1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Pool import support functions. 29 * 30 * To import a pool, we rely on reading the configuration information from the 31 * ZFS label of each device. If we successfully read the label, then we 32 * organize the configuration information in the following hierarchy: 33 * 34 * pool guid -> toplevel vdev guid -> label txg 35 * 36 * Duplicate entries matching this same tuple will be discarded. Once we have 37 * examined every device, we pick the best label txg config for each toplevel 38 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 39 * update any paths that have changed. Finally, we attempt to import the pool 40 * using our derived config, and record the results. 41 */ 42 43 #include <ctype.h> 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stddef.h> 49 #include <stdlib.h> 50 #include <string.h> 51 #include <sys/stat.h> 52 #include <unistd.h> 53 #include <fcntl.h> 54 #include <sys/vtoc.h> 55 #include <sys/dktp/fdisk.h> 56 #include <sys/efi_partition.h> 57 #include <thread_pool.h> 58 59 #include <sys/vdev_impl.h> 60 61 #include "libzfs.h" 62 #include "libzfs_impl.h" 63 64 /* 65 * Intermediate structures used to gather configuration information. 66 */ 67 typedef struct config_entry { 68 uint64_t ce_txg; 69 nvlist_t *ce_config; 70 struct config_entry *ce_next; 71 } config_entry_t; 72 73 typedef struct vdev_entry { 74 uint64_t ve_guid; 75 config_entry_t *ve_configs; 76 struct vdev_entry *ve_next; 77 } vdev_entry_t; 78 79 typedef struct pool_entry { 80 uint64_t pe_guid; 81 vdev_entry_t *pe_vdevs; 82 struct pool_entry *pe_next; 83 } pool_entry_t; 84 85 typedef struct name_entry { 86 char *ne_name; 87 uint64_t ne_guid; 88 struct name_entry *ne_next; 89 } name_entry_t; 90 91 typedef struct pool_list { 92 pool_entry_t *pools; 93 name_entry_t *names; 94 } pool_list_t; 95 96 static char * 97 get_devid(const char *path) 98 { 99 int fd; 100 ddi_devid_t devid; 101 char *minor, *ret; 102 103 if ((fd = open(path, O_RDONLY)) < 0) 104 return (NULL); 105 106 minor = NULL; 107 ret = NULL; 108 if (devid_get(fd, &devid) == 0) { 109 if (devid_get_minor_name(fd, &minor) == 0) 110 ret = devid_str_encode(devid, minor); 111 if (minor != NULL) 112 devid_str_free(minor); 113 devid_free(devid); 114 } 115 (void) close(fd); 116 117 return (ret); 118 } 119 120 121 /* 122 * Go through and fix up any path and/or devid information for the given vdev 123 * configuration. 124 */ 125 static int 126 fix_paths(nvlist_t *nv, name_entry_t *names) 127 { 128 nvlist_t **child; 129 uint_t c, children; 130 uint64_t guid; 131 name_entry_t *ne, *best; 132 char *path, *devid; 133 int matched; 134 135 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 136 &child, &children) == 0) { 137 for (c = 0; c < children; c++) 138 if (fix_paths(child[c], names) != 0) 139 return (-1); 140 return (0); 141 } 142 143 /* 144 * This is a leaf (file or disk) vdev. In either case, go through 145 * the name list and see if we find a matching guid. If so, replace 146 * the path and see if we can calculate a new devid. 147 * 148 * There may be multiple names associated with a particular guid, in 149 * which case we have overlapping slices or multiple paths to the same 150 * disk. If this is the case, then we want to pick the path that is 151 * the most similar to the original, where "most similar" is the number 152 * of matching characters starting from the end of the path. This will 153 * preserve slice numbers even if the disks have been reorganized, and 154 * will also catch preferred disk names if multiple paths exist. 155 */ 156 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 157 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 158 path = NULL; 159 160 matched = 0; 161 best = NULL; 162 for (ne = names; ne != NULL; ne = ne->ne_next) { 163 if (ne->ne_guid == guid) { 164 const char *src, *dst; 165 int count; 166 167 if (path == NULL) { 168 best = ne; 169 break; 170 } 171 172 src = ne->ne_name + strlen(ne->ne_name) - 1; 173 dst = path + strlen(path) - 1; 174 for (count = 0; src >= ne->ne_name && dst >= path; 175 src--, dst--, count++) 176 if (*src != *dst) 177 break; 178 179 /* 180 * At this point, 'count' is the number of characters 181 * matched from the end. 182 */ 183 if (count > matched || best == NULL) { 184 best = ne; 185 matched = count; 186 } 187 } 188 } 189 190 if (best == NULL) 191 return (0); 192 193 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 194 return (-1); 195 196 if ((devid = get_devid(best->ne_name)) == NULL) { 197 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 198 } else { 199 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 200 return (-1); 201 devid_str_free(devid); 202 } 203 204 return (0); 205 } 206 207 /* 208 * Add the given configuration to the list of known devices. 209 */ 210 static int 211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 212 nvlist_t *config) 213 { 214 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 215 pool_entry_t *pe; 216 vdev_entry_t *ve; 217 config_entry_t *ce; 218 name_entry_t *ne; 219 220 /* 221 * If this is a hot spare not currently in use or level 2 cache 222 * device, add it to the list of names to translate, but don't do 223 * anything else. 224 */ 225 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 226 &state) == 0 && 227 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 228 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 229 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 230 return (-1); 231 232 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 233 free(ne); 234 return (-1); 235 } 236 ne->ne_guid = vdev_guid; 237 ne->ne_next = pl->names; 238 pl->names = ne; 239 return (0); 240 } 241 242 /* 243 * If we have a valid config but cannot read any of these fields, then 244 * it means we have a half-initialized label. In vdev_label_init() 245 * we write a label with txg == 0 so that we can identify the device 246 * in case the user refers to the same disk later on. If we fail to 247 * create the pool, we'll be left with a label in this state 248 * which should not be considered part of a valid pool. 249 */ 250 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 251 &pool_guid) != 0 || 252 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 253 &vdev_guid) != 0 || 254 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 255 &top_guid) != 0 || 256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 257 &txg) != 0 || txg == 0) { 258 nvlist_free(config); 259 return (0); 260 } 261 262 /* 263 * First, see if we know about this pool. If not, then add it to the 264 * list of known pools. 265 */ 266 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 267 if (pe->pe_guid == pool_guid) 268 break; 269 } 270 271 if (pe == NULL) { 272 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 273 nvlist_free(config); 274 return (-1); 275 } 276 pe->pe_guid = pool_guid; 277 pe->pe_next = pl->pools; 278 pl->pools = pe; 279 } 280 281 /* 282 * Second, see if we know about this toplevel vdev. Add it if its 283 * missing. 284 */ 285 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 286 if (ve->ve_guid == top_guid) 287 break; 288 } 289 290 if (ve == NULL) { 291 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 292 nvlist_free(config); 293 return (-1); 294 } 295 ve->ve_guid = top_guid; 296 ve->ve_next = pe->pe_vdevs; 297 pe->pe_vdevs = ve; 298 } 299 300 /* 301 * Third, see if we have a config with a matching transaction group. If 302 * so, then we do nothing. Otherwise, add it to the list of known 303 * configs. 304 */ 305 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 306 if (ce->ce_txg == txg) 307 break; 308 } 309 310 if (ce == NULL) { 311 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 312 nvlist_free(config); 313 return (-1); 314 } 315 ce->ce_txg = txg; 316 ce->ce_config = config; 317 ce->ce_next = ve->ve_configs; 318 ve->ve_configs = ce; 319 } else { 320 nvlist_free(config); 321 } 322 323 /* 324 * At this point we've successfully added our config to the list of 325 * known configs. The last thing to do is add the vdev guid -> path 326 * mappings so that we can fix up the configuration as necessary before 327 * doing the import. 328 */ 329 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 330 return (-1); 331 332 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 333 free(ne); 334 return (-1); 335 } 336 337 ne->ne_guid = vdev_guid; 338 ne->ne_next = pl->names; 339 pl->names = ne; 340 341 return (0); 342 } 343 344 /* 345 * Returns true if the named pool matches the given GUID. 346 */ 347 static int 348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 349 boolean_t *isactive) 350 { 351 zpool_handle_t *zhp; 352 uint64_t theguid; 353 354 if (zpool_open_silent(hdl, name, &zhp) != 0) 355 return (-1); 356 357 if (zhp == NULL) { 358 *isactive = B_FALSE; 359 return (0); 360 } 361 362 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 363 &theguid) == 0); 364 365 zpool_close(zhp); 366 367 *isactive = (theguid == guid); 368 return (0); 369 } 370 371 static nvlist_t * 372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 373 { 374 nvlist_t *nvl; 375 zfs_cmd_t zc = { 0 }; 376 int err; 377 378 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 379 return (NULL); 380 381 if (zcmd_alloc_dst_nvlist(hdl, &zc, 382 zc.zc_nvlist_conf_size * 2) != 0) { 383 zcmd_free_nvlists(&zc); 384 return (NULL); 385 } 386 387 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 388 &zc)) != 0 && errno == ENOMEM) { 389 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 390 zcmd_free_nvlists(&zc); 391 return (NULL); 392 } 393 } 394 395 if (err) { 396 zcmd_free_nvlists(&zc); 397 return (NULL); 398 } 399 400 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 401 zcmd_free_nvlists(&zc); 402 return (NULL); 403 } 404 405 zcmd_free_nvlists(&zc); 406 return (nvl); 407 } 408 409 /* 410 * Determine if the vdev id is a hole in the namespace. 411 */ 412 boolean_t 413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 414 { 415 for (int c = 0; c < holes; c++) { 416 417 /* Top-level is a hole */ 418 if (hole_array[c] == id) 419 return (B_TRUE); 420 } 421 return (B_FALSE); 422 } 423 424 /* 425 * Convert our list of pools into the definitive set of configurations. We 426 * start by picking the best config for each toplevel vdev. Once that's done, 427 * we assemble the toplevel vdevs into a full config for the pool. We make a 428 * pass to fix up any incorrect paths, and then add it to the main list to 429 * return to the user. 430 */ 431 static nvlist_t * 432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 433 { 434 pool_entry_t *pe; 435 vdev_entry_t *ve; 436 config_entry_t *ce; 437 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 438 nvlist_t **spares, **l2cache; 439 uint_t i, nspares, nl2cache; 440 boolean_t config_seen; 441 uint64_t best_txg; 442 char *name, *hostname; 443 uint64_t guid; 444 uint_t children = 0; 445 nvlist_t **child = NULL; 446 uint_t holes; 447 uint64_t *hole_array, max_id; 448 uint_t c; 449 boolean_t isactive; 450 uint64_t hostid; 451 nvlist_t *nvl; 452 boolean_t found_one = B_FALSE; 453 boolean_t valid_top_config = B_FALSE; 454 455 if (nvlist_alloc(&ret, 0, 0) != 0) 456 goto nomem; 457 458 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 459 uint64_t id, max_txg = 0; 460 461 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 462 goto nomem; 463 config_seen = B_FALSE; 464 465 /* 466 * Iterate over all toplevel vdevs. Grab the pool configuration 467 * from the first one we find, and then go through the rest and 468 * add them as necessary to the 'vdevs' member of the config. 469 */ 470 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 471 472 /* 473 * Determine the best configuration for this vdev by 474 * selecting the config with the latest transaction 475 * group. 476 */ 477 best_txg = 0; 478 for (ce = ve->ve_configs; ce != NULL; 479 ce = ce->ce_next) { 480 481 if (ce->ce_txg > best_txg) { 482 tmp = ce->ce_config; 483 best_txg = ce->ce_txg; 484 } 485 } 486 487 /* 488 * We rely on the fact that the max txg for the 489 * pool will contain the most up-to-date information 490 * about the valid top-levels in the vdev namespace. 491 */ 492 if (best_txg > max_txg) { 493 (void) nvlist_remove(config, 494 ZPOOL_CONFIG_VDEV_CHILDREN, 495 DATA_TYPE_UINT64); 496 (void) nvlist_remove(config, 497 ZPOOL_CONFIG_HOLE_ARRAY, 498 DATA_TYPE_UINT64_ARRAY); 499 500 max_txg = best_txg; 501 hole_array = NULL; 502 holes = 0; 503 max_id = 0; 504 valid_top_config = B_FALSE; 505 506 if (nvlist_lookup_uint64(tmp, 507 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 508 verify(nvlist_add_uint64(config, 509 ZPOOL_CONFIG_VDEV_CHILDREN, 510 max_id) == 0); 511 valid_top_config = B_TRUE; 512 } 513 514 if (nvlist_lookup_uint64_array(tmp, 515 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 516 &holes) == 0) { 517 verify(nvlist_add_uint64_array(config, 518 ZPOOL_CONFIG_HOLE_ARRAY, 519 hole_array, holes) == 0); 520 } 521 } 522 523 if (!config_seen) { 524 /* 525 * Copy the relevant pieces of data to the pool 526 * configuration: 527 * 528 * version 529 * pool guid 530 * name 531 * pool txg (if available) 532 * comment (if available) 533 * pool state 534 * hostid (if available) 535 * hostname (if available) 536 */ 537 uint64_t state, version, pool_txg; 538 char *comment = NULL; 539 540 version = fnvlist_lookup_uint64(tmp, 541 ZPOOL_CONFIG_VERSION); 542 fnvlist_add_uint64(config, 543 ZPOOL_CONFIG_VERSION, version); 544 guid = fnvlist_lookup_uint64(tmp, 545 ZPOOL_CONFIG_POOL_GUID); 546 fnvlist_add_uint64(config, 547 ZPOOL_CONFIG_POOL_GUID, guid); 548 name = fnvlist_lookup_string(tmp, 549 ZPOOL_CONFIG_POOL_NAME); 550 fnvlist_add_string(config, 551 ZPOOL_CONFIG_POOL_NAME, name); 552 553 if (nvlist_lookup_uint64(tmp, 554 ZPOOL_CONFIG_POOL_TXG, &pool_txg) == 0) 555 fnvlist_add_uint64(config, 556 ZPOOL_CONFIG_POOL_TXG, pool_txg); 557 558 if (nvlist_lookup_string(tmp, 559 ZPOOL_CONFIG_COMMENT, &comment) == 0) 560 fnvlist_add_string(config, 561 ZPOOL_CONFIG_COMMENT, comment); 562 563 state = fnvlist_lookup_uint64(tmp, 564 ZPOOL_CONFIG_POOL_STATE); 565 fnvlist_add_uint64(config, 566 ZPOOL_CONFIG_POOL_STATE, state); 567 568 hostid = 0; 569 if (nvlist_lookup_uint64(tmp, 570 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 571 fnvlist_add_uint64(config, 572 ZPOOL_CONFIG_HOSTID, hostid); 573 hostname = fnvlist_lookup_string(tmp, 574 ZPOOL_CONFIG_HOSTNAME); 575 fnvlist_add_string(config, 576 ZPOOL_CONFIG_HOSTNAME, hostname); 577 } 578 579 config_seen = B_TRUE; 580 } 581 582 /* 583 * Add this top-level vdev to the child array. 584 */ 585 verify(nvlist_lookup_nvlist(tmp, 586 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 587 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 588 &id) == 0); 589 590 if (id >= children) { 591 nvlist_t **newchild; 592 593 newchild = zfs_alloc(hdl, (id + 1) * 594 sizeof (nvlist_t *)); 595 if (newchild == NULL) 596 goto nomem; 597 598 for (c = 0; c < children; c++) 599 newchild[c] = child[c]; 600 601 free(child); 602 child = newchild; 603 children = id + 1; 604 } 605 if (nvlist_dup(nvtop, &child[id], 0) != 0) 606 goto nomem; 607 608 } 609 610 /* 611 * If we have information about all the top-levels then 612 * clean up the nvlist which we've constructed. This 613 * means removing any extraneous devices that are 614 * beyond the valid range or adding devices to the end 615 * of our array which appear to be missing. 616 */ 617 if (valid_top_config) { 618 if (max_id < children) { 619 for (c = max_id; c < children; c++) 620 nvlist_free(child[c]); 621 children = max_id; 622 } else if (max_id > children) { 623 nvlist_t **newchild; 624 625 newchild = zfs_alloc(hdl, (max_id) * 626 sizeof (nvlist_t *)); 627 if (newchild == NULL) 628 goto nomem; 629 630 for (c = 0; c < children; c++) 631 newchild[c] = child[c]; 632 633 free(child); 634 child = newchild; 635 children = max_id; 636 } 637 } 638 639 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 640 &guid) == 0); 641 642 /* 643 * The vdev namespace may contain holes as a result of 644 * device removal. We must add them back into the vdev 645 * tree before we process any missing devices. 646 */ 647 if (holes > 0) { 648 ASSERT(valid_top_config); 649 650 for (c = 0; c < children; c++) { 651 nvlist_t *holey; 652 653 if (child[c] != NULL || 654 !vdev_is_hole(hole_array, holes, c)) 655 continue; 656 657 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 658 0) != 0) 659 goto nomem; 660 661 /* 662 * Holes in the namespace are treated as 663 * "hole" top-level vdevs and have a 664 * special flag set on them. 665 */ 666 if (nvlist_add_string(holey, 667 ZPOOL_CONFIG_TYPE, 668 VDEV_TYPE_HOLE) != 0 || 669 nvlist_add_uint64(holey, 670 ZPOOL_CONFIG_ID, c) != 0 || 671 nvlist_add_uint64(holey, 672 ZPOOL_CONFIG_GUID, 0ULL) != 0) 673 goto nomem; 674 child[c] = holey; 675 } 676 } 677 678 /* 679 * Look for any missing top-level vdevs. If this is the case, 680 * create a faked up 'missing' vdev as a placeholder. We cannot 681 * simply compress the child array, because the kernel performs 682 * certain checks to make sure the vdev IDs match their location 683 * in the configuration. 684 */ 685 for (c = 0; c < children; c++) { 686 if (child[c] == NULL) { 687 nvlist_t *missing; 688 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 689 0) != 0) 690 goto nomem; 691 if (nvlist_add_string(missing, 692 ZPOOL_CONFIG_TYPE, 693 VDEV_TYPE_MISSING) != 0 || 694 nvlist_add_uint64(missing, 695 ZPOOL_CONFIG_ID, c) != 0 || 696 nvlist_add_uint64(missing, 697 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 698 nvlist_free(missing); 699 goto nomem; 700 } 701 child[c] = missing; 702 } 703 } 704 705 /* 706 * Put all of this pool's top-level vdevs into a root vdev. 707 */ 708 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 709 goto nomem; 710 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 711 VDEV_TYPE_ROOT) != 0 || 712 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 713 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 714 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 715 child, children) != 0) { 716 nvlist_free(nvroot); 717 goto nomem; 718 } 719 720 for (c = 0; c < children; c++) 721 nvlist_free(child[c]); 722 free(child); 723 children = 0; 724 child = NULL; 725 726 /* 727 * Go through and fix up any paths and/or devids based on our 728 * known list of vdev GUID -> path mappings. 729 */ 730 if (fix_paths(nvroot, pl->names) != 0) { 731 nvlist_free(nvroot); 732 goto nomem; 733 } 734 735 /* 736 * Add the root vdev to this pool's configuration. 737 */ 738 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 739 nvroot) != 0) { 740 nvlist_free(nvroot); 741 goto nomem; 742 } 743 nvlist_free(nvroot); 744 745 /* 746 * zdb uses this path to report on active pools that were 747 * imported or created using -R. 748 */ 749 if (active_ok) 750 goto add_pool; 751 752 /* 753 * Determine if this pool is currently active, in which case we 754 * can't actually import it. 755 */ 756 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 757 &name) == 0); 758 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 759 &guid) == 0); 760 761 if (pool_active(hdl, name, guid, &isactive) != 0) 762 goto error; 763 764 if (isactive) { 765 nvlist_free(config); 766 config = NULL; 767 continue; 768 } 769 770 if ((nvl = refresh_config(hdl, config)) == NULL) { 771 nvlist_free(config); 772 config = NULL; 773 continue; 774 } 775 776 nvlist_free(config); 777 config = nvl; 778 779 /* 780 * Go through and update the paths for spares, now that we have 781 * them. 782 */ 783 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 784 &nvroot) == 0); 785 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 786 &spares, &nspares) == 0) { 787 for (i = 0; i < nspares; i++) { 788 if (fix_paths(spares[i], pl->names) != 0) 789 goto nomem; 790 } 791 } 792 793 /* 794 * Update the paths for l2cache devices. 795 */ 796 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 797 &l2cache, &nl2cache) == 0) { 798 for (i = 0; i < nl2cache; i++) { 799 if (fix_paths(l2cache[i], pl->names) != 0) 800 goto nomem; 801 } 802 } 803 804 /* 805 * Restore the original information read from the actual label. 806 */ 807 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 808 DATA_TYPE_UINT64); 809 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 810 DATA_TYPE_STRING); 811 if (hostid != 0) { 812 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 813 hostid) == 0); 814 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 815 hostname) == 0); 816 } 817 818 add_pool: 819 /* 820 * Add this pool to the list of configs. 821 */ 822 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 823 &name) == 0); 824 if (nvlist_add_nvlist(ret, name, config) != 0) 825 goto nomem; 826 827 found_one = B_TRUE; 828 nvlist_free(config); 829 config = NULL; 830 } 831 832 if (!found_one) { 833 nvlist_free(ret); 834 ret = NULL; 835 } 836 837 return (ret); 838 839 nomem: 840 (void) no_memory(hdl); 841 error: 842 nvlist_free(config); 843 nvlist_free(ret); 844 for (c = 0; c < children; c++) 845 nvlist_free(child[c]); 846 free(child); 847 848 return (NULL); 849 } 850 851 /* 852 * Return the offset of the given label. 853 */ 854 static uint64_t 855 label_offset(uint64_t size, int l) 856 { 857 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 858 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 859 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 860 } 861 862 /* 863 * Given a file descriptor, read the label information and return an nvlist 864 * describing the configuration, if there is one. 865 */ 866 int 867 zpool_read_label(int fd, nvlist_t **config) 868 { 869 struct stat64 statbuf; 870 int l; 871 vdev_label_t *label; 872 uint64_t state, txg, size; 873 874 *config = NULL; 875 876 if (fstat64(fd, &statbuf) == -1) 877 return (0); 878 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 879 880 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 881 return (-1); 882 883 for (l = 0; l < VDEV_LABELS; l++) { 884 if (pread64(fd, label, sizeof (vdev_label_t), 885 label_offset(size, l)) != sizeof (vdev_label_t)) 886 continue; 887 888 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 889 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 890 continue; 891 892 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 893 &state) != 0 || state > POOL_STATE_L2CACHE) { 894 nvlist_free(*config); 895 continue; 896 } 897 898 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 899 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 900 &txg) != 0 || txg == 0)) { 901 nvlist_free(*config); 902 continue; 903 } 904 905 free(label); 906 return (0); 907 } 908 909 free(label); 910 *config = NULL; 911 return (0); 912 } 913 914 typedef struct rdsk_node { 915 char *rn_name; 916 int rn_dfd; 917 libzfs_handle_t *rn_hdl; 918 nvlist_t *rn_config; 919 avl_tree_t *rn_avl; 920 avl_node_t rn_node; 921 boolean_t rn_nozpool; 922 } rdsk_node_t; 923 924 static int 925 slice_cache_compare(const void *arg1, const void *arg2) 926 { 927 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 928 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 929 char *nm1slice, *nm2slice; 930 int rv; 931 932 /* 933 * slices zero and two are the most likely to provide results, 934 * so put those first 935 */ 936 nm1slice = strstr(nm1, "s0"); 937 nm2slice = strstr(nm2, "s0"); 938 if (nm1slice && !nm2slice) { 939 return (-1); 940 } 941 if (!nm1slice && nm2slice) { 942 return (1); 943 } 944 nm1slice = strstr(nm1, "s2"); 945 nm2slice = strstr(nm2, "s2"); 946 if (nm1slice && !nm2slice) { 947 return (-1); 948 } 949 if (!nm1slice && nm2slice) { 950 return (1); 951 } 952 953 rv = strcmp(nm1, nm2); 954 if (rv == 0) 955 return (0); 956 return (rv > 0 ? 1 : -1); 957 } 958 959 static void 960 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 961 diskaddr_t size, uint_t blksz) 962 { 963 rdsk_node_t tmpnode; 964 rdsk_node_t *node; 965 char sname[MAXNAMELEN]; 966 967 tmpnode.rn_name = &sname[0]; 968 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 969 diskname, partno); 970 /* 971 * protect against division by zero for disk labels that 972 * contain a bogus sector size 973 */ 974 if (blksz == 0) 975 blksz = DEV_BSIZE; 976 /* too small to contain a zpool? */ 977 if ((size < (SPA_MINDEVSIZE / blksz)) && 978 (node = avl_find(r, &tmpnode, NULL))) 979 node->rn_nozpool = B_TRUE; 980 } 981 982 static void 983 nozpool_all_slices(avl_tree_t *r, const char *sname) 984 { 985 char diskname[MAXNAMELEN]; 986 char *ptr; 987 int i; 988 989 (void) strncpy(diskname, sname, MAXNAMELEN); 990 if (((ptr = strrchr(diskname, 's')) == NULL) && 991 ((ptr = strrchr(diskname, 'p')) == NULL)) 992 return; 993 ptr[0] = 's'; 994 ptr[1] = '\0'; 995 for (i = 0; i < NDKMAP; i++) 996 check_one_slice(r, diskname, i, 0, 1); 997 ptr[0] = 'p'; 998 for (i = 0; i <= FD_NUMPART; i++) 999 check_one_slice(r, diskname, i, 0, 1); 1000 } 1001 1002 static void 1003 check_slices(avl_tree_t *r, int fd, const char *sname) 1004 { 1005 struct extvtoc vtoc; 1006 struct dk_gpt *gpt; 1007 char diskname[MAXNAMELEN]; 1008 char *ptr; 1009 int i; 1010 1011 (void) strncpy(diskname, sname, MAXNAMELEN); 1012 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1013 return; 1014 ptr[1] = '\0'; 1015 1016 if (read_extvtoc(fd, &vtoc) >= 0) { 1017 for (i = 0; i < NDKMAP; i++) 1018 check_one_slice(r, diskname, i, 1019 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1020 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1021 /* 1022 * on x86 we'll still have leftover links that point 1023 * to slices s[9-15], so use NDKMAP instead 1024 */ 1025 for (i = 0; i < NDKMAP; i++) 1026 check_one_slice(r, diskname, i, 1027 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1028 /* nodes p[1-4] are never used with EFI labels */ 1029 ptr[0] = 'p'; 1030 for (i = 1; i <= FD_NUMPART; i++) 1031 check_one_slice(r, diskname, i, 0, 1); 1032 efi_free(gpt); 1033 } 1034 } 1035 1036 static void 1037 zpool_open_func(void *arg) 1038 { 1039 rdsk_node_t *rn = arg; 1040 struct stat64 statbuf; 1041 nvlist_t *config; 1042 int fd; 1043 1044 if (rn->rn_nozpool) 1045 return; 1046 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1047 /* symlink to a device that's no longer there */ 1048 if (errno == ENOENT) 1049 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1050 return; 1051 } 1052 /* 1053 * Ignore failed stats. We only want regular 1054 * files, character devs and block devs. 1055 */ 1056 if (fstat64(fd, &statbuf) != 0 || 1057 (!S_ISREG(statbuf.st_mode) && 1058 !S_ISCHR(statbuf.st_mode) && 1059 !S_ISBLK(statbuf.st_mode))) { 1060 (void) close(fd); 1061 return; 1062 } 1063 /* this file is too small to hold a zpool */ 1064 if (S_ISREG(statbuf.st_mode) && 1065 statbuf.st_size < SPA_MINDEVSIZE) { 1066 (void) close(fd); 1067 return; 1068 } else if (!S_ISREG(statbuf.st_mode)) { 1069 /* 1070 * Try to read the disk label first so we don't have to 1071 * open a bunch of minor nodes that can't have a zpool. 1072 */ 1073 check_slices(rn->rn_avl, fd, rn->rn_name); 1074 } 1075 1076 if ((zpool_read_label(fd, &config)) != 0) { 1077 (void) close(fd); 1078 (void) no_memory(rn->rn_hdl); 1079 return; 1080 } 1081 (void) close(fd); 1082 1083 1084 rn->rn_config = config; 1085 if (config != NULL) { 1086 assert(rn->rn_nozpool == B_FALSE); 1087 } 1088 } 1089 1090 /* 1091 * Given a file descriptor, clear (zero) the label information. This function 1092 * is currently only used in the appliance stack as part of the ZFS sysevent 1093 * module. 1094 */ 1095 int 1096 zpool_clear_label(int fd) 1097 { 1098 struct stat64 statbuf; 1099 int l; 1100 vdev_label_t *label; 1101 uint64_t size; 1102 1103 if (fstat64(fd, &statbuf) == -1) 1104 return (0); 1105 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1106 1107 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1108 return (-1); 1109 1110 for (l = 0; l < VDEV_LABELS; l++) { 1111 if (pwrite64(fd, label, sizeof (vdev_label_t), 1112 label_offset(size, l)) != sizeof (vdev_label_t)) 1113 return (-1); 1114 } 1115 1116 free(label); 1117 return (0); 1118 } 1119 1120 /* 1121 * Given a list of directories to search, find all pools stored on disk. This 1122 * includes partial pools which are not available to import. If no args are 1123 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1124 * poolname or guid (but not both) are provided by the caller when trying 1125 * to import a specific pool. 1126 */ 1127 static nvlist_t * 1128 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1129 { 1130 int i, dirs = iarg->paths; 1131 DIR *dirp = NULL; 1132 struct dirent64 *dp; 1133 char path[MAXPATHLEN]; 1134 char *end, **dir = iarg->path; 1135 size_t pathleft; 1136 nvlist_t *ret = NULL; 1137 static char *default_dir = "/dev/dsk"; 1138 pool_list_t pools = { 0 }; 1139 pool_entry_t *pe, *penext; 1140 vdev_entry_t *ve, *venext; 1141 config_entry_t *ce, *cenext; 1142 name_entry_t *ne, *nenext; 1143 avl_tree_t slice_cache; 1144 rdsk_node_t *slice; 1145 void *cookie; 1146 1147 if (dirs == 0) { 1148 dirs = 1; 1149 dir = &default_dir; 1150 } 1151 1152 /* 1153 * Go through and read the label configuration information from every 1154 * possible device, organizing the information according to pool GUID 1155 * and toplevel GUID. 1156 */ 1157 for (i = 0; i < dirs; i++) { 1158 tpool_t *t; 1159 char *rdsk; 1160 int dfd; 1161 1162 /* use realpath to normalize the path */ 1163 if (realpath(dir[i], path) == 0) { 1164 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1165 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1166 goto error; 1167 } 1168 end = &path[strlen(path)]; 1169 *end++ = '/'; 1170 *end = 0; 1171 pathleft = &path[sizeof (path)] - end; 1172 1173 /* 1174 * Using raw devices instead of block devices when we're 1175 * reading the labels skips a bunch of slow operations during 1176 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1177 */ 1178 if (strcmp(path, "/dev/dsk/") == 0) 1179 rdsk = "/dev/rdsk/"; 1180 else 1181 rdsk = path; 1182 1183 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1184 (dirp = fdopendir(dfd)) == NULL) { 1185 zfs_error_aux(hdl, strerror(errno)); 1186 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1187 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1188 rdsk); 1189 goto error; 1190 } 1191 1192 avl_create(&slice_cache, slice_cache_compare, 1193 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1194 /* 1195 * This is not MT-safe, but we have no MT consumers of libzfs 1196 */ 1197 while ((dp = readdir64(dirp)) != NULL) { 1198 const char *name = dp->d_name; 1199 if (name[0] == '.' && 1200 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1201 continue; 1202 1203 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1204 slice->rn_name = zfs_strdup(hdl, name); 1205 slice->rn_avl = &slice_cache; 1206 slice->rn_dfd = dfd; 1207 slice->rn_hdl = hdl; 1208 slice->rn_nozpool = B_FALSE; 1209 avl_add(&slice_cache, slice); 1210 } 1211 /* 1212 * create a thread pool to do all of this in parallel; 1213 * rn_nozpool is not protected, so this is racy in that 1214 * multiple tasks could decide that the same slice can 1215 * not hold a zpool, which is benign. Also choose 1216 * double the number of processors; we hold a lot of 1217 * locks in the kernel, so going beyond this doesn't 1218 * buy us much. 1219 */ 1220 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1221 0, NULL); 1222 for (slice = avl_first(&slice_cache); slice; 1223 (slice = avl_walk(&slice_cache, slice, 1224 AVL_AFTER))) 1225 (void) tpool_dispatch(t, zpool_open_func, slice); 1226 tpool_wait(t); 1227 tpool_destroy(t); 1228 1229 cookie = NULL; 1230 while ((slice = avl_destroy_nodes(&slice_cache, 1231 &cookie)) != NULL) { 1232 if (slice->rn_config != NULL) { 1233 nvlist_t *config = slice->rn_config; 1234 boolean_t matched = B_TRUE; 1235 1236 if (iarg->poolname != NULL) { 1237 char *pname; 1238 1239 matched = nvlist_lookup_string(config, 1240 ZPOOL_CONFIG_POOL_NAME, 1241 &pname) == 0 && 1242 strcmp(iarg->poolname, pname) == 0; 1243 } else if (iarg->guid != 0) { 1244 uint64_t this_guid; 1245 1246 matched = nvlist_lookup_uint64(config, 1247 ZPOOL_CONFIG_POOL_GUID, 1248 &this_guid) == 0 && 1249 iarg->guid == this_guid; 1250 } 1251 if (!matched) { 1252 nvlist_free(config); 1253 config = NULL; 1254 continue; 1255 } 1256 /* use the non-raw path for the config */ 1257 (void) strlcpy(end, slice->rn_name, pathleft); 1258 if (add_config(hdl, &pools, path, config) != 0) 1259 goto error; 1260 } 1261 free(slice->rn_name); 1262 free(slice); 1263 } 1264 avl_destroy(&slice_cache); 1265 1266 (void) closedir(dirp); 1267 dirp = NULL; 1268 } 1269 1270 ret = get_configs(hdl, &pools, iarg->can_be_active); 1271 1272 error: 1273 for (pe = pools.pools; pe != NULL; pe = penext) { 1274 penext = pe->pe_next; 1275 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1276 venext = ve->ve_next; 1277 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1278 cenext = ce->ce_next; 1279 if (ce->ce_config) 1280 nvlist_free(ce->ce_config); 1281 free(ce); 1282 } 1283 free(ve); 1284 } 1285 free(pe); 1286 } 1287 1288 for (ne = pools.names; ne != NULL; ne = nenext) { 1289 nenext = ne->ne_next; 1290 if (ne->ne_name) 1291 free(ne->ne_name); 1292 free(ne); 1293 } 1294 1295 if (dirp) 1296 (void) closedir(dirp); 1297 1298 return (ret); 1299 } 1300 1301 nvlist_t * 1302 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1303 { 1304 importargs_t iarg = { 0 }; 1305 1306 iarg.paths = argc; 1307 iarg.path = argv; 1308 1309 return (zpool_find_import_impl(hdl, &iarg)); 1310 } 1311 1312 /* 1313 * Given a cache file, return the contents as a list of importable pools. 1314 * poolname or guid (but not both) are provided by the caller when trying 1315 * to import a specific pool. 1316 */ 1317 nvlist_t * 1318 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1319 char *poolname, uint64_t guid) 1320 { 1321 char *buf; 1322 int fd; 1323 struct stat64 statbuf; 1324 nvlist_t *raw, *src, *dst; 1325 nvlist_t *pools; 1326 nvpair_t *elem; 1327 char *name; 1328 uint64_t this_guid; 1329 boolean_t active; 1330 1331 verify(poolname == NULL || guid == 0); 1332 1333 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1334 zfs_error_aux(hdl, "%s", strerror(errno)); 1335 (void) zfs_error(hdl, EZFS_BADCACHE, 1336 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1337 return (NULL); 1338 } 1339 1340 if (fstat64(fd, &statbuf) != 0) { 1341 zfs_error_aux(hdl, "%s", strerror(errno)); 1342 (void) close(fd); 1343 (void) zfs_error(hdl, EZFS_BADCACHE, 1344 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1345 return (NULL); 1346 } 1347 1348 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1349 (void) close(fd); 1350 return (NULL); 1351 } 1352 1353 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1354 (void) close(fd); 1355 free(buf); 1356 (void) zfs_error(hdl, EZFS_BADCACHE, 1357 dgettext(TEXT_DOMAIN, 1358 "failed to read cache file contents")); 1359 return (NULL); 1360 } 1361 1362 (void) close(fd); 1363 1364 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1365 free(buf); 1366 (void) zfs_error(hdl, EZFS_BADCACHE, 1367 dgettext(TEXT_DOMAIN, 1368 "invalid or corrupt cache file contents")); 1369 return (NULL); 1370 } 1371 1372 free(buf); 1373 1374 /* 1375 * Go through and get the current state of the pools and refresh their 1376 * state. 1377 */ 1378 if (nvlist_alloc(&pools, 0, 0) != 0) { 1379 (void) no_memory(hdl); 1380 nvlist_free(raw); 1381 return (NULL); 1382 } 1383 1384 elem = NULL; 1385 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1386 verify(nvpair_value_nvlist(elem, &src) == 0); 1387 1388 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, 1389 &name) == 0); 1390 if (poolname != NULL && strcmp(poolname, name) != 0) 1391 continue; 1392 1393 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1394 &this_guid) == 0); 1395 if (guid != 0) { 1396 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1397 &this_guid) == 0); 1398 if (guid != this_guid) 1399 continue; 1400 } 1401 1402 if (pool_active(hdl, name, this_guid, &active) != 0) { 1403 nvlist_free(raw); 1404 nvlist_free(pools); 1405 return (NULL); 1406 } 1407 1408 if (active) 1409 continue; 1410 1411 if ((dst = refresh_config(hdl, src)) == NULL) { 1412 nvlist_free(raw); 1413 nvlist_free(pools); 1414 return (NULL); 1415 } 1416 1417 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1418 (void) no_memory(hdl); 1419 nvlist_free(dst); 1420 nvlist_free(raw); 1421 nvlist_free(pools); 1422 return (NULL); 1423 } 1424 nvlist_free(dst); 1425 } 1426 1427 nvlist_free(raw); 1428 return (pools); 1429 } 1430 1431 static int 1432 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1433 { 1434 importargs_t *import = data; 1435 int found = 0; 1436 1437 if (import->poolname != NULL) { 1438 char *pool_name; 1439 1440 verify(nvlist_lookup_string(zhp->zpool_config, 1441 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1442 if (strcmp(pool_name, import->poolname) == 0) 1443 found = 1; 1444 } else { 1445 uint64_t pool_guid; 1446 1447 verify(nvlist_lookup_uint64(zhp->zpool_config, 1448 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1449 if (pool_guid == import->guid) 1450 found = 1; 1451 } 1452 1453 zpool_close(zhp); 1454 return (found); 1455 } 1456 1457 nvlist_t * 1458 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1459 { 1460 verify(import->poolname == NULL || import->guid == 0); 1461 1462 if (import->unique) 1463 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1464 1465 if (import->cachefile != NULL) 1466 return (zpool_find_import_cached(hdl, import->cachefile, 1467 import->poolname, import->guid)); 1468 1469 return (zpool_find_import_impl(hdl, import)); 1470 } 1471 1472 boolean_t 1473 find_guid(nvlist_t *nv, uint64_t guid) 1474 { 1475 uint64_t tmp; 1476 nvlist_t **child; 1477 uint_t c, children; 1478 1479 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1480 if (tmp == guid) 1481 return (B_TRUE); 1482 1483 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1484 &child, &children) == 0) { 1485 for (c = 0; c < children; c++) 1486 if (find_guid(child[c], guid)) 1487 return (B_TRUE); 1488 } 1489 1490 return (B_FALSE); 1491 } 1492 1493 typedef struct aux_cbdata { 1494 const char *cb_type; 1495 uint64_t cb_guid; 1496 zpool_handle_t *cb_zhp; 1497 } aux_cbdata_t; 1498 1499 static int 1500 find_aux(zpool_handle_t *zhp, void *data) 1501 { 1502 aux_cbdata_t *cbp = data; 1503 nvlist_t **list; 1504 uint_t i, count; 1505 uint64_t guid; 1506 nvlist_t *nvroot; 1507 1508 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1509 &nvroot) == 0); 1510 1511 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1512 &list, &count) == 0) { 1513 for (i = 0; i < count; i++) { 1514 verify(nvlist_lookup_uint64(list[i], 1515 ZPOOL_CONFIG_GUID, &guid) == 0); 1516 if (guid == cbp->cb_guid) { 1517 cbp->cb_zhp = zhp; 1518 return (1); 1519 } 1520 } 1521 } 1522 1523 zpool_close(zhp); 1524 return (0); 1525 } 1526 1527 /* 1528 * Determines if the pool is in use. If so, it returns true and the state of 1529 * the pool as well as the name of the pool. Both strings are allocated and 1530 * must be freed by the caller. 1531 */ 1532 int 1533 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1534 boolean_t *inuse) 1535 { 1536 nvlist_t *config; 1537 char *name; 1538 boolean_t ret; 1539 uint64_t guid, vdev_guid; 1540 zpool_handle_t *zhp; 1541 nvlist_t *pool_config; 1542 uint64_t stateval, isspare; 1543 aux_cbdata_t cb = { 0 }; 1544 boolean_t isactive; 1545 1546 *inuse = B_FALSE; 1547 1548 if (zpool_read_label(fd, &config) != 0) { 1549 (void) no_memory(hdl); 1550 return (-1); 1551 } 1552 1553 if (config == NULL) 1554 return (0); 1555 1556 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1557 &stateval) == 0); 1558 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1559 &vdev_guid) == 0); 1560 1561 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1562 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1563 &name) == 0); 1564 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1565 &guid) == 0); 1566 } 1567 1568 switch (stateval) { 1569 case POOL_STATE_EXPORTED: 1570 /* 1571 * A pool with an exported state may in fact be imported 1572 * read-only, so check the in-core state to see if it's 1573 * active and imported read-only. If it is, set 1574 * its state to active. 1575 */ 1576 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1577 (zhp = zpool_open_canfail(hdl, name)) != NULL && 1578 zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1579 stateval = POOL_STATE_ACTIVE; 1580 1581 ret = B_TRUE; 1582 break; 1583 1584 case POOL_STATE_ACTIVE: 1585 /* 1586 * For an active pool, we have to determine if it's really part 1587 * of a currently active pool (in which case the pool will exist 1588 * and the guid will be the same), or whether it's part of an 1589 * active pool that was disconnected without being explicitly 1590 * exported. 1591 */ 1592 if (pool_active(hdl, name, guid, &isactive) != 0) { 1593 nvlist_free(config); 1594 return (-1); 1595 } 1596 1597 if (isactive) { 1598 /* 1599 * Because the device may have been removed while 1600 * offlined, we only report it as active if the vdev is 1601 * still present in the config. Otherwise, pretend like 1602 * it's not in use. 1603 */ 1604 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1605 (pool_config = zpool_get_config(zhp, NULL)) 1606 != NULL) { 1607 nvlist_t *nvroot; 1608 1609 verify(nvlist_lookup_nvlist(pool_config, 1610 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1611 ret = find_guid(nvroot, vdev_guid); 1612 } else { 1613 ret = B_FALSE; 1614 } 1615 1616 /* 1617 * If this is an active spare within another pool, we 1618 * treat it like an unused hot spare. This allows the 1619 * user to create a pool with a hot spare that currently 1620 * in use within another pool. Since we return B_TRUE, 1621 * libdiskmgt will continue to prevent generic consumers 1622 * from using the device. 1623 */ 1624 if (ret && nvlist_lookup_uint64(config, 1625 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1626 stateval = POOL_STATE_SPARE; 1627 1628 if (zhp != NULL) 1629 zpool_close(zhp); 1630 } else { 1631 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1632 ret = B_TRUE; 1633 } 1634 break; 1635 1636 case POOL_STATE_SPARE: 1637 /* 1638 * For a hot spare, it can be either definitively in use, or 1639 * potentially active. To determine if it's in use, we iterate 1640 * over all pools in the system and search for one with a spare 1641 * with a matching guid. 1642 * 1643 * Due to the shared nature of spares, we don't actually report 1644 * the potentially active case as in use. This means the user 1645 * can freely create pools on the hot spares of exported pools, 1646 * but to do otherwise makes the resulting code complicated, and 1647 * we end up having to deal with this case anyway. 1648 */ 1649 cb.cb_zhp = NULL; 1650 cb.cb_guid = vdev_guid; 1651 cb.cb_type = ZPOOL_CONFIG_SPARES; 1652 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1653 name = (char *)zpool_get_name(cb.cb_zhp); 1654 ret = TRUE; 1655 } else { 1656 ret = FALSE; 1657 } 1658 break; 1659 1660 case POOL_STATE_L2CACHE: 1661 1662 /* 1663 * Check if any pool is currently using this l2cache device. 1664 */ 1665 cb.cb_zhp = NULL; 1666 cb.cb_guid = vdev_guid; 1667 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1668 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1669 name = (char *)zpool_get_name(cb.cb_zhp); 1670 ret = TRUE; 1671 } else { 1672 ret = FALSE; 1673 } 1674 break; 1675 1676 default: 1677 ret = B_FALSE; 1678 } 1679 1680 1681 if (ret) { 1682 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1683 if (cb.cb_zhp) 1684 zpool_close(cb.cb_zhp); 1685 nvlist_free(config); 1686 return (-1); 1687 } 1688 *state = (pool_state_t)stateval; 1689 } 1690 1691 if (cb.cb_zhp) 1692 zpool_close(cb.cb_zhp); 1693 1694 nvlist_free(config); 1695 *inuse = ret; 1696 return (0); 1697 } 1698