xref: /titanic_44/usr/src/lib/libproc/common/Psymtab.c (revision 2b4a78020b9c38d1b95e2f3fefa6d6e4be382d1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <assert.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <stddef.h>
31 #include <unistd.h>
32 #include <ctype.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <strings.h>
36 #include <memory.h>
37 #include <errno.h>
38 #include <dirent.h>
39 #include <signal.h>
40 #include <limits.h>
41 #include <libgen.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 #include <sys/systeminfo.h>
45 #include <sys/sysmacros.h>
46 
47 #include "libproc.h"
48 #include "Pcontrol.h"
49 #include "Putil.h"
50 #include "Psymtab_machelf.h"
51 
52 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
53 static map_info_t *exec_map(struct ps_prochandle *);
54 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
55 static map_info_t *object_name_to_map(struct ps_prochandle *,
56 	Lmid_t, const char *);
57 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
58 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
59     uintptr_t);
60 #ifdef _LP64
61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
62     uintptr_t);
63 #endif
64 
65 #define	DATA_TYPES	\
66 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
67 	(1 << STT_COMMON) | (1 << STT_TLS))
68 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
69 
70 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
71 
72 typedef enum {
73 	PRO_NATURAL,
74 	PRO_BYADDR,
75 	PRO_BYNAME
76 } pr_order_t;
77 
78 static int
79 addr_cmp(const void *aa, const void *bb)
80 {
81 	uintptr_t a = *((uintptr_t *)aa);
82 	uintptr_t b = *((uintptr_t *)bb);
83 
84 	if (a > b)
85 		return (1);
86 	if (a < b)
87 		return (-1);
88 	return (0);
89 }
90 
91 /*
92  * This function creates a list of addresses for a load object's sections.
93  * The list is in ascending address order and alternates start address
94  * then end address for each section we're interested in. The function
95  * returns a pointer to the list, which must be freed by the caller.
96  */
97 static uintptr_t *
98 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
99 {
100 	uintptr_t a, addr, *addrs, last = 0;
101 	uint_t i, naddrs = 0, unordered = 0;
102 
103 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
104 		Elf32_Ehdr ehdr;
105 		Elf32_Phdr phdr;
106 		uint_t phnum;
107 
108 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
109 			return (NULL);
110 
111 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
112 		a = ehdr_start + ehdr.e_phoff;
113 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
114 			if (Pread(P, &phdr, sizeof (phdr), a) !=
115 			    sizeof (phdr)) {
116 				free(addrs);
117 				return (NULL);
118 			}
119 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
120 				continue;
121 
122 			addr = phdr.p_vaddr;
123 			if (ehdr.e_type == ET_DYN)
124 				addr += ehdr_start;
125 			if (last > addr)
126 				unordered = 1;
127 			addrs[naddrs++] = addr;
128 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
129 		}
130 #ifdef _LP64
131 	} else {
132 		Elf64_Ehdr ehdr;
133 		Elf64_Phdr phdr;
134 		uint_t phnum;
135 
136 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
137 			return (NULL);
138 
139 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
140 		a = ehdr_start + ehdr.e_phoff;
141 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
142 			if (Pread(P, &phdr, sizeof (phdr), a) !=
143 			    sizeof (phdr)) {
144 				free(addrs);
145 				return (NULL);
146 			}
147 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
148 				continue;
149 
150 			addr = phdr.p_vaddr;
151 			if (ehdr.e_type == ET_DYN)
152 				addr += ehdr_start;
153 			if (last > addr)
154 				unordered = 1;
155 			addrs[naddrs++] = addr;
156 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
157 		}
158 #endif
159 	}
160 
161 	if (unordered)
162 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
163 
164 	*n = naddrs;
165 	return (addrs);
166 }
167 
168 /*
169  * Allocation function for a new file_info_t
170  */
171 file_info_t *
172 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
173 {
174 	file_info_t *fptr;
175 	map_info_t *mp;
176 	uintptr_t mstart, mend, sstart, send;
177 	uint_t i;
178 
179 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
180 		return (NULL);
181 
182 	list_link(fptr, &P->file_head);
183 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
184 	mptr->map_file = fptr;
185 	fptr->file_ref = 1;
186 	fptr->file_fd = -1;
187 	P->num_files++;
188 
189 	/*
190 	 * To figure out which map_info_t instances correspond to the mappings
191 	 * for this load object we try to obtain the start and end address
192 	 * for each section of our in-memory ELF image. If successful, we
193 	 * walk down the list of addresses and the list of map_info_t
194 	 * instances in lock step to correctly find the mappings that
195 	 * correspond to this load object.
196 	 */
197 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
198 	    &fptr->file_nsaddrs)) == NULL)
199 		return (fptr);
200 
201 	mp = P->mappings;
202 	i = 0;
203 	while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
204 
205 		/* Calculate the start and end of the mapping and section */
206 		mstart = mp->map_pmap.pr_vaddr;
207 		mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
208 		sstart = fptr->file_saddrs[i];
209 		send = fptr->file_saddrs[i + 1];
210 
211 		if (mend <= sstart) {
212 			/* This mapping is below the current section */
213 			mp++;
214 		} else if (mstart >= send) {
215 			/* This mapping is above the current section */
216 			i += 2;
217 		} else {
218 			/* This mapping overlaps the current section */
219 			if (mp->map_file == NULL) {
220 				dprintf("file_info_new: associating "
221 				    "segment at %p\n",
222 				    (void *)mp->map_pmap.pr_vaddr);
223 				mp->map_file = fptr;
224 				fptr->file_ref++;
225 			} else {
226 				dprintf("file_info_new: segment at %p "
227 				    "already associated with %s\n",
228 				    (void *)mp->map_pmap.pr_vaddr,
229 				    (mp == mptr ? "this file" :
230 				    mp->map_file->file_pname));
231 			}
232 			mp++;
233 		}
234 	}
235 
236 	return (fptr);
237 }
238 
239 /*
240  * Deallocation function for a file_info_t
241  */
242 static void
243 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
244 {
245 	if (--fptr->file_ref == 0) {
246 		list_unlink(fptr);
247 		if (fptr->file_symtab.sym_elf) {
248 			(void) elf_end(fptr->file_symtab.sym_elf);
249 			free(fptr->file_symtab.sym_elfmem);
250 		}
251 		if (fptr->file_symtab.sym_byname)
252 			free(fptr->file_symtab.sym_byname);
253 		if (fptr->file_symtab.sym_byaddr)
254 			free(fptr->file_symtab.sym_byaddr);
255 
256 		if (fptr->file_dynsym.sym_elf) {
257 			(void) elf_end(fptr->file_dynsym.sym_elf);
258 			free(fptr->file_dynsym.sym_elfmem);
259 		}
260 		if (fptr->file_dynsym.sym_byname)
261 			free(fptr->file_dynsym.sym_byname);
262 		if (fptr->file_dynsym.sym_byaddr)
263 			free(fptr->file_dynsym.sym_byaddr);
264 
265 		if (fptr->file_lo)
266 			free(fptr->file_lo);
267 		if (fptr->file_lname)
268 			free(fptr->file_lname);
269 		if (fptr->file_rname)
270 			free(fptr->file_rname);
271 		if (fptr->file_elf)
272 			(void) elf_end(fptr->file_elf);
273 		if (fptr->file_elfmem != NULL)
274 			free(fptr->file_elfmem);
275 		if (fptr->file_fd >= 0)
276 			(void) close(fptr->file_fd);
277 		if (fptr->file_ctfp) {
278 			ctf_close(fptr->file_ctfp);
279 			free(fptr->file_ctf_buf);
280 		}
281 		if (fptr->file_saddrs)
282 			free(fptr->file_saddrs);
283 		free(fptr);
284 		P->num_files--;
285 	}
286 }
287 
288 /*
289  * Deallocation function for a map_info_t
290  */
291 static void
292 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
293 {
294 	file_info_t *fptr;
295 
296 	if ((fptr = mptr->map_file) != NULL) {
297 		if (fptr->file_map == mptr)
298 			fptr->file_map = NULL;
299 		file_info_free(P, fptr);
300 	}
301 	if (P->execname && mptr == P->map_exec) {
302 		free(P->execname);
303 		P->execname = NULL;
304 	}
305 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
306 		free(P->auxv);
307 		P->auxv = NULL;
308 		P->nauxv = 0;
309 	}
310 	if (mptr == P->map_exec)
311 		P->map_exec = NULL;
312 	if (mptr == P->map_ldso)
313 		P->map_ldso = NULL;
314 }
315 
316 /*
317  * Call-back function for librtld_db to iterate through all of its shared
318  * libraries.  We use this to get the load object names for the mappings.
319  */
320 static int
321 map_iter(const rd_loadobj_t *lop, void *cd)
322 {
323 	char buf[PATH_MAX];
324 	struct ps_prochandle *P = cd;
325 	map_info_t *mptr;
326 	file_info_t *fptr;
327 
328 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
329 
330 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
331 		dprintf("map_iter: base address doesn't match any mapping\n");
332 		return (1); /* Base address does not match any mapping */
333 	}
334 
335 	if ((fptr = mptr->map_file) == NULL &&
336 	    (fptr = file_info_new(P, mptr)) == NULL) {
337 		dprintf("map_iter: failed to allocate a new file_info_t\n");
338 		return (1); /* Failed to allocate a new file_info_t */
339 	}
340 
341 	if ((fptr->file_lo == NULL) &&
342 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
343 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
344 		file_info_free(P, fptr);
345 		return (1); /* Failed to allocate rd_loadobj_t */
346 	}
347 
348 	fptr->file_map = mptr;
349 	*fptr->file_lo = *lop;
350 
351 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
352 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
353 
354 	if (fptr->file_lname) {
355 		free(fptr->file_lname);
356 		fptr->file_lname = NULL;
357 		fptr->file_lbase = NULL;
358 	}
359 	if (fptr->file_rname) {
360 		free(fptr->file_rname);
361 		fptr->file_rname = NULL;
362 		fptr->file_rbase = NULL;
363 	}
364 
365 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
366 		if ((fptr->file_lname = strdup(buf)) != NULL)
367 			fptr->file_lbase = basename(fptr->file_lname);
368 	} else {
369 		dprintf("map_iter: failed to read string at %p\n",
370 		    (void *)lop->rl_nameaddr);
371 	}
372 
373 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
374 	    ((fptr->file_rname = strdup(buf)) != NULL))
375 		fptr->file_rbase = basename(fptr->file_rname);
376 
377 	dprintf("loaded rd object %s lmid %lx\n",
378 	    fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
379 	return (1);
380 }
381 
382 static void
383 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
384 {
385 	file_info_t *fptr;
386 	char buf[PATH_MAX];
387 
388 	if ((fptr = mptr->map_file) == NULL &&
389 	    (fptr = file_info_new(P, mptr)) == NULL)
390 		return; /* Failed to allocate a new file_info_t */
391 
392 	fptr->file_map = mptr;
393 
394 	if ((fptr->file_lo == NULL) &&
395 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
396 		file_info_free(P, fptr);
397 		return; /* Failed to allocate rd_loadobj_t */
398 	}
399 
400 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
401 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
402 	fptr->file_lo->rl_bend =
403 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
404 
405 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
406 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
407 
408 	if ((fptr->file_lname == NULL) &&
409 	    (fptr->file_lname = strdup(lname)) != NULL)
410 		fptr->file_lbase = basename(fptr->file_lname);
411 
412 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
413 	    ((fptr->file_rname = strdup(buf)) != NULL))
414 		fptr->file_rbase = basename(fptr->file_rname);
415 }
416 
417 static void
418 load_static_maps(struct ps_prochandle *P)
419 {
420 	map_info_t *mptr;
421 
422 	/*
423 	 * Construct the map for the a.out.
424 	 */
425 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
426 		map_set(P, mptr, "a.out");
427 
428 	/*
429 	 * If the dynamic linker exists for this process,
430 	 * construct the map for it.
431 	 */
432 	if (Pgetauxval(P, AT_BASE) != -1L &&
433 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
434 		map_set(P, mptr, "ld.so.1");
435 }
436 
437 /*
438  * Go through all the address space mappings, validating or updating
439  * the information already gathered, or gathering new information.
440  *
441  * This function is only called when we suspect that the mappings have changed
442  * because this is the first time we're calling it or because of rtld activity.
443  */
444 void
445 Pupdate_maps(struct ps_prochandle *P)
446 {
447 	char mapfile[PATH_MAX];
448 	int mapfd;
449 	struct stat statb;
450 	prmap_t *Pmap = NULL;
451 	prmap_t *pmap;
452 	ssize_t nmap;
453 	int i;
454 	uint_t oldmapcount;
455 	map_info_t *newmap, *newp;
456 	map_info_t *mptr;
457 
458 	if (P->info_valid || P->state == PS_UNDEAD)
459 		return;
460 
461 	Preadauxvec(P);
462 
463 	(void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
464 	    procfs_path, (int)P->pid);
465 	if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
466 	    fstat(mapfd, &statb) != 0 ||
467 	    statb.st_size < sizeof (prmap_t) ||
468 	    (Pmap = malloc(statb.st_size)) == NULL ||
469 	    (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
470 	    (nmap /= sizeof (prmap_t)) == 0) {
471 		if (Pmap != NULL)
472 			free(Pmap);
473 		if (mapfd >= 0)
474 			(void) close(mapfd);
475 		Preset_maps(P);	/* utter failure; destroy tables */
476 		return;
477 	}
478 	(void) close(mapfd);
479 
480 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
481 		return;
482 
483 	/*
484 	 * We try to merge any file information we may have for existing
485 	 * mappings, to avoid having to rebuild the file info.
486 	 */
487 	mptr = P->mappings;
488 	pmap = Pmap;
489 	newp = newmap;
490 	oldmapcount = P->map_count;
491 	for (i = 0; i < nmap; i++, pmap++, newp++) {
492 
493 		if (oldmapcount == 0) {
494 			/*
495 			 * We've exhausted all the old mappings.  Every new
496 			 * mapping should be added.
497 			 */
498 			newp->map_pmap = *pmap;
499 
500 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
501 		    pmap->pr_size == mptr->map_pmap.pr_size &&
502 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
503 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
504 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
505 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
506 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
507 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
508 
509 			/*
510 			 * This mapping matches exactly.  Copy over the old
511 			 * mapping, taking care to get the latest flags.
512 			 * Make sure the associated file_info_t is updated
513 			 * appropriately.
514 			 */
515 			*newp = *mptr;
516 			if (P->map_exec == mptr)
517 				P->map_exec = newp;
518 			if (P->map_ldso == mptr)
519 				P->map_ldso = newp;
520 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
521 			if (mptr->map_file != NULL &&
522 			    mptr->map_file->file_map == mptr)
523 				mptr->map_file->file_map = newp;
524 			oldmapcount--;
525 			mptr++;
526 
527 		} else if (pmap->pr_vaddr + pmap->pr_size >
528 		    mptr->map_pmap.pr_vaddr) {
529 
530 			/*
531 			 * The old mapping doesn't exist any more, remove it
532 			 * from the list.
533 			 */
534 			map_info_free(P, mptr);
535 			oldmapcount--;
536 			i--;
537 			newp--;
538 			pmap--;
539 			mptr++;
540 
541 		} else {
542 
543 			/*
544 			 * This is a new mapping, add it directly.
545 			 */
546 			newp->map_pmap = *pmap;
547 		}
548 	}
549 
550 	/*
551 	 * Free any old maps
552 	 */
553 	while (oldmapcount) {
554 		map_info_free(P, mptr);
555 		oldmapcount--;
556 		mptr++;
557 	}
558 
559 	free(Pmap);
560 	if (P->mappings != NULL)
561 		free(P->mappings);
562 	P->mappings = newmap;
563 	P->map_count = P->map_alloc = nmap;
564 	P->info_valid = 1;
565 
566 	/*
567 	 * Consult librtld_db to get the load object
568 	 * names for all of the shared libraries.
569 	 */
570 	if (P->rap != NULL)
571 		(void) rd_loadobj_iter(P->rap, map_iter, P);
572 }
573 
574 /*
575  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
576  * forcibly cache all of the symbol tables associated with all object files.
577  */
578 void
579 Pupdate_syms(struct ps_prochandle *P)
580 {
581 	file_info_t *fptr;
582 	int i;
583 
584 	Pupdate_maps(P);
585 
586 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
587 	    i++, fptr = list_next(fptr)) {
588 		Pbuild_file_symtab(P, fptr);
589 		(void) Pbuild_file_ctf(P, fptr);
590 	}
591 }
592 
593 /*
594  * Return the librtld_db agent handle for the victim process.
595  * The handle will become invalid at the next successful exec() and the
596  * client (caller of proc_rd_agent()) must not use it beyond that point.
597  * If the process is already dead, we've already tried our best to
598  * create the agent during core file initialization.
599  */
600 rd_agent_t *
601 Prd_agent(struct ps_prochandle *P)
602 {
603 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
604 		Pupdate_maps(P);
605 		if (P->num_files == 0)
606 			load_static_maps(P);
607 		rd_log(_libproc_debug);
608 		if ((P->rap = rd_new(P)) != NULL)
609 			(void) rd_loadobj_iter(P->rap, map_iter, P);
610 	}
611 	return (P->rap);
612 }
613 
614 /*
615  * Return the prmap_t structure containing 'addr', but only if it
616  * is in the dynamic linker's link map and is the text section.
617  */
618 const prmap_t *
619 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
620 {
621 	map_info_t *mptr;
622 
623 	if (!P->info_valid)
624 		Pupdate_maps(P);
625 
626 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
627 		file_info_t *fptr = build_map_symtab(P, mptr);
628 		const prmap_t *pmp = &mptr->map_pmap;
629 
630 		/*
631 		 * Assume that if rl_data_base is NULL, it means that no
632 		 * data section was found for this load object, and that
633 		 * a section must be text. Otherwise, a section will be
634 		 * text unless it ends above the start of the data
635 		 * section.
636 		 */
637 		if (fptr != NULL && fptr->file_lo != NULL &&
638 		    (fptr->file_lo->rl_data_base == NULL ||
639 		    pmp->pr_vaddr + pmp->pr_size <
640 		    fptr->file_lo->rl_data_base))
641 			return (pmp);
642 	}
643 
644 	return (NULL);
645 }
646 
647 /*
648  * Return the prmap_t structure containing 'addr' (no restrictions on
649  * the type of mapping).
650  */
651 const prmap_t *
652 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
653 {
654 	map_info_t *mptr;
655 
656 	if (!P->info_valid)
657 		Pupdate_maps(P);
658 
659 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
660 		return (&mptr->map_pmap);
661 
662 	return (NULL);
663 }
664 
665 /*
666  * Convert a full or partial load object name to the prmap_t for its
667  * corresponding primary text mapping.
668  */
669 const prmap_t *
670 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
671 {
672 	map_info_t *mptr;
673 
674 	if (name == PR_OBJ_EVERY)
675 		return (NULL); /* A reasonable mistake */
676 
677 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
678 		return (&mptr->map_pmap);
679 
680 	return (NULL);
681 }
682 
683 const prmap_t *
684 Pname_to_map(struct ps_prochandle *P, const char *name)
685 {
686 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
687 }
688 
689 const rd_loadobj_t *
690 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
691 {
692 	map_info_t *mptr;
693 
694 	if (!P->info_valid)
695 		Pupdate_maps(P);
696 
697 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
698 		return (NULL);
699 
700 	/*
701 	 * By building the symbol table, we implicitly bring the PLT
702 	 * information up to date in the load object.
703 	 */
704 	(void) build_map_symtab(P, mptr);
705 
706 	return (mptr->map_file->file_lo);
707 }
708 
709 const rd_loadobj_t *
710 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
711 {
712 	map_info_t *mptr;
713 
714 	if (name == PR_OBJ_EVERY)
715 		return (NULL);
716 
717 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
718 		return (NULL);
719 
720 	/*
721 	 * By building the symbol table, we implicitly bring the PLT
722 	 * information up to date in the load object.
723 	 */
724 	(void) build_map_symtab(P, mptr);
725 
726 	return (mptr->map_file->file_lo);
727 }
728 
729 const rd_loadobj_t *
730 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
731 {
732 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
733 }
734 
735 ctf_file_t *
736 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
737 {
738 	ctf_sect_t ctdata, symtab, strtab;
739 	sym_tbl_t *symp;
740 	int err;
741 
742 	if (fptr->file_ctfp != NULL)
743 		return (fptr->file_ctfp);
744 
745 	Pbuild_file_symtab(P, fptr);
746 
747 	if (fptr->file_ctf_size == 0)
748 		return (NULL);
749 
750 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
751 	if (symp->sym_data_pri == NULL)
752 		return (NULL);
753 
754 	/*
755 	 * The buffer may alread be allocated if this is a core file that
756 	 * contained CTF data for this file.
757 	 */
758 	if (fptr->file_ctf_buf == NULL) {
759 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
760 		if (fptr->file_ctf_buf == NULL) {
761 			dprintf("failed to allocate ctf buffer\n");
762 			return (NULL);
763 		}
764 
765 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
766 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
767 		    fptr->file_ctf_size) {
768 			free(fptr->file_ctf_buf);
769 			fptr->file_ctf_buf = NULL;
770 			dprintf("failed to read ctf data\n");
771 			return (NULL);
772 		}
773 	}
774 
775 	ctdata.cts_name = ".SUNW_ctf";
776 	ctdata.cts_type = SHT_PROGBITS;
777 	ctdata.cts_flags = 0;
778 	ctdata.cts_data = fptr->file_ctf_buf;
779 	ctdata.cts_size = fptr->file_ctf_size;
780 	ctdata.cts_entsize = 1;
781 	ctdata.cts_offset = 0;
782 
783 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
784 	symtab.cts_type = symp->sym_hdr_pri.sh_type;
785 	symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
786 	symtab.cts_data = symp->sym_data_pri->d_buf;
787 	symtab.cts_size = symp->sym_hdr_pri.sh_size;
788 	symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
789 	symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
790 
791 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
792 	strtab.cts_type = symp->sym_strhdr.sh_type;
793 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
794 	strtab.cts_data = symp->sym_strs;
795 	strtab.cts_size = symp->sym_strhdr.sh_size;
796 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
797 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
798 
799 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
800 	if (fptr->file_ctfp == NULL) {
801 		free(fptr->file_ctf_buf);
802 		fptr->file_ctf_buf = NULL;
803 		return (NULL);
804 	}
805 
806 	dprintf("loaded %lu bytes of CTF data for %s\n",
807 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
808 
809 	return (fptr->file_ctfp);
810 }
811 
812 ctf_file_t *
813 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
814 {
815 	map_info_t *mptr;
816 	file_info_t *fptr;
817 
818 	if (!P->info_valid)
819 		Pupdate_maps(P);
820 
821 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
822 	    (fptr = mptr->map_file) == NULL)
823 		return (NULL);
824 
825 	return (Pbuild_file_ctf(P, fptr));
826 }
827 
828 ctf_file_t *
829 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
830 {
831 	map_info_t *mptr;
832 	file_info_t *fptr;
833 
834 	if (name == PR_OBJ_EVERY)
835 		return (NULL);
836 
837 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
838 	    (fptr = mptr->map_file) == NULL)
839 		return (NULL);
840 
841 	return (Pbuild_file_ctf(P, fptr));
842 }
843 
844 ctf_file_t *
845 Pname_to_ctf(struct ps_prochandle *P, const char *name)
846 {
847 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
848 }
849 
850 /*
851  * If we're not a core file, re-read the /proc/<pid>/auxv file and store
852  * its contents in P->auxv.  In the case of a core file, we either
853  * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
854  * auxv because the note was missing.
855  */
856 void
857 Preadauxvec(struct ps_prochandle *P)
858 {
859 	char auxfile[64];
860 	struct stat statb;
861 	ssize_t naux;
862 	int fd;
863 
864 	if (P->state == PS_DEAD)
865 		return; /* Already read during Pgrab_core() */
866 	if (P->state == PS_IDLE)
867 		return; /* No aux vec for Pgrab_file() */
868 
869 	if (P->auxv != NULL) {
870 		free(P->auxv);
871 		P->auxv = NULL;
872 		P->nauxv = 0;
873 	}
874 
875 	(void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
876 	    procfs_path, (int)P->pid);
877 	if ((fd = open(auxfile, O_RDONLY)) < 0)
878 		return;
879 
880 	if (fstat(fd, &statb) == 0 &&
881 	    statb.st_size >= sizeof (auxv_t) &&
882 	    (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
883 		if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
884 		    (naux /= sizeof (auxv_t)) < 1) {
885 			free(P->auxv);
886 			P->auxv = NULL;
887 		} else {
888 			P->auxv[naux].a_type = AT_NULL;
889 			P->auxv[naux].a_un.a_val = 0L;
890 			P->nauxv = (int)naux;
891 		}
892 	}
893 
894 	(void) close(fd);
895 }
896 
897 /*
898  * Return a requested element from the process's aux vector.
899  * Return -1 on failure (this is adequate for our purposes).
900  */
901 long
902 Pgetauxval(struct ps_prochandle *P, int type)
903 {
904 	auxv_t *auxv;
905 
906 	if (P->auxv == NULL)
907 		Preadauxvec(P);
908 
909 	if (P->auxv == NULL)
910 		return (-1);
911 
912 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
913 		if (auxv->a_type == type)
914 			return (auxv->a_un.a_val);
915 	}
916 
917 	return (-1);
918 }
919 
920 /*
921  * Return a pointer to our internal copy of the process's aux vector.
922  * The caller should not hold on to this pointer across any libproc calls.
923  */
924 const auxv_t *
925 Pgetauxvec(struct ps_prochandle *P)
926 {
927 	static const auxv_t empty = { AT_NULL, 0L };
928 
929 	if (P->auxv == NULL)
930 		Preadauxvec(P);
931 
932 	if (P->auxv == NULL)
933 		return (&empty);
934 
935 	return (P->auxv);
936 }
937 
938 /*
939  * Return 1 if the given mapping corresponds to the given file_info_t's
940  * load object; return 0 otherwise.
941  */
942 static int
943 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
944 {
945 	prmap_t *pmap = &mptr->map_pmap;
946 	rd_loadobj_t *lop = fptr->file_lo;
947 	uint_t i;
948 	uintptr_t mstart, mend, sstart, send;
949 
950 	/*
951 	 * We can get for free the start address of the text and data
952 	 * sections of the load object. Start by seeing if the mapping
953 	 * encloses either of these.
954 	 */
955 	if ((pmap->pr_vaddr <= lop->rl_base &&
956 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
957 	    (pmap->pr_vaddr <= lop->rl_data_base &&
958 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
959 		return (1);
960 
961 	/*
962 	 * It's still possible that this mapping correponds to the load
963 	 * object. Consider the example of a mapping whose start and end
964 	 * addresses correspond to those of the load object's text section.
965 	 * If the mapping splits, e.g. as a result of a segment demotion,
966 	 * then although both mappings are still backed by the same section,
967 	 * only one will be seen to enclose that section's start address.
968 	 * Thus, to be rigorous, we ask not whether this mapping encloses
969 	 * the start of a section, but whether there exists a section that
970 	 * overlaps this mapping.
971 	 *
972 	 * If we don't already have the section addresses, and we successfully
973 	 * get them, then we cache them in case we come here again.
974 	 */
975 	if (fptr->file_saddrs == NULL &&
976 	    (fptr->file_saddrs = get_saddrs(P,
977 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
978 		return (0);
979 
980 	mstart = mptr->map_pmap.pr_vaddr;
981 	mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
982 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
983 		/* Does this section overlap the mapping? */
984 		sstart = fptr->file_saddrs[i];
985 		send = fptr->file_saddrs[i + 1];
986 		if (!(mend <= sstart || mstart >= send))
987 			return (1);
988 	}
989 
990 	return (0);
991 }
992 
993 /*
994  * Find or build the symbol table for the given mapping.
995  */
996 static file_info_t *
997 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
998 {
999 	prmap_t *pmap = &mptr->map_pmap;
1000 	file_info_t *fptr;
1001 	uint_t i;
1002 
1003 	if ((fptr = mptr->map_file) != NULL) {
1004 		Pbuild_file_symtab(P, fptr);
1005 		return (fptr);
1006 	}
1007 
1008 	if (pmap->pr_mapname[0] == '\0')
1009 		return (NULL);
1010 
1011 	/*
1012 	 * Attempt to find a matching file.
1013 	 * (A file can be mapped at several different addresses.)
1014 	 */
1015 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1016 	    i++, fptr = list_next(fptr)) {
1017 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1018 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1019 			mptr->map_file = fptr;
1020 			fptr->file_ref++;
1021 			Pbuild_file_symtab(P, fptr);
1022 			return (fptr);
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * If we need to create a new file_info structure, iterate
1028 	 * through the load objects in order to attempt to connect
1029 	 * this new file with its primary text mapping.  We again
1030 	 * need to handle ld.so as a special case because we need
1031 	 * to be able to bootstrap librtld_db.
1032 	 */
1033 	if ((fptr = file_info_new(P, mptr)) == NULL)
1034 		return (NULL);
1035 
1036 	if (P->map_ldso != mptr) {
1037 		if (P->rap != NULL)
1038 			(void) rd_loadobj_iter(P->rap, map_iter, P);
1039 		else
1040 			(void) Prd_agent(P);
1041 	} else {
1042 		fptr->file_map = mptr;
1043 	}
1044 
1045 	/*
1046 	 * If librtld_db wasn't able to help us connect the file to a primary
1047 	 * text mapping, set file_map to the current mapping because we require
1048 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1049 	 * unaware of what's going on in the rare case that a legitimate ELF
1050 	 * file has been mmap(2)ed into the process address space *without*
1051 	 * the use of dlopen(3x).
1052 	 */
1053 	if (fptr->file_map == NULL)
1054 		fptr->file_map = mptr;
1055 
1056 	Pbuild_file_symtab(P, fptr);
1057 
1058 	return (fptr);
1059 }
1060 
1061 static int
1062 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1063     uintptr_t addr)
1064 {
1065 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1066 		return (-1);
1067 
1068 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1069 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1070 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1071 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1072 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1073 #ifdef _BIG_ENDIAN
1074 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1075 #else
1076 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1077 #endif
1078 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1079 		return (-1);
1080 
1081 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1082 		Elf32_Shdr shdr0;
1083 
1084 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1085 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1086 		    sizeof (shdr0))
1087 			return (-1);
1088 
1089 		if (shdr0.sh_info != 0)
1090 			*phnum = shdr0.sh_info;
1091 	}
1092 
1093 	return (0);
1094 }
1095 
1096 static int
1097 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1098     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1099 {
1100 	uint_t i;
1101 
1102 	for (i = 0; i < phnum; i++) {
1103 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1104 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1105 			return (-1);
1106 
1107 		if (phdr->p_type == PT_DYNAMIC)
1108 			return (0);
1109 	}
1110 
1111 	return (-1);
1112 }
1113 
1114 #ifdef _LP64
1115 static int
1116 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1117     uintptr_t addr)
1118 {
1119 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1120 		return (-1);
1121 
1122 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1123 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1124 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1125 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1126 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1127 #ifdef _BIG_ENDIAN
1128 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1129 #else
1130 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1131 #endif
1132 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1133 		return (-1);
1134 
1135 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1136 		Elf64_Shdr shdr0;
1137 
1138 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1139 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1140 		    sizeof (shdr0))
1141 			return (-1);
1142 
1143 		if (shdr0.sh_info != 0)
1144 			*phnum = shdr0.sh_info;
1145 	}
1146 
1147 	return (0);
1148 }
1149 
1150 static int
1151 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1152     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1153 {
1154 	uint_t i;
1155 
1156 	for (i = 0; i < phnum; i++) {
1157 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1158 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1159 			return (-1);
1160 
1161 		if (phdr->p_type == PT_DYNAMIC)
1162 			return (0);
1163 	}
1164 
1165 	return (-1);
1166 }
1167 #endif	/* _LP64 */
1168 
1169 /*
1170  * The text segment for each load object contains the elf header and
1171  * program headers. We can use this information to determine if the
1172  * file that corresponds to the load object is the same file that
1173  * was loaded into the process's address space. There can be a discrepency
1174  * if a file is recompiled after the process is started or if the target
1175  * represents a core file from a differently configured system -- two
1176  * common examples. The DT_CHECKSUM entry in the dynamic section
1177  * provides an easy method of comparison. It is important to note that
1178  * the dynamic section usually lives in the data segment, but the meta
1179  * data we use to find the dynamic section lives in the text segment so
1180  * if either of those segments is absent we can't proceed.
1181  *
1182  * We're looking through the elf file for several items: the symbol tables
1183  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1184  * size, and relocation base, and the CTF information. Most of this can
1185  * be recovered from the loaded image of the file itself, the exceptions
1186  * being the symtab and CTF data.
1187  *
1188  * First we try to open the file that we think corresponds to the load
1189  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1190  * recover all the information we need from the file. If the values of
1191  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1192  * reasaon, we fake up a elf file to use in its stead. If we can't read
1193  * the elf data in the process's address space, we fall back to using
1194  * the file even though it may give inaccurate information.
1195  *
1196  * The elf file that we fake up has to consist of sections for the
1197  * dynsym, the PLT and the dynamic section. Note that in the case of a
1198  * core file, we'll get the CTF data in the file_info_t later on from
1199  * a section embedded the core file (if it's present).
1200  *
1201  * file_differs() conservatively looks for mismatched files, identifying
1202  * a match when there is any ambiguity (since that's the legacy behavior).
1203  */
1204 static int
1205 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1206 {
1207 	Elf_Scn *scn;
1208 	GElf_Shdr shdr;
1209 	GElf_Dyn dyn;
1210 	Elf_Data *data;
1211 	uint_t i, ndyn;
1212 	GElf_Xword cksum;
1213 	uintptr_t addr;
1214 
1215 	if (fptr->file_map == NULL)
1216 		return (0);
1217 
1218 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1219 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1220 		return (0);
1221 
1222 	/*
1223 	 * First, we find the checksum value in the elf file.
1224 	 */
1225 	scn = NULL;
1226 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1227 		if (gelf_getshdr(scn, &shdr) != NULL &&
1228 		    shdr.sh_type == SHT_DYNAMIC)
1229 			goto found_shdr;
1230 	}
1231 	return (0);
1232 
1233 found_shdr:
1234 	if ((data = elf_getdata(scn, NULL)) == NULL)
1235 		return (0);
1236 
1237 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1238 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1239 #ifdef _LP64
1240 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1241 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1242 #endif
1243 	else
1244 		return (0);
1245 
1246 	for (i = 0; i < ndyn; i++) {
1247 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1248 		    dyn.d_tag == DT_CHECKSUM)
1249 			goto found_cksum;
1250 	}
1251 
1252 	/*
1253 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1254 	 * as matching the file anyhow.
1255 	 */
1256 	return (0);
1257 
1258 found_cksum:
1259 	cksum = dyn.d_un.d_val;
1260 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1261 
1262 	/*
1263 	 * Get the base of the text mapping that corresponds to this file.
1264 	 */
1265 	addr = fptr->file_map->map_pmap.pr_vaddr;
1266 
1267 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1268 		Elf32_Ehdr ehdr;
1269 		Elf32_Phdr phdr;
1270 		Elf32_Dyn dync, *dynp;
1271 		uint_t phnum, i;
1272 
1273 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1274 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1275 			return (0);
1276 
1277 		if (ehdr.e_type == ET_DYN)
1278 			phdr.p_vaddr += addr;
1279 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1280 			return (0);
1281 		dync.d_tag = DT_NULL;
1282 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1283 		    phdr.p_filesz) {
1284 			free(dynp);
1285 			return (0);
1286 		}
1287 
1288 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1289 			if (dynp[i].d_tag == DT_CHECKSUM)
1290 				dync = dynp[i];
1291 		}
1292 
1293 		free(dynp);
1294 
1295 		if (dync.d_tag != DT_CHECKSUM)
1296 			return (0);
1297 
1298 		dprintf("image cksum value is %llx\n",
1299 		    (u_longlong_t)dync.d_un.d_val);
1300 		return (dync.d_un.d_val != cksum);
1301 #ifdef _LP64
1302 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1303 		Elf64_Ehdr ehdr;
1304 		Elf64_Phdr phdr;
1305 		Elf64_Dyn dync, *dynp;
1306 		uint_t phnum, i;
1307 
1308 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1309 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1310 			return (0);
1311 
1312 		if (ehdr.e_type == ET_DYN)
1313 			phdr.p_vaddr += addr;
1314 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1315 			return (0);
1316 		dync.d_tag = DT_NULL;
1317 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1318 		    phdr.p_filesz) {
1319 			free(dynp);
1320 			return (0);
1321 		}
1322 
1323 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1324 			if (dynp[i].d_tag == DT_CHECKSUM)
1325 				dync = dynp[i];
1326 		}
1327 
1328 		free(dynp);
1329 
1330 		if (dync.d_tag != DT_CHECKSUM)
1331 			return (0);
1332 
1333 		dprintf("image cksum value is %llx\n",
1334 		    (u_longlong_t)dync.d_un.d_val);
1335 		return (dync.d_un.d_val != cksum);
1336 #endif	/* _LP64 */
1337 	}
1338 
1339 	return (0);
1340 }
1341 
1342 /*
1343  * Read data from the specified process and construct an in memory
1344  * image of an ELF file that represents it well enough to let
1345  * us probe it for information.
1346  */
1347 static Elf *
1348 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1349 {
1350 	Elf *elf;
1351 	uintptr_t addr;
1352 	uint_t phnum;
1353 
1354 	if (fptr->file_map == NULL)
1355 		return (NULL);
1356 
1357 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1358 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1359 		return (NULL);
1360 
1361 	addr = fptr->file_map->map_pmap.pr_vaddr;
1362 
1363 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1364 		Elf32_Ehdr ehdr;
1365 		Elf32_Phdr phdr;
1366 
1367 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1368 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1369 			return (NULL);
1370 
1371 		elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1372 #ifdef _LP64
1373 	} else {
1374 		Elf64_Ehdr ehdr;
1375 		Elf64_Phdr phdr;
1376 
1377 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1378 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1379 			return (NULL);
1380 
1381 		elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1382 #endif
1383 	}
1384 
1385 	return (elf);
1386 }
1387 
1388 /*
1389  * We wouldn't need these if qsort(3C) took an argument for the callback...
1390  */
1391 static mutex_t sort_mtx = DEFAULTMUTEX;
1392 static char *sort_strs;
1393 static GElf_Sym *sort_syms;
1394 
1395 int
1396 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1397 {
1398 	if (a->st_value < b->st_value)
1399 		return (-1);
1400 	if (a->st_value > b->st_value)
1401 		return (1);
1402 
1403 	/*
1404 	 * Prefer the function to the non-function.
1405 	 */
1406 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1407 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1408 			return (-1);
1409 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1410 			return (1);
1411 	}
1412 
1413 	/*
1414 	 * Prefer the weak or strong global symbol to the local symbol.
1415 	 */
1416 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1417 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1418 			return (-1);
1419 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1420 			return (1);
1421 	}
1422 
1423 	/*
1424 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
1425 	 * other symbol generators often use it as a prefix.
1426 	 */
1427 	if (*bname == '$')
1428 		return (-1);
1429 	if (*aname == '$')
1430 		return (1);
1431 
1432 	/*
1433 	 * Prefer the name with fewer leading underscores in the name.
1434 	 */
1435 	while (*aname == '_' && *bname == '_') {
1436 		aname++;
1437 		bname++;
1438 	}
1439 
1440 	if (*bname == '_')
1441 		return (-1);
1442 	if (*aname == '_')
1443 		return (1);
1444 
1445 	/*
1446 	 * Prefer the symbol with the smaller size.
1447 	 */
1448 	if (a->st_size < b->st_size)
1449 		return (-1);
1450 	if (a->st_size > b->st_size)
1451 		return (1);
1452 
1453 	/*
1454 	 * All other factors being equal, fall back to lexicographic order.
1455 	 */
1456 	return (strcmp(aname, bname));
1457 }
1458 
1459 static int
1460 byaddr_cmp(const void *aa, const void *bb)
1461 {
1462 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1463 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1464 	char *aname = sort_strs + a->st_name;
1465 	char *bname = sort_strs + b->st_name;
1466 
1467 	return (byaddr_cmp_common(a, aname, b, bname));
1468 }
1469 
1470 static int
1471 byname_cmp(const void *aa, const void *bb)
1472 {
1473 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1474 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1475 	char *aname = sort_strs + a->st_name;
1476 	char *bname = sort_strs + b->st_name;
1477 
1478 	return (strcmp(aname, bname));
1479 }
1480 
1481 /*
1482  * Given a symbol index, look up the corresponding symbol from the
1483  * given symbol table.
1484  *
1485  * This function allows the caller to treat the symbol table as a single
1486  * logical entity even though there may be 2 actual ELF symbol tables
1487  * involved. See the comments in Pcontrol.h for details.
1488  */
1489 static GElf_Sym *
1490 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1491 {
1492 	/* If index is in range of primary symtab, look it up there */
1493 	if (ndx >= symtab->sym_symn_aux) {
1494 		return (gelf_getsym(symtab->sym_data_pri,
1495 		    ndx - symtab->sym_symn_aux, dst));
1496 	}
1497 
1498 	/* Not in primary: Look it up in the auxiliary symtab */
1499 	return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1500 }
1501 
1502 void
1503 optimize_symtab(sym_tbl_t *symtab)
1504 {
1505 	GElf_Sym *symp, *syms;
1506 	uint_t i, *indexa, *indexb;
1507 	size_t symn, strsz, count;
1508 
1509 	if (symtab == NULL || symtab->sym_data_pri == NULL ||
1510 	    symtab->sym_byaddr != NULL)
1511 		return;
1512 
1513 	symn = symtab->sym_symn;
1514 	strsz = symtab->sym_strsz;
1515 
1516 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
1517 	if (symp == NULL) {
1518 		dprintf("optimize_symtab: failed to malloc symbol array");
1519 		return;
1520 	}
1521 
1522 	/*
1523 	 * First record all the symbols into a table and count up the ones
1524 	 * that we're interested in. We mark symbols as invalid by setting
1525 	 * the st_name to an illegal value.
1526 	 */
1527 	for (i = 0, count = 0; i < symn; i++, symp++) {
1528 		if (symtab_getsym(symtab, i, symp) != NULL &&
1529 		    symp->st_name < strsz &&
1530 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1531 			count++;
1532 		else
1533 			symp->st_name = strsz;
1534 	}
1535 
1536 	/*
1537 	 * Allocate sufficient space for both tables and populate them
1538 	 * with the same symbols we just counted.
1539 	 */
1540 	symtab->sym_count = count;
1541 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1542 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1543 	if (indexa == NULL || indexb == NULL) {
1544 		dprintf(
1545 		    "optimize_symtab: failed to malloc symbol index arrays");
1546 		symtab->sym_count = 0;
1547 		if (indexa != NULL) {	/* First alloc succeeded. Free it */
1548 			free(indexa);
1549 			symtab->sym_byaddr = NULL;
1550 		}
1551 		free(syms);
1552 		return;
1553 	}
1554 	for (i = 0, symp = syms; i < symn; i++, symp++) {
1555 		if (symp->st_name < strsz)
1556 			*indexa++ = *indexb++ = i;
1557 	}
1558 
1559 	/*
1560 	 * Sort the two tables according to the appropriate criteria,
1561 	 * unless the user has overridden this behaviour.
1562 	 *
1563 	 * An example where we might not sort the tables is the relatively
1564 	 * unusual case of a process with very large symbol tables in which
1565 	 * we perform few lookups. In such a case the total time would be
1566 	 * dominated by the sort. It is difficult to determine a priori
1567 	 * how many lookups an arbitrary client will perform, and
1568 	 * hence whether the symbol tables should be sorted. We therefore
1569 	 * sort the tables by default, but provide the user with a
1570 	 * "chicken switch" in the form of the LIBPROC_NO_QSORT
1571 	 * environment variable.
1572 	 */
1573 	if (!_libproc_no_qsort) {
1574 		(void) mutex_lock(&sort_mtx);
1575 		sort_strs = symtab->sym_strs;
1576 		sort_syms = syms;
1577 
1578 		qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1579 		qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1580 
1581 		sort_strs = NULL;
1582 		sort_syms = NULL;
1583 		(void) mutex_unlock(&sort_mtx);
1584 	}
1585 
1586 	free(syms);
1587 }
1588 
1589 /*
1590  * Build the symbol table for the given mapped file.
1591  */
1592 void
1593 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1594 {
1595 	char objectfile[PATH_MAX];
1596 	uint_t i;
1597 
1598 	GElf_Ehdr ehdr;
1599 	GElf_Sym s;
1600 
1601 	Elf_Data *shdata;
1602 	Elf_Scn *scn;
1603 	Elf *elf;
1604 	size_t nshdrs, shstrndx;
1605 
1606 	struct {
1607 		GElf_Shdr c_shdr;
1608 		Elf_Data *c_data;
1609 		const char *c_name;
1610 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
1611 
1612 	if (fptr->file_init)
1613 		return;	/* We've already processed this file */
1614 
1615 	/*
1616 	 * Mark the file_info struct as having the symbol table initialized
1617 	 * even if we fail below.  We tried once; we don't try again.
1618 	 */
1619 	fptr->file_init = 1;
1620 
1621 	if (elf_version(EV_CURRENT) == EV_NONE) {
1622 		dprintf("libproc ELF version is more recent than libelf\n");
1623 		return;
1624 	}
1625 
1626 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
1627 		char *name;
1628 		/*
1629 		 * If we're a not live, we can't open files from the /proc
1630 		 * object directory; we have only the mapping and file names
1631 		 * to guide us.  We prefer the file_lname, but need to handle
1632 		 * the case of it being NULL in order to bootstrap: we first
1633 		 * come here during rd_new() when the only information we have
1634 		 * is interpreter name associated with the AT_BASE mapping.
1635 		 *
1636 		 * Also, if the zone associated with the core file seems
1637 		 * to exists on this machine we'll try to open the object
1638 		 * file within the zone.
1639 		 */
1640 		if (fptr->file_rname != NULL)
1641 			name = fptr->file_rname;
1642 		else if (fptr->file_lname != NULL)
1643 			name = fptr->file_lname;
1644 		else
1645 			name = fptr->file_pname;
1646 		(void) strlcpy(objectfile, name, sizeof (objectfile));
1647 	} else {
1648 		(void) snprintf(objectfile, sizeof (objectfile),
1649 		    "%s/%d/object/%s",
1650 		    procfs_path, (int)P->pid, fptr->file_pname);
1651 	}
1652 
1653 	/*
1654 	 * Open the object file, create the elf file, and then get the elf
1655 	 * header and .shstrtab data buffer so we can process sections by
1656 	 * name. If anything goes wrong try to fake up an elf file from
1657 	 * the in-core elf image.
1658 	 */
1659 	if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1660 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1661 		    objectfile, strerror(errno));
1662 
1663 		if ((elf = fake_elf(P, fptr)) == NULL ||
1664 		    elf_kind(elf) != ELF_K_ELF ||
1665 		    gelf_getehdr(elf, &ehdr) == NULL ||
1666 		    elf_getshnum(elf, &nshdrs) == 0 ||
1667 		    elf_getshstrndx(elf, &shstrndx) == 0 ||
1668 		    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1669 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
1670 			dprintf("failed to fake up ELF file\n");
1671 			return;
1672 		}
1673 
1674 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1675 	    elf_kind(elf) != ELF_K_ELF ||
1676 	    gelf_getehdr(elf, &ehdr) == NULL ||
1677 	    elf_getshnum(elf, &nshdrs) == 0 ||
1678 	    elf_getshstrndx(elf, &shstrndx) == 0 ||
1679 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1680 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
1681 		int err = elf_errno();
1682 
1683 		dprintf("failed to process ELF file %s: %s\n",
1684 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1685 
1686 		if ((elf = fake_elf(P, fptr)) == NULL ||
1687 		    elf_kind(elf) != ELF_K_ELF ||
1688 		    gelf_getehdr(elf, &ehdr) == NULL ||
1689 		    elf_getshnum(elf, &nshdrs) == 0 ||
1690 		    elf_getshstrndx(elf, &shstrndx) == 0 ||
1691 		    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1692 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
1693 			dprintf("failed to fake up ELF file\n");
1694 			goto bad;
1695 		}
1696 
1697 	} else if (file_differs(P, elf, fptr)) {
1698 		Elf *newelf;
1699 
1700 		/*
1701 		 * Before we get too excited about this elf file, we'll check
1702 		 * its checksum value against the value we have in memory. If
1703 		 * they don't agree, we try to fake up a new elf file and
1704 		 * proceed with that instead.
1705 		 */
1706 
1707 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1708 		    fptr->file_pname,
1709 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1710 
1711 		if ((newelf = fake_elf(P, fptr)) == NULL ||
1712 		    elf_kind(newelf) != ELF_K_ELF ||
1713 		    gelf_getehdr(newelf, &ehdr) == NULL ||
1714 		    elf_getshnum(newelf, &nshdrs) == 0 ||
1715 		    elf_getshstrndx(newelf, &shstrndx) == 0 ||
1716 		    (scn = elf_getscn(newelf, shstrndx)) == NULL ||
1717 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
1718 			dprintf("failed to fake up ELF file\n");
1719 		} else {
1720 			(void) elf_end(elf);
1721 			elf = newelf;
1722 
1723 			dprintf("switched to faked up ELF file\n");
1724 		}
1725 	}
1726 
1727 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1728 		dprintf("failed to malloc section cache for %s\n", objectfile);
1729 		goto bad;
1730 	}
1731 
1732 	dprintf("processing ELF file %s\n", objectfile);
1733 	fptr->file_class = ehdr.e_ident[EI_CLASS];
1734 	fptr->file_etype = ehdr.e_type;
1735 	fptr->file_elf = elf;
1736 	fptr->file_shstrs = shdata->d_buf;
1737 	fptr->file_shstrsz = shdata->d_size;
1738 
1739 	/*
1740 	 * Iterate through each section, caching its section header, data
1741 	 * pointer, and name.  We use this for handling sh_link values below.
1742 	 */
1743 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1744 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1745 			dprintf("Pbuild_file_symtab: Failed to get section "
1746 			    "header\n");
1747 			goto bad; /* Failed to get section header */
1748 		}
1749 
1750 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1751 			dprintf("Pbuild_file_symtab: Failed to get section "
1752 			    "data\n");
1753 			goto bad; /* Failed to get section data */
1754 		}
1755 
1756 		if (cp->c_shdr.sh_name >= shdata->d_size) {
1757 			dprintf("Pbuild_file_symtab: corrupt section name");
1758 			goto bad; /* Corrupt section name */
1759 		}
1760 
1761 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1762 	}
1763 
1764 	/*
1765 	 * Now iterate through the section cache in order to locate info
1766 	 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1767 	 * and .SUNW_ctf sections:
1768 	 */
1769 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1770 		GElf_Shdr *shp = &cp->c_shdr;
1771 
1772 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1773 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1774 			    &fptr->file_symtab : &fptr->file_dynsym;
1775 			/*
1776 			 * It's possible that the we already got the symbol
1777 			 * table from the core file itself. Either the file
1778 			 * differs in which case our faked up elf file will
1779 			 * only contain the dynsym (not the symtab) or the
1780 			 * file matches in which case we'll just be replacing
1781 			 * the symbol table we pulled out of the core file
1782 			 * with an equivalent one. In either case, this
1783 			 * check isn't essential, but it's a good idea.
1784 			 */
1785 			if (symp->sym_data_pri == NULL) {
1786 				dprintf("Symbol table found for %s\n",
1787 				    objectfile);
1788 				symp->sym_data_pri = cp->c_data;
1789 				symp->sym_symn +=
1790 				    shp->sh_size / shp->sh_entsize;
1791 				symp->sym_strs =
1792 				    cache[shp->sh_link].c_data->d_buf;
1793 				symp->sym_strsz =
1794 				    cache[shp->sh_link].c_data->d_size;
1795 				symp->sym_hdr_pri = cp->c_shdr;
1796 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1797 			} else {
1798 				dprintf("Symbol table already there for %s\n",
1799 				    objectfile);
1800 			}
1801 		} else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1802 			/* .SUNW_ldynsym section is auxiliary to .dynsym */
1803 			if (fptr->file_dynsym.sym_data_aux == NULL) {
1804 				dprintf(".SUNW_ldynsym symbol table"
1805 				    " found for %s\n", objectfile);
1806 				fptr->file_dynsym.sym_data_aux = cp->c_data;
1807 				fptr->file_dynsym.sym_symn_aux =
1808 				    shp->sh_size / shp->sh_entsize;
1809 				fptr->file_dynsym.sym_symn +=
1810 				    fptr->file_dynsym.sym_symn_aux;
1811 				fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1812 			} else {
1813 				dprintf(".SUNW_ldynsym symbol table already"
1814 				    " there for %s\n", objectfile);
1815 			}
1816 		} else if (shp->sh_type == SHT_DYNAMIC) {
1817 			dyn = cp;
1818 		} else if (strcmp(cp->c_name, ".plt") == 0) {
1819 			plt = cp;
1820 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1821 			/*
1822 			 * Skip over bogus CTF sections so they don't come back
1823 			 * to haunt us later.
1824 			 */
1825 			if (shp->sh_link == 0 ||
1826 			    shp->sh_link >= nshdrs ||
1827 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1828 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1829 				dprintf("Bad sh_link %d for "
1830 				    "CTF\n", shp->sh_link);
1831 				continue;
1832 			}
1833 			ctf = cp;
1834 		}
1835 	}
1836 
1837 	/*
1838 	 * At this point, we've found all the symbol tables we're ever going
1839 	 * to find: the ones in the loop above and possibly the symtab that
1840 	 * was included in the core file. Before we perform any lookups, we
1841 	 * create sorted versions to optimize for lookups.
1842 	 */
1843 	optimize_symtab(&fptr->file_symtab);
1844 	optimize_symtab(&fptr->file_dynsym);
1845 
1846 	/*
1847 	 * Fill in the base address of the text mapping for shared libraries.
1848 	 * This allows us to translate symbols before librtld_db is ready.
1849 	 */
1850 	if (fptr->file_etype == ET_DYN) {
1851 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1852 		    fptr->file_map->map_pmap.pr_offset;
1853 		dprintf("setting file_dyn_base for %s to %lx\n",
1854 		    objectfile, (long)fptr->file_dyn_base);
1855 	}
1856 
1857 	/*
1858 	 * Record the CTF section information in the file info structure.
1859 	 */
1860 	if (ctf != NULL) {
1861 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1862 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
1863 		if (ctf->c_shdr.sh_link != 0 &&
1864 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1865 			fptr->file_ctf_dyn = 1;
1866 	}
1867 
1868 	if (fptr->file_lo == NULL)
1869 		goto done; /* Nothing else to do if no load object info */
1870 
1871 	/*
1872 	 * If the object is a shared library and we have a different rl_base
1873 	 * value, reset file_dyn_base according to librtld_db's information.
1874 	 */
1875 	if (fptr->file_etype == ET_DYN &&
1876 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
1877 		dprintf("resetting file_dyn_base for %s to %lx\n",
1878 		    objectfile, (long)fptr->file_lo->rl_base);
1879 		fptr->file_dyn_base = fptr->file_lo->rl_base;
1880 	}
1881 
1882 	/*
1883 	 * Fill in the PLT information for this file if a PLT symbol is found.
1884 	 */
1885 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1886 	    NULL) != NULL) {
1887 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1888 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1889 
1890 		/*
1891 		 * Bring the load object up to date; it is the only way the
1892 		 * user has to access the PLT data. The PLT information in the
1893 		 * rd_loadobj_t is not set in the call to map_iter() (the
1894 		 * callback for rd_loadobj_iter) where we set file_lo.
1895 		 */
1896 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1897 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1898 
1899 		dprintf("PLT found at %p, size = %lu\n",
1900 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1901 	}
1902 
1903 	/*
1904 	 * Fill in the PLT information.
1905 	 */
1906 	if (dyn != NULL) {
1907 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1908 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1909 		GElf_Dyn d;
1910 
1911 		for (i = 0; i < ndyn; i++) {
1912 			if (gelf_getdyn(dyn->c_data, i, &d) != NULL &&
1913 			    d.d_tag == DT_JMPREL) {
1914 				dprintf("DT_JMPREL is %p\n",
1915 				    (void *)(uintptr_t)d.d_un.d_ptr);
1916 				fptr->file_jmp_rel =
1917 				    d.d_un.d_ptr + fptr->file_dyn_base;
1918 				break;
1919 			}
1920 		}
1921 
1922 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1923 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1924 	}
1925 
1926 done:
1927 	free(cache);
1928 	return;
1929 
1930 bad:
1931 	if (cache != NULL)
1932 		free(cache);
1933 
1934 	(void) elf_end(elf);
1935 	fptr->file_elf = NULL;
1936 	if (fptr->file_elfmem != NULL) {
1937 		free(fptr->file_elfmem);
1938 		fptr->file_elfmem = NULL;
1939 	}
1940 	(void) close(fptr->file_fd);
1941 	fptr->file_fd = -1;
1942 }
1943 
1944 /*
1945  * Given a process virtual address, return the map_info_t containing it.
1946  * If none found, return NULL.
1947  */
1948 map_info_t *
1949 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
1950 {
1951 	int lo = 0;
1952 	int hi = P->map_count - 1;
1953 	int mid;
1954 	map_info_t *mp;
1955 
1956 	while (lo <= hi) {
1957 
1958 		mid = (lo + hi) / 2;
1959 		mp = &P->mappings[mid];
1960 
1961 		/* check that addr is in [vaddr, vaddr + size) */
1962 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
1963 			return (mp);
1964 
1965 		if (addr < mp->map_pmap.pr_vaddr)
1966 			hi = mid - 1;
1967 		else
1968 			lo = mid + 1;
1969 	}
1970 
1971 	return (NULL);
1972 }
1973 
1974 /*
1975  * Return the map_info_t for the executable file.
1976  * If not found, return NULL.
1977  */
1978 static map_info_t *
1979 exec_map(struct ps_prochandle *P)
1980 {
1981 	uint_t i;
1982 	map_info_t *mptr;
1983 	map_info_t *mold = NULL;
1984 	file_info_t *fptr;
1985 	uintptr_t base;
1986 
1987 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
1988 		if (mptr->map_pmap.pr_mapname[0] == '\0')
1989 			continue;
1990 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
1991 			if ((fptr = mptr->map_file) != NULL &&
1992 			    fptr->file_lo != NULL) {
1993 				base = fptr->file_lo->rl_base;
1994 				if (base >= mptr->map_pmap.pr_vaddr &&
1995 				    base < mptr->map_pmap.pr_vaddr +
1996 				    mptr->map_pmap.pr_size)	/* text space */
1997 					return (mptr);
1998 				mold = mptr;	/* must be the data */
1999 				continue;
2000 			}
2001 			/* This is a poor way to test for text space */
2002 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2003 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2004 				mold = mptr;
2005 				continue;
2006 			}
2007 			return (mptr);
2008 		}
2009 	}
2010 
2011 	return (mold);
2012 }
2013 
2014 /*
2015  * Given a shared object name, return the map_info_t for it.  If no matching
2016  * object is found, return NULL.  Normally, the link maps contain the full
2017  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2018  * take one of the following forms:
2019  *
2020  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2021  * 2. An exact basename match: "libc.so.1"
2022  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2023  * 4. The literal string "a.out" is an alias for the executable mapping
2024  *
2025  * The third case is a convenience for callers and may not be necessary.
2026  *
2027  * As the exact same object name may be loaded on different link maps (see
2028  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2029  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2030  * first matching name will be returned, regardless of the link map id.
2031  */
2032 static map_info_t *
2033 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2034 {
2035 	map_info_t *mp;
2036 	file_info_t *fp;
2037 	size_t objlen;
2038 	uint_t i;
2039 
2040 	/*
2041 	 * If we have no rtld_db, then always treat a request as one for all
2042 	 * link maps.
2043 	 */
2044 	if (P->rap == NULL)
2045 		lmid = PR_LMID_EVERY;
2046 
2047 	/*
2048 	 * First pass: look for exact matches of the entire pathname or
2049 	 * basename (cases 1 and 2 above):
2050 	 */
2051 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2052 
2053 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2054 		    (fp = mp->map_file) == NULL ||
2055 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2056 			continue;
2057 
2058 		if (lmid != PR_LMID_EVERY &&
2059 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2060 			continue;
2061 
2062 		/*
2063 		 * If we match, return the primary text mapping; otherwise
2064 		 * just return the mapping we matched.
2065 		 */
2066 		if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2067 		    (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2068 		    (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2069 		    (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2070 			return (fp->file_map ? fp->file_map : mp);
2071 	}
2072 
2073 	objlen = strlen(objname);
2074 
2075 	/*
2076 	 * Second pass: look for partial matches (case 3 above):
2077 	 */
2078 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2079 
2080 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2081 		    (fp = mp->map_file) == NULL ||
2082 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2083 			continue;
2084 
2085 		if (lmid != PR_LMID_EVERY &&
2086 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2087 			continue;
2088 
2089 		/*
2090 		 * If we match, return the primary text mapping; otherwise
2091 		 * just return the mapping we matched.
2092 		 */
2093 		if ((fp->file_lbase != NULL) &&
2094 		    (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2095 		    (fp->file_lbase[objlen] == '.'))
2096 			return (fp->file_map ? fp->file_map : mp);
2097 		if ((fp->file_rbase != NULL) &&
2098 		    (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2099 		    (fp->file_rbase[objlen] == '.'))
2100 			return (fp->file_map ? fp->file_map : mp);
2101 	}
2102 
2103 	/*
2104 	 * One last check: we allow "a.out" to always alias the executable,
2105 	 * assuming this name was not in use for something else.
2106 	 */
2107 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2108 	    (strcmp(objname, "a.out") == 0))
2109 		return (P->map_exec);
2110 
2111 	return (NULL);
2112 }
2113 
2114 static map_info_t *
2115 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2116 {
2117 	map_info_t *mptr;
2118 
2119 	if (!P->info_valid)
2120 		Pupdate_maps(P);
2121 
2122 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2123 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2124 		P->map_exec = mptr;
2125 
2126 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2127 	    Pgetauxval(P, AT_BASE))) != NULL)
2128 		P->map_ldso = mptr;
2129 
2130 	if (name == PR_OBJ_EXEC)
2131 		mptr = P->map_exec;
2132 	else if (name == PR_OBJ_LDSO)
2133 		mptr = P->map_ldso;
2134 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2135 		mptr = object_to_map(P, lmid, name);
2136 	else
2137 		mptr = NULL;
2138 
2139 	return (mptr);
2140 }
2141 
2142 /*
2143  * When two symbols are found by address, decide which one is to be preferred.
2144  */
2145 static GElf_Sym *
2146 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2147 {
2148 	/*
2149 	 * Prefer the non-NULL symbol.
2150 	 */
2151 	if (sym1 == NULL)
2152 		return (sym2);
2153 	if (sym2 == NULL)
2154 		return (sym1);
2155 
2156 	/*
2157 	 * Defer to the sort ordering...
2158 	 */
2159 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2160 }
2161 
2162 /*
2163  * Use a binary search to do the work of sym_by_addr().
2164  */
2165 static GElf_Sym *
2166 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2167     uint_t *idp)
2168 {
2169 	GElf_Sym sym, osym;
2170 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2171 	int min, max, mid, omid, found = 0;
2172 
2173 	if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2174 		return (NULL);
2175 
2176 	min = 0;
2177 	max = symtab->sym_count - 1;
2178 	osym.st_value = 0;
2179 
2180 	/*
2181 	 * We can't return when we've found a match, we have to continue
2182 	 * searching for the closest matching symbol.
2183 	 */
2184 	while (min <= max) {
2185 		mid = (max + min) / 2;
2186 
2187 		i = byaddr[mid];
2188 		(void) symtab_getsym(symtab, i, &sym);
2189 
2190 		if (addr >= sym.st_value &&
2191 		    addr < sym.st_value + sym.st_size &&
2192 		    (!found || sym.st_value > osym.st_value)) {
2193 			osym = sym;
2194 			omid = mid;
2195 			oid = i;
2196 			found = 1;
2197 		}
2198 
2199 		if (addr < sym.st_value)
2200 			max = mid - 1;
2201 		else
2202 			min = mid + 1;
2203 	}
2204 
2205 	if (!found)
2206 		return (NULL);
2207 
2208 	/*
2209 	 * There may be many symbols with identical values so we walk
2210 	 * backward in the byaddr table to find the best match.
2211 	 */
2212 	do {
2213 		sym = osym;
2214 		i = oid;
2215 
2216 		if (omid == 0)
2217 			break;
2218 
2219 		oid = byaddr[--omid];
2220 		(void) symtab_getsym(symtab, oid, &osym);
2221 	} while (addr >= osym.st_value &&
2222 	    addr < sym.st_value + osym.st_size &&
2223 	    osym.st_value == sym.st_value);
2224 
2225 	*symp = sym;
2226 	if (idp != NULL)
2227 		*idp = i;
2228 	return (symp);
2229 }
2230 
2231 /*
2232  * Use a linear search to do the work of sym_by_addr().
2233  */
2234 static GElf_Sym *
2235 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2236     uint_t *idp)
2237 {
2238 	size_t symn = symtab->sym_symn;
2239 	char *strs = symtab->sym_strs;
2240 	GElf_Sym sym, *symp = NULL;
2241 	GElf_Sym osym, *osymp = NULL;
2242 	int i, id;
2243 
2244 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2245 		return (NULL);
2246 
2247 	for (i = 0; i < symn; i++) {
2248 		if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2249 			if (addr >= sym.st_value &&
2250 			    addr < sym.st_value + sym.st_size) {
2251 				if (osymp)
2252 					symp = sym_prefer(
2253 					    symp, strs + symp->st_name,
2254 					    osymp, strs + osymp->st_name);
2255 				if (symp != osymp) {
2256 					osym = sym;
2257 					osymp = &osym;
2258 					id = i;
2259 				}
2260 			}
2261 		}
2262 	}
2263 	if (osymp) {
2264 		*symbolp = osym;
2265 		if (idp)
2266 			*idp = id;
2267 		return (symbolp);
2268 	}
2269 	return (NULL);
2270 }
2271 
2272 /*
2273  * Look up a symbol by address in the specified symbol table.
2274  * Adjustment to 'addr' must already have been made for the
2275  * offset of the symbol if this is a dynamic library symbol table.
2276  *
2277  * Use a linear or a binary search depending on whether or not we
2278  * chose to sort the table in optimize_symtab().
2279  */
2280 static GElf_Sym *
2281 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2282 {
2283 	if (_libproc_no_qsort) {
2284 		return (sym_by_addr_linear(symtab, addr, symp, idp));
2285 	} else {
2286 		return (sym_by_addr_binary(symtab, addr, symp, idp));
2287 	}
2288 }
2289 
2290 /*
2291  * Use a binary search to do the work of sym_by_name().
2292  */
2293 static GElf_Sym *
2294 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2295     uint_t *idp)
2296 {
2297 	char *strs = symtab->sym_strs;
2298 	uint_t i, *byname = symtab->sym_byname;
2299 	int min, mid, max, cmp;
2300 
2301 	if (symtab->sym_data_pri == NULL || strs == NULL ||
2302 	    symtab->sym_count == 0)
2303 		return (NULL);
2304 
2305 	min = 0;
2306 	max = symtab->sym_count - 1;
2307 
2308 	while (min <= max) {
2309 		mid = (max + min) / 2;
2310 
2311 		i = byname[mid];
2312 		(void) symtab_getsym(symtab, i, symp);
2313 
2314 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2315 			if (idp != NULL)
2316 				*idp = i;
2317 			return (symp);
2318 		}
2319 
2320 		if (cmp < 0)
2321 			max = mid - 1;
2322 		else
2323 			min = mid + 1;
2324 	}
2325 
2326 	return (NULL);
2327 }
2328 
2329 /*
2330  * Use a linear search to do the work of sym_by_name().
2331  */
2332 static GElf_Sym *
2333 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2334     uint_t *idp)
2335 {
2336 	size_t symn = symtab->sym_symn;
2337 	char *strs = symtab->sym_strs;
2338 	int i;
2339 
2340 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2341 		return (NULL);
2342 
2343 	for (i = 0; i < symn; i++) {
2344 		if (symtab_getsym(symtab, i, symp) &&
2345 		    strcmp(name, strs + symp->st_name) == 0) {
2346 			if (idp)
2347 				*idp = i;
2348 			return (symp);
2349 		}
2350 	}
2351 
2352 	return (NULL);
2353 }
2354 
2355 /*
2356  * Look up a symbol by name in the specified symbol table.
2357  *
2358  * Use a linear or a binary search depending on whether or not we
2359  * chose to sort the table in optimize_symtab().
2360  */
2361 static GElf_Sym *
2362 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2363 {
2364 	if (_libproc_no_qsort) {
2365 		return (sym_by_name_linear(symtab, name, symp, idp));
2366 	} else {
2367 		return (sym_by_name_binary(symtab, name, symp, idp));
2368 	}
2369 }
2370 
2371 /*
2372  * Search the process symbol tables looking for a symbol whose
2373  * value to value+size contain the address specified by addr.
2374  * Return values are:
2375  *	sym_name_buffer containing the symbol name
2376  *	GElf_Sym symbol table entry
2377  *	prsyminfo_t ancillary symbol information
2378  * Returns 0 on success, -1 on failure.
2379  */
2380 static int
2381 i_Pxlookup_by_addr(
2382 	struct ps_prochandle *P,
2383 	int lmresolve,			/* use resolve linker object names */
2384 	uintptr_t addr,			/* process address being sought */
2385 	char *sym_name_buffer,		/* buffer for the symbol name */
2386 	size_t bufsize,			/* size of sym_name_buffer */
2387 	GElf_Sym *symbolp,		/* returned symbol table entry */
2388 	prsyminfo_t *sip)		/* returned symbol info */
2389 {
2390 	GElf_Sym	*symp;
2391 	char		*name;
2392 	GElf_Sym	sym1, *sym1p = NULL;
2393 	GElf_Sym	sym2, *sym2p = NULL;
2394 	char		*name1 = NULL;
2395 	char		*name2 = NULL;
2396 	uint_t		i1;
2397 	uint_t		i2;
2398 	map_info_t	*mptr;
2399 	file_info_t	*fptr;
2400 
2401 	(void) Prd_agent(P);
2402 
2403 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2404 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2405 	    fptr->file_elf == NULL)			/* not an ELF file */
2406 		return (-1);
2407 
2408 	/*
2409 	 * Adjust the address by the load object base address in
2410 	 * case the address turns out to be in a shared library.
2411 	 */
2412 	addr -= fptr->file_dyn_base;
2413 
2414 	/*
2415 	 * Search both symbol tables, symtab first, then dynsym.
2416 	 */
2417 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2418 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2419 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2420 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2421 
2422 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2423 		return (-1);
2424 
2425 	name = (symp == sym1p) ? name1 : name2;
2426 	if (bufsize > 0) {
2427 		(void) strncpy(sym_name_buffer, name, bufsize);
2428 		sym_name_buffer[bufsize - 1] = '\0';
2429 	}
2430 
2431 	*symbolp = *symp;
2432 	if (sip != NULL) {
2433 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2434 		if (lmresolve && (fptr->file_rname != NULL))
2435 			sip->prs_object = fptr->file_rbase;
2436 		else
2437 			sip->prs_object = fptr->file_lbase;
2438 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2439 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2440 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2441 		    fptr->file_lo->rl_lmident;
2442 	}
2443 
2444 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2445 		symbolp->st_value += fptr->file_dyn_base;
2446 
2447 	return (0);
2448 }
2449 
2450 int
2451 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2452     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2453 {
2454 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2455 }
2456 
2457 int
2458 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2459     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2460 {
2461 	return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2462 }
2463 
2464 int
2465 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2466     size_t size, GElf_Sym *symp)
2467 {
2468 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2469 }
2470 
2471 /*
2472  * Search the process symbol tables looking for a symbol whose name matches the
2473  * specified name and whose object and link map optionally match the specified
2474  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2475  * symbol table entry.  On failure, -1 is returned.
2476  */
2477 int
2478 Pxlookup_by_name(
2479 	struct ps_prochandle *P,
2480 	Lmid_t lmid,			/* link map to match, or -1 for any */
2481 	const char *oname,		/* load object name */
2482 	const char *sname,		/* symbol name */
2483 	GElf_Sym *symp,			/* returned symbol table entry */
2484 	prsyminfo_t *sip)		/* returned symbol info */
2485 {
2486 	map_info_t *mptr;
2487 	file_info_t *fptr;
2488 	int cnt;
2489 
2490 	GElf_Sym sym;
2491 	prsyminfo_t si;
2492 	int rv = -1;
2493 	uint_t id;
2494 
2495 	if (oname == PR_OBJ_EVERY) {
2496 		/* create all the file_info_t's for all the mappings */
2497 		(void) Prd_agent(P);
2498 		cnt = P->num_files;
2499 		fptr = list_next(&P->file_head);
2500 	} else {
2501 		cnt = 1;
2502 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2503 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2504 			return (-1);
2505 	}
2506 
2507 	/*
2508 	 * Iterate through the loaded object files and look for the symbol
2509 	 * name in the .symtab and .dynsym of each.  If we encounter a match
2510 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2511 	 * This means that a name such as "puts" will match the puts function
2512 	 * in libc instead of matching the puts PLT entry in the a.out file.
2513 	 */
2514 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2515 		Pbuild_file_symtab(P, fptr);
2516 
2517 		if (fptr->file_elf == NULL)
2518 			continue;
2519 
2520 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2521 		    lmid != fptr->file_lo->rl_lmident)
2522 			continue;
2523 
2524 		if (fptr->file_symtab.sym_data_pri != NULL &&
2525 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2526 			if (sip != NULL) {
2527 				sip->prs_id = id;
2528 				sip->prs_table = PR_SYMTAB;
2529 				sip->prs_object = oname;
2530 				sip->prs_name = sname;
2531 				sip->prs_lmid = fptr->file_lo == NULL ?
2532 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2533 			}
2534 		} else if (fptr->file_dynsym.sym_data_pri != NULL &&
2535 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2536 			if (sip != NULL) {
2537 				sip->prs_id = id;
2538 				sip->prs_table = PR_DYNSYM;
2539 				sip->prs_object = oname;
2540 				sip->prs_name = sname;
2541 				sip->prs_lmid = fptr->file_lo == NULL ?
2542 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2543 			}
2544 		} else {
2545 			continue;
2546 		}
2547 
2548 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2549 			symp->st_value += fptr->file_dyn_base;
2550 
2551 		if (symp->st_shndx != SHN_UNDEF)
2552 			return (0);
2553 
2554 		if (rv != 0) {
2555 			if (sip != NULL)
2556 				si = *sip;
2557 			sym = *symp;
2558 			rv = 0;
2559 		}
2560 	}
2561 
2562 	if (rv == 0) {
2563 		if (sip != NULL)
2564 			*sip = si;
2565 		*symp = sym;
2566 	}
2567 
2568 	return (rv);
2569 }
2570 
2571 /*
2572  * Search the process symbol tables looking for a symbol whose name matches the
2573  * specified name, but without any restriction on the link map id.
2574  */
2575 int
2576 Plookup_by_name(struct ps_prochandle *P, const char *object,
2577 	const char *symbol, GElf_Sym *symp)
2578 {
2579 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2580 }
2581 
2582 /*
2583  * Iterate over the process's address space mappings.
2584  */
2585 static int
2586 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2587     proc_map_f *func, void *cd)
2588 {
2589 	map_info_t *mptr;
2590 	file_info_t *fptr;
2591 	char *object_name;
2592 	int rc = 0;
2593 	int i;
2594 
2595 	/* create all the file_info_t's for all the mappings */
2596 	(void) Prd_agent(P);
2597 
2598 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2599 		if ((fptr = mptr->map_file) == NULL)
2600 			object_name = NULL;
2601 		else if (lmresolve && (fptr->file_rname != NULL))
2602 			object_name = fptr->file_rname;
2603 		else
2604 			object_name = fptr->file_lname;
2605 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2606 			return (rc);
2607 	}
2608 	return (0);
2609 }
2610 
2611 int
2612 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2613 {
2614 	return (i_Pmapping_iter(P, B_FALSE, func, cd));
2615 }
2616 
2617 int
2618 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2619 {
2620 	return (i_Pmapping_iter(P, B_TRUE, func, cd));
2621 }
2622 
2623 /*
2624  * Iterate over the process's mapped objects.
2625  */
2626 static int
2627 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2628     proc_map_f *func, void *cd)
2629 {
2630 	map_info_t *mptr;
2631 	file_info_t *fptr;
2632 	uint_t cnt;
2633 	int rc = 0;
2634 
2635 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
2636 	Pupdate_maps(P);
2637 
2638 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
2639 	    cnt; cnt--, fptr = list_next(fptr)) {
2640 		const char *lname;
2641 
2642 		if (lmresolve && (fptr->file_rname != NULL))
2643 			lname = fptr->file_rname;
2644 		else if (fptr->file_lname != NULL)
2645 			lname = fptr->file_lname;
2646 		else
2647 			lname = "";
2648 
2649 		if ((mptr = fptr->file_map) == NULL)
2650 			continue;
2651 
2652 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2653 			return (rc);
2654 	}
2655 	return (0);
2656 }
2657 
2658 int
2659 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2660 {
2661 	return (i_Pobject_iter(P, B_FALSE, func, cd));
2662 }
2663 
2664 int
2665 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2666 {
2667 	return (i_Pobject_iter(P, B_TRUE, func, cd));
2668 }
2669 
2670 static char *
2671 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2672 	char *buffer, size_t bufsize)
2673 {
2674 	map_info_t *mptr;
2675 	file_info_t *fptr;
2676 
2677 	/* create all the file_info_t's for all the mappings */
2678 	(void) Prd_agent(P);
2679 
2680 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
2681 		return (NULL);
2682 
2683 	if (!lmresolve) {
2684 		if (((fptr = mptr->map_file) == NULL) ||
2685 		    (fptr->file_lname == NULL))
2686 			return (NULL);
2687 		(void) strlcpy(buffer, fptr->file_lname, bufsize);
2688 		return (buffer);
2689 	}
2690 
2691 	/* Check for a cached copy of the resolved path */
2692 	if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2693 		return (buffer);
2694 
2695 	return (NULL);
2696 }
2697 
2698 /*
2699  * Given a virtual address, return the name of the underlying
2700  * mapped object (file) as provided by the dynamic linker.
2701  * Return NULL if we can't find any name information for the object.
2702  */
2703 char *
2704 Pobjname(struct ps_prochandle *P, uintptr_t addr,
2705 	char *buffer, size_t bufsize)
2706 {
2707 	return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2708 }
2709 
2710 /*
2711  * Given a virtual address, try to return a filesystem path to the
2712  * underlying mapped object (file).  If we're in the global zone,
2713  * this path could resolve to an object in another zone.  If we're
2714  * unable return a valid filesystem path, we'll fall back to providing
2715  * the mapped object (file) name provided by the dynamic linker in
2716  * the target process (ie, the object reported by Pobjname()).
2717  */
2718 char *
2719 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2720 	char *buffer, size_t bufsize)
2721 {
2722 	return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2723 }
2724 
2725 /*
2726  * Given a virtual address, return the link map id of the underlying mapped
2727  * object (file), as provided by the dynamic linker.  Return -1 on failure.
2728  */
2729 int
2730 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2731 {
2732 	map_info_t *mptr;
2733 	file_info_t *fptr;
2734 
2735 	/* create all the file_info_t's for all the mappings */
2736 	(void) Prd_agent(P);
2737 
2738 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2739 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2740 		*lmidp = fptr->file_lo->rl_lmident;
2741 		return (0);
2742 	}
2743 
2744 	return (-1);
2745 }
2746 
2747 /*
2748  * Given an object name and optional lmid, iterate over the object's symbols.
2749  * If which == PR_SYMTAB, search the normal symbol table.
2750  * If which == PR_DYNSYM, search the dynamic symbol table.
2751  */
2752 static int
2753 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2754     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2755 {
2756 	GElf_Sym sym;
2757 	GElf_Shdr shdr;
2758 	map_info_t *mptr;
2759 	file_info_t *fptr;
2760 	sym_tbl_t *symtab;
2761 	size_t symn;
2762 	const char *strs;
2763 	size_t strsz;
2764 	prsyminfo_t si;
2765 	int rv;
2766 	uint_t *map, i, count, ndx;
2767 
2768 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2769 		return (-1);
2770 
2771 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2772 	    fptr->file_elf == NULL)			/* not an ELF file */
2773 		return (-1);
2774 
2775 	/*
2776 	 * Search the specified symbol table.
2777 	 */
2778 	switch (which) {
2779 	case PR_SYMTAB:
2780 		symtab = &fptr->file_symtab;
2781 		si.prs_table = PR_SYMTAB;
2782 		break;
2783 	case PR_DYNSYM:
2784 		symtab = &fptr->file_dynsym;
2785 		si.prs_table = PR_DYNSYM;
2786 		break;
2787 	default:
2788 		return (-1);
2789 	}
2790 
2791 	si.prs_object = object_name;
2792 	si.prs_lmid = fptr->file_lo == NULL ?
2793 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
2794 
2795 	symn = symtab->sym_symn;
2796 	strs = symtab->sym_strs;
2797 	strsz = symtab->sym_strsz;
2798 
2799 	switch (order) {
2800 	case PRO_NATURAL:
2801 		map = NULL;
2802 		count = symn;
2803 		break;
2804 	case PRO_BYNAME:
2805 		map = symtab->sym_byname;
2806 		count = symtab->sym_count;
2807 		break;
2808 	case PRO_BYADDR:
2809 		map = symtab->sym_byaddr;
2810 		count = symtab->sym_count;
2811 		break;
2812 	default:
2813 		return (-1);
2814 	}
2815 
2816 	if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2817 		return (-1);
2818 
2819 	rv = 0;
2820 
2821 	for (i = 0; i < count; i++) {
2822 		ndx = map == NULL ? i : map[i];
2823 		if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2824 			uint_t s_bind, s_type, type;
2825 
2826 			if (sym.st_name >= strsz)	/* invalid st_name */
2827 				continue;
2828 
2829 			s_bind = GELF_ST_BIND(sym.st_info);
2830 			s_type = GELF_ST_TYPE(sym.st_info);
2831 
2832 			/*
2833 			 * In case you haven't already guessed, this relies on
2834 			 * the bitmask used in <libproc.h> for encoding symbol
2835 			 * type and binding matching the order of STB and STT
2836 			 * constants in <sys/elf.h>.  ELF can't change without
2837 			 * breaking binary compatibility, so I think this is
2838 			 * reasonably fair game.
2839 			 */
2840 			if (s_bind < STB_NUM && s_type < STT_NUM) {
2841 				type = (1 << (s_type + 8)) | (1 << s_bind);
2842 				if ((type & ~mask) != 0)
2843 					continue;
2844 			} else
2845 				continue; /* Invalid type or binding */
2846 
2847 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2848 				sym.st_value += fptr->file_dyn_base;
2849 
2850 			si.prs_name = strs + sym.st_name;
2851 
2852 			/*
2853 			 * If symbol's type is STT_SECTION, then try to lookup
2854 			 * the name of the corresponding section.
2855 			 */
2856 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2857 			    fptr->file_shstrs != NULL &&
2858 			    gelf_getshdr(elf_getscn(fptr->file_elf,
2859 			    sym.st_shndx), &shdr) != NULL &&
2860 			    shdr.sh_name != 0 &&
2861 			    shdr.sh_name < fptr->file_shstrsz)
2862 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
2863 
2864 			si.prs_id = ndx;
2865 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2866 				break;
2867 		}
2868 	}
2869 
2870 	return (rv);
2871 }
2872 
2873 int
2874 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2875     int which, int mask, proc_xsym_f *func, void *cd)
2876 {
2877 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2878 	    PRO_NATURAL, func, cd));
2879 }
2880 
2881 int
2882 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2883     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2884 {
2885 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2886 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2887 }
2888 
2889 int
2890 Psymbol_iter(struct ps_prochandle *P,
2891     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2892 {
2893 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2894 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2895 }
2896 
2897 int
2898 Psymbol_iter_by_addr(struct ps_prochandle *P,
2899     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2900 {
2901 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2902 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
2903 }
2904 
2905 int
2906 Psymbol_iter_by_name(struct ps_prochandle *P,
2907     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2908 {
2909 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2910 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
2911 }
2912 
2913 /*
2914  * Get the platform string from the core file if we have it;
2915  * just perform the system call for the caller if this is a live process.
2916  */
2917 char *
2918 Pplatform(struct ps_prochandle *P, char *s, size_t n)
2919 {
2920 	if (P->state == PS_IDLE) {
2921 		errno = ENODATA;
2922 		return (NULL);
2923 	}
2924 
2925 	if (P->state == PS_DEAD) {
2926 		if (P->core->core_platform == NULL) {
2927 			errno = ENODATA;
2928 			return (NULL);
2929 		}
2930 		(void) strncpy(s, P->core->core_platform, n - 1);
2931 		s[n - 1] = '\0';
2932 
2933 	} else if (sysinfo(SI_PLATFORM, s, n) == -1)
2934 		return (NULL);
2935 
2936 	return (s);
2937 }
2938 
2939 /*
2940  * Get the uname(2) information from the core file if we have it;
2941  * just perform the system call for the caller if this is a live process.
2942  */
2943 int
2944 Puname(struct ps_prochandle *P, struct utsname *u)
2945 {
2946 	if (P->state == PS_IDLE) {
2947 		errno = ENODATA;
2948 		return (-1);
2949 	}
2950 
2951 	if (P->state == PS_DEAD) {
2952 		if (P->core->core_uts == NULL) {
2953 			errno = ENODATA;
2954 			return (-1);
2955 		}
2956 		(void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
2957 		return (0);
2958 	}
2959 	return (uname(u));
2960 }
2961 
2962 /*
2963  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
2964  * the symbol table heads in the new ps_prochandle.
2965  */
2966 void
2967 Pinitsym(struct ps_prochandle *P)
2968 {
2969 	P->num_files = 0;
2970 	list_link(&P->file_head, NULL);
2971 }
2972 
2973 /*
2974  * Called from Prelease() to destroy the symbol tables.
2975  * Must be called by the client after an exec() in the victim process.
2976  */
2977 void
2978 Preset_maps(struct ps_prochandle *P)
2979 {
2980 	int i;
2981 
2982 	if (P->rap != NULL) {
2983 		rd_delete(P->rap);
2984 		P->rap = NULL;
2985 	}
2986 
2987 	if (P->execname != NULL) {
2988 		free(P->execname);
2989 		P->execname = NULL;
2990 	}
2991 
2992 	if (P->auxv != NULL) {
2993 		free(P->auxv);
2994 		P->auxv = NULL;
2995 		P->nauxv = 0;
2996 	}
2997 
2998 	for (i = 0; i < P->map_count; i++)
2999 		map_info_free(P, &P->mappings[i]);
3000 
3001 	if (P->mappings != NULL) {
3002 		free(P->mappings);
3003 		P->mappings = NULL;
3004 	}
3005 	P->map_count = P->map_alloc = 0;
3006 
3007 	P->info_valid = 0;
3008 }
3009 
3010 typedef struct getenv_data {
3011 	char *buf;
3012 	size_t bufsize;
3013 	const char *search;
3014 	size_t searchlen;
3015 } getenv_data_t;
3016 
3017 /*ARGSUSED*/
3018 static int
3019 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3020     const char *nameval)
3021 {
3022 	getenv_data_t *d = data;
3023 	size_t len;
3024 
3025 	if (nameval == NULL)
3026 		return (0);
3027 
3028 	if (d->searchlen < strlen(nameval) &&
3029 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3030 	    nameval[d->searchlen] == '=') {
3031 		len = MIN(strlen(nameval), d->bufsize - 1);
3032 		(void) strncpy(d->buf, nameval, len);
3033 		d->buf[len] = '\0';
3034 		return (1);
3035 	}
3036 
3037 	return (0);
3038 }
3039 
3040 char *
3041 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3042 {
3043 	getenv_data_t d;
3044 
3045 	d.buf = buf;
3046 	d.bufsize = buflen;
3047 	d.search = name;
3048 	d.searchlen = strlen(name);
3049 
3050 	if (Penv_iter(P, getenv_func, &d) == 1) {
3051 		char *equals = strchr(d.buf, '=');
3052 
3053 		if (equals != NULL) {
3054 			(void) memmove(d.buf, equals + 1,
3055 			    d.buf + buflen - equals - 1);
3056 			d.buf[d.buf + buflen - equals] = '\0';
3057 
3058 			return (buf);
3059 		}
3060 	}
3061 
3062 	return (NULL);
3063 }
3064 
3065 /* number of argument or environment pointers to read all at once */
3066 #define	NARG	100
3067 
3068 int
3069 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3070 {
3071 	const psinfo_t *psp;
3072 	uintptr_t envpoff;
3073 	GElf_Sym sym;
3074 	int ret;
3075 	char *buf, *nameval;
3076 	size_t buflen;
3077 
3078 	int nenv = NARG;
3079 	long envp[NARG];
3080 
3081 	/*
3082 	 * Attempt to find the "_environ" variable in the process.
3083 	 * Failing that, use the original value provided by Ppsinfo().
3084 	 */
3085 	if ((psp = Ppsinfo(P)) == NULL)
3086 		return (-1);
3087 
3088 	envpoff = psp->pr_envp; /* Default if no _environ found */
3089 
3090 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3091 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3092 			if (Pread(P, &envpoff, sizeof (envpoff),
3093 			    sym.st_value) != sizeof (envpoff))
3094 				envpoff = psp->pr_envp;
3095 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3096 			uint32_t envpoff32;
3097 
3098 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3099 			    sym.st_value) != sizeof (envpoff32))
3100 				envpoff = psp->pr_envp;
3101 			else
3102 				envpoff = envpoff32;
3103 		}
3104 	}
3105 
3106 	buflen = 128;
3107 	buf = malloc(buflen);
3108 
3109 	ret = 0;
3110 	for (;;) {
3111 		uintptr_t envoff;
3112 
3113 		if (nenv == NARG) {
3114 			(void) memset(envp, 0, sizeof (envp));
3115 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3116 				if (Pread(P, envp,
3117 				    sizeof (envp), envpoff) <= 0) {
3118 					ret = -1;
3119 					break;
3120 				}
3121 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3122 				uint32_t e32[NARG];
3123 				int i;
3124 
3125 				(void) memset(e32, 0, sizeof (e32));
3126 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3127 					ret = -1;
3128 					break;
3129 				}
3130 				for (i = 0; i < NARG; i++)
3131 					envp[i] = e32[i];
3132 			}
3133 			nenv = 0;
3134 		}
3135 
3136 		if ((envoff = envp[nenv++]) == NULL)
3137 			break;
3138 
3139 		/*
3140 		 * Attempt to read the string from the process.
3141 		 */
3142 again:
3143 		ret = Pread_string(P, buf, buflen, envoff);
3144 
3145 		if (ret <= 0) {
3146 			nameval = NULL;
3147 		} else if (ret == buflen - 1) {
3148 			free(buf);
3149 			/*
3150 			 * Bail if we have a corrupted environment
3151 			 */
3152 			if (buflen >= ARG_MAX)
3153 				return (-1);
3154 			buflen *= 2;
3155 			buf = malloc(buflen);
3156 			goto again;
3157 		} else {
3158 			nameval = buf;
3159 		}
3160 
3161 		if ((ret = func(data, P, envoff, nameval)) != 0)
3162 			break;
3163 
3164 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3165 	}
3166 
3167 	free(buf);
3168 
3169 	return (ret);
3170 }
3171