xref: /titanic_44/usr/src/lib/libm/common/C/cos.c (revision 1db2880b3a411e3c56e50c7dc42d3b137fcc4e48)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  */
24 /*
25  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma weak __cos = cos
30 
31 /* INDENT OFF */
32 /*
33  * cos(x)
34  * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
35  *
36  * Algorithm: see sincos.c
37  */
38 
39 #include "libm.h"
40 
41 static const double sc[] = {
42 /* ONE	= */  1.0,
43 /* NONE	= */ -1.0,
44 /*
45  * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
46  */
47 /* PP1	= */ -0.166666666666316558867252052378889521480627858683055567,
48 /* PP2	= */   .008333315652997472323564894248466758248475374977974017927,
49 /*
50  * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
51  * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
52  * |                 x             |
53  */
54 /* P1  	= */ -1.666666666666629669805215138920301589656e-0001,
55 /* P2  	= */  8.333333332390951295683993455280336376663e-0003,
56 /* P3  	= */ -1.984126237997976692791551778230098403960e-0004,
57 /* P4  	= */  2.753403624854277237649987622848330351110e-0006,
58 /*
59  * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
60  */
61 /* QQ1	= */ -0.4999999999975492381842911981948418542742729,
62 /* QQ2	= */  0.041666542904352059294545209158357640398771740,
63 /* Q1  	= */ -0.5,
64 /* Q2  	= */  4.166666666500350703680945520860748617445e-0002,
65 /* Q3  	= */ -1.388888596436972210694266290577848696006e-0003,
66 /* Q4  	= */  2.478563078858589473679519517892953492192e-0005,
67 /* PIO2_H    = */  1.570796326794896557999,
68 /* PIO2_L    = */  6.123233995736765886130e-17,
69 /* PIO2_L0   = */  6.123233995727922165564e-17,
70 /* PIO2_L1   = */  8.843720566135701120255e-29,
71 /* PI3O2_H   = */  4.712388980384689673997,
72 /* PI3O2_L   = */  1.836970198721029765839e-16,
73 /* PI3O2_L0  = */  1.836970198720396133587e-16,
74 /* PI3O2_L1  = */  6.336322524749201142226e-29,
75 /* PI5O2_H   = */  7.853981633974482789995,
76 /* PI5O2_L   = */  3.061616997868382943065e-16,
77 /* PI5O2_L0  = */  3.061616997861941598865e-16,
78 /* PI5O2_L1  = */  6.441344200433640781982e-28,
79 };
80 /* INDENT ON */
81 
82 #define	ONE		sc[0]
83 #define	PP1		sc[2]
84 #define	PP2		sc[3]
85 #define	P1		sc[4]
86 #define	P2		sc[5]
87 #define	P3		sc[6]
88 #define	P4		sc[7]
89 #define	QQ1		sc[8]
90 #define	QQ2		sc[9]
91 #define	Q1		sc[10]
92 #define	Q2		sc[11]
93 #define	Q3		sc[12]
94 #define	Q4		sc[13]
95 #define	PIO2_H		sc[14]
96 #define	PIO2_L		sc[15]
97 #define	PIO2_L0		sc[16]
98 #define	PIO2_L1		sc[17]
99 #define	PI3O2_H		sc[18]
100 #define	PI3O2_L		sc[19]
101 #define	PI3O2_L0	sc[20]
102 #define	PI3O2_L1	sc[21]
103 #define	PI5O2_H		sc[22]
104 #define	PI5O2_L		sc[23]
105 #define	PI5O2_L0	sc[24]
106 #define	PI5O2_L1	sc[25]
107 
108 extern const double _TBL_sincos[], _TBL_sincosx[];
109 
110 double
111 cos(double x) {
112 	double	z, y[2], w, s, v, p, q;
113 	int	i, j, n, hx, ix, lx;
114 
115 	hx = ((int *)&x)[HIWORD];
116 	lx = ((int *)&x)[LOWORD];
117 	ix = hx & ~0x80000000;
118 
119 	if (ix <= 0x3fc50000) {	/* |x| < 10.5/64 = 0.164062500 */
120 		if (ix < 0x3e400000) {	/* |x| < 2**-27 */
121 			if ((int)x == 0)
122 				return (ONE);
123 		}
124 		z = x * x;
125 		if (ix < 0x3f800000)	/* |x| < 0.008 */
126 			w = z * (QQ1 + z * QQ2);
127 		else
128 			w = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * Q4));
129 		return (ONE + w);
130 	}
131 
132 	/* for 0.164062500 < x < M, */
133 	n = ix >> 20;
134 	if (n < 0x402) {	/* x < 8 */
135 		i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
136 		j = i - 10;
137 		x = fabs(x);
138 		v = x - _TBL_sincosx[j];
139 		if (((j - 81) ^ (j - 101)) < 0) {
140 			/* near pi/2, cos(pi/2-x)=sin(x) */
141 			p = PIO2_H - x;
142 			i = ix - 0x3ff921fb;
143 			x = p + PIO2_L;
144 			if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) {
145 				/* very close to pi/2 */
146 				x = p + PIO2_L0;
147 				return (x + PIO2_L1);
148 			}
149 			z = x * x;
150 			if (((ix - 0x3ff92000) >> 12) == 0) {
151 				/* |pi/2-x|<2**-8 */
152 				w = PIO2_L + (z * x) * (PP1 + z * PP2);
153 			} else {
154 				w = PIO2_L + (z * x) * ((P1 + z * P2) +
155 				    (z * z) * (P3 + z * P4));
156 			}
157 			return (p + w);
158 		}
159 		s = v * v;
160 		if (((j - 282) ^ (j - 302)) < 0) {
161 			/* near 3/2pi, cos(x-3/2pi)=sin(x) */
162 			p = x - PI3O2_H;
163 			i = ix - 0x4012D97C;
164 			x = p - PI3O2_L;
165 			if ((i | ((lx - 0x7f332100) & 0xffffff00)) == 0) {
166 				/* very close to 3/2pi */
167 				x = p - PI3O2_L0;
168 				return (x - PI3O2_L1);
169 			}
170 			z = x * x;
171 			if (((ix - 0x4012D800) >> 9) == 0) {
172 				/* |x-3/2pi|<2**-8 */
173 				w = (z * x) * (PP1 + z * PP2) - PI3O2_L;
174 			} else {
175 				w = (z * x) * ((P1 + z * P2) + (z * z)
176 				    * (P3 + z * P4)) - PI3O2_L;
177 			}
178 			return (p + w);
179 		}
180 		if (((j - 483) ^ (j - 503)) < 0) {
181 			/* near 5pi/2, cos(5pi/2-x)=sin(x) */
182 			p = PI5O2_H - x;
183 			i = ix - 0x401F6A7A;
184 			x = p + PI5O2_L;
185 			if ((i | ((lx - 0x29553800) & 0xffffff00)) == 0) {
186 				/* very close to pi/2 */
187 				x = p + PI5O2_L0;
188 				return (x + PI5O2_L1);
189 			}
190 			z = x * x;
191 			if (((ix - 0x401F6A7A) >> 7) == 0) {
192 				/* |pi/2-x|<2**-8 */
193 				w = PI5O2_L + (z * x) * (PP1 + z * PP2);
194 			} else {
195 				w = PI5O2_L + (z * x) * ((P1 + z * P2) +
196 				    (z * z) * (P3 + z * P4));
197 			}
198 			return (p + w);
199 		}
200 		j <<= 1;
201 		w = _TBL_sincos[j];
202 		z = _TBL_sincos[j+1];
203 		p = v + (v * s) * (PP1 + s * PP2);
204 		q = s * (QQ1 + s * QQ2);
205 		return (z - (w * p - z * q));
206 	}
207 
208 	if (ix >= 0x7ff00000)	/* cos(Inf or NaN) is NaN */
209 		return (x / x);
210 
211 	/* argument reduction needed */
212 	n = __rem_pio2(x, y);
213 	switch (n & 3) {
214 	case 0:
215 		return (__k_cos(y[0], y[1]));
216 	case 1:
217 		return (-__k_sin(y[0], y[1]));
218 	case 2:
219 		return (-__k_cos(y[0], y[1]));
220 	default:
221 		return (__k_sin(y[0], y[1]));
222 	}
223 }
224