1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Pool import support functions. 30 * 31 * To import a pool, we rely on reading the configuration information from the 32 * ZFS label of each device. If we successfully read the label, then we 33 * organize the configuration information in the following hierarchy: 34 * 35 * pool guid -> toplevel vdev guid -> label txg 36 * 37 * Duplicate entries matching this same tuple will be discarded. Once we have 38 * examined every device, we pick the best label txg config for each toplevel 39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 40 * update any paths that have changed. Finally, we attempt to import the pool 41 * using our derived config, and record the results. 42 */ 43 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <sys/stat.h> 51 #include <unistd.h> 52 #include <fcntl.h> 53 54 #include <sys/vdev_impl.h> 55 56 #include "libzfs.h" 57 #include "libzfs_impl.h" 58 59 /* 60 * Intermediate structures used to gather configuration information. 61 */ 62 typedef struct config_entry { 63 uint64_t ce_txg; 64 nvlist_t *ce_config; 65 struct config_entry *ce_next; 66 } config_entry_t; 67 68 typedef struct vdev_entry { 69 uint64_t ve_guid; 70 config_entry_t *ve_configs; 71 struct vdev_entry *ve_next; 72 } vdev_entry_t; 73 74 typedef struct pool_entry { 75 uint64_t pe_guid; 76 vdev_entry_t *pe_vdevs; 77 struct pool_entry *pe_next; 78 } pool_entry_t; 79 80 typedef struct name_entry { 81 char *ne_name; 82 uint64_t ne_guid; 83 struct name_entry *ne_next; 84 } name_entry_t; 85 86 typedef struct pool_list { 87 pool_entry_t *pools; 88 name_entry_t *names; 89 } pool_list_t; 90 91 static char * 92 get_devid(const char *path) 93 { 94 int fd; 95 ddi_devid_t devid; 96 char *minor, *ret; 97 98 if ((fd = open(path, O_RDONLY)) < 0) 99 return (NULL); 100 101 minor = NULL; 102 ret = NULL; 103 if (devid_get(fd, &devid) == 0) { 104 if (devid_get_minor_name(fd, &minor) == 0) 105 ret = devid_str_encode(devid, minor); 106 if (minor != NULL) 107 devid_str_free(minor); 108 devid_free(devid); 109 } 110 (void) close(fd); 111 112 return (ret); 113 } 114 115 116 /* 117 * Go through and fix up any path and/or devid information for the given vdev 118 * configuration. 119 */ 120 static int 121 fix_paths(nvlist_t *nv, name_entry_t *names) 122 { 123 nvlist_t **child; 124 uint_t c, children; 125 uint64_t guid; 126 name_entry_t *ne, *best; 127 char *path, *devid; 128 int matched; 129 130 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 131 &child, &children) == 0) { 132 for (c = 0; c < children; c++) 133 if (fix_paths(child[c], names) != 0) 134 return (-1); 135 return (0); 136 } 137 138 /* 139 * This is a leaf (file or disk) vdev. In either case, go through 140 * the name list and see if we find a matching guid. If so, replace 141 * the path and see if we can calculate a new devid. 142 * 143 * There may be multiple names associated with a particular guid, in 144 * which case we have overlapping slices or multiple paths to the same 145 * disk. If this is the case, then we want to pick the path that is 146 * the most similar to the original, where "most similar" is the number 147 * of matching characters starting from the end of the path. This will 148 * preserve slice numbers even if the disks have been reorganized, and 149 * will also catch preferred disk names if multiple paths exist. 150 */ 151 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 152 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 153 path = NULL; 154 155 matched = 0; 156 best = NULL; 157 for (ne = names; ne != NULL; ne = ne->ne_next) { 158 if (ne->ne_guid == guid) { 159 const char *src, *dst; 160 int count; 161 162 if (path == NULL) { 163 best = ne; 164 break; 165 } 166 167 src = ne->ne_name + strlen(ne->ne_name) - 1; 168 dst = path + strlen(path) - 1; 169 for (count = 0; src >= ne->ne_name && dst >= path; 170 src--, dst--, count++) 171 if (*src != *dst) 172 break; 173 174 /* 175 * At this point, 'count' is the number of characters 176 * matched from the end. 177 */ 178 if (count > matched || best == NULL) { 179 best = ne; 180 matched = count; 181 } 182 } 183 } 184 185 if (best == NULL) 186 return (0); 187 188 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 189 return (-1); 190 191 if ((devid = get_devid(best->ne_name)) == NULL) { 192 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 193 } else { 194 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 195 return (-1); 196 devid_str_free(devid); 197 } 198 199 return (0); 200 } 201 202 /* 203 * Add the given configuration to the list of known devices. 204 */ 205 static int 206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 207 nvlist_t *config) 208 { 209 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 210 pool_entry_t *pe; 211 vdev_entry_t *ve; 212 config_entry_t *ce; 213 name_entry_t *ne; 214 215 /* 216 * If this is a hot spare not currently in use, add it to the list of 217 * names to translate, but don't do anything else. 218 */ 219 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 220 &state) == 0 && state == POOL_STATE_SPARE && 221 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 222 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 223 return (-1); 224 225 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 226 free(ne); 227 return (-1); 228 } 229 ne->ne_guid = vdev_guid; 230 ne->ne_next = pl->names; 231 pl->names = ne; 232 return (0); 233 } 234 235 /* 236 * If we have a valid config but cannot read any of these fields, then 237 * it means we have a half-initialized label. In vdev_label_init() 238 * we write a label with txg == 0 so that we can identify the device 239 * in case the user refers to the same disk later on. If we fail to 240 * create the pool, we'll be left with a label in this state 241 * which should not be considered part of a valid pool. 242 */ 243 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 244 &pool_guid) != 0 || 245 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 246 &vdev_guid) != 0 || 247 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 248 &top_guid) != 0 || 249 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 250 &txg) != 0 || txg == 0) { 251 nvlist_free(config); 252 return (0); 253 } 254 255 /* 256 * First, see if we know about this pool. If not, then add it to the 257 * list of known pools. 258 */ 259 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 260 if (pe->pe_guid == pool_guid) 261 break; 262 } 263 264 if (pe == NULL) { 265 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 266 nvlist_free(config); 267 return (-1); 268 } 269 pe->pe_guid = pool_guid; 270 pe->pe_next = pl->pools; 271 pl->pools = pe; 272 } 273 274 /* 275 * Second, see if we know about this toplevel vdev. Add it if its 276 * missing. 277 */ 278 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 279 if (ve->ve_guid == top_guid) 280 break; 281 } 282 283 if (ve == NULL) { 284 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 285 nvlist_free(config); 286 return (-1); 287 } 288 ve->ve_guid = top_guid; 289 ve->ve_next = pe->pe_vdevs; 290 pe->pe_vdevs = ve; 291 } 292 293 /* 294 * Third, see if we have a config with a matching transaction group. If 295 * so, then we do nothing. Otherwise, add it to the list of known 296 * configs. 297 */ 298 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 299 if (ce->ce_txg == txg) 300 break; 301 } 302 303 if (ce == NULL) { 304 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 305 nvlist_free(config); 306 return (-1); 307 } 308 ce->ce_txg = txg; 309 ce->ce_config = config; 310 ce->ce_next = ve->ve_configs; 311 ve->ve_configs = ce; 312 } else { 313 nvlist_free(config); 314 } 315 316 /* 317 * At this point we've successfully added our config to the list of 318 * known configs. The last thing to do is add the vdev guid -> path 319 * mappings so that we can fix up the configuration as necessary before 320 * doing the import. 321 */ 322 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 323 return (-1); 324 325 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 326 free(ne); 327 return (-1); 328 } 329 330 ne->ne_guid = vdev_guid; 331 ne->ne_next = pl->names; 332 pl->names = ne; 333 334 return (0); 335 } 336 337 /* 338 * Returns true if the named pool matches the given GUID. 339 */ 340 static boolean_t 341 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid) 342 { 343 zpool_handle_t *zhp; 344 uint64_t theguid; 345 346 if ((zhp = zpool_open_silent(hdl, name)) == NULL) 347 return (B_FALSE); 348 349 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 350 &theguid) == 0); 351 352 zpool_close(zhp); 353 354 return (theguid == guid); 355 } 356 357 /* 358 * Convert our list of pools into the definitive set of configurations. We 359 * start by picking the best config for each toplevel vdev. Once that's done, 360 * we assemble the toplevel vdevs into a full config for the pool. We make a 361 * pass to fix up any incorrect paths, and then add it to the main list to 362 * return to the user. 363 */ 364 static nvlist_t * 365 get_configs(libzfs_handle_t *hdl, pool_list_t *pl) 366 { 367 pool_entry_t *pe; 368 vdev_entry_t *ve; 369 config_entry_t *ce; 370 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 371 nvlist_t **spares; 372 uint_t i, nspares; 373 boolean_t config_seen; 374 uint64_t best_txg; 375 char *name; 376 zfs_cmd_t zc = { 0 }; 377 uint64_t version, guid; 378 char *packed; 379 size_t len; 380 int err; 381 uint_t children = 0; 382 nvlist_t **child = NULL; 383 uint_t c; 384 385 if (nvlist_alloc(&ret, 0, 0) != 0) 386 goto nomem; 387 388 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 389 uint64_t id; 390 391 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 392 goto nomem; 393 config_seen = B_FALSE; 394 395 /* 396 * Iterate over all toplevel vdevs. Grab the pool configuration 397 * from the first one we find, and then go through the rest and 398 * add them as necessary to the 'vdevs' member of the config. 399 */ 400 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 401 402 /* 403 * Determine the best configuration for this vdev by 404 * selecting the config with the latest transaction 405 * group. 406 */ 407 best_txg = 0; 408 for (ce = ve->ve_configs; ce != NULL; 409 ce = ce->ce_next) { 410 411 if (ce->ce_txg > best_txg) { 412 tmp = ce->ce_config; 413 best_txg = ce->ce_txg; 414 } 415 } 416 417 if (!config_seen) { 418 /* 419 * Copy the relevant pieces of data to the pool 420 * configuration: 421 * 422 * version 423 * pool guid 424 * name 425 * pool state 426 */ 427 uint64_t state; 428 429 verify(nvlist_lookup_uint64(tmp, 430 ZPOOL_CONFIG_VERSION, &version) == 0); 431 if (nvlist_add_uint64(config, 432 ZPOOL_CONFIG_VERSION, version) != 0) 433 goto nomem; 434 verify(nvlist_lookup_uint64(tmp, 435 ZPOOL_CONFIG_POOL_GUID, &guid) == 0); 436 if (nvlist_add_uint64(config, 437 ZPOOL_CONFIG_POOL_GUID, guid) != 0) 438 goto nomem; 439 verify(nvlist_lookup_string(tmp, 440 ZPOOL_CONFIG_POOL_NAME, &name) == 0); 441 if (nvlist_add_string(config, 442 ZPOOL_CONFIG_POOL_NAME, name) != 0) 443 goto nomem; 444 verify(nvlist_lookup_uint64(tmp, 445 ZPOOL_CONFIG_POOL_STATE, &state) == 0); 446 if (nvlist_add_uint64(config, 447 ZPOOL_CONFIG_POOL_STATE, state) != 0) 448 goto nomem; 449 450 config_seen = B_TRUE; 451 } 452 453 /* 454 * Add this top-level vdev to the child array. 455 */ 456 verify(nvlist_lookup_nvlist(tmp, 457 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 458 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 459 &id) == 0); 460 if (id >= children) { 461 nvlist_t **newchild; 462 463 newchild = zfs_alloc(hdl, (id + 1) * 464 sizeof (nvlist_t *)); 465 if (newchild == NULL) 466 goto nomem; 467 468 for (c = 0; c < children; c++) 469 newchild[c] = child[c]; 470 471 free(child); 472 child = newchild; 473 children = id + 1; 474 } 475 if (nvlist_dup(nvtop, &child[id], 0) != 0) 476 goto nomem; 477 478 } 479 480 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 481 &guid) == 0); 482 483 /* 484 * Look for any missing top-level vdevs. If this is the case, 485 * create a faked up 'missing' vdev as a placeholder. We cannot 486 * simply compress the child array, because the kernel performs 487 * certain checks to make sure the vdev IDs match their location 488 * in the configuration. 489 */ 490 for (c = 0; c < children; c++) 491 if (child[c] == NULL) { 492 nvlist_t *missing; 493 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 494 0) != 0) 495 goto nomem; 496 if (nvlist_add_string(missing, 497 ZPOOL_CONFIG_TYPE, 498 VDEV_TYPE_MISSING) != 0 || 499 nvlist_add_uint64(missing, 500 ZPOOL_CONFIG_ID, c) != 0 || 501 nvlist_add_uint64(missing, 502 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 503 nvlist_free(missing); 504 goto nomem; 505 } 506 child[c] = missing; 507 } 508 509 /* 510 * Put all of this pool's top-level vdevs into a root vdev. 511 */ 512 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 513 goto nomem; 514 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 515 VDEV_TYPE_ROOT) != 0 || 516 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 517 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 518 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 519 child, children) != 0) { 520 nvlist_free(nvroot); 521 goto nomem; 522 } 523 524 for (c = 0; c < children; c++) 525 nvlist_free(child[c]); 526 free(child); 527 children = 0; 528 child = NULL; 529 530 /* 531 * Go through and fix up any paths and/or devids based on our 532 * known list of vdev GUID -> path mappings. 533 */ 534 if (fix_paths(nvroot, pl->names) != 0) { 535 nvlist_free(nvroot); 536 goto nomem; 537 } 538 539 /* 540 * Add the root vdev to this pool's configuration. 541 */ 542 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 543 nvroot) != 0) { 544 nvlist_free(nvroot); 545 goto nomem; 546 } 547 nvlist_free(nvroot); 548 549 /* 550 * Determine if this pool is currently active, in which case we 551 * can't actually import it. 552 */ 553 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 554 &name) == 0); 555 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 556 &guid) == 0); 557 558 if (pool_active(hdl, name, guid)) { 559 nvlist_free(config); 560 config = NULL; 561 continue; 562 } 563 564 /* 565 * Try to do the import in order to get vdev state. 566 */ 567 if ((err = nvlist_size(config, &len, NV_ENCODE_NATIVE)) != 0) 568 goto nomem; 569 570 if ((packed = zfs_alloc(hdl, len)) == NULL) 571 goto nomem; 572 573 if ((err = nvlist_pack(config, &packed, &len, 574 NV_ENCODE_NATIVE, 0)) != 0) 575 goto nomem; 576 577 nvlist_free(config); 578 config = NULL; 579 580 zc.zc_config_src_size = len; 581 zc.zc_config_src = (uint64_t)(uintptr_t)packed; 582 583 zc.zc_config_dst_size = 2 * len; 584 if ((zc.zc_config_dst = (uint64_t)(uintptr_t) 585 zfs_alloc(hdl, zc.zc_config_dst_size)) == NULL) 586 goto nomem; 587 588 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 589 &zc)) != 0 && errno == ENOMEM) { 590 free((void *)(uintptr_t)zc.zc_config_dst); 591 if ((zc.zc_config_dst = (uint64_t)(uintptr_t) 592 zfs_alloc(hdl, zc.zc_config_dst_size)) == NULL) 593 goto nomem; 594 } 595 596 free(packed); 597 598 if (err) { 599 (void) zpool_standard_error(hdl, errno, 600 dgettext(TEXT_DOMAIN, "cannot discover pools")); 601 free((void *)(uintptr_t)zc.zc_config_dst); 602 goto error; 603 } 604 605 if (nvlist_unpack((void *)(uintptr_t)zc.zc_config_dst, 606 zc.zc_config_dst_size, &config, 0) != 0) { 607 free((void *)(uintptr_t)zc.zc_config_dst); 608 goto nomem; 609 } 610 free((void *)(uintptr_t)zc.zc_config_dst); 611 612 /* 613 * Go through and update the paths for spares, now that we have 614 * them. 615 */ 616 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 617 &nvroot) == 0); 618 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 619 &spares, &nspares) == 0) { 620 for (i = 0; i < nspares; i++) { 621 if (fix_paths(spares[i], pl->names) != 0) 622 goto nomem; 623 } 624 } 625 626 if (set_pool_health(config) != 0) 627 goto nomem; 628 629 /* 630 * Add this pool to the list of configs. 631 */ 632 if (nvlist_add_nvlist(ret, name, config) != 0) 633 goto nomem; 634 635 nvlist_free(config); 636 config = NULL; 637 } 638 639 return (ret); 640 641 nomem: 642 (void) no_memory(hdl); 643 error: 644 if (config) 645 nvlist_free(config); 646 if (ret) 647 nvlist_free(ret); 648 for (c = 0; c < children; c++) 649 nvlist_free(child[c]); 650 if (child) 651 free(child); 652 653 return (NULL); 654 } 655 656 /* 657 * Return the offset of the given label. 658 */ 659 static uint64_t 660 label_offset(size_t size, int l) 661 { 662 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 663 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 664 } 665 666 /* 667 * Given a file descriptor, read the label information and return an nvlist 668 * describing the configuration, if there is one. 669 */ 670 int 671 zpool_read_label(int fd, nvlist_t **config) 672 { 673 struct stat64 statbuf; 674 int l; 675 vdev_label_t *label; 676 uint64_t state, txg; 677 678 *config = NULL; 679 680 if (fstat64(fd, &statbuf) == -1) 681 return (0); 682 683 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 684 return (-1); 685 686 for (l = 0; l < VDEV_LABELS; l++) { 687 if (pread(fd, label, sizeof (vdev_label_t), 688 label_offset(statbuf.st_size, l)) != sizeof (vdev_label_t)) 689 continue; 690 691 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 692 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 693 continue; 694 695 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 696 &state) != 0 || state > POOL_STATE_SPARE) { 697 nvlist_free(*config); 698 continue; 699 } 700 701 if (state != POOL_STATE_SPARE && 702 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 703 &txg) != 0 || txg == 0)) { 704 nvlist_free(*config); 705 continue; 706 } 707 708 free(label); 709 return (0); 710 } 711 712 free(label); 713 *config = NULL; 714 return (0); 715 } 716 717 /* 718 * Given a list of directories to search, find all pools stored on disk. This 719 * includes partial pools which are not available to import. If no args are 720 * given (argc is 0), then the default directory (/dev/dsk) is searched. 721 */ 722 nvlist_t * 723 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 724 { 725 int i; 726 DIR *dirp; 727 struct dirent64 *dp; 728 char path[MAXPATHLEN]; 729 struct stat64 statbuf; 730 nvlist_t *ret = NULL, *config; 731 static char *default_dir = "/dev/dsk"; 732 int fd; 733 pool_list_t pools = { 0 }; 734 pool_entry_t *pe, *penext; 735 vdev_entry_t *ve, *venext; 736 config_entry_t *ce, *cenext; 737 name_entry_t *ne, *nenext; 738 739 740 if (argc == 0) { 741 argc = 1; 742 argv = &default_dir; 743 } 744 745 /* 746 * Go through and read the label configuration information from every 747 * possible device, organizing the information according to pool GUID 748 * and toplevel GUID. 749 */ 750 for (i = 0; i < argc; i++) { 751 if (argv[i][0] != '/') { 752 (void) zfs_error(hdl, EZFS_BADPATH, 753 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 754 argv[i]); 755 goto error; 756 } 757 758 if ((dirp = opendir(argv[i])) == NULL) { 759 zfs_error_aux(hdl, strerror(errno)); 760 (void) zfs_error(hdl, EZFS_BADPATH, 761 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 762 argv[i]); 763 goto error; 764 } 765 766 /* 767 * This is not MT-safe, but we have no MT consumers of libzfs 768 */ 769 while ((dp = readdir64(dirp)) != NULL) { 770 771 (void) snprintf(path, sizeof (path), "%s/%s", 772 argv[i], dp->d_name); 773 774 if (stat64(path, &statbuf) != 0) 775 continue; 776 777 /* 778 * Ignore directories (which includes "." and ".."). 779 */ 780 if (S_ISDIR(statbuf.st_mode)) 781 continue; 782 783 if ((fd = open64(path, O_RDONLY)) < 0) 784 continue; 785 786 if ((zpool_read_label(fd, &config)) != 0) { 787 (void) no_memory(hdl); 788 goto error; 789 } 790 791 (void) close(fd); 792 793 if (config != NULL) 794 if (add_config(hdl, &pools, path, config) != 0) 795 goto error; 796 } 797 } 798 799 ret = get_configs(hdl, &pools); 800 801 error: 802 for (pe = pools.pools; pe != NULL; pe = penext) { 803 penext = pe->pe_next; 804 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 805 venext = ve->ve_next; 806 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 807 cenext = ce->ce_next; 808 if (ce->ce_config) 809 nvlist_free(ce->ce_config); 810 free(ce); 811 } 812 free(ve); 813 } 814 free(pe); 815 } 816 817 for (ne = pools.names; ne != NULL; ne = nenext) { 818 nenext = ne->ne_next; 819 if (ne->ne_name) 820 free(ne->ne_name); 821 free(ne); 822 } 823 824 825 return (ret); 826 } 827 828 boolean_t 829 find_guid(nvlist_t *nv, uint64_t guid) 830 { 831 uint64_t tmp; 832 nvlist_t **child; 833 uint_t c, children; 834 835 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 836 if (tmp == guid) 837 return (B_TRUE); 838 839 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 840 &child, &children) == 0) { 841 for (c = 0; c < children; c++) 842 if (find_guid(child[c], guid)) 843 return (B_TRUE); 844 } 845 846 return (B_FALSE); 847 } 848 849 typedef struct spare_cbdata { 850 uint64_t cb_guid; 851 zpool_handle_t *cb_zhp; 852 } spare_cbdata_t; 853 854 static int 855 find_spare(zpool_handle_t *zhp, void *data) 856 { 857 spare_cbdata_t *cbp = data; 858 nvlist_t **spares; 859 uint_t i, nspares; 860 uint64_t guid; 861 nvlist_t *nvroot; 862 863 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 864 &nvroot) == 0); 865 866 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 867 &spares, &nspares) == 0) { 868 for (i = 0; i < nspares; i++) { 869 verify(nvlist_lookup_uint64(spares[i], 870 ZPOOL_CONFIG_GUID, &guid) == 0); 871 if (guid == cbp->cb_guid) { 872 cbp->cb_zhp = zhp; 873 return (1); 874 } 875 } 876 } 877 878 zpool_close(zhp); 879 return (0); 880 } 881 882 /* 883 * Determines if the pool is in use. If so, it returns true and the state of 884 * the pool as well as the name of the pool. Both strings are allocated and 885 * must be freed by the caller. 886 */ 887 int 888 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 889 boolean_t *inuse) 890 { 891 nvlist_t *config; 892 char *name; 893 boolean_t ret; 894 uint64_t guid, vdev_guid; 895 zpool_handle_t *zhp; 896 nvlist_t *pool_config; 897 uint64_t stateval; 898 spare_cbdata_t cb = { 0 }; 899 900 *inuse = B_FALSE; 901 902 if (zpool_read_label(fd, &config) != 0) { 903 (void) no_memory(hdl); 904 return (-1); 905 } 906 907 if (config == NULL) 908 return (0); 909 910 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 911 &stateval) == 0); 912 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 913 &vdev_guid) == 0); 914 915 if (stateval != POOL_STATE_SPARE) { 916 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 917 &name) == 0); 918 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 919 &guid) == 0); 920 } 921 922 switch (stateval) { 923 case POOL_STATE_EXPORTED: 924 ret = B_TRUE; 925 break; 926 927 case POOL_STATE_ACTIVE: 928 /* 929 * For an active pool, we have to determine if it's really part 930 * of a currently active pool (in which case the pool will exist 931 * and the guid will be the same), or whether it's part of an 932 * active pool that was disconnected without being explicitly 933 * exported. 934 */ 935 if (pool_active(hdl, name, guid)) { 936 /* 937 * Because the device may have been removed while 938 * offlined, we only report it as active if the vdev is 939 * still present in the config. Otherwise, pretend like 940 * it's not in use. 941 */ 942 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 943 (pool_config = zpool_get_config(zhp, NULL)) 944 != NULL) { 945 nvlist_t *nvroot; 946 947 verify(nvlist_lookup_nvlist(pool_config, 948 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 949 ret = find_guid(nvroot, vdev_guid); 950 } else { 951 ret = B_FALSE; 952 } 953 954 if (zhp != NULL) 955 zpool_close(zhp); 956 } else { 957 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 958 ret = B_TRUE; 959 } 960 break; 961 962 case POOL_STATE_SPARE: 963 /* 964 * For a hot spare, it can be either definitively in use, or 965 * potentially active. To determine if it's in use, we iterate 966 * over all pools in the system and search for one with a spare 967 * with a matching guid. 968 * 969 * Due to the shared nature of spares, we don't actually report 970 * the potentially active case as in use. This means the user 971 * can freely create pools on the hot spares of exported pools, 972 * but to do otherwise makes the resulting code complicated, and 973 * we end up having to deal with this case anyway. 974 */ 975 cb.cb_zhp = NULL; 976 cb.cb_guid = vdev_guid; 977 if (zpool_iter(hdl, find_spare, &cb) == 1) { 978 name = (char *)zpool_get_name(cb.cb_zhp); 979 ret = TRUE; 980 } else { 981 ret = FALSE; 982 } 983 break; 984 985 default: 986 ret = B_FALSE; 987 } 988 989 990 if (ret) { 991 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 992 nvlist_free(config); 993 return (-1); 994 } 995 *state = (pool_state_t)stateval; 996 } 997 998 if (cb.cb_zhp) 999 zpool_close(cb.cb_zhp); 1000 1001 nvlist_free(config); 1002 *inuse = ret; 1003 return (0); 1004 } 1005