1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include "lint.h" 28 #include <sys/feature_tests.h> 29 /* 30 * setcontext() really can return, if UC_CPU is not specified. 31 * Make the compiler shut up about it. 32 */ 33 #if defined(__NORETURN) 34 #undef __NORETURN 35 #endif 36 #define __NORETURN 37 #include "thr_uberdata.h" 38 #include "asyncio.h" 39 #include <signal.h> 40 #include <siginfo.h> 41 #include <sys/systm.h> 42 43 const sigset_t maskset = {MASKSET0, MASKSET1, 0, 0}; /* maskable signals */ 44 45 /* 46 * Return true if the valid signal bits in both sets are the same. 47 */ 48 int 49 sigequalset(const sigset_t *s1, const sigset_t *s2) 50 { 51 /* 52 * We only test valid signal bits, not rubbish following MAXSIG 53 * (for speed). Algorithm: 54 * if (s1 & fillset) == (s2 & fillset) then (s1 ^ s2) & fillset == 0 55 */ 56 return (!((s1->__sigbits[0] ^ s2->__sigbits[0]) | 57 ((s1->__sigbits[1] ^ s2->__sigbits[1]) & FILLSET1))); 58 } 59 60 /* 61 * Common code for calling the user-specified signal handler. 62 */ 63 void 64 call_user_handler(int sig, siginfo_t *sip, ucontext_t *ucp) 65 { 66 ulwp_t *self = curthread; 67 uberdata_t *udp = self->ul_uberdata; 68 struct sigaction uact; 69 volatile struct sigaction *sap; 70 71 /* 72 * If we are taking a signal while parked or about to be parked 73 * on __lwp_park() then remove ourself from the sleep queue so 74 * that we can grab locks. The code in mutex_lock_queue() and 75 * cond_wait_common() will detect this and deal with it when 76 * __lwp_park() returns. 77 */ 78 unsleep_self(); 79 set_parking_flag(self, 0); 80 81 if (__td_event_report(self, TD_CATCHSIG, udp)) { 82 self->ul_td_evbuf.eventnum = TD_CATCHSIG; 83 self->ul_td_evbuf.eventdata = (void *)(intptr_t)sig; 84 tdb_event(TD_CATCHSIG, udp); 85 } 86 87 /* 88 * Get a self-consistent set of flags, handler, and mask 89 * while holding the sig's sig_lock for the least possible time. 90 * We must acquire the sig's sig_lock because some thread running 91 * in sigaction() might be establishing a new signal handler. 92 * The code in sigaction() acquires the writer lock; here 93 * we acquire the readers lock to ehance concurrency in the 94 * face of heavy signal traffic, such as generated by java. 95 * 96 * Locking exceptions: 97 * No locking for a child of vfork(). 98 * If the signal is SIGPROF with an si_code of PROF_SIG, 99 * then we assume that this signal was generated by 100 * setitimer(ITIMER_REALPROF) set up by the dbx collector. 101 * If the signal is SIGEMT with an si_code of EMT_CPCOVF, 102 * then we assume that the signal was generated by 103 * a hardware performance counter overflow. 104 * In these cases, assume that we need no locking. It is the 105 * monitoring program's responsibility to ensure correctness. 106 */ 107 sap = &udp->siguaction[sig].sig_uaction; 108 if (self->ul_vfork || 109 (sip != NULL && 110 ((sig == SIGPROF && sip->si_code == PROF_SIG) || 111 (sig == SIGEMT && sip->si_code == EMT_CPCOVF)))) { 112 /* we wish this assignment could be atomic */ 113 (void) memcpy(&uact, (void *)sap, sizeof (uact)); 114 } else { 115 rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; 116 lrw_rdlock(rwlp); 117 (void) memcpy(&uact, (void *)sap, sizeof (uact)); 118 if ((sig == SIGCANCEL || sig == SIGAIOCANCEL) && 119 (sap->sa_flags & SA_RESETHAND)) 120 sap->sa_sigaction = SIG_DFL; 121 lrw_unlock(rwlp); 122 } 123 124 /* 125 * Set the proper signal mask and call the user's signal handler. 126 * (We overrode the user-requested signal mask with maskset 127 * so we currently have all blockable signals blocked.) 128 * 129 * We would like to ASSERT() that the signal is not a member of the 130 * signal mask at the previous level (ucp->uc_sigmask) or the specified 131 * signal mask for sigsuspend() or pollsys() (self->ul_tmpmask) but 132 * /proc can override this via PCSSIG, so we don't bother. 133 * 134 * We would also like to ASSERT() that the signal mask at the previous 135 * level equals self->ul_sigmask (maskset for sigsuspend() / pollsys()), 136 * but /proc can change the thread's signal mask via PCSHOLD, so we 137 * don't bother with that either. 138 */ 139 ASSERT(ucp->uc_flags & UC_SIGMASK); 140 if (self->ul_sigsuspend) { 141 ucp->uc_sigmask = self->ul_sigmask; 142 self->ul_sigsuspend = 0; 143 /* the sigsuspend() or pollsys() signal mask */ 144 sigorset(&uact.sa_mask, &self->ul_tmpmask); 145 } else { 146 /* the signal mask at the previous level */ 147 sigorset(&uact.sa_mask, &ucp->uc_sigmask); 148 } 149 if (!(uact.sa_flags & SA_NODEFER)) /* add current signal */ 150 (void) sigaddset(&uact.sa_mask, sig); 151 self->ul_sigmask = uact.sa_mask; 152 self->ul_siglink = ucp; 153 (void) __lwp_sigmask(SIG_SETMASK, &uact.sa_mask, NULL); 154 155 /* 156 * If this thread has been sent SIGCANCEL from the kernel 157 * or from pthread_cancel(), it is being asked to exit. 158 * The kernel may send SIGCANCEL without a siginfo struct. 159 * If the SIGCANCEL is process-directed (from kill() or 160 * sigqueue()), treat it as an ordinary signal. 161 */ 162 if (sig == SIGCANCEL) { 163 if (sip == NULL || SI_FROMKERNEL(sip) || 164 sip->si_code == SI_LWP) { 165 do_sigcancel(); 166 goto out; 167 } 168 /* SIGCANCEL is ignored by default */ 169 if (uact.sa_sigaction == SIG_DFL || 170 uact.sa_sigaction == SIG_IGN) 171 goto out; 172 } 173 174 /* 175 * If this thread has been sent SIGAIOCANCEL (SIGLWP) and 176 * we are an aio worker thread, cancel the aio request. 177 */ 178 if (sig == SIGAIOCANCEL) { 179 aio_worker_t *aiowp = pthread_getspecific(_aio_key); 180 181 if (sip != NULL && sip->si_code == SI_LWP && aiowp != NULL) 182 siglongjmp(aiowp->work_jmp_buf, 1); 183 /* SIGLWP is ignored by default */ 184 if (uact.sa_sigaction == SIG_DFL || 185 uact.sa_sigaction == SIG_IGN) 186 goto out; 187 } 188 189 if (!(uact.sa_flags & SA_SIGINFO)) 190 sip = NULL; 191 __sighndlr(sig, sip, ucp, uact.sa_sigaction); 192 193 #if defined(sparc) || defined(__sparc) 194 /* 195 * If this is a floating point exception and the queue 196 * is non-empty, pop the top entry from the queue. This 197 * is to maintain expected behavior. 198 */ 199 if (sig == SIGFPE && ucp->uc_mcontext.fpregs.fpu_qcnt) { 200 fpregset_t *fp = &ucp->uc_mcontext.fpregs; 201 202 if (--fp->fpu_qcnt > 0) { 203 unsigned char i; 204 struct fq *fqp; 205 206 fqp = fp->fpu_q; 207 for (i = 0; i < fp->fpu_qcnt; i++) 208 fqp[i] = fqp[i+1]; 209 } 210 } 211 #endif /* sparc */ 212 213 out: 214 (void) setcontext(ucp); 215 thr_panic("call_user_handler(): setcontext() returned"); 216 } 217 218 /* 219 * take_deferred_signal() is called when ul_critical and ul_sigdefer become 220 * zero and a deferred signal has been recorded on the current thread. 221 * We are out of the critical region and are ready to take a signal. 222 * The kernel has all signals blocked on this lwp, but our value of 223 * ul_sigmask is the correct signal mask for the previous context. 224 * 225 * We call __sigresend() to atomically restore the signal mask and 226 * cause the signal to be sent again with the remembered siginfo. 227 * We will not return successfully from __sigresend() until the 228 * application's signal handler has been run via sigacthandler(). 229 */ 230 void 231 take_deferred_signal(int sig) 232 { 233 extern int __sigresend(int, siginfo_t *, sigset_t *); 234 ulwp_t *self = curthread; 235 siguaction_t *suap = &self->ul_uberdata->siguaction[sig]; 236 siginfo_t *sip; 237 int error; 238 239 ASSERT((self->ul_critical | self->ul_sigdefer | self->ul_cursig) == 0); 240 241 /* 242 * If the signal handler was established with SA_RESETHAND, 243 * the kernel has reset the handler to SIG_DFL, so we have 244 * to reestablish the handler now so that it will be entered 245 * again when we call __sigresend(), below. 246 * 247 * Logically, we should acquire and release the signal's 248 * sig_lock around this operation to protect the integrity 249 * of the signal action while we copy it, as is done below 250 * in _libc_sigaction(). However, we may be on a user-level 251 * sleep queue at this point and lrw_wrlock(&suap->sig_lock) 252 * might attempt to sleep on a different sleep queue and 253 * that would corrupt the entire sleep queue mechanism. 254 * 255 * If we are on a sleep queue we will remove ourself from 256 * it in call_user_handler(), called from sigacthandler(), 257 * before entering the application's signal handler. 258 * In the meantime, we must not acquire any locks. 259 */ 260 if (suap->sig_uaction.sa_flags & SA_RESETHAND) { 261 struct sigaction tact = suap->sig_uaction; 262 tact.sa_flags &= ~SA_NODEFER; 263 tact.sa_sigaction = self->ul_uberdata->sigacthandler; 264 tact.sa_mask = maskset; 265 (void) __sigaction(sig, &tact, NULL); 266 } 267 268 if (self->ul_siginfo.si_signo == 0) 269 sip = NULL; 270 else 271 sip = &self->ul_siginfo; 272 273 /* EAGAIN can happen only for a pending SIGSTOP signal */ 274 while ((error = __sigresend(sig, sip, &self->ul_sigmask)) == EAGAIN) 275 continue; 276 if (error) 277 thr_panic("take_deferred_signal(): __sigresend() failed"); 278 } 279 280 void 281 sigacthandler(int sig, siginfo_t *sip, void *uvp) 282 { 283 ucontext_t *ucp = uvp; 284 ulwp_t *self = curthread; 285 286 /* 287 * Do this in case we took a signal while in a cancelable system call. 288 * It does no harm if we were not in such a system call. 289 */ 290 self->ul_sp = 0; 291 if (sig != SIGCANCEL) 292 self->ul_cancel_async = self->ul_save_async; 293 294 /* 295 * If this thread has performed a longjmp() from a signal handler 296 * back to main level some time in the past, it has left the kernel 297 * thinking that it is still in the signal context. We repair this 298 * possible damage by setting ucp->uc_link to NULL if we know that 299 * we are actually executing at main level (self->ul_siglink == NULL). 300 * See the code for setjmp()/longjmp() for more details. 301 */ 302 if (self->ul_siglink == NULL) 303 ucp->uc_link = NULL; 304 305 /* 306 * If we are not in a critical region and are 307 * not deferring signals, take the signal now. 308 */ 309 if ((self->ul_critical + self->ul_sigdefer) == 0) { 310 call_user_handler(sig, sip, ucp); 311 /* 312 * On the surface, the following call seems redundant 313 * because call_user_handler() cannot return. However, 314 * we don't want to return from here because the compiler 315 * might recycle our frame. We want to keep it on the 316 * stack to assist debuggers such as pstack in identifying 317 * signal frames. The call to thr_panic() serves to prevent 318 * tail-call optimisation here. 319 */ 320 thr_panic("sigacthandler(): call_user_handler() returned"); 321 } 322 323 /* 324 * We are in a critical region or we are deferring signals. When 325 * we emerge from the region we will call take_deferred_signal(). 326 */ 327 ASSERT(self->ul_cursig == 0); 328 self->ul_cursig = (char)sig; 329 if (sip != NULL) 330 (void) memcpy(&self->ul_siginfo, 331 sip, sizeof (siginfo_t)); 332 else 333 self->ul_siginfo.si_signo = 0; 334 335 /* 336 * Make sure that if we return to a call to __lwp_park() 337 * or ___lwp_cond_wait() that it returns right away 338 * (giving us a spurious wakeup but not a deadlock). 339 */ 340 set_parking_flag(self, 0); 341 342 /* 343 * Return to the previous context with all signals blocked. 344 * We will restore the signal mask in take_deferred_signal(). 345 * Note that we are calling the system call trap here, not 346 * the setcontext() wrapper. We don't want to change the 347 * thread's ul_sigmask by this operation. 348 */ 349 ucp->uc_sigmask = maskset; 350 (void) __setcontext(ucp); 351 thr_panic("sigacthandler(): __setcontext() returned"); 352 } 353 354 #pragma weak _sigaction = sigaction 355 int 356 sigaction(int sig, const struct sigaction *nact, struct sigaction *oact) 357 { 358 ulwp_t *self = curthread; 359 uberdata_t *udp = self->ul_uberdata; 360 struct sigaction oaction; 361 struct sigaction tact; 362 struct sigaction *tactp = NULL; 363 int rv; 364 365 if (sig <= 0 || sig >= NSIG) { 366 errno = EINVAL; 367 return (-1); 368 } 369 370 if (!self->ul_vfork) 371 lrw_wrlock(&udp->siguaction[sig].sig_lock); 372 373 oaction = udp->siguaction[sig].sig_uaction; 374 375 if (nact != NULL) { 376 tact = *nact; /* make a copy so we can modify it */ 377 tactp = &tact; 378 delete_reserved_signals(&tact.sa_mask); 379 380 #if !defined(_LP64) 381 tact.sa_resv[0] = tact.sa_resv[1] = 0; /* cleanliness */ 382 #endif 383 /* 384 * To be compatible with the behavior of SunOS 4.x: 385 * If the new signal handler is SIG_IGN or SIG_DFL, do 386 * not change the signal's entry in the siguaction array. 387 * This allows a child of vfork(2) to set signal handlers 388 * to SIG_IGN or SIG_DFL without affecting the parent. 389 * 390 * This also covers a race condition with some thread 391 * setting the signal action to SIG_DFL or SIG_IGN 392 * when the thread has also received and deferred 393 * that signal. When the thread takes the deferred 394 * signal, even though it has set the action to SIG_DFL 395 * or SIG_IGN, it will execute the old signal handler 396 * anyway. This is an inherent signaling race condition 397 * and is not a bug. 398 * 399 * A child of vfork() is not allowed to change signal 400 * handlers to anything other than SIG_DFL or SIG_IGN. 401 */ 402 if (self->ul_vfork) { 403 if (tact.sa_sigaction != SIG_IGN) 404 tact.sa_sigaction = SIG_DFL; 405 } else if (sig == SIGCANCEL || sig == SIGAIOCANCEL) { 406 /* 407 * Always catch these signals. 408 * We need SIGCANCEL for pthread_cancel() to work. 409 * We need SIGAIOCANCEL for aio_cancel() to work. 410 */ 411 udp->siguaction[sig].sig_uaction = tact; 412 if (tact.sa_sigaction == SIG_DFL || 413 tact.sa_sigaction == SIG_IGN) 414 tact.sa_flags = SA_SIGINFO; 415 else { 416 tact.sa_flags |= SA_SIGINFO; 417 tact.sa_flags &= 418 ~(SA_NODEFER | SA_RESETHAND | SA_RESTART); 419 } 420 tact.sa_sigaction = udp->sigacthandler; 421 tact.sa_mask = maskset; 422 } else if (tact.sa_sigaction != SIG_DFL && 423 tact.sa_sigaction != SIG_IGN) { 424 udp->siguaction[sig].sig_uaction = tact; 425 tact.sa_flags &= ~SA_NODEFER; 426 tact.sa_sigaction = udp->sigacthandler; 427 tact.sa_mask = maskset; 428 } 429 } 430 431 if ((rv = __sigaction(sig, tactp, oact)) != 0) 432 udp->siguaction[sig].sig_uaction = oaction; 433 else if (oact != NULL && 434 oact->sa_sigaction != SIG_DFL && 435 oact->sa_sigaction != SIG_IGN) 436 *oact = oaction; 437 438 /* 439 * We detect setting the disposition of SIGIO just to set the 440 * _sigio_enabled flag for the asynchronous i/o (aio) code. 441 */ 442 if (sig == SIGIO && rv == 0 && tactp != NULL) { 443 _sigio_enabled = 444 (tactp->sa_handler != SIG_DFL && 445 tactp->sa_handler != SIG_IGN); 446 } 447 448 if (!self->ul_vfork) 449 lrw_unlock(&udp->siguaction[sig].sig_lock); 450 return (rv); 451 } 452 453 /* 454 * This is a private interface for the linux brand interface. 455 */ 456 void 457 setsigacthandler(void (*nsigacthandler)(int, siginfo_t *, void *), 458 void (**osigacthandler)(int, siginfo_t *, void *)) 459 { 460 ulwp_t *self = curthread; 461 uberdata_t *udp = self->ul_uberdata; 462 463 if (osigacthandler != NULL) 464 *osigacthandler = udp->sigacthandler; 465 466 udp->sigacthandler = nsigacthandler; 467 } 468 469 /* 470 * Tell the kernel to block all signals. 471 * Use the schedctl interface, or failing that, use __lwp_sigmask(). 472 * This action can be rescinded only by making a system call that 473 * sets the signal mask: 474 * __lwp_sigmask(), __sigprocmask(), __setcontext(), 475 * __sigsuspend() or __pollsys(). 476 * In particular, this action cannot be reversed by assigning 477 * scp->sc_sigblock = 0. That would be a way to lose signals. 478 * See the definition of restore_signals(self). 479 */ 480 void 481 block_all_signals(ulwp_t *self) 482 { 483 volatile sc_shared_t *scp; 484 485 enter_critical(self); 486 if ((scp = self->ul_schedctl) != NULL || 487 (scp = setup_schedctl()) != NULL) 488 scp->sc_sigblock = 1; 489 else 490 (void) __lwp_sigmask(SIG_SETMASK, &maskset, NULL); 491 exit_critical(self); 492 } 493 494 /* 495 * setcontext() has code that forcibly restores the curthread 496 * pointer in a context passed to the setcontext(2) syscall. 497 * 498 * Certain processes may need to disable this feature, so these routines 499 * provide the mechanism to do so. 500 * 501 * (As an example, branded 32-bit x86 processes may use %gs for their own 502 * purposes, so they need to be able to specify a %gs value to be restored 503 * on return from a signal handler via the passed ucontext_t.) 504 */ 505 static int setcontext_enforcement = 1; 506 507 void 508 set_setcontext_enforcement(int on) 509 { 510 setcontext_enforcement = on; 511 } 512 513 #pragma weak _setcontext = setcontext 514 int 515 setcontext(const ucontext_t *ucp) 516 { 517 ulwp_t *self = curthread; 518 int ret; 519 ucontext_t uc; 520 521 /* 522 * Returning from the main context (uc_link == NULL) causes 523 * the thread to exit. See setcontext(2) and makecontext(3C). 524 */ 525 if (ucp == NULL) 526 thr_exit(NULL); 527 (void) memcpy(&uc, ucp, sizeof (uc)); 528 529 /* 530 * Restore previous signal mask and context link. 531 */ 532 if (uc.uc_flags & UC_SIGMASK) { 533 block_all_signals(self); 534 delete_reserved_signals(&uc.uc_sigmask); 535 self->ul_sigmask = uc.uc_sigmask; 536 if (self->ul_cursig) { 537 /* 538 * We have a deferred signal present. 539 * The signal mask will be set when the 540 * signal is taken in take_deferred_signal(). 541 */ 542 ASSERT(self->ul_critical + self->ul_sigdefer != 0); 543 uc.uc_flags &= ~UC_SIGMASK; 544 } 545 } 546 self->ul_siglink = uc.uc_link; 547 548 /* 549 * We don't know where this context structure has been. 550 * Preserve the curthread pointer, at least. 551 * 552 * Allow this feature to be disabled if a particular process 553 * requests it. 554 */ 555 if (setcontext_enforcement) { 556 #if defined(__sparc) 557 uc.uc_mcontext.gregs[REG_G7] = (greg_t)self; 558 #elif defined(__amd64) 559 uc.uc_mcontext.gregs[REG_FS] = (greg_t)0; /* null for fsbase */ 560 #elif defined(__i386) 561 uc.uc_mcontext.gregs[GS] = (greg_t)LWPGS_SEL; 562 #else 563 #error "none of __sparc, __amd64, __i386 defined" 564 #endif 565 } 566 567 /* 568 * Make sure that if we return to a call to __lwp_park() 569 * or ___lwp_cond_wait() that it returns right away 570 * (giving us a spurious wakeup but not a deadlock). 571 */ 572 set_parking_flag(self, 0); 573 self->ul_sp = 0; 574 ret = __setcontext(&uc); 575 576 /* 577 * It is OK for setcontext() to return if the user has not specified 578 * UC_CPU. 579 */ 580 if (uc.uc_flags & UC_CPU) 581 thr_panic("setcontext(): __setcontext() returned"); 582 return (ret); 583 } 584 585 #pragma weak _thr_sigsetmask = thr_sigsetmask 586 int 587 thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset) 588 { 589 ulwp_t *self = curthread; 590 sigset_t saveset; 591 592 if (set == NULL) { 593 enter_critical(self); 594 if (oset != NULL) 595 *oset = self->ul_sigmask; 596 exit_critical(self); 597 } else { 598 switch (how) { 599 case SIG_BLOCK: 600 case SIG_UNBLOCK: 601 case SIG_SETMASK: 602 break; 603 default: 604 return (EINVAL); 605 } 606 607 /* 608 * The assignments to self->ul_sigmask must be protected from 609 * signals. The nuances of this code are subtle. Be careful. 610 */ 611 block_all_signals(self); 612 if (oset != NULL) 613 saveset = self->ul_sigmask; 614 switch (how) { 615 case SIG_BLOCK: 616 self->ul_sigmask.__sigbits[0] |= set->__sigbits[0]; 617 self->ul_sigmask.__sigbits[1] |= set->__sigbits[1]; 618 break; 619 case SIG_UNBLOCK: 620 self->ul_sigmask.__sigbits[0] &= ~set->__sigbits[0]; 621 self->ul_sigmask.__sigbits[1] &= ~set->__sigbits[1]; 622 break; 623 case SIG_SETMASK: 624 self->ul_sigmask.__sigbits[0] = set->__sigbits[0]; 625 self->ul_sigmask.__sigbits[1] = set->__sigbits[1]; 626 break; 627 } 628 delete_reserved_signals(&self->ul_sigmask); 629 if (oset != NULL) 630 *oset = saveset; 631 restore_signals(self); 632 } 633 634 return (0); 635 } 636 637 #pragma weak _pthread_sigmask = pthread_sigmask 638 int 639 pthread_sigmask(int how, const sigset_t *set, sigset_t *oset) 640 { 641 return (thr_sigsetmask(how, set, oset)); 642 } 643 644 #pragma weak _sigprocmask = sigprocmask 645 int 646 sigprocmask(int how, const sigset_t *set, sigset_t *oset) 647 { 648 int error; 649 650 /* 651 * Guard against children of vfork(). 652 */ 653 if (curthread->ul_vfork) 654 return (__lwp_sigmask(how, set, oset)); 655 656 if ((error = thr_sigsetmask(how, set, oset)) != 0) { 657 errno = error; 658 return (-1); 659 } 660 661 return (0); 662 } 663 664 /* 665 * Called at library initialization to set up signal handling. 666 * All we really do is initialize the sig_lock rwlocks. 667 * All signal handlers are either SIG_DFL or SIG_IGN on exec(). 668 * However, if any signal handlers were established on alternate 669 * link maps before the primary link map has been initialized, 670 * then inform the kernel of the new sigacthandler. 671 */ 672 void 673 signal_init() 674 { 675 uberdata_t *udp = curthread->ul_uberdata; 676 struct sigaction *sap; 677 struct sigaction act; 678 rwlock_t *rwlp; 679 int sig; 680 681 for (sig = 0; sig < NSIG; sig++) { 682 rwlp = &udp->siguaction[sig].sig_lock; 683 rwlp->rwlock_magic = RWL_MAGIC; 684 rwlp->mutex.mutex_flag = LOCK_INITED; 685 rwlp->mutex.mutex_magic = MUTEX_MAGIC; 686 sap = &udp->siguaction[sig].sig_uaction; 687 if (sap->sa_sigaction != SIG_DFL && 688 sap->sa_sigaction != SIG_IGN && 689 __sigaction(sig, NULL, &act) == 0 && 690 act.sa_sigaction != SIG_DFL && 691 act.sa_sigaction != SIG_IGN) { 692 act = *sap; 693 act.sa_flags &= ~SA_NODEFER; 694 act.sa_sigaction = udp->sigacthandler; 695 act.sa_mask = maskset; 696 (void) __sigaction(sig, &act, NULL); 697 } 698 } 699 } 700 701 /* 702 * Common code for cancelling self in _sigcancel() and pthread_cancel(). 703 * First record the fact that a cancellation is pending. 704 * Then, if cancellation is disabled or if we are holding unprotected 705 * libc locks, just return to defer the cancellation. 706 * Then, if we are at a cancellation point (ul_cancelable) just 707 * return and let _canceloff() do the exit. 708 * Else exit immediately if async mode is in effect. 709 */ 710 void 711 do_sigcancel(void) 712 { 713 ulwp_t *self = curthread; 714 715 ASSERT(self->ul_critical == 0); 716 ASSERT(self->ul_sigdefer == 0); 717 self->ul_cancel_pending = 1; 718 if (self->ul_cancel_async && 719 !self->ul_cancel_disabled && 720 self->ul_libc_locks == 0 && 721 !self->ul_cancelable) 722 pthread_exit(PTHREAD_CANCELED); 723 set_cancel_pending_flag(self, 0); 724 } 725 726 /* 727 * Set up the SIGCANCEL handler for threads cancellation, 728 * needed only when we have more than one thread, 729 * or the SIGAIOCANCEL handler for aio cancellation, 730 * called when aio is initialized, in __uaio_init(). 731 */ 732 void 733 setup_cancelsig(int sig) 734 { 735 uberdata_t *udp = curthread->ul_uberdata; 736 rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; 737 struct sigaction act; 738 739 ASSERT(sig == SIGCANCEL || sig == SIGAIOCANCEL); 740 lrw_rdlock(rwlp); 741 act = udp->siguaction[sig].sig_uaction; 742 lrw_unlock(rwlp); 743 if (act.sa_sigaction == SIG_DFL || 744 act.sa_sigaction == SIG_IGN) 745 act.sa_flags = SA_SIGINFO; 746 else { 747 act.sa_flags |= SA_SIGINFO; 748 act.sa_flags &= ~(SA_NODEFER | SA_RESETHAND | SA_RESTART); 749 } 750 act.sa_sigaction = udp->sigacthandler; 751 act.sa_mask = maskset; 752 (void) __sigaction(sig, &act, NULL); 753 } 754