1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Redirection ld.so. Based on the 4.x binary compatibility ld.so, used
29 * to redirect aliases for ld.so to the real one.
30 */
31
32 /*
33 * Import data structures
34 */
35 #include "lint.h"
36 #include <sys/types.h>
37 #include <sys/mman.h>
38 #include <sys/fcntl.h>
39 #include <sys/stat.h>
40 #include <sys/sysconfig.h>
41 #include <sys/auxv.h>
42 #include <elf.h>
43 #include <link.h>
44 #include <string.h>
45 #include "alias_boot.h"
46
47 /*
48 * Local manifest constants and macros.
49 */
50 #define ALIGN(x, a) ((uintptr_t)(x) & ~((a) - 1))
51 #define ROUND(x, a) (((uintptr_t)(x) + ((a) - 1)) & ~((a) - 1))
52
53 #define EMPTY strings[EMPTY_S]
54 #define LDSO strings[LDSO_S]
55 #define ZERO strings[ZERO_S]
56 #define CLOSE (*(funcs[CLOSE_F]))
57 #define FSTATAT (*(funcs[FSTATAT_F]))
58 #define MMAP (*(funcs[MMAP_F]))
59 #define MUNMAP (*(funcs[MUNMAP_F]))
60 #define OPENAT (*(funcs[OPENAT_F]))
61 #define PANIC (*(funcs[PANIC_F]))
62 #define SYSCONFIG (*(funcs[SYSCONFIG_F]))
63
64 /*
65 * Alias ld.so entry point -- receives a bootstrap structure and a vector
66 * of strings. The vector is "well-known" to us, and consists of pointers
67 * to string constants. This aliasing bootstrap requires no relocation in
68 * order to run, save for the pointers of constant strings. This second
69 * parameter provides this. Note that this program is carefully coded in
70 * order to maintain the "no bootstrapping" requirement -- it calls only
71 * local functions, uses no intrinsics, etc.
72 */
73 void *
__rtld(Elf32_Boot * ebp,const char * strings[],int (* funcs[])())74 __rtld(Elf32_Boot *ebp, const char *strings[], int (*funcs[])())
75 {
76 int i, p; /* working */
77 long j; /* working */
78 long page_size = 0; /* size of a page */
79 const char *program_name = EMPTY; /* our name */
80 int ldfd; /* fd assigned to ld.so */
81 int dzfd = 0; /* fd assigned to /dev/zero */
82 Elf32_Ehdr *ehdr; /* ELF header of ld.so */
83 Elf32_Phdr *phdr; /* first Phdr in file */
84 Elf32_Phdr *pptr; /* working Phdr */
85 Elf32_Phdr *lph = NULL; /* last loadable Phdr */
86 Elf32_Phdr *fph = NULL; /* first loadable Phdr */
87 caddr_t maddr; /* pointer to mapping claim */
88 Elf32_Off mlen; /* total mapping claim */
89 caddr_t faddr; /* first program mapping of ld.so */
90 Elf32_Off foff; /* file offset for segment mapping */
91 Elf32_Off flen; /* file length for segment mapping */
92 caddr_t addr; /* working mapping address */
93 caddr_t zaddr; /* /dev/zero working mapping addr */
94 struct stat sb; /* stat buffer for sizing */
95 auxv_t *ap; /* working aux pointer */
96
97 /*
98 * Discover things about our environment: auxiliary vector (if
99 * any), arguments, program name, and the like.
100 */
101 while (ebp->eb_tag != NULL) {
102 switch (ebp->eb_tag) {
103 case EB_ARGV:
104 program_name = *((char **)ebp->eb_un.eb_ptr);
105 break;
106 case EB_AUXV:
107 for (ap = (auxv_t *)ebp->eb_un.eb_ptr;
108 ap->a_type != AT_NULL; ap++)
109 if (ap->a_type == AT_PAGESZ) {
110 page_size = ap->a_un.a_val;
111 break;
112 }
113 break;
114 }
115 ebp++;
116 }
117
118 /*
119 * If we didn't get a page size from looking in the auxiliary
120 * vector, we need to get one now.
121 */
122 if (page_size == 0) {
123 page_size = SYSCONFIG(_CONFIG_PAGESIZE);
124 ebp->eb_tag = EB_PAGESIZE, (ebp++)->eb_un.eb_val =
125 (Elf32_Word)page_size;
126 }
127
128 /*
129 * Map in the real ld.so. Note that we're mapping it as
130 * an ELF database, not as a program -- we just want to walk it's
131 * data structures. Further mappings will actually establish the
132 * program in the address space.
133 */
134 if ((ldfd = OPENAT(AT_FDCWD, LDSO, O_RDONLY)) == -1)
135 PANIC(program_name);
136 if (FSTATAT(ldfd, NULL, &sb, 0) == -1)
137 PANIC(program_name);
138 ehdr = (Elf32_Ehdr *)MMAP(0, sb.st_size, PROT_READ | PROT_EXEC,
139 MAP_SHARED, ldfd, 0);
140 if (ehdr == (Elf32_Ehdr *)-1)
141 PANIC(program_name);
142
143 /*
144 * Validate the file we're looking at, ensure it has the correct
145 * ELF structures, such as: ELF magic numbers, coded for SPARC,
146 * is a ".so", etc.
147 */
148 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
149 ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
150 ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
151 ehdr->e_ident[EI_MAG3] != ELFMAG3)
152 PANIC(program_name);
153 if (ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
154 ehdr->e_ident[EI_DATA] != ELFDATA2MSB)
155 PANIC(program_name);
156 if (ehdr->e_type != ET_DYN)
157 PANIC(program_name);
158 if ((ehdr->e_machine != EM_SPARC) &&
159 (ehdr->e_machine != EM_SPARC32PLUS))
160 PANIC(program_name);
161 if (ehdr->e_version > EV_CURRENT)
162 PANIC(program_name);
163
164 /*
165 * Point at program headers and start figuring out what to load.
166 */
167 phdr = (Elf32_Phdr *)((caddr_t)ehdr + ehdr->e_phoff);
168 for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
169 pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize))
170 if (pptr->p_type == PT_LOAD) {
171 if (fph == 0) {
172 fph = pptr;
173 } else if (pptr->p_vaddr <= lph->p_vaddr)
174 PANIC(program_name);
175 lph = pptr;
176 }
177
178 /*
179 * We'd better have at least one loadable segment.
180 */
181 if (fph == 0)
182 PANIC(program_name);
183
184 /*
185 * Map enough address space to hold the program (as opposed to the
186 * file) represented by ld.so. The amount to be assigned is the
187 * range between the end of the last loadable segment and the
188 * beginning of the first PLUS the alignment of the first segment.
189 * mmap() can assign us any page-aligned address, but the relocations
190 * assume the alignments included in the program header. As an
191 * optimization, however, let's assume that mmap() will actually
192 * give us an aligned address -- since if it does, we can save
193 * an munmap() later on. If it doesn't -- then go try it again.
194 */
195 mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
196 ALIGN(fph->p_vaddr, page_size), page_size);
197 maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
198 MAP_SHARED, ldfd, 0);
199 if (maddr == (caddr_t)-1)
200 PANIC(program_name);
201 faddr = (caddr_t)ROUND(maddr, fph->p_align);
202
203 /*
204 * Check to see whether alignment skew was really needed.
205 */
206 if (faddr != maddr) {
207 (void) MUNMAP(maddr, mlen);
208 mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
209 ALIGN(fph->p_vaddr, fph->p_align) + fph->p_align,
210 page_size);
211 maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
212 MAP_SHARED, ldfd, 0);
213 if (maddr == (caddr_t)-1)
214 PANIC(program_name);
215 faddr = (caddr_t)ROUND(maddr, fph->p_align);
216 }
217
218 /*
219 * We have the address space reserved, so map each loadable segment.
220 */
221 for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
222 pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize)) {
223
224 /*
225 * Skip non-loadable segments or segments that don't occupy
226 * any memory.
227 */
228 if ((pptr->p_type != PT_LOAD) || (pptr->p_memsz == 0))
229 continue;
230
231 /*
232 * Determine the file offset to which the mapping will
233 * directed (must be aligned) and how much to map (might
234 * be more than the file in the case of .bss.)
235 */
236 foff = ALIGN(pptr->p_offset, page_size);
237 flen = pptr->p_memsz + (pptr->p_offset - foff);
238
239 /*
240 * Set address of this segment relative to our base.
241 */
242 addr = (caddr_t)ALIGN(faddr + pptr->p_vaddr, page_size);
243
244 /*
245 * If this is the first program header, record our base
246 * address for later use.
247 */
248 if (pptr == phdr) {
249 ebp->eb_tag = EB_LDSO_BASE;
250 (ebp++)->eb_un.eb_ptr = (Elf32_Addr)addr;
251 }
252
253 /*
254 * Unmap anything from the last mapping address to this
255 * one.
256 */
257 if (addr - maddr) {
258 (void) MUNMAP(maddr, addr - maddr);
259 mlen -= addr - maddr;
260 }
261
262 /*
263 * Determine the mapping protection from the section
264 * attributes.
265 */
266 i = 0;
267 if (pptr->p_flags & PF_R)
268 i |= PROT_READ;
269 if (pptr->p_flags & PF_W)
270 i |= PROT_WRITE;
271 if (pptr->p_flags & PF_X)
272 i |= PROT_EXEC;
273 if ((caddr_t)MMAP((caddr_t)addr, flen, i,
274 MAP_FIXED | MAP_PRIVATE, ldfd, foff) == (caddr_t)-1)
275 PANIC(program_name);
276
277 /*
278 * If the memory occupancy of the segment overflows the
279 * definition in the file, we need to "zero out" the
280 * end of the mapping we've established, and if necessary,
281 * map some more space from /dev/zero.
282 */
283 if (pptr->p_memsz > pptr->p_filesz) {
284 foff = (uintptr_t)faddr + pptr->p_vaddr +
285 pptr->p_filesz;
286 zaddr = (caddr_t)ROUND(foff, page_size);
287 for (j = 0; j < (int)(zaddr - foff); j++)
288 *((char *)foff + j) = 0;
289 j = (faddr + pptr->p_vaddr + pptr->p_memsz) - zaddr;
290 if (j > 0) {
291 if (dzfd == 0) {
292 dzfd = OPENAT(AT_FDCWD, ZERO, O_RDWR);
293 if (dzfd == -1)
294 PANIC(program_name);
295 }
296 if ((caddr_t)MMAP((caddr_t)zaddr, j, i,
297 MAP_FIXED | MAP_PRIVATE, dzfd,
298 0) == (caddr_t)-1)
299 PANIC(program_name);
300 }
301 }
302
303 /*
304 * Update the mapping claim pointer.
305 */
306 maddr = addr + ROUND(flen, page_size);
307 mlen -= maddr - addr;
308 }
309
310 /*
311 * Unmap any final reservation.
312 */
313 if (mlen != 0)
314 (void) MUNMAP(maddr, mlen);
315
316 /*
317 * Clean up file descriptor space we've consumed. Pass along
318 * the /dev/zero file descriptor we got -- every cycle counts.
319 */
320 (void) CLOSE(ldfd);
321 if (dzfd != 0)
322 ebp->eb_tag = EB_DEVZERO, (ebp++)->eb_un.eb_val = dzfd;
323
324 /*
325 * The call itself. Note that we start 1 instruction word in.
326 * The ELF ld.so contains an "entry vector" of branch instructions,
327 * which, for our interest are:
328 * +0: ba, a <normal startup>
329 * +4: ba, a <compatibility startup>
330 * +8: ba, a <alias startup>
331 * By starting at the alias startup, the ELF ld.so knows
332 * that a pointer to "eb" is available to it and further knows
333 * how to calculate the offset to the program's arguments and
334 * other structures. We do the "call" by returning to our
335 * bootstrap and then jumping to the address that we return.
336 */
337 ebp->eb_tag = EB_NULL, ebp->eb_un.eb_val = 0;
338 return ((void *)(ehdr->e_entry + faddr + 8));
339 }
340