sec = ip->i_mtime.tv_sec;
647 	stp->st_mtim.tv_nsec = ip->i_mtime.tv_usec * 1000;
648 	stp->st_ctim.tv_sec = ip->i_ctime.tv_sec;
649 	stp->st_ctim.tv_nsec = ip->i_ctime.tv_usec * 1000;
650 
651 	return (0);
652 }
653 
654 /*
655  *  We don't do any IO here.
656  *  We just play games with the device pointers.
657  */
658 
659 /*ARGSUSED*/
660 static off_t
661 boot_hsfs_lseek(int fd, off_t addr, int whence)
662 {
663 	fileid_t *filep;
664 
665 	if (!(filep = find_fp(fd)))
666 		return (-1);
667 
668 	filep->fi_offset = addr;
669 	filep->fi_blocknum = addr / DEV_BSIZE;
670 	filep->fi_count = 0;
671 
672 	return (0);
673 }
674 
675 static int
676 boot_hsfs_close(int fd)
677 {
678 	fileid_t *filep;
679 
680 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
681 		printf("close(%d)\n", fd);
682 
683 	if (filep = find_fp(fd)) {
684 		/* Clear the ranks */
685 		bkmem_free(filep->fi_path, strlen(filep->fi_path)+1);
686 		filep->fi_blocknum = filep->fi_count = filep->fi_offset = 0;
687 		filep->fi_memp = (caddr_t)0;
688 		filep->fi_devp = 0;
689 		filep->fi_taken = 0;
690 
691 		/* unlink and deallocate node */
692 		filep->fi_forw->fi_back = filep->fi_back;
693 		filep->fi_back->fi_forw = filep->fi_forw;
694 		bkmem_free((char *)filep, sizeof (fileid_t));
695 
696 		return (0);
697 	} else {
698 		/* Big problem */
699 		printf("\nFile descrip %d not allocated!", fd);
700 		return (-1);
701 	}
702 }
703 
704 /* closeall is now idempotent */
705 /*ARGSUSED*/
706 static void
707 boot_hsfs_closeall(int flag)
708 {
709 	fileid_t	*filep = head;
710 	extern int verbosemode;
711 
712 	if (devp == NULL) {
713 		if (head)
714 			prom_panic("boot_hsfs_closeall: head != NULL.\n");
715 		return;
716 	}
717 
718 	while ((filep = filep->fi_forw) != head)
719 		if (filep->fi_taken)
720 			if (boot_hsfs_close(filep->fi_filedes))
721 				prom_panic("Filesystem may be inconsistent.\n");
722 
723 
724 	release_cache(devp->di_dcookie);
725 	(void) prom_close(devp->di_dcookie);
726 	devp->di_taken = 0;
727 	if (verbosemode)
728 		print_cache_data();
729 	bkmem_free((char *)devp, sizeof (devid_t));
730 	bkmem_free((char *)head, sizeof (fileid_t));
731 	root_ino = 0;
732 	devp = NULL;
733 	head = NULL;
734 }
735 
736 static uint_t
737 parse_dir(fileid_t *filep, int offset, struct hs_direct *hsdep)
738 {
739 	char *bufp = (char *)(filep->fi_memp + offset);
740 	struct direct *udp = &hsdep->hs_ufs_dir;
741 	struct hs_direntry *hdp = &hsdep->hs_dir;
742 	uint_t ce_lbn;
743 	uint_t ce_len;
744 	uint_t nmlen;
745 	uint_t i;
746 	uchar_t c;
747 	int ret_code = 0;
748 
749 	if ((udp->d_reclen = IDE_DIR_LEN(bufp)) == 0)
750 		return (0);
751 
752 	hdp->ext_lbn  = IDE_EXT_LBN(bufp);
753 	hdp->ext_size = IDE_EXT_SIZE(bufp);
754 	hs_dodates(HS_VOL_TYPE_ISO, hdp, bufp);
755 	hdp->xar_len  = IDE_XAR_LEN(bufp);
756 	hdp->intlf_sz = IDE_INTRLV_SIZE(bufp);
757 	hdp->intlf_sk = IDE_INTRLV_SKIP(bufp);
758 	hdp->sym_link = NULL;
759 
760 	udp->d_ino = hdp->ext_lbn;
761 
762 	c = IDE_FLAGS(bufp);
763 	if (IDE_REGULAR_FILE(c)) {
764 		hdp->type = VREG;
765 		hdp->mode = IFREG;
766 		hdp->nlink = 1;
767 	} else if (IDE_REGULAR_DIR(c)) {
768 		hdp->type = VDIR;
769 		hdp->mode = IFDIR;
770 		hdp->nlink = 2;
771 	} else {
772 		printf("parse_dir(): file type=0x%x unknown.\n", c);
773 		return ((uint_t)-1);
774 	}
775 
776 	/* Some initial conditions */
777 	nmlen = IDE_NAME_LEN(bufp);
778 	c = *IDE_NAME(bufp);
779 	/* Special Case: Current Directory */
780 	if (nmlen == 1 && c == '\0') {
781 		udp->d_name[0] = '.';
782 		udp->d_name[1] = '\0';
783 		udp->d_namlen = 1;
784 	/* Special Case: Parent Directory */
785 	} else if (nmlen == 1 && c == '\001') {
786 		udp->d_name[0] = '.';
787 		udp->d_name[1] = '.';
788 		udp->d_name[2] = '\0';
789 		udp->d_namlen = 2;
790 	/* Other file name */
791 	} else {
792 		udp->d_namlen = 0;
793 		for (i = 0; i < nmlen; i++) {
794 			c = *(IDE_name(bufp)+i);
795 			if (c == ';')
796 				break;
797 			else if (c == ' ')
798 				continue;
799 			else
800 				udp->d_name[udp->d_namlen++] = c;
801 		}
802 		udp->d_name[udp->d_namlen] = '\0';
803 	}
804 	/* System Use Fields */
805 	ce_len = IDE_SUA_LEN(bufp);
806 	ce_lbn = 0;
807 	if ((int)(ce_len) > 0) {
808 		ce_lbn = parse_susp((char *)IDE_sys_use_area(bufp),
809 		    &ce_len, hsdep);
810 		while (ce_lbn) {
811 			daddr_t save_blocknum = filep->fi_blocknum;
812 			daddr_t save_offset = filep->fi_offset;
813 			caddr_t save_memp = filep->fi_memp;
814 			uint_t save_count = filep->fi_count;
815 
816 #ifdef	noisy
817 			print_io_req(filep, "parse_dir(): [I]");
818 #endif	/* noisy */
819 
820 			filep->fi_blocknum = hdbtodb(ce_lbn);
821 			filep->fi_offset = 0;
822 			filep->fi_count = ISO_SECTOR_SIZE;
823 
824 #ifdef	noisy
825 			print_io_req(filep, "parse_dir(): [0]");
826 #endif	/* noisy */
827 
828 			if ((filep->fi_memp = get_bcache(filep)) == 0)
829 				ret_code = set_bcache(filep);
830 
831 #ifdef	noisy
832 			print_io_req(filep, "parse_dir(): [1]");
833 #endif	/* noisy */
834 
835 			if (ret_code) {
836 				filep->fi_blocknum = save_blocknum;
837 				filep->fi_offset = save_offset;
838 				filep->fi_memp = save_memp;
839 				filep->fi_count = save_count;
840 				printf("parse_dir(): "
841 				    "set_bcache() failed (%d)\n", ret_code);
842 				break;
843 			}
844 			ce_lbn = parse_susp(filep->fi_memp, &ce_len, hsdep);
845 
846 			filep->fi_blocknum = save_blocknum;
847 			filep->fi_offset = save_offset;
848 			filep->fi_memp = save_memp;
849 			filep->fi_count = save_count;
850 
851 #ifdef	noisy
852 			print_io_req(filep, "parse_dir(): [2]");
853 #endif	/* noisy */
854 		}
855 	}
856 
857 	return (udp->d_reclen);
858 }
859 
860 static uint_t
861 parse_susp(char *bufp, uint_t *ce_len, struct hs_direct *hsdep)
862 {
863 	struct direct *udp = &hsdep->hs_ufs_dir;
864 	uchar_t *susp;
865 	uint_t cur_off = 0;
866 	uint_t blk_len = *ce_len;
867 	uint_t susp_len = 0;
868 	uint_t ce_lbn = 0;
869 	uint_t i;
870 
871 	while (cur_off < blk_len) {
872 		susp = (uchar_t *)(bufp + cur_off);
873 		if (susp[0] == '\0' || susp[1] == '\0')
874 			break;
875 		susp_len = SUF_LEN(susp);
876 		if (susp_len == 0)
877 			break;
878 		for (i = 0; i < hsfs_num_sig; i++) {
879 			if (strncmp(hsfs_sig_tab[i],
880 			    (char *)susp, SUF_SIG_LEN) == 0) {
881 #ifdef	noisy
882 				if ((boothowto & RB_DEBUG) &&
883 				    (boothowto & RB_VERBOSE))
884 					printf("  SUSP_%c%c %d\n",
885 					    susp[0], susp[1], susp_len);
886 #endif	/* noisy */
887 				switch (i) {
888 				case SUSP_SP_IX:
889 					if (CHECK_BYTES_OK(susp)) {
890 						sua_offset =
891 						    SP_SUA_OFFSET(susp);
892 #ifdef	lint
893 						/* this may not be needed */
894 						i = (int)sua_offset;
895 #endif	/* lint */
896 					}
897 					break;
898 
899 				case SUSP_CE_IX:
900 					ce_lbn = CE_BLK_LOC(susp);
901 					*ce_len = CE_CONT_LEN(susp);
902 #ifdef	noisy
903 					if ((boothowto & RB_DEBUG) &&
904 					    (boothowto & RB_VERBOSE))
905 						printf("parse_susp(): "
906 						    "CE: ce_lbn = %d "
907 						    "ce_len=%d\n",
908 						    ce_lbn, *ce_len);
909 #endif	/* noisy */
910 					break;
911 
912 				case SUSP_ST_IX:
913 					printf("parse_susp(): ST: returning "
914 					    "%d\n", ce_lbn);
915 					return (ce_lbn);
916 
917 				case RRIP_SL_IX:
918 #ifdef	noisy
919 					if ((boothowto & RB_DEBUG) &&
920 					    (boothowto & RB_VERBOSE))
921 						printf("parse_susp(): "
922 						    "******* SL *******\n");
923 #endif	/* noisy */
924 					break;
925 
926 				case RRIP_RR_IX:
927 					break;
928 
929 				case RRIP_NM_IX:
930 					if (!RRIP_NAME_FLAGS(susp)) {
931 						udp->d_namlen =
932 						    RRIP_NAME_LEN(susp);
933 						bcopy((char *)RRIP_name(susp),
934 						    (char *)udp->d_name,
935 						    udp->d_namlen);
936 						udp->d_name
937 						    [udp->d_namlen] = '\0';
938 					}
939 					break;
940 				}
941 			cur_off += susp_len;
942 			break;
943 			}
944 		}
945 		if (i > hsfs_num_sig) {
946 			printf("parse_susp(): Bad SUSP\n");
947 			cur_off = blk_len;
948 			break;
949 		}
950 	}
951 	return (ce_lbn);
952 }
953 
954 static void
955 hs_seti(fileid_t *filep, struct hs_direct *hsdep, ino_t inode)
956 {
957 	register struct inode *ip;
958 	int dv = filep->fi_devp->di_dcookie;
959 
960 	/* Try the inode cache first */
961 	if ((filep->fi_inode = get_icache(dv, inode)) != NULL)
962 		return;
963 
964 	filep->fi_inode = (struct inode *)bkmem_alloc(sizeof (struct inode));
965 	ip = filep->fi_inode;
966 	bzero((char *)ip, sizeof (struct inode));
967 	ip->i_size = hsdep->hs_dir.ext_size;
968 	ip->i_smode = hsdep->hs_dir.mode;
969 	ip->i_number = inode;
970 	ip->i_atime.tv_sec = hsdep->hs_dir.adate.tv_sec;
971 	ip->i_atime.tv_usec = hsdep->hs_dir.adate.tv_usec;
972 	ip->i_ctime.tv_sec = hsdep->hs_dir.cdate.tv_sec;
973 	ip->i_ctime.tv_usec = hsdep->hs_dir.cdate.tv_usec;
974 	ip->i_mtime.tv_sec = hsdep->hs_dir.mdate.tv_sec;
975 	ip->i_mtime.tv_usec = hsdep->hs_dir.mdate.tv_usec;
976 	set_icache(dv, inode, ip, sizeof (struct inode));
977 }
978 
979 #ifdef	noisy
980 static void
981 print_io_req(fileid_t *filep, char *str)
982 {
983 	printf("%s o=%d b=%d c=%d m=%x\n",
984 	    str,
985 	    filep->fi_offset,
986 	    filep->fi_blocknum,
987 	    filep->fi_count,
988 	    (uint_t)filep->fi_memp);
989 }
990 #endif	/* noisy */
991 
992 static int
993 boot_hsfs_getdents(int fd, struct dirent *dep, unsigned size)
994 {
995 	/*
996 	 * Read directory entries from the file open on "fd" into the
997 	 * "size"-byte buffer at "dep" until the buffer is exhausted
998 	 * or we reach EOF on the directory.  Returns the number of
999 	 * entries read.
1000 	 */
1001 	int n;
1002 	int cnt = 0;
1003 	struct dirinfo dir;
1004 	struct hs_direct *hdp;
1005 	unsigned long oldoff, oldblok;
1006 
1007 #define	SLOP (sizeof (struct dirent) - (int)&((struct dirent *)0)->d_name[1])
1008 
1009 	if (!(dir.fi = find_fp(fd)) ||
1010 	    ((dir.fi->fi_inode->i_smode & IFMT) != IFDIR)) {
1011 		/*
1012 		 *  Bogus file descriptor, bail out now!
1013 		 */
1014 		return (-1);
1015 	}
1016 
1017 	oldoff = dir.loc = dir.fi->fi_offset;
1018 	oldblok = dir.fi->fi_blocknum;
1019 
1020 	for (hdp = readdir(&dir); hdp; hdp = readdir(&dir)) {
1021 		/*
1022 		 * Compute name length and break loop if there's not
1023 		 * enough space in the output buffer for the next
1024 		 * entry.
1025 		 *
1026 		 *  NOTE: "SLOP" is the number of bytes inserted into the dirent
1027 		 *	  struct's "d_name" field by the compiler to preserve
1028 		 *	  alignment.
1029 		 */
1030 		n = strlen(hdp->hs_ufs_dir.d_name);
1031 		n = roundup((sizeof (struct dirent) + ((n > SLOP) ? n : 0)),
1032 		    sizeof (off_t));
1033 
1034 		if (n > size) {
1035 			dir.fi->fi_blocknum = oldblok;
1036 			dir.fi->fi_offset = oldoff;
1037 			break;
1038 		}
1039 
1040 		oldblok = dir.fi->fi_blocknum;
1041 		oldoff = dir.loc;
1042 		size -= n;
1043 		cnt += 1;
1044 
1045 		(void) strcpy(dep->d_name, hdp->hs_ufs_dir.d_name);
1046 		dep->d_ino = hdp->hs_ufs_dir.d_ino;
1047 		dep->d_off = dir.loc;
1048 		dep->d_reclen = (unsigned short)n;
1049 
1050 		dep = (struct dirent *)((char *)dep + n);
1051 	}
1052 
1053 #undef SLOP
1054 
1055 	return (cnt);
1056 }
1057 
1058 static void
1059 hs_dodates(enum hs_vol_type type, struct hs_direntry *hdp, char *bufp)
1060 {
1061 	if (type == HS_VOL_TYPE_HS) {
1062 		hs_parse_dirdate(HDE_cdate(bufp), &hdp->cdate);
1063 		hs_parse_dirdate(HDE_cdate(bufp), &hdp->adate);
1064 		hs_parse_dirdate(HDE_cdate(bufp), &hdp->mdate);
1065 	} else if (type == HS_VOL_TYPE_ISO) {
1066 		hs_parse_dirdate(IDE_cdate(bufp), &hdp->cdate);
1067 		hs_parse_dirdate(IDE_cdate(bufp), &hdp->adate);
1068 		hs_parse_dirdate(IDE_cdate(bufp), &hdp->mdate);
1069 	} else
1070 		prom_panic("hs_dodates:  bad volume type");
1071 }
1072 
1073 /*
1074  * hs_parse_dirdate
1075  *
1076  * Parse the short 'directory-format' date into a Unix timeval.
1077  * This is the date format used in Directory Entries.
1078  *
1079  * If the date is not representable, make something up.
1080  */
1081 void
1082 hs_parse_dirdate(uchar_t *dp, struct timeval *tvp)
1083 {
1084 	int year, month, day, hour, minute, sec, gmtoff;
1085 
1086 	year = HDE_DATE_YEAR(dp);
1087 	month = HDE_DATE_MONTH(dp);
1088 	day = HDE_DATE_DAY(dp);
1089 	hour = HDE_DATE_HOUR(dp);
1090 	minute = HDE_DATE_MIN(dp);
1091 	sec = HDE_DATE_SEC(dp);
1092 	gmtoff = HDE_DATE_GMTOFF(dp);
1093 
1094 	tvp->tv_usec = 0;
1095 	if (year < THE_EPOCH) {
1096 		tvp->tv_sec = 0;
1097 	} else {
1098 		tvp->tv_sec = hs_date_to_gmtime(year, month, day, gmtoff);
1099 		if (tvp->tv_sec != -1) {
1100 			tvp->tv_sec += ((hour * 60) + minute) * 60 + sec;
1101 		}
1102 	}
1103 
1104 	return;
1105 
1106 }
1107 
1108 /*
1109  * hs_parse_longdate
1110  *
1111  * Parse the long 'user-oriented' date into a Unix timeval.
1112  * This is the date format used in the Volume Descriptor.
1113  *
1114  * If the date is not representable, make something up.
1115  */
1116 void
1117 hs_parse_longdate(uchar_t *dp, struct timeval *tvp)
1118 {
1119 	int year, month, day, hour, minute, sec, gmtoff;
1120 
1121 	year = HSV_DATE_YEAR(dp);
1122 	month = HSV_DATE_MONTH(dp);
1123 	day = HSV_DATE_DAY(dp);
1124 	hour = HSV_DATE_HOUR(dp);
1125 	minute = HSV_DATE_MIN(dp);
1126 	sec = HSV_DATE_SEC(dp);
1127 	gmtoff = HSV_DATE_GMTOFF(dp);
1128 
1129 	tvp->tv_usec = 0;
1130 	if (year < THE_EPOCH) {
1131 		tvp->tv_sec = 0;
1132 	} else {
1133 		tvp->tv_sec = hs_date_to_gmtime(year, month, day, gmtoff);
1134 		if (tvp->tv_sec != -1) {
1135 			tvp->tv_sec += ((hour * 60) + minute) * 60 + sec;
1136 			tvp->tv_usec = HSV_DATE_HSEC(dp) * 10000;
1137 		}
1138 	}
1139 
1140 }
1141 
1142 /* cumulative number of seconds per month,  non-leap and leap-year versions */
1143 static time_t cum_sec[] = {
1144 	0x0, 0x28de80, 0x4dc880, 0x76a700, 0x9e3400, 0xc71280,
1145 	0xee9f80, 0x1177e00, 0x1405c80, 0x167e980, 0x190c800, 0x1b85500
1146 };
1147 static time_t cum_sec_leap[] = {
1148 	0x0, 0x28de80, 0x4f1a00, 0x77f880, 0x9f8580, 0xc86400,
1149 	0xeff100, 0x118cf80, 0x141ae00, 0x1693b00, 0x1921980, 0x1b9a680
1150 };
1151 #define	SEC_PER_DAY	0x15180
1152 #define	SEC_PER_YEAR	0x1e13380
1153 
1154 /*
1155  * hs_date_to_gmtime
1156  *
1157  * Convert year(1970-2099)/month(1-12)/day(1-31) to seconds-since-1970/1/1.
1158  *
1159  * Returns -1 if the date is out of range.
1160  */
1161 static time_t
1162 hs_date_to_gmtime(int year, int mon, int day, int gmtoff)
1163 {
1164 	time_t sum;
1165 	time_t *cp;
1166 	int y;
1167 
1168 	if ((year < THE_EPOCH) || (year > END_OF_TIME) ||
1169 	    (mon < 1) || (mon > 12) ||
1170 	    (day < 1) || (day > 31))
1171 		return (-1);
1172 
1173 	/*
1174 	 * Figure seconds until this year and correct for leap years.
1175 	 * Note: 2000 is a leap year but not 2100.
1176 	 */
1177 	y = year - THE_EPOCH;
1178 	sum = y * SEC_PER_YEAR;
1179 	sum += ((y + 1) / 4) * SEC_PER_DAY;
1180 	/*
1181 	 * Point to the correct table for this year and
1182 	 * add in seconds until this month.
1183 	 */
1184 	cp = ((y + 2) % 4) ? cum_sec : cum_sec_leap;
1185 	sum += cp[mon - 1];
1186 	/*
1187 	 * Add in seconds until 0:00 of this day.
1188 	 * (days-per-month validation is not done here)
1189 	 */
1190 	sum += (day - 1) * SEC_PER_DAY;
1191 	sum -= (gmtoff * 15 * 60);
1192 	return (sum);
1193 }
1194