xref: /titanic_44/usr/src/lib/libm/common/Q/jnl.c (revision 48a4016cae8aa2b8b3d8b258eb22e0c781912bed)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __jnl = jnl
31 #pragma weak __ynl = ynl
32 
33 /*
34  * floating point Bessel's function of the 1st and 2nd kind
35  * of order n: jn(n,x),yn(n,x);
36  *
37  * Special cases:
38  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
39  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
40  * Note 2. About jn(n,x), yn(n,x)
41  *	For n=0, j0(x) is called,
42  *	for n=1, j1(x) is called,
43  *	for n<x, forward recursion us used starting
44  *	from values of j0(x) and j1(x).
45  *	for n>x, a continued fraction approximation to
46  *	j(n,x)/j(n-1,x) is evaluated and then backward
47  *	recursion is used starting from a supposed value
48  *	for j(n,x). The resulting value of j(0,x) is
49  *	compared with the actual value to correct the
50  *	supposed value of j(n,x).
51  *
52  *	yn(n,x) is similar in all respects, except
53  *	that forward recursion is used for all
54  *	values of n>1.
55  *
56  */
57 
58 #include "libm.h"
59 #include "longdouble.h"
60 #include <float.h>	/* LDBL_MAX */
61 
62 #define	GENERIC long double
63 
64 static const GENERIC
65 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
66 two  = 2.0L,
67 zero = 0.0L,
68 one  = 1.0L;
69 
70 GENERIC
71 jnl(n, x) int n; GENERIC x; {
72 	int i, sgn;
73 	GENERIC a, b, temp, z, w;
74 
75 	/*
76 	 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
77 	 * Thus, J(-n,x) = J(n,-x)
78 	 */
79 	if (n < 0) {
80 		n = -n;
81 		x = -x;
82 	}
83 	if (n == 0)
84 		return (j0l(x));
85 	if (n == 1)
86 		return (j1l(x));
87 	if (x != x)
88 		return (x+x);
89 	if ((n&1) == 0)
90 		sgn = 0; 			/* even n */
91 	else
92 		sgn = signbitl(x);	/* old n  */
93 	x = fabsl(x);
94 	if (x == zero || !finitel(x)) b = zero;
95 	else if ((GENERIC)n <= x) {
96 					/*
97 					 * Safe to use
98 					 * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
99 					 */
100 	    if (x > 1.0e91L) {
101 				/*
102 				 * x >> n**2
103 				 *  Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
104 				 *   Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
105 				 *   Let s=sin(x), c=cos(x),
106 				 *	xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
107 				 *
108 				 *	   n	sin(xn)*sqt2	cos(xn)*sqt2
109 				 *	----------------------------------
110 				 *	   0	 s-c		 c+s
111 				 *	   1	-s-c 		-c+s
112 				 *	   2	-s+c		-c-s
113 				 *	   3	 s+c		 c-s
114 				 */
115 		switch (n&3) {
116 		    case 0: temp =  cosl(x)+sinl(x); break;
117 		    case 1: temp = -cosl(x)+sinl(x); break;
118 		    case 2: temp = -cosl(x)-sinl(x); break;
119 		    case 3: temp =  cosl(x)-sinl(x); break;
120 		}
121 		b = invsqrtpi*temp/sqrtl(x);
122 	    } else {
123 			a = j0l(x);
124 			b = j1l(x);
125 			for (i = 1; i < n; i++) {
126 		    temp = b;
127 		    b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
128 		    a = temp;
129 			}
130 	    }
131 	} else {
132 	    if (x < 1e-17L) {	/* use J(n,x) = 1/n!*(x/2)^n */
133 		b = powl(0.5L*x, (GENERIC)n);
134 		if (b != zero) {
135 		    for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
136 		    b = b/a;
137 		}
138 	    } else {
139 		/* use backward recurrence */
140 		/*
141 		 * 			x      x^2      x^2
142 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
143 		 *			2n  - 2(n+1) - 2(n+2)
144 		 *
145 		 * 			1      1        1
146 		 *  (for large x)   =  ----  ------   ------   .....
147 		 *			2n   2(n+1)   2(n+2)
148 		 *			-- - ------ - ------ -
149 		 *			 x     x         x
150 		 *
151 		 * Let w = 2n/x and h=2/x, then the above quotient
152 		 * is equal to the continued fraction:
153 		 *		    1
154 		 *	= -----------------------
155 		 *		       1
156 		 *	   w - -----------------
157 		 *			  1
158 		 * 	        w+h - ---------
159 		 *		       w+2h - ...
160 		 *
161 		 * To determine how many terms needed, let
162 		 * Q(0) = w, Q(1) = w(w+h) - 1,
163 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
164 		 * When Q(k) > 1e4	good for single
165 		 * When Q(k) > 1e9	good for double
166 		 * When Q(k) > 1e17	good for quaduple
167 		 */
168 	    /* determin k */
169 		GENERIC t, v;
170 		double q0, q1, h, tmp; int k, m;
171 		w  = (n+n)/(double)x; h = 2.0/(double)x;
172 		q0 = w;  z = w+h; q1 = w*z - 1.0; k = 1;
173 		while (q1 < 1.0e17) {
174 			k += 1; z += h;
175 			tmp = z*q1 - q0;
176 			q0 = q1;
177 			q1 = tmp;
178 		}
179 		m = n+n;
180 		for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
181 		a = t;
182 		b = one;
183                 /*
184 		 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
185                  * hence, if n*(log(2n/x)) > ...
186                  *  single 8.8722839355e+01
187                  *  double 7.09782712893383973096e+02
188                  *  long double 1.1356523406294143949491931077970765006170e+04
189                  *  then recurrent value may overflow and the result is
190                  *  likely underflow to zero
191                  */
192 		tmp = n;
193 		v = two/x;
194 		tmp = tmp*logl(fabsl(v*tmp));
195 		if (tmp < 1.1356523406294143949491931077970765e+04L) {
196 				for (i = n-1; i > 0; i--) {
197 		        temp = b;
198 		        b = ((i+i)/x)*b - a;
199 		        a = temp;
200 	     	    }
201 		} else {
202 				for (i = n-1; i > 0; i--) {
203 		        temp = b;
204 		        b = ((i+i)/x)*b - a;
205 		        a = temp;
206 			if (b > 1e1000L) {
207                             a /= b;
208                             t /= b;
209                             b  = 1.0;
210                         }
211 	     	    }
212 		}
213 	    	b = (t*j0l(x)/b);
214 	    }
215 	}
216 	if (sgn == 1)
217 		return (-b);
218 	else
219 		return (b);
220 }
221 
222 GENERIC ynl(n, x)
223 int n; GENERIC x; {
224 	int i;
225 	int sign;
226 	GENERIC a, b, temp;
227 
228 	if (x != x)
229 		return (x+x);
230 	if (x <= zero) {
231 		if (x == zero)
232 			return (-one/zero);
233 		else
234 			return (zero/zero);
235 	}
236 	sign = 1;
237 	if (n < 0) {
238 		n = -n;
239 		if ((n&1) == 1) sign = -1;
240 	}
241 	if (n == 0)
242 		return (y0l(x));
243 	if (n == 1)
244 		return (sign*y1l(x));
245 	if (!finitel(x))
246 		return (zero);
247 
248 	if (x > 1.0e91L) {	/* x >> n**2
249 				    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250 				    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
251 				    Let s = sin(x), c = cos(x),
252 					xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
253 
254 					   n	sin(xn)*sqt2	cos(xn)*sqt2
255 					----------------------------------
256 					   0	 s-c		 c+s
257 					   1	-s-c 		-c+s
258 					   2	-s+c		-c-s
259 					   3	 s+c		 c-s
260 				 */
261 		switch (n&3) {
262 		    case 0: temp =  sinl(x)-cosl(x); break;
263 		    case 1: temp = -sinl(x)-cosl(x); break;
264 		    case 2: temp = -sinl(x)+cosl(x); break;
265 		    case 3: temp =  sinl(x)+cosl(x); break;
266 		}
267 		b = invsqrtpi*temp/sqrtl(x);
268 	} else {
269 		a = y0l(x);
270 		b = y1l(x);
271 		/*
272 		 * fix 1262058 and take care of non-default rounding
273 		 */
274 		for (i = 1; i < n; i++) {
275 			temp = b;
276 			b *= (GENERIC) (i + i) / x;
277 			if (b <= -LDBL_MAX)
278 				break;
279 			b -= a;
280 			a = temp;
281 		}
282 	}
283 	if (sign > 0)
284 		return (b);
285 	else
286 		return (-b);
287 }
288