Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved.
Copyright 1989 AT&T
Portions Copyright (c) 1992, X/Open Company Limited. All Rights Reserved.
Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission to reproduce portions of its copyrighted documentation. Original documentation from The Open Group can be obtained online at
http://www.opengroup.org/bookstore/.
The Institute of Electrical and Electronics Engineers and The Open Group, have given us permission to reprint portions of their documentation. In the following statement, the phrase "this text" refers to portions of the system documentation. Portions of this text are reprinted and reproduced in electronic form in the Sun OS Reference Manual, from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between these versions and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html.
This notice shall appear on any product containing this material.
The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License.
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License.
When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
#include <semaphore.h> int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
The sem_wait() function locks the semaphore referenced by sem by performing a semaphore lock operation on that semaphore. If the semaphore value is currently zero, then the calling thread will not return from the call to sem_wait() until it either locks the semaphore or the call is interrupted by a signal. The sem_trywait() function locks the semaphore referenced by sem only if the semaphore is currently not locked; that is, if the semaphore value is currently positive. Otherwise, it does not lock the semaphore.
Upon successful return, the state of the semaphore is locked and remains locked until the sem_post(3C) function is executed and returns successfully.
The sem_wait() function is interruptible by the delivery of a signal.
The sem_wait() and sem_trywait() functions return 0 if the calling process successfully performed the semaphore lock operation on the semaphore designated by sem. If the call was unsuccessful, the state of the semaphore is unchanged, and the function returns -1 and sets errno to indicate the error.
The sem_wait() and sem_trywait() functions will fail if:
EINVAL
The sem function does not refer to a valid semaphore.
ENOSYS
The sem_wait() and sem_trywait() functions are not supported by the system.
The sem_trywait() function will fail if:
EAGAIN
The semaphore was already locked, so it cannot be immediately locked by the sem_trywait() operation.
The sem_wait() and sem_trywait() functions may fail if:
EDEADLK
A deadlock condition was detected; that is, two separate processes are waiting for an available resource to be released via a semaphore "held" by the other process.
EINTR
A signal interrupted this function.
Realtime applications may encounter priority inversion when using semaphores. The problem occurs when a high priority thread "locks" (that is, waits on) a semaphore that is about to be "unlocked" (that is, posted) by a low priority thread, but the low priority thread is preempted by a medium priority thread. This scenario leads to priority inversion; a high priority thread is blocked by lower priority threads for an unlimited period of time. During system design, realtime programmers must take into account the possibility of this kind of priority inversion. They can deal with it in a number of ways, such as by having critical sections that are guarded by semaphores execute at a high priority, so that a thread cannot be preempted while executing in its critical section.
Example 1 The customer waiting-line in a bank may be analogous to the synchronization scheme of a semaphore utilizing sem_wait() and sem_trywait():
#include <errno.h> #define TELLERS 10 sem_t bank_line; /* semaphore */ int banking_hours(), deposit_withdrawal; void *customer(), do_business(), skip_banking_today(); thread_t tid; ... sem_init(&bank_line,TRUE,TELLERS); /* 10 tellers available */ while(banking_hours()) thr_create(NULL, NULL, customer, (void *)deposit_withdrawal, THREAD_NEW_LWP, &tid); ... void * customer(deposit_withdrawal) void *deposit_withdrawal; { int this_customer, in_a_hurry = 50; this_customer = rand() % 100; if (this_customer == in_a_hurry) { if (sem_trywait(&bank_line) != 0) if (errno == EAGAIN) { /* no teller available */ skip_banking_today(this_customer); return; } /*else go immediately to available teller & decrement bank_line*/ } else sem_wait(&bank_line); /* wait for next teller, then proceed, and decrement bank_line */ do_business((int *)deposit_withdrawal); sem_getvalue(&bank_line,&num_tellers); sem_post(&bank_line); /* increment bank_line; this_customer's teller is now available */ }
See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE | ATTRIBUTE VALUE |
Interface Stability | Committed |
MT-Level | MT-Safe |
Standard | See standards(5). |
sem_post(3C), attributes(5), standards(5)