xref: /titanic_44/usr/src/lib/libzfs/common/libzfs_import.c (revision dcafa541382944b24abd3a40c357b47e04f314e2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Pool import support functions.
30  *
31  * To import a pool, we rely on reading the configuration information from the
32  * ZFS label of each device.  If we successfully read the label, then we
33  * organize the configuration information in the following hierarchy:
34  *
35  * 	pool guid -> toplevel vdev guid -> label txg
36  *
37  * Duplicate entries matching this same tuple will be discarded.  Once we have
38  * examined every device, we pick the best label txg config for each toplevel
39  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
40  * update any paths that have changed.  Finally, we attempt to import the pool
41  * using our derived config, and record the results.
42  */
43 
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <sys/stat.h>
51 #include <unistd.h>
52 #include <fcntl.h>
53 
54 #include <sys/vdev_impl.h>
55 
56 #include "libzfs.h"
57 #include "libzfs_impl.h"
58 
59 /*
60  * Intermediate structures used to gather configuration information.
61  */
62 typedef struct config_entry {
63 	uint64_t		ce_txg;
64 	nvlist_t		*ce_config;
65 	struct config_entry	*ce_next;
66 } config_entry_t;
67 
68 typedef struct vdev_entry {
69 	uint64_t		ve_guid;
70 	config_entry_t		*ve_configs;
71 	struct vdev_entry	*ve_next;
72 } vdev_entry_t;
73 
74 typedef struct pool_entry {
75 	uint64_t		pe_guid;
76 	vdev_entry_t		*pe_vdevs;
77 	struct pool_entry	*pe_next;
78 } pool_entry_t;
79 
80 typedef struct name_entry {
81 	char			*ne_name;
82 	uint64_t		ne_guid;
83 	struct name_entry	*ne_next;
84 } name_entry_t;
85 
86 typedef struct pool_list {
87 	pool_entry_t		*pools;
88 	name_entry_t		*names;
89 } pool_list_t;
90 
91 static char *
92 get_devid(const char *path)
93 {
94 	int fd;
95 	ddi_devid_t devid;
96 	char *minor, *ret;
97 
98 	if ((fd = open(path, O_RDONLY)) < 0)
99 		return (NULL);
100 
101 	minor = NULL;
102 	ret = NULL;
103 	if (devid_get(fd, &devid) == 0) {
104 		if (devid_get_minor_name(fd, &minor) == 0)
105 			ret = devid_str_encode(devid, minor);
106 		if (minor != NULL)
107 			devid_str_free(minor);
108 		devid_free(devid);
109 	}
110 	(void) close(fd);
111 
112 	return (ret);
113 }
114 
115 
116 /*
117  * Go through and fix up any path and/or devid information for the given vdev
118  * configuration.
119  */
120 static int
121 fix_paths(nvlist_t *nv, name_entry_t *names)
122 {
123 	nvlist_t **child;
124 	uint_t c, children;
125 	uint64_t guid;
126 	name_entry_t *ne, *best;
127 	char *path, *devid;
128 	int matched;
129 
130 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
131 	    &child, &children) == 0) {
132 		for (c = 0; c < children; c++)
133 			if (fix_paths(child[c], names) != 0)
134 				return (-1);
135 		return (0);
136 	}
137 
138 	/*
139 	 * This is a leaf (file or disk) vdev.  In either case, go through
140 	 * the name list and see if we find a matching guid.  If so, replace
141 	 * the path and see if we can calculate a new devid.
142 	 *
143 	 * There may be multiple names associated with a particular guid, in
144 	 * which case we have overlapping slices or multiple paths to the same
145 	 * disk.  If this is the case, then we want to pick the path that is
146 	 * the most similar to the original, where "most similar" is the number
147 	 * of matching characters starting from the end of the path.  This will
148 	 * preserve slice numbers even if the disks have been reorganized, and
149 	 * will also catch preferred disk names if multiple paths exist.
150 	 */
151 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
152 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
153 		path = NULL;
154 
155 	matched = 0;
156 	best = NULL;
157 	for (ne = names; ne != NULL; ne = ne->ne_next) {
158 		if (ne->ne_guid == guid) {
159 			const char *src, *dst;
160 			int count;
161 
162 			if (path == NULL) {
163 				best = ne;
164 				break;
165 			}
166 
167 			src = ne->ne_name + strlen(ne->ne_name) - 1;
168 			dst = path + strlen(path) - 1;
169 			for (count = 0; src >= ne->ne_name && dst >= path;
170 			    src--, dst--, count++)
171 				if (*src != *dst)
172 					break;
173 
174 			/*
175 			 * At this point, 'count' is the number of characters
176 			 * matched from the end.
177 			 */
178 			if (count > matched || best == NULL) {
179 				best = ne;
180 				matched = count;
181 			}
182 		}
183 	}
184 
185 	if (best == NULL)
186 		return (0);
187 
188 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
189 		return (-1);
190 
191 	if ((devid = get_devid(best->ne_name)) == NULL) {
192 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
193 	} else {
194 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
195 			return (-1);
196 		devid_str_free(devid);
197 	}
198 
199 	return (0);
200 }
201 
202 /*
203  * Add the given configuration to the list of known devices.
204  */
205 static int
206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
207     nvlist_t *config)
208 {
209 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
210 	pool_entry_t *pe;
211 	vdev_entry_t *ve;
212 	config_entry_t *ce;
213 	name_entry_t *ne;
214 
215 	/*
216 	 * If this is a hot spare not currently in use or level 2 cache
217 	 * device, add it to the list of names to translate, but don't do
218 	 * anything else.
219 	 */
220 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
221 	    &state) == 0 &&
222 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
223 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
224 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
225 			return (-1);
226 
227 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
228 			free(ne);
229 			return (-1);
230 		}
231 		ne->ne_guid = vdev_guid;
232 		ne->ne_next = pl->names;
233 		pl->names = ne;
234 		return (0);
235 	}
236 
237 	/*
238 	 * If we have a valid config but cannot read any of these fields, then
239 	 * it means we have a half-initialized label.  In vdev_label_init()
240 	 * we write a label with txg == 0 so that we can identify the device
241 	 * in case the user refers to the same disk later on.  If we fail to
242 	 * create the pool, we'll be left with a label in this state
243 	 * which should not be considered part of a valid pool.
244 	 */
245 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
246 	    &pool_guid) != 0 ||
247 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
248 	    &vdev_guid) != 0 ||
249 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
250 	    &top_guid) != 0 ||
251 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
252 	    &txg) != 0 || txg == 0) {
253 		nvlist_free(config);
254 		return (0);
255 	}
256 
257 	/*
258 	 * First, see if we know about this pool.  If not, then add it to the
259 	 * list of known pools.
260 	 */
261 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
262 		if (pe->pe_guid == pool_guid)
263 			break;
264 	}
265 
266 	if (pe == NULL) {
267 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
268 			nvlist_free(config);
269 			return (-1);
270 		}
271 		pe->pe_guid = pool_guid;
272 		pe->pe_next = pl->pools;
273 		pl->pools = pe;
274 	}
275 
276 	/*
277 	 * Second, see if we know about this toplevel vdev.  Add it if its
278 	 * missing.
279 	 */
280 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
281 		if (ve->ve_guid == top_guid)
282 			break;
283 	}
284 
285 	if (ve == NULL) {
286 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
287 			nvlist_free(config);
288 			return (-1);
289 		}
290 		ve->ve_guid = top_guid;
291 		ve->ve_next = pe->pe_vdevs;
292 		pe->pe_vdevs = ve;
293 	}
294 
295 	/*
296 	 * Third, see if we have a config with a matching transaction group.  If
297 	 * so, then we do nothing.  Otherwise, add it to the list of known
298 	 * configs.
299 	 */
300 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
301 		if (ce->ce_txg == txg)
302 			break;
303 	}
304 
305 	if (ce == NULL) {
306 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
307 			nvlist_free(config);
308 			return (-1);
309 		}
310 		ce->ce_txg = txg;
311 		ce->ce_config = config;
312 		ce->ce_next = ve->ve_configs;
313 		ve->ve_configs = ce;
314 	} else {
315 		nvlist_free(config);
316 	}
317 
318 	/*
319 	 * At this point we've successfully added our config to the list of
320 	 * known configs.  The last thing to do is add the vdev guid -> path
321 	 * mappings so that we can fix up the configuration as necessary before
322 	 * doing the import.
323 	 */
324 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
325 		return (-1);
326 
327 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
328 		free(ne);
329 		return (-1);
330 	}
331 
332 	ne->ne_guid = vdev_guid;
333 	ne->ne_next = pl->names;
334 	pl->names = ne;
335 
336 	return (0);
337 }
338 
339 /*
340  * Returns true if the named pool matches the given GUID.
341  */
342 static int
343 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
344     boolean_t *isactive)
345 {
346 	zpool_handle_t *zhp;
347 	uint64_t theguid;
348 
349 	if (zpool_open_silent(hdl, name, &zhp) != 0)
350 		return (-1);
351 
352 	if (zhp == NULL) {
353 		*isactive = B_FALSE;
354 		return (0);
355 	}
356 
357 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
358 	    &theguid) == 0);
359 
360 	zpool_close(zhp);
361 
362 	*isactive = (theguid == guid);
363 	return (0);
364 }
365 
366 static nvlist_t *
367 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
368 {
369 	nvlist_t *nvl;
370 	zfs_cmd_t zc = { 0 };
371 	int err;
372 
373 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
374 		return (NULL);
375 
376 	if (zcmd_alloc_dst_nvlist(hdl, &zc,
377 	    zc.zc_nvlist_conf_size * 2) != 0) {
378 		zcmd_free_nvlists(&zc);
379 		return (NULL);
380 	}
381 
382 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
383 	    &zc)) != 0 && errno == ENOMEM) {
384 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
385 			zcmd_free_nvlists(&zc);
386 			return (NULL);
387 		}
388 	}
389 
390 	if (err) {
391 		(void) zpool_standard_error(hdl, errno,
392 		    dgettext(TEXT_DOMAIN, "cannot discover pools"));
393 		zcmd_free_nvlists(&zc);
394 		return (NULL);
395 	}
396 
397 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
398 		zcmd_free_nvlists(&zc);
399 		return (NULL);
400 	}
401 
402 	zcmd_free_nvlists(&zc);
403 	return (nvl);
404 }
405 
406 /*
407  * Convert our list of pools into the definitive set of configurations.  We
408  * start by picking the best config for each toplevel vdev.  Once that's done,
409  * we assemble the toplevel vdevs into a full config for the pool.  We make a
410  * pass to fix up any incorrect paths, and then add it to the main list to
411  * return to the user.
412  */
413 static nvlist_t *
414 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
415 {
416 	pool_entry_t *pe;
417 	vdev_entry_t *ve;
418 	config_entry_t *ce;
419 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
420 	nvlist_t **spares, **l2cache;
421 	uint_t i, nspares, nl2cache;
422 	boolean_t config_seen;
423 	uint64_t best_txg;
424 	char *name, *hostname;
425 	uint64_t version, guid;
426 	uint_t children = 0;
427 	nvlist_t **child = NULL;
428 	uint_t c;
429 	boolean_t isactive;
430 	uint64_t hostid;
431 	nvlist_t *nvl;
432 	boolean_t found_one = B_FALSE;
433 
434 	if (nvlist_alloc(&ret, 0, 0) != 0)
435 		goto nomem;
436 
437 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
438 		uint64_t id;
439 
440 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
441 			goto nomem;
442 		config_seen = B_FALSE;
443 
444 		/*
445 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
446 		 * from the first one we find, and then go through the rest and
447 		 * add them as necessary to the 'vdevs' member of the config.
448 		 */
449 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
450 
451 			/*
452 			 * Determine the best configuration for this vdev by
453 			 * selecting the config with the latest transaction
454 			 * group.
455 			 */
456 			best_txg = 0;
457 			for (ce = ve->ve_configs; ce != NULL;
458 			    ce = ce->ce_next) {
459 
460 				if (ce->ce_txg > best_txg) {
461 					tmp = ce->ce_config;
462 					best_txg = ce->ce_txg;
463 				}
464 			}
465 
466 			if (!config_seen) {
467 				/*
468 				 * Copy the relevant pieces of data to the pool
469 				 * configuration:
470 				 *
471 				 *	version
472 				 * 	pool guid
473 				 * 	name
474 				 * 	pool state
475 				 *	hostid (if available)
476 				 *	hostname (if available)
477 				 */
478 				uint64_t state;
479 
480 				verify(nvlist_lookup_uint64(tmp,
481 				    ZPOOL_CONFIG_VERSION, &version) == 0);
482 				if (nvlist_add_uint64(config,
483 				    ZPOOL_CONFIG_VERSION, version) != 0)
484 					goto nomem;
485 				verify(nvlist_lookup_uint64(tmp,
486 				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
487 				if (nvlist_add_uint64(config,
488 				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
489 					goto nomem;
490 				verify(nvlist_lookup_string(tmp,
491 				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
492 				if (nvlist_add_string(config,
493 				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
494 					goto nomem;
495 				verify(nvlist_lookup_uint64(tmp,
496 				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
497 				if (nvlist_add_uint64(config,
498 				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
499 					goto nomem;
500 				hostid = 0;
501 				if (nvlist_lookup_uint64(tmp,
502 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
503 					if (nvlist_add_uint64(config,
504 					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
505 						goto nomem;
506 					verify(nvlist_lookup_string(tmp,
507 					    ZPOOL_CONFIG_HOSTNAME,
508 					    &hostname) == 0);
509 					if (nvlist_add_string(config,
510 					    ZPOOL_CONFIG_HOSTNAME,
511 					    hostname) != 0)
512 						goto nomem;
513 				}
514 
515 				config_seen = B_TRUE;
516 			}
517 
518 			/*
519 			 * Add this top-level vdev to the child array.
520 			 */
521 			verify(nvlist_lookup_nvlist(tmp,
522 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
523 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
524 			    &id) == 0);
525 			if (id >= children) {
526 				nvlist_t **newchild;
527 
528 				newchild = zfs_alloc(hdl, (id + 1) *
529 				    sizeof (nvlist_t *));
530 				if (newchild == NULL)
531 					goto nomem;
532 
533 				for (c = 0; c < children; c++)
534 					newchild[c] = child[c];
535 
536 				free(child);
537 				child = newchild;
538 				children = id + 1;
539 			}
540 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
541 				goto nomem;
542 
543 		}
544 
545 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
546 		    &guid) == 0);
547 
548 		/*
549 		 * Look for any missing top-level vdevs.  If this is the case,
550 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
551 		 * simply compress the child array, because the kernel performs
552 		 * certain checks to make sure the vdev IDs match their location
553 		 * in the configuration.
554 		 */
555 		for (c = 0; c < children; c++)
556 			if (child[c] == NULL) {
557 				nvlist_t *missing;
558 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
559 				    0) != 0)
560 					goto nomem;
561 				if (nvlist_add_string(missing,
562 				    ZPOOL_CONFIG_TYPE,
563 				    VDEV_TYPE_MISSING) != 0 ||
564 				    nvlist_add_uint64(missing,
565 				    ZPOOL_CONFIG_ID, c) != 0 ||
566 				    nvlist_add_uint64(missing,
567 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
568 					nvlist_free(missing);
569 					goto nomem;
570 				}
571 				child[c] = missing;
572 			}
573 
574 		/*
575 		 * Put all of this pool's top-level vdevs into a root vdev.
576 		 */
577 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
578 			goto nomem;
579 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
580 		    VDEV_TYPE_ROOT) != 0 ||
581 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
582 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
583 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
584 		    child, children) != 0) {
585 			nvlist_free(nvroot);
586 			goto nomem;
587 		}
588 
589 		for (c = 0; c < children; c++)
590 			nvlist_free(child[c]);
591 		free(child);
592 		children = 0;
593 		child = NULL;
594 
595 		/*
596 		 * Go through and fix up any paths and/or devids based on our
597 		 * known list of vdev GUID -> path mappings.
598 		 */
599 		if (fix_paths(nvroot, pl->names) != 0) {
600 			nvlist_free(nvroot);
601 			goto nomem;
602 		}
603 
604 		/*
605 		 * Add the root vdev to this pool's configuration.
606 		 */
607 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
608 		    nvroot) != 0) {
609 			nvlist_free(nvroot);
610 			goto nomem;
611 		}
612 		nvlist_free(nvroot);
613 
614 		/*
615 		 * zdb uses this path to report on active pools that were
616 		 * imported or created using -R.
617 		 */
618 		if (active_ok)
619 			goto add_pool;
620 
621 		/*
622 		 * Determine if this pool is currently active, in which case we
623 		 * can't actually import it.
624 		 */
625 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
626 		    &name) == 0);
627 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
628 		    &guid) == 0);
629 
630 		if (pool_active(hdl, name, guid, &isactive) != 0)
631 			goto error;
632 
633 		if (isactive) {
634 			nvlist_free(config);
635 			config = NULL;
636 			continue;
637 		}
638 
639 		if ((nvl = refresh_config(hdl, config)) == NULL)
640 			goto error;
641 
642 		nvlist_free(config);
643 		config = nvl;
644 
645 		/*
646 		 * Go through and update the paths for spares, now that we have
647 		 * them.
648 		 */
649 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
650 		    &nvroot) == 0);
651 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
652 		    &spares, &nspares) == 0) {
653 			for (i = 0; i < nspares; i++) {
654 				if (fix_paths(spares[i], pl->names) != 0)
655 					goto nomem;
656 			}
657 		}
658 
659 		/*
660 		 * Update the paths for l2cache devices.
661 		 */
662 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
663 		    &l2cache, &nl2cache) == 0) {
664 			for (i = 0; i < nl2cache; i++) {
665 				if (fix_paths(l2cache[i], pl->names) != 0)
666 					goto nomem;
667 			}
668 		}
669 
670 		/*
671 		 * Restore the original information read from the actual label.
672 		 */
673 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
674 		    DATA_TYPE_UINT64);
675 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
676 		    DATA_TYPE_STRING);
677 		if (hostid != 0) {
678 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
679 			    hostid) == 0);
680 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
681 			    hostname) == 0);
682 		}
683 
684 add_pool:
685 		/*
686 		 * Add this pool to the list of configs.
687 		 */
688 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
689 		    &name) == 0);
690 		if (nvlist_add_nvlist(ret, name, config) != 0)
691 			goto nomem;
692 
693 		found_one = B_TRUE;
694 		nvlist_free(config);
695 		config = NULL;
696 	}
697 
698 	if (!found_one) {
699 		nvlist_free(ret);
700 		ret = NULL;
701 	}
702 
703 	return (ret);
704 
705 nomem:
706 	(void) no_memory(hdl);
707 error:
708 	nvlist_free(config);
709 	nvlist_free(ret);
710 	for (c = 0; c < children; c++)
711 		nvlist_free(child[c]);
712 	free(child);
713 
714 	return (NULL);
715 }
716 
717 /*
718  * Return the offset of the given label.
719  */
720 static uint64_t
721 label_offset(uint64_t size, int l)
722 {
723 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
724 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
725 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
726 }
727 
728 /*
729  * Given a file descriptor, read the label information and return an nvlist
730  * describing the configuration, if there is one.
731  */
732 int
733 zpool_read_label(int fd, nvlist_t **config)
734 {
735 	struct stat64 statbuf;
736 	int l;
737 	vdev_label_t *label;
738 	uint64_t state, txg, size;
739 
740 	*config = NULL;
741 
742 	if (fstat64(fd, &statbuf) == -1)
743 		return (0);
744 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
745 
746 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
747 		return (-1);
748 
749 	for (l = 0; l < VDEV_LABELS; l++) {
750 		if (pread64(fd, label, sizeof (vdev_label_t),
751 		    label_offset(size, l)) != sizeof (vdev_label_t))
752 			continue;
753 
754 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
755 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
756 			continue;
757 
758 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
759 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
760 			nvlist_free(*config);
761 			continue;
762 		}
763 
764 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
765 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
766 		    &txg) != 0 || txg == 0)) {
767 			nvlist_free(*config);
768 			continue;
769 		}
770 
771 		free(label);
772 		return (0);
773 	}
774 
775 	free(label);
776 	*config = NULL;
777 	return (0);
778 }
779 
780 /*
781  * Given a list of directories to search, find all pools stored on disk.  This
782  * includes partial pools which are not available to import.  If no args are
783  * given (argc is 0), then the default directory (/dev/dsk) is searched.
784  * poolname or guid (but not both) are provided by the caller when trying
785  * to import a specific pool.
786  */
787 static nvlist_t *
788 zpool_find_import_impl(libzfs_handle_t *hdl, int argc, char **argv,
789     boolean_t active_ok, char *poolname, uint64_t guid)
790 {
791 	int i;
792 	DIR *dirp = NULL;
793 	struct dirent64 *dp;
794 	char path[MAXPATHLEN];
795 	char *end;
796 	size_t pathleft;
797 	struct stat64 statbuf;
798 	nvlist_t *ret = NULL, *config;
799 	static char *default_dir = "/dev/dsk";
800 	int fd;
801 	pool_list_t pools = { 0 };
802 	pool_entry_t *pe, *penext;
803 	vdev_entry_t *ve, *venext;
804 	config_entry_t *ce, *cenext;
805 	name_entry_t *ne, *nenext;
806 
807 	verify(poolname == NULL || guid == 0);
808 
809 	if (argc == 0) {
810 		argc = 1;
811 		argv = &default_dir;
812 	}
813 
814 	/*
815 	 * Go through and read the label configuration information from every
816 	 * possible device, organizing the information according to pool GUID
817 	 * and toplevel GUID.
818 	 */
819 	for (i = 0; i < argc; i++) {
820 		char *rdsk;
821 		int dfd;
822 
823 		/* use realpath to normalize the path */
824 		if (realpath(argv[i], path) == 0) {
825 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
826 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
827 			    argv[i]);
828 			goto error;
829 		}
830 		end = &path[strlen(path)];
831 		*end++ = '/';
832 		*end = 0;
833 		pathleft = &path[sizeof (path)] - end;
834 
835 		/*
836 		 * Using raw devices instead of block devices when we're
837 		 * reading the labels skips a bunch of slow operations during
838 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
839 		 */
840 		if (strcmp(path, "/dev/dsk/") == 0)
841 			rdsk = "/dev/rdsk/";
842 		else
843 			rdsk = path;
844 
845 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
846 		    (dirp = fdopendir(dfd)) == NULL) {
847 			zfs_error_aux(hdl, strerror(errno));
848 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
849 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
850 			    rdsk);
851 			goto error;
852 		}
853 
854 		/*
855 		 * This is not MT-safe, but we have no MT consumers of libzfs
856 		 */
857 		while ((dp = readdir64(dirp)) != NULL) {
858 			const char *name = dp->d_name;
859 			if (name[0] == '.' &&
860 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
861 				continue;
862 
863 			if ((fd = openat64(dfd, name, O_RDONLY)) < 0)
864 				continue;
865 
866 			/*
867 			 * Ignore failed stats.  We only want regular
868 			 * files, character devs and block devs.
869 			 */
870 			if (fstat64(fd, &statbuf) != 0 ||
871 			    (!S_ISREG(statbuf.st_mode) &&
872 			    !S_ISCHR(statbuf.st_mode) &&
873 			    !S_ISBLK(statbuf.st_mode))) {
874 				(void) close(fd);
875 				continue;
876 			}
877 
878 			if ((zpool_read_label(fd, &config)) != 0) {
879 				(void) close(fd);
880 				(void) no_memory(hdl);
881 				goto error;
882 			}
883 
884 			(void) close(fd);
885 
886 			if (config != NULL) {
887 				boolean_t matched = B_TRUE;
888 
889 				if (poolname != NULL) {
890 					char *pname;
891 
892 					matched = nvlist_lookup_string(config,
893 					    ZPOOL_CONFIG_POOL_NAME,
894 					    &pname) == 0 &&
895 					    strcmp(poolname, pname) == 0;
896 				} else if (guid != 0) {
897 					uint64_t this_guid;
898 					verify(nvlist_lookup_uint64(config,
899 					    ZPOOL_CONFIG_POOL_GUID,
900 					    &this_guid) == 0);
901 					matched = guid == this_guid;
902 				}
903 				if (!matched) {
904 					nvlist_free(config);
905 					config = NULL;
906 					continue;
907 				}
908 				/* use the non-raw path for the config */
909 				(void) strlcpy(end, name, pathleft);
910 				if (add_config(hdl, &pools, path, config) != 0)
911 					goto error;
912 			}
913 		}
914 
915 		(void) closedir(dirp);
916 		dirp = NULL;
917 	}
918 
919 	ret = get_configs(hdl, &pools, active_ok);
920 
921 error:
922 	for (pe = pools.pools; pe != NULL; pe = penext) {
923 		penext = pe->pe_next;
924 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
925 			venext = ve->ve_next;
926 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
927 				cenext = ce->ce_next;
928 				if (ce->ce_config)
929 					nvlist_free(ce->ce_config);
930 				free(ce);
931 			}
932 			free(ve);
933 		}
934 		free(pe);
935 	}
936 
937 	for (ne = pools.names; ne != NULL; ne = nenext) {
938 		nenext = ne->ne_next;
939 		if (ne->ne_name)
940 			free(ne->ne_name);
941 		free(ne);
942 	}
943 
944 	if (dirp)
945 		(void) closedir(dirp);
946 
947 	return (ret);
948 }
949 
950 nvlist_t *
951 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
952 {
953 	return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, 0));
954 }
955 
956 nvlist_t *
957 zpool_find_import_byname(libzfs_handle_t *hdl, int argc, char **argv,
958     char *pool)
959 {
960 	return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, pool, 0));
961 }
962 
963 nvlist_t *
964 zpool_find_import_byguid(libzfs_handle_t *hdl, int argc, char **argv,
965     uint64_t guid)
966 {
967 	return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, guid));
968 }
969 
970 nvlist_t *
971 zpool_find_import_activeok(libzfs_handle_t *hdl, int argc, char **argv)
972 {
973 	return (zpool_find_import_impl(hdl, argc, argv, B_TRUE, NULL, 0));
974 }
975 
976 /*
977  * Given a cache file, return the contents as a list of importable pools.
978  * poolname or guid (but not both) are provided by the caller when trying
979  * to import a specific pool.
980  */
981 nvlist_t *
982 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
983     boolean_t active_ok, char *poolname, uint64_t guid)
984 {
985 	char *buf;
986 	int fd;
987 	struct stat64 statbuf;
988 	nvlist_t *raw, *src, *dst;
989 	nvlist_t *pools;
990 	nvpair_t *elem;
991 	char *name;
992 	uint64_t this_guid;
993 	boolean_t active;
994 
995 	verify(poolname == NULL || guid == 0);
996 
997 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
998 		zfs_error_aux(hdl, "%s", strerror(errno));
999 		(void) zfs_error(hdl, EZFS_BADCACHE,
1000 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1001 		return (NULL);
1002 	}
1003 
1004 	if (fstat64(fd, &statbuf) != 0) {
1005 		zfs_error_aux(hdl, "%s", strerror(errno));
1006 		(void) close(fd);
1007 		(void) zfs_error(hdl, EZFS_BADCACHE,
1008 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1009 		return (NULL);
1010 	}
1011 
1012 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1013 		(void) close(fd);
1014 		return (NULL);
1015 	}
1016 
1017 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1018 		(void) close(fd);
1019 		free(buf);
1020 		(void) zfs_error(hdl, EZFS_BADCACHE,
1021 		    dgettext(TEXT_DOMAIN,
1022 		    "failed to read cache file contents"));
1023 		return (NULL);
1024 	}
1025 
1026 	(void) close(fd);
1027 
1028 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1029 		free(buf);
1030 		(void) zfs_error(hdl, EZFS_BADCACHE,
1031 		    dgettext(TEXT_DOMAIN,
1032 		    "invalid or corrupt cache file contents"));
1033 		return (NULL);
1034 	}
1035 
1036 	free(buf);
1037 
1038 	/*
1039 	 * Go through and get the current state of the pools and refresh their
1040 	 * state.
1041 	 */
1042 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1043 		(void) no_memory(hdl);
1044 		nvlist_free(raw);
1045 		return (NULL);
1046 	}
1047 
1048 	elem = NULL;
1049 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1050 		verify(nvpair_value_nvlist(elem, &src) == 0);
1051 
1052 		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1053 		    &name) == 0);
1054 		if (poolname != NULL && strcmp(poolname, name) != 0)
1055 			continue;
1056 
1057 		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1058 		    &this_guid) == 0);
1059 		if (guid != 0) {
1060 			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1061 			    &this_guid) == 0);
1062 			if (guid != this_guid)
1063 				continue;
1064 		}
1065 
1066 		if (!active_ok) {
1067 			if (pool_active(hdl, name, this_guid, &active) != 0) {
1068 				nvlist_free(raw);
1069 				nvlist_free(pools);
1070 				return (NULL);
1071 			}
1072 
1073 			if (active)
1074 				continue;
1075 
1076 			if ((dst = refresh_config(hdl, src)) == NULL) {
1077 				nvlist_free(raw);
1078 				nvlist_free(pools);
1079 				return (NULL);
1080 			}
1081 
1082 			if (nvlist_add_nvlist(pools, nvpair_name(elem), dst)
1083 			    != 0) {
1084 				(void) no_memory(hdl);
1085 				nvlist_free(dst);
1086 				nvlist_free(raw);
1087 				nvlist_free(pools);
1088 				return (NULL);
1089 			}
1090 			nvlist_free(dst);
1091 		} else {
1092 			if (nvlist_add_nvlist(pools, nvpair_name(elem), src)
1093 			    != 0) {
1094 				(void) no_memory(hdl);
1095 				nvlist_free(raw);
1096 				nvlist_free(pools);
1097 				return (NULL);
1098 			}
1099 		}
1100 	}
1101 
1102 	nvlist_free(raw);
1103 	return (pools);
1104 }
1105 
1106 
1107 boolean_t
1108 find_guid(nvlist_t *nv, uint64_t guid)
1109 {
1110 	uint64_t tmp;
1111 	nvlist_t **child;
1112 	uint_t c, children;
1113 
1114 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1115 	if (tmp == guid)
1116 		return (B_TRUE);
1117 
1118 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1119 	    &child, &children) == 0) {
1120 		for (c = 0; c < children; c++)
1121 			if (find_guid(child[c], guid))
1122 				return (B_TRUE);
1123 	}
1124 
1125 	return (B_FALSE);
1126 }
1127 
1128 typedef struct aux_cbdata {
1129 	const char	*cb_type;
1130 	uint64_t	cb_guid;
1131 	zpool_handle_t	*cb_zhp;
1132 } aux_cbdata_t;
1133 
1134 static int
1135 find_aux(zpool_handle_t *zhp, void *data)
1136 {
1137 	aux_cbdata_t *cbp = data;
1138 	nvlist_t **list;
1139 	uint_t i, count;
1140 	uint64_t guid;
1141 	nvlist_t *nvroot;
1142 
1143 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1144 	    &nvroot) == 0);
1145 
1146 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1147 	    &list, &count) == 0) {
1148 		for (i = 0; i < count; i++) {
1149 			verify(nvlist_lookup_uint64(list[i],
1150 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1151 			if (guid == cbp->cb_guid) {
1152 				cbp->cb_zhp = zhp;
1153 				return (1);
1154 			}
1155 		}
1156 	}
1157 
1158 	zpool_close(zhp);
1159 	return (0);
1160 }
1161 
1162 /*
1163  * Determines if the pool is in use.  If so, it returns true and the state of
1164  * the pool as well as the name of the pool.  Both strings are allocated and
1165  * must be freed by the caller.
1166  */
1167 int
1168 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1169     boolean_t *inuse)
1170 {
1171 	nvlist_t *config;
1172 	char *name;
1173 	boolean_t ret;
1174 	uint64_t guid, vdev_guid;
1175 	zpool_handle_t *zhp;
1176 	nvlist_t *pool_config;
1177 	uint64_t stateval, isspare;
1178 	aux_cbdata_t cb = { 0 };
1179 	boolean_t isactive;
1180 
1181 	*inuse = B_FALSE;
1182 
1183 	if (zpool_read_label(fd, &config) != 0) {
1184 		(void) no_memory(hdl);
1185 		return (-1);
1186 	}
1187 
1188 	if (config == NULL)
1189 		return (0);
1190 
1191 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1192 	    &stateval) == 0);
1193 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1194 	    &vdev_guid) == 0);
1195 
1196 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1197 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1198 		    &name) == 0);
1199 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1200 		    &guid) == 0);
1201 	}
1202 
1203 	switch (stateval) {
1204 	case POOL_STATE_EXPORTED:
1205 		ret = B_TRUE;
1206 		break;
1207 
1208 	case POOL_STATE_ACTIVE:
1209 		/*
1210 		 * For an active pool, we have to determine if it's really part
1211 		 * of a currently active pool (in which case the pool will exist
1212 		 * and the guid will be the same), or whether it's part of an
1213 		 * active pool that was disconnected without being explicitly
1214 		 * exported.
1215 		 */
1216 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1217 			nvlist_free(config);
1218 			return (-1);
1219 		}
1220 
1221 		if (isactive) {
1222 			/*
1223 			 * Because the device may have been removed while
1224 			 * offlined, we only report it as active if the vdev is
1225 			 * still present in the config.  Otherwise, pretend like
1226 			 * it's not in use.
1227 			 */
1228 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1229 			    (pool_config = zpool_get_config(zhp, NULL))
1230 			    != NULL) {
1231 				nvlist_t *nvroot;
1232 
1233 				verify(nvlist_lookup_nvlist(pool_config,
1234 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1235 				ret = find_guid(nvroot, vdev_guid);
1236 			} else {
1237 				ret = B_FALSE;
1238 			}
1239 
1240 			/*
1241 			 * If this is an active spare within another pool, we
1242 			 * treat it like an unused hot spare.  This allows the
1243 			 * user to create a pool with a hot spare that currently
1244 			 * in use within another pool.  Since we return B_TRUE,
1245 			 * libdiskmgt will continue to prevent generic consumers
1246 			 * from using the device.
1247 			 */
1248 			if (ret && nvlist_lookup_uint64(config,
1249 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1250 				stateval = POOL_STATE_SPARE;
1251 
1252 			if (zhp != NULL)
1253 				zpool_close(zhp);
1254 		} else {
1255 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1256 			ret = B_TRUE;
1257 		}
1258 		break;
1259 
1260 	case POOL_STATE_SPARE:
1261 		/*
1262 		 * For a hot spare, it can be either definitively in use, or
1263 		 * potentially active.  To determine if it's in use, we iterate
1264 		 * over all pools in the system and search for one with a spare
1265 		 * with a matching guid.
1266 		 *
1267 		 * Due to the shared nature of spares, we don't actually report
1268 		 * the potentially active case as in use.  This means the user
1269 		 * can freely create pools on the hot spares of exported pools,
1270 		 * but to do otherwise makes the resulting code complicated, and
1271 		 * we end up having to deal with this case anyway.
1272 		 */
1273 		cb.cb_zhp = NULL;
1274 		cb.cb_guid = vdev_guid;
1275 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1276 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1277 			name = (char *)zpool_get_name(cb.cb_zhp);
1278 			ret = TRUE;
1279 		} else {
1280 			ret = FALSE;
1281 		}
1282 		break;
1283 
1284 	case POOL_STATE_L2CACHE:
1285 
1286 		/*
1287 		 * Check if any pool is currently using this l2cache device.
1288 		 */
1289 		cb.cb_zhp = NULL;
1290 		cb.cb_guid = vdev_guid;
1291 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1292 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1293 			name = (char *)zpool_get_name(cb.cb_zhp);
1294 			ret = TRUE;
1295 		} else {
1296 			ret = FALSE;
1297 		}
1298 		break;
1299 
1300 	default:
1301 		ret = B_FALSE;
1302 	}
1303 
1304 
1305 	if (ret) {
1306 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1307 			if (cb.cb_zhp)
1308 				zpool_close(cb.cb_zhp);
1309 			nvlist_free(config);
1310 			return (-1);
1311 		}
1312 		*state = (pool_state_t)stateval;
1313 	}
1314 
1315 	if (cb.cb_zhp)
1316 		zpool_close(cb.cb_zhp);
1317 
1318 	nvlist_free(config);
1319 	*inuse = ret;
1320 	return (0);
1321 }
1322