xref: /titanic_44/usr/src/lib/libm/common/complex/ctanh.c (revision 5fd03bc0f2e00e7ba02316c2e08f45d52aab15db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __ctanh = ctanh
31 
32 /* INDENT OFF */
33 /*
34  * dcomplex ctanh(dcomplex z);
35  *
36  *            tanh x  + i tan y      sinh 2x  +  i sin 2y
37  * ctanh z = --------------------- = --------------------
38  *           1 + i tanh(x)tan(y)       cosh 2x + cos 2y
39  *
40  * For |x| >= prec/2 (14,28,34,60 for single, double, double extended, quad),
41  * we use
42  *
43  *                         1   2x                              2 sin 2y
44  *    cosh 2x = sinh 2x = --- e    and hence  ctanh z = 1 + i -----------;
45  *                         2                                       2x
46  *                                                                e
47  *
48  * otherwise, to avoid cancellation, for |x| < prec/2,
49  *                              2x     2
50  *                            (e   - 1)        2       2
51  *    cosh 2x + cos 2y = 1 + ------------ + cos y - sin y
52  *                                 2x
53  *                              2 e
54  *
55  *                        1    2x     2  -2x         2
56  *                     = --- (e   - 1)  e     + 2 cos y
57  *                        2
58  * and
59  *
60  *                  [            2x      ]
61  *               1  [  2x       e   - 1  ]
62  *    sinh 2x = --- [ e  - 1 + --------- ]
63  *               2  [               2x   ]
64  *                  [              e     ]
65  *                                             2x
66  * Implementation notes:  let t = expm1(2x) = e   - 1, then
67  *
68  *                     1    [  t*t         2  ]              1    [      t  ]
69  * cosh 2x + cos 2y = --- * [ ----- + 4 cos y ];  sinh 2x = --- * [ t + --- ]
70  *                     2    [  t+1            ]              2    [     t+1 ]
71  *
72  * Hence,
73  *
74  *
75  *                        t*t+2t                  [4(t+1)(cos y)]*(sin y)
76  *    ctanh z = --------------------------- + i --------------------------
77  *               t*t+[4(t+1)(cos y)](cos y)     t*t+[4(t+1)(cos y)](cos y)
78  *
79  * EXCEPTION (conform to ISO/IEC 9899:1999(E)):
80  *      ctanh(0,0)=(0,0)
81  *      ctanh(x,inf) = (NaN,NaN) for finite x
82  *      ctanh(x,NaN) = (NaN,NaN) for finite x
83  *      ctanh(inf,y) = 1+ i*0*sin(2y) for positive-signed finite y
84  *      ctanh(inf,inf) = (1, +-0)
85  *      ctanh(inf,NaN) = (1, +-0)
86  *      ctanh(NaN,0) = (NaN,0)
87  *      ctanh(NaN,y) = (NaN,NaN) for non-zero y
88  *      ctanh(NaN,NaN) = (NaN,NaN)
89  */
90 /* INDENT ON */
91 
92 #include "libm.h"		/* exp/expm1/fabs/sin/tanh/sincos */
93 #include "complex_wrapper.h"
94 
95 static const double four = 4.0, two = 2.0, one = 1.0, zero = 0.0;
96 
97 dcomplex
98 ctanh(dcomplex z) {
99 	double t, r, v, u, x, y, S, C;
100 	int hx, ix, lx, hy, iy, ly;
101 	dcomplex ans;
102 
103 	x = D_RE(z);
104 	y = D_IM(z);
105 	hx = HI_WORD(x);
106 	lx = LO_WORD(x);
107 	ix = hx & 0x7fffffff;
108 	hy = HI_WORD(y);
109 	ly = LO_WORD(y);
110 	iy = hy & 0x7fffffff;
111 	x = fabs(x);
112 	y = fabs(y);
113 
114 	if ((iy | ly) == 0) {	/* ctanh(x,0) = (x,0) for x = 0 or NaN */
115 		D_RE(ans) = tanh(x);
116 		D_IM(ans) = zero;
117 	} else if (iy >= 0x7ff00000) {	/* y is inf or NaN */
118 		if (ix < 0x7ff00000)	/* catanh(finite x,inf/nan) is nan */
119 			D_RE(ans) = D_IM(ans) = y - y;
120 		else if (((ix - 0x7ff00000) | lx) == 0) {	/* x is inf */
121 			D_RE(ans) = one;
122 			D_IM(ans) = zero;
123 		} else {
124 			D_RE(ans) = x + y;
125 			D_IM(ans) = y - y;
126 		}
127 	} else if (ix >= 0x403c0000) {
128 		/*
129 		 * |x| > 28 = prec/2 (14,28,34,60)
130 		 * ctanh z ~ 1 + i (sin2y)/(exp(2x))
131 		 */
132 		D_RE(ans) = one;
133 		if (iy < 0x7fe00000)	/* t = sin(2y) */
134 			S = sin(y + y);
135 		else {
136 			(void) sincos(y, &S, &C);
137 			S = (S + S) * C;
138 		}
139 		if (ix >= 0x7fe00000) {	/* |x| > max/2 */
140 			if (ix >= 0x7ff00000) {	/* |x| is inf or NaN */
141 				if (((ix - 0x7ff00000) | lx) != 0)
142 					D_RE(ans) = D_IM(ans) = x + y;
143 								/* x is NaN */
144 				else
145 					D_IM(ans) = zero * S;	/* x is inf */
146 			} else
147 				D_IM(ans) = S * exp(-x);	/* underflow */
148 		} else
149 			D_IM(ans) = (S + S) * exp(-(x + x));
150 							/* 2 sin 2y / exp(2x) */
151 	} else {
152 		/* INDENT OFF */
153 		/*
154 		 *                        t*t+2t
155 		 *    ctanh z = --------------------------- +
156 		 *               t*t+[4(t+1)(cos y)](cos y)
157 		 *
158 		 *                  [4(t+1)(cos y)]*(sin y)
159 		 *              i --------------------------
160 		 *                t*t+[4(t+1)(cos y)](cos y)
161 		 */
162 		/* INDENT ON */
163 		(void) sincos(y, &S, &C);
164 		t = expm1(x + x);
165 		r = (four * C) * (t + one);
166 		u = t * t;
167 		v = one / (u + r * C);
168 		D_RE(ans) = (u + two * t) * v;
169 		D_IM(ans) = (r * S) * v;
170 	}
171 	if (hx < 0)
172 		D_RE(ans) = -D_RE(ans);
173 	if (hy < 0)
174 		D_IM(ans) = -D_IM(ans);
175 	return (ans);
176 }
177