125c28e83SPiotr Jasiukajtis /*
225c28e83SPiotr Jasiukajtis * CDDL HEADER START
325c28e83SPiotr Jasiukajtis *
425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the
525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License").
625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License.
725c28e83SPiotr Jasiukajtis *
825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing.
1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions
1125c28e83SPiotr Jasiukajtis * and limitations under the License.
1225c28e83SPiotr Jasiukajtis *
1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each
1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the
1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying
1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner]
1825c28e83SPiotr Jasiukajtis *
1925c28e83SPiotr Jasiukajtis * CDDL HEADER END
2025c28e83SPiotr Jasiukajtis */
2125c28e83SPiotr Jasiukajtis
2225c28e83SPiotr Jasiukajtis /*
2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
2425c28e83SPiotr Jasiukajtis */
2525c28e83SPiotr Jasiukajtis /*
2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
2725c28e83SPiotr Jasiukajtis * Use is subject to license terms.
2825c28e83SPiotr Jasiukajtis */
2925c28e83SPiotr Jasiukajtis
30*ddc0e0b5SRichard Lowe #pragma weak __csqrt = csqrt
3125c28e83SPiotr Jasiukajtis
3225c28e83SPiotr Jasiukajtis /* INDENT OFF */
3325c28e83SPiotr Jasiukajtis /*
3425c28e83SPiotr Jasiukajtis * dcomplex csqrt(dcomplex z);
3525c28e83SPiotr Jasiukajtis *
3625c28e83SPiotr Jasiukajtis * 2 2 2
3725c28e83SPiotr Jasiukajtis * Let w=r+i*s = sqrt(x+iy). Then (r + i s) = r - s + i 2sr = x + i y.
3825c28e83SPiotr Jasiukajtis *
3925c28e83SPiotr Jasiukajtis * Hence x = r*r-s*s, y = 2sr.
4025c28e83SPiotr Jasiukajtis *
4125c28e83SPiotr Jasiukajtis * Note that x*x+y*y = (s*s+r*r)**2. Thus, we have
4225c28e83SPiotr Jasiukajtis * ________
4325c28e83SPiotr Jasiukajtis * 2 2 / 2 2
4425c28e83SPiotr Jasiukajtis * (1) r + s = \/ x + y ,
4525c28e83SPiotr Jasiukajtis *
4625c28e83SPiotr Jasiukajtis * 2 2
4725c28e83SPiotr Jasiukajtis * (2) r - s = x
4825c28e83SPiotr Jasiukajtis *
4925c28e83SPiotr Jasiukajtis * (3) 2sr = y.
5025c28e83SPiotr Jasiukajtis *
5125c28e83SPiotr Jasiukajtis * Perform (1)-(2) and (1)+(2), we obtain
5225c28e83SPiotr Jasiukajtis *
5325c28e83SPiotr Jasiukajtis * 2
5425c28e83SPiotr Jasiukajtis * (4) 2 r = hypot(x,y)+x,
5525c28e83SPiotr Jasiukajtis *
5625c28e83SPiotr Jasiukajtis * 2
5725c28e83SPiotr Jasiukajtis * (5) 2*s = hypot(x,y)-x
5825c28e83SPiotr Jasiukajtis * ________
5925c28e83SPiotr Jasiukajtis * / 2 2
6025c28e83SPiotr Jasiukajtis * where hypot(x,y) = \/ x + y .
6125c28e83SPiotr Jasiukajtis *
6225c28e83SPiotr Jasiukajtis * In order to avoid numerical cancellation, we use formula (4) for
6325c28e83SPiotr Jasiukajtis * positive x, and (5) for negative x. The other component is then
6425c28e83SPiotr Jasiukajtis * computed by formula (3).
6525c28e83SPiotr Jasiukajtis *
6625c28e83SPiotr Jasiukajtis *
6725c28e83SPiotr Jasiukajtis * ALGORITHM
6825c28e83SPiotr Jasiukajtis * ------------------
6925c28e83SPiotr Jasiukajtis *
7025c28e83SPiotr Jasiukajtis * (assume x and y are of medium size, i.e., no over/underflow in squaring)
7125c28e83SPiotr Jasiukajtis *
7225c28e83SPiotr Jasiukajtis * If x >=0 then
7325c28e83SPiotr Jasiukajtis * ________
7425c28e83SPiotr Jasiukajtis * / 2 2
7525c28e83SPiotr Jasiukajtis * 2 \/ x + y + x y
7625c28e83SPiotr Jasiukajtis * r = ---------------------, s = -------; (6)
7725c28e83SPiotr Jasiukajtis * 2 2 r
7825c28e83SPiotr Jasiukajtis *
7925c28e83SPiotr Jasiukajtis * (note that we choose sign(s) = sign(y) to force r >=0).
8025c28e83SPiotr Jasiukajtis * Otherwise,
8125c28e83SPiotr Jasiukajtis * ________
8225c28e83SPiotr Jasiukajtis * / 2 2
8325c28e83SPiotr Jasiukajtis * 2 \/ x + y - x y
8425c28e83SPiotr Jasiukajtis * s = ---------------------, r = -------; (7)
8525c28e83SPiotr Jasiukajtis * 2 2 s
8625c28e83SPiotr Jasiukajtis *
8725c28e83SPiotr Jasiukajtis * EXCEPTION:
8825c28e83SPiotr Jasiukajtis *
8925c28e83SPiotr Jasiukajtis * One may use the polar coordinate of a complex number to justify the
9025c28e83SPiotr Jasiukajtis * following exception cases:
9125c28e83SPiotr Jasiukajtis *
9225c28e83SPiotr Jasiukajtis * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)):
9325c28e83SPiotr Jasiukajtis * csqrt(+-0+ i 0 ) = 0 + i 0
9425c28e83SPiotr Jasiukajtis * csqrt( x + i inf ) = inf + i inf for all x (including NaN)
9525c28e83SPiotr Jasiukajtis * csqrt( x + i NaN ) = NaN + i NaN with invalid for finite x
9625c28e83SPiotr Jasiukajtis * csqrt(-inf+ iy ) = 0 + i inf for finite positive-signed y
9725c28e83SPiotr Jasiukajtis * csqrt(+inf+ iy ) = inf + i 0 for finite positive-signed y
9825c28e83SPiotr Jasiukajtis * csqrt(-inf+ i NaN) = NaN +-i inf
9925c28e83SPiotr Jasiukajtis * csqrt(+inf+ i NaN) = inf + i NaN
10025c28e83SPiotr Jasiukajtis * csqrt(NaN + i y ) = NaN + i NaN for finite y
10125c28e83SPiotr Jasiukajtis * csqrt(NaN + i NaN) = NaN + i NaN
10225c28e83SPiotr Jasiukajtis */
10325c28e83SPiotr Jasiukajtis /* INDENT ON */
10425c28e83SPiotr Jasiukajtis
10525c28e83SPiotr Jasiukajtis #include "libm.h" /* fabs/sqrt */
10625c28e83SPiotr Jasiukajtis #include "complex_wrapper.h"
10725c28e83SPiotr Jasiukajtis
10825c28e83SPiotr Jasiukajtis /* INDENT OFF */
10925c28e83SPiotr Jasiukajtis static const double
11025c28e83SPiotr Jasiukajtis two300 = 2.03703597633448608627e+90,
11125c28e83SPiotr Jasiukajtis twom300 = 4.90909346529772655310e-91,
11225c28e83SPiotr Jasiukajtis two599 = 2.07475778444049647926e+180,
11325c28e83SPiotr Jasiukajtis twom601 = 1.20495993255144205887e-181,
11425c28e83SPiotr Jasiukajtis two = 2.0,
11525c28e83SPiotr Jasiukajtis zero = 0.0,
11625c28e83SPiotr Jasiukajtis half = 0.5;
11725c28e83SPiotr Jasiukajtis /* INDENT ON */
11825c28e83SPiotr Jasiukajtis
11925c28e83SPiotr Jasiukajtis dcomplex
csqrt(dcomplex z)12025c28e83SPiotr Jasiukajtis csqrt(dcomplex z) {
12125c28e83SPiotr Jasiukajtis dcomplex ans;
12225c28e83SPiotr Jasiukajtis double x, y, t, ax, ay;
12325c28e83SPiotr Jasiukajtis int n, ix, iy, hx, hy, lx, ly;
12425c28e83SPiotr Jasiukajtis
12525c28e83SPiotr Jasiukajtis x = D_RE(z);
12625c28e83SPiotr Jasiukajtis y = D_IM(z);
12725c28e83SPiotr Jasiukajtis hx = HI_WORD(x);
12825c28e83SPiotr Jasiukajtis lx = LO_WORD(x);
12925c28e83SPiotr Jasiukajtis hy = HI_WORD(y);
13025c28e83SPiotr Jasiukajtis ly = LO_WORD(y);
13125c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff;
13225c28e83SPiotr Jasiukajtis iy = hy & 0x7fffffff;
13325c28e83SPiotr Jasiukajtis ay = fabs(y);
13425c28e83SPiotr Jasiukajtis ax = fabs(x);
13525c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000 || iy >= 0x7ff00000) {
13625c28e83SPiotr Jasiukajtis /* x or y is Inf or NaN */
13725c28e83SPiotr Jasiukajtis if (ISINF(iy, ly))
13825c28e83SPiotr Jasiukajtis D_IM(ans) = D_RE(ans) = ay;
13925c28e83SPiotr Jasiukajtis else if (ISINF(ix, lx)) {
14025c28e83SPiotr Jasiukajtis if (hx > 0) {
14125c28e83SPiotr Jasiukajtis D_RE(ans) = ax;
14225c28e83SPiotr Jasiukajtis D_IM(ans) = ay * zero;
14325c28e83SPiotr Jasiukajtis } else {
14425c28e83SPiotr Jasiukajtis D_RE(ans) = ay * zero;
14525c28e83SPiotr Jasiukajtis D_IM(ans) = ax;
14625c28e83SPiotr Jasiukajtis }
14725c28e83SPiotr Jasiukajtis } else
14825c28e83SPiotr Jasiukajtis D_IM(ans) = D_RE(ans) = ax + ay;
14925c28e83SPiotr Jasiukajtis } else if ((iy | ly) == 0) { /* y = 0 */
15025c28e83SPiotr Jasiukajtis if (hx >= 0) {
15125c28e83SPiotr Jasiukajtis D_RE(ans) = sqrt(ax);
15225c28e83SPiotr Jasiukajtis D_IM(ans) = zero;
15325c28e83SPiotr Jasiukajtis } else {
15425c28e83SPiotr Jasiukajtis D_IM(ans) = sqrt(ax);
15525c28e83SPiotr Jasiukajtis D_RE(ans) = zero;
15625c28e83SPiotr Jasiukajtis }
15725c28e83SPiotr Jasiukajtis } else if (ix >= iy) {
15825c28e83SPiotr Jasiukajtis n = (ix - iy) >> 20;
15925c28e83SPiotr Jasiukajtis if (n >= 30) { /* x >> y or y=0 */
16025c28e83SPiotr Jasiukajtis t = sqrt(ax);
16125c28e83SPiotr Jasiukajtis } else if (ix >= 0x5f300000) { /* x > 2**500 */
16225c28e83SPiotr Jasiukajtis ax *= twom601;
16325c28e83SPiotr Jasiukajtis y *= twom601;
16425c28e83SPiotr Jasiukajtis t = two300 * sqrt(ax + sqrt(ax * ax + y * y));
16525c28e83SPiotr Jasiukajtis } else if (iy < 0x20b00000) { /* y < 2**-500 */
16625c28e83SPiotr Jasiukajtis ax *= two599;
16725c28e83SPiotr Jasiukajtis y *= two599;
16825c28e83SPiotr Jasiukajtis t = twom300 * sqrt(ax + sqrt(ax * ax + y * y));
16925c28e83SPiotr Jasiukajtis } else
17025c28e83SPiotr Jasiukajtis t = sqrt(half * (ax + sqrt(ax * ax + ay * ay)));
17125c28e83SPiotr Jasiukajtis if (hx >= 0) {
17225c28e83SPiotr Jasiukajtis D_RE(ans) = t;
17325c28e83SPiotr Jasiukajtis D_IM(ans) = ay / (t + t);
17425c28e83SPiotr Jasiukajtis } else {
17525c28e83SPiotr Jasiukajtis D_IM(ans) = t;
17625c28e83SPiotr Jasiukajtis D_RE(ans) = ay / (t + t);
17725c28e83SPiotr Jasiukajtis }
17825c28e83SPiotr Jasiukajtis } else {
17925c28e83SPiotr Jasiukajtis n = (iy - ix) >> 20;
18025c28e83SPiotr Jasiukajtis if (n >= 30) { /* y >> x */
18125c28e83SPiotr Jasiukajtis if (n >= 60)
18225c28e83SPiotr Jasiukajtis t = sqrt(half * ay);
18325c28e83SPiotr Jasiukajtis else if (iy >= 0x7fe00000)
18425c28e83SPiotr Jasiukajtis t = sqrt(half * ay + half * ax);
18525c28e83SPiotr Jasiukajtis else if (ix <= 0x00100000)
18625c28e83SPiotr Jasiukajtis t = half * sqrt(two * (ay + ax));
18725c28e83SPiotr Jasiukajtis else
18825c28e83SPiotr Jasiukajtis t = sqrt(half * (ay + ax));
18925c28e83SPiotr Jasiukajtis } else if (iy >= 0x5f300000) { /* y > 2**500 */
19025c28e83SPiotr Jasiukajtis ax *= twom601;
19125c28e83SPiotr Jasiukajtis y *= twom601;
19225c28e83SPiotr Jasiukajtis t = two300 * sqrt(ax + sqrt(ax * ax + y * y));
19325c28e83SPiotr Jasiukajtis } else if (ix < 0x20b00000) { /* x < 2**-500 */
19425c28e83SPiotr Jasiukajtis ax *= two599;
19525c28e83SPiotr Jasiukajtis y *= two599;
19625c28e83SPiotr Jasiukajtis t = twom300 * sqrt(ax + sqrt(ax * ax + y * y));
19725c28e83SPiotr Jasiukajtis } else
19825c28e83SPiotr Jasiukajtis t = sqrt(half * (ax + sqrt(ax * ax + ay * ay)));
19925c28e83SPiotr Jasiukajtis if (hx >= 0) {
20025c28e83SPiotr Jasiukajtis D_RE(ans) = t;
20125c28e83SPiotr Jasiukajtis D_IM(ans) = ay / (t + t);
20225c28e83SPiotr Jasiukajtis } else {
20325c28e83SPiotr Jasiukajtis D_IM(ans) = t;
20425c28e83SPiotr Jasiukajtis D_RE(ans) = ay / (t + t);
20525c28e83SPiotr Jasiukajtis }
20625c28e83SPiotr Jasiukajtis }
20725c28e83SPiotr Jasiukajtis if (hy < 0)
20825c28e83SPiotr Jasiukajtis D_IM(ans) = -D_IM(ans);
20925c28e83SPiotr Jasiukajtis return (ans);
21025c28e83SPiotr Jasiukajtis }
211