xref: /titanic_44/usr/src/lib/libm/common/complex/csinh.c (revision 1db2880b3a411e3c56e50c7dc42d3b137fcc4e48)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __csinh = csinh
31 
32 /* INDENT OFF */
33 /*
34  * dcomplex csinh(dcomplex z);
35  *
36  *             z      -z       x                      -x
37  *            e   -  e        e  (cos(y)+i*sin(y)) - e  (cos(-y)+i*sin(-y))
38  * sinh z = -------------- =  ---------------------------------------------
39  *                2                                2
40  *                     x    -x                x    -x
41  *           cos(y) ( e  - e  )  + i*sin(y) (e  + e   )
42  *        = --------------------------------------------
43  *                               2
44  *
45  *        =  cos(y) sinh(x)  + i sin(y) cosh(x)
46  *
47  * Implementation Note
48  * -------------------
49  *
50  *             |x|    -|x|   |x|        -2|x|       -2|x|    -P-4
51  * Note that  e   +- e    = e   ( 1 +- e     ). If e      < 2     , where
52  *
53  * P stands for the number of significant bits of the machine precision,
54  *                                     |x|
55  * then the result will be rounded to e   . Therefore, we have
56  *
57  *                 z
58  *                e
59  *     sinh z = -----  if |x| >= (P/2 + 2)*ln2
60  *                2
61  *
62  * EXCEPTION (conform to ISO/IEC 9899:1999(E)):
63  *      csinh(0,0)=(0,0)
64  *      csinh(0,inf)=(+-0,NaN)
65  *      csinh(0,NaN)=(+-0,NaN)
66  *      csinh(x,inf) = (NaN,NaN) for finite positive x
67  *      csinh(x,NaN) = (NaN,NaN) for finite non-zero x
68  *      csinh(inf,0) = (inf, 0)
69  *      csinh(inf,y) = (inf*cos(y),inf*sin(y)) for positive finite y
70  *      csinh(inf,inf) = (+-inf,NaN)
71  *      csinh(inf,NaN) = (+-inf,NaN)
72  *      csinh(NaN,0) = (NaN,0)
73  *      csinh(NaN,y) = (NaN,NaN) for non-zero y
74  *      csinh(NaN,NaN) = (NaN,NaN)
75  */
76 /* INDENT ON */
77 
78 #include "libm.h"		/* cosh/exp/fabs/scalbn/sinh/sincos/__k_cexp */
79 #include "complex_wrapper.h"
80 
81 dcomplex
82 csinh(dcomplex z) {
83 	double t, x, y, S, C;
84 	int hx, ix, lx, hy, iy, ly, n;
85 	dcomplex ans;
86 
87 	x = D_RE(z);
88 	y = D_IM(z);
89 	hx = HI_WORD(x);
90 	lx = LO_WORD(x);
91 	ix = hx & 0x7fffffff;
92 	hy = HI_WORD(y);
93 	ly = LO_WORD(y);
94 	iy = hy & 0x7fffffff;
95 	x = fabs(x);
96 	y = fabs(y);
97 
98 	(void) sincos(y, &S, &C);
99 	if (ix >= 0x403c0000) {	/* |x| > 28 = prec/2 (14,28,34,60) */
100 		if (ix >= 0x40862E42) {	/* |x| > 709.78... ~ log(2**1024) */
101 			if (ix >= 0x7ff00000) {	/* |x| is inf or NaN */
102 				if ((iy | ly) == 0) {
103 					D_RE(ans) = x;
104 					D_IM(ans) = y;
105 				} else if (iy >= 0x7ff00000) {
106 					D_RE(ans) = x;
107 					D_IM(ans) = x - y;
108 				} else {
109 					D_RE(ans) = C * x;
110 					D_IM(ans) = S * x;
111 				}
112 			} else {
113 				/* return exp(x)=t*2**n */
114 				t = __k_cexp(x, &n);
115 				D_RE(ans) = scalbn(C * t, n - 1);
116 				D_IM(ans) = scalbn(S * t, n - 1);
117 			}
118 		} else {
119 			t = exp(x) * 0.5;
120 			D_RE(ans) = C * t;
121 			D_IM(ans) = S * t;
122 		}
123 	} else {
124 		if ((ix | lx) == 0) {	/* x = 0, return (0,S) */
125 			D_RE(ans) = 0.0;
126 			D_IM(ans) = S;
127 		} else {
128 			D_RE(ans) = C * sinh(x);
129 			D_IM(ans) = S * cosh(x);
130 		}
131 	}
132 	if (hx < 0)
133 		D_RE(ans) = -D_RE(ans);
134 	if (hy < 0)
135 		D_IM(ans) = -D_IM(ans);
136 	return (ans);
137 }
138