xref: /titanic_44/usr/src/lib/libm/common/Q/atanl.c (revision 5fd03bc0f2e00e7ba02316c2e08f45d52aab15db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __atanl = atanl
31 
32 /*
33  * atanl(x)
34  * Table look-up algorithm
35  * By K.C. Ng, March 9, 1989
36  *
37  * Algorithm.
38  *
39  * The algorithm is based on atan(x)=atan(y)+atan((x-y)/(1+x*y)).
40  * We use poly1(x) to approximate atan(x) for x in [0,1/8] with
41  * error (relative)
42  * 	|(atan(x)-poly1(x))/x|<= 2^-115.94 	long double
43  * 	|(atan(x)-poly1(x))/x|<= 2^-58.85	double
44  * 	|(atan(x)-poly1(x))/x|<= 2^-25.53 	float
45  * and use poly2(x) to approximate atan(x) for x in [0,1/65] with
46  * error (absolute)
47  *	|atan(x)-poly2(x)|<= 2^-122.15		long double
48  *	|atan(x)-poly2(x)|<= 2^-64.79		double
49  *	|atan(x)-poly2(x)|<= 2^-35.36		float
50  * Here poly1 and poly2 are odd polynomial with the following form:
51  *		x + x^3*(a1+x^2*(a2+...))
52  *
53  * (0). Purge off Inf and NaN and 0
54  * (1). Reduce x to positive by atan(x) = -atan(-x).
55  * (2). For x <= 1/8, use
56  *	(2.1) if x < 2^(-prec/2-2), atan(x) =  x  with inexact
57  *	(2.2) Otherwise
58  *		atan(x) = poly1(x)
59  * (3). For x >= 8 then
60  *	(3.1) if x >= 2^(prec+2),   atan(x) = atan(inf) - pio2lo
61  *	(3.2) if x >= 2^(prec/3+2), atan(x) = atan(inf) - 1/x
62  *	(3.3) if x >  65,           atan(x) = atan(inf) - poly2(1/x)
63  *	(3.4) Otherwise,	    atan(x) = atan(inf) - poly1(1/x)
64  *
65  * (4). Now x is in (0.125, 8)
66  *      Find y that match x to 4.5 bit after binary (easy).
67  *	If iy is the high word of y, then
68  *		single : j = (iy - 0x3e000000) >> 19
69  *		double : j = (iy - 0x3fc00000) >> 16
70  *		quad   : j = (iy - 0x3ffc0000) >> 12
71  *
72  *	Let s = (x-y)/(1+x*y). Then
73  *	atan(x) = atan(y) + poly1(s)
74  *		= _TBL_atanl_hi[j] + (_TBL_atanl_lo[j] + poly2(s) )
75  *
76  *	Note. |s| <= 1.5384615385e-02 = 1/65. Maxium occurs at x = 1.03125
77  *
78  */
79 
80 #include "libm.h"
81 
82 extern const long double _TBL_atanl_hi[], _TBL_atanl_lo[];
83 static const long double
84 	one	=   1.0L,
85 	p1  	=  -3.333333333333333333333333333331344526118e-0001L,
86 	p2  	=   1.999999999999999999999999989931277668570e-0001L,
87 	p3  	=  -1.428571428571428571428553606221309530901e-0001L,
88 	p4  	=   1.111111111111111111095219842737139747418e-0001L,
89 	p5  	=  -9.090909090909090825503603835248061123323e-0002L,
90 	p6  	=   7.692307692307664052130743214708925258904e-0002L,
91 	p7  	=  -6.666666666660213835187713228363717388266e-0002L,
92 	p8  	=   5.882352940152439399097283359608661949504e-0002L,
93 	p9  	=  -5.263157780447533993046614040509529668487e-0002L,
94 	p10 	=   4.761895816878184933175855990886788439447e-0002L,
95 	p11 	=  -4.347345005832274022681019724553538135922e-0002L,
96 	p12 	=   3.983031914579635037502589204647752042736e-0002L,
97 	p13 	=  -3.348206704469830575196657749413894897554e-0002L,
98 	q1  	=  -3.333333333333333333333333333195273650186e-0001L,
99 	q2  	=   1.999999999999999999999988146114392615808e-0001L,
100 	q3  	=  -1.428571428571428571057630319435467111253e-0001L,
101 	q4  	=   1.111111111111105373263048208994541544098e-0001L,
102 	q5  	=  -9.090909090421834209167373258681021816441e-0002L,
103 	q6  	=   7.692305377813692706850171767150701644539e-0002L,
104 	q7  	=  -6.660896644393861499914731734305717901330e-0002L,
105 	pio2hi	=   1.570796326794896619231321691639751398740e+0000L,
106 	pio2lo	=   4.335905065061890512398522013021675984381e-0035L;
107 
108 #define	i0	0
109 #define	i1	3
110 
111 long double
112 atanl(long double x) {
113 	long double y, z, r, p, s;
114 	int *px = (int *) &x, *py = (int *) &y;
115 	int ix, iy, sign, j;
116 
117 	ix = px[i0];
118 	sign = ix & 0x80000000;
119 	ix ^= sign;
120 
121 	/* for |x| < 1/8 */
122 	if (ix < 0x3ffc0000) {
123 		if (ix < 0x3feb0000) {	/* when |x| < 2**(-prec/6-2) */
124 			if (ix < 0x3fc50000) {	/* if |x| < 2**(-prec/2-2) */
125 				s = one;
126 				*(3 - i0 + (int *) &s) = -1;	/* s = 1-ulp */
127 				*(1 + (int *) &s) = -1;
128 				*(2 + (int *) &s) = -1;
129 				*(i0 + (int *) &s) -= 1;
130 				if ((int) (s * x) < 1)
131 					return (x);	/* raise inexact */
132 			}
133 			z = x * x;
134 			if (ix < 0x3fe20000) {	/* if |x| < 2**(-prec/4-1) */
135 				return (x + (x * z) * p1);
136 			} else {	/* if |x| < 2**(-prec/6-2) */
137 				return (x + (x * z) * (p1 + z * p2));
138 			}
139 		}
140 		z = x * x;
141 		return (x + (x * z) * (p1 + z * (p2 + z * (p3 + z * (p4 +
142 			z * (p5 + z * (p6 + z * (p7 + z * (p8 + z * (p9 +
143 			z * (p10 + z * (p11 + z * (p12 + z * p13)))))))))))));
144 	}
145 
146 	/* for |x| >= 8.0 */
147 	if (ix >= 0x40020000) {
148 		px[i0] = ix;
149 		if (ix < 0x40050400) {	/* x <  65 */
150 			r = one / x;
151 			z = r * r;
152 			/*
153 			 * poly1
154 			 */
155 			y = r * (one + z * (p1 + z * (p2 + z * (p3 +
156 				z * (p4 + z * (p5 + z * (p6 + z * (p7 +
157 				z * (p8 + z * (p9 + z * (p10 + z * (p11 +
158 				z * (p12 + z * p13)))))))))))));
159 			y -= pio2lo;
160 		} else if (ix < 0x40260000) {	/* x <  2**(prec/3+2) */
161 			r = one / x;
162 			z = r * r;
163 			/*
164 			 * poly2
165 			 */
166 			y = r * (one + z * (q1 + z * (q2 + z * (q3 + z * (q4 +
167 				z * (q5 + z * (q6 + z * q7)))))));
168 			y -= pio2lo;
169 		} else if (ix < 0x40720000) {	/* x <  2**(prec+2) */
170 			y = one / x - pio2lo;
171 		} else if (ix < 0x7fff0000) {	/* x <  inf */
172 			y = -pio2lo;
173 		} else {		/* x is inf or NaN */
174 			if (((ix - 0x7fff0000) | px[1] | px[2] | px[i1]) != 0)
175 				return (x - x);
176 			y = -pio2lo;
177 		}
178 
179 		if (sign == 0)
180 			return (pio2hi - y);
181 		else
182 			return (y - pio2hi);
183 	}
184 
185 	/* now x is between 1/8 and 8 */
186 	px[i0] = ix;
187 	iy = (ix + 0x00000800) & 0x7ffff000;
188 	py[i0] = iy;
189 	py[1] = py[2] = py[i1] = 0;
190 	j = (iy - 0x3ffc0000) >> 12;
191 
192 	if (sign == 0)
193 		s = (x - y) / (one + x * y);
194 	else
195 		s = (y - x) / (one + x * y);
196 	z = s * s;
197 	if (ix == iy)
198 		p = s * (one + z * (q1 + z * (q2 + z * (q3 + z * q4))));
199 	else
200 		p = s * (one + z * (q1 + z * (q2 + z * (q3 + z * (q4 +
201 			z * (q5 + z * (q6 + z * q7)))))));
202 	if (sign == 0) {
203 		r = p + _TBL_atanl_lo[j];
204 		return (r + _TBL_atanl_hi[j]);
205 	} else {
206 		r = p - _TBL_atanl_lo[j];
207 		return (r - _TBL_atanl_hi[j]);
208 	}
209 }
210