xref: /titanic_44/usr/src/common/zfs/zfs_fletcher.c (revision 495db6fbcd9e8ab893e91f6f5627df6e0cec63cf)
1*495db6fbSLori Alt /*
2*495db6fbSLori Alt  * CDDL HEADER START
3*495db6fbSLori Alt  *
4*495db6fbSLori Alt  * The contents of this file are subject to the terms of the
5*495db6fbSLori Alt  * Common Development and Distribution License (the "License").
6*495db6fbSLori Alt  * You may not use this file except in compliance with the License.
7*495db6fbSLori Alt  *
8*495db6fbSLori Alt  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9*495db6fbSLori Alt  * or http://www.opensolaris.org/os/licensing.
10*495db6fbSLori Alt  * See the License for the specific language governing permissions
11*495db6fbSLori Alt  * and limitations under the License.
12*495db6fbSLori Alt  *
13*495db6fbSLori Alt  * When distributing Covered Code, include this CDDL HEADER in each
14*495db6fbSLori Alt  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15*495db6fbSLori Alt  * If applicable, add the following below this CDDL HEADER, with the
16*495db6fbSLori Alt  * fields enclosed by brackets "[]" replaced with your own identifying
17*495db6fbSLori Alt  * information: Portions Copyright [yyyy] [name of copyright owner]
18*495db6fbSLori Alt  *
19*495db6fbSLori Alt  * CDDL HEADER END
20*495db6fbSLori Alt  */
21*495db6fbSLori Alt /*
22*495db6fbSLori Alt  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23*495db6fbSLori Alt  * Use is subject to license terms.
24*495db6fbSLori Alt  */
25*495db6fbSLori Alt 
26*495db6fbSLori Alt /*
27*495db6fbSLori Alt  * Fletcher Checksums
28*495db6fbSLori Alt  * ------------------
29*495db6fbSLori Alt  *
30*495db6fbSLori Alt  * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
31*495db6fbSLori Alt  * recurrence relations:
32*495db6fbSLori Alt  *
33*495db6fbSLori Alt  *	a  = a    + f
34*495db6fbSLori Alt  *	 i    i-1    i-1
35*495db6fbSLori Alt  *
36*495db6fbSLori Alt  *	b  = b    + a
37*495db6fbSLori Alt  *	 i    i-1    i
38*495db6fbSLori Alt  *
39*495db6fbSLori Alt  *	c  = c    + b		(fletcher-4 only)
40*495db6fbSLori Alt  *	 i    i-1    i
41*495db6fbSLori Alt  *
42*495db6fbSLori Alt  *	d  = d    + c		(fletcher-4 only)
43*495db6fbSLori Alt  *	 i    i-1    i
44*495db6fbSLori Alt  *
45*495db6fbSLori Alt  * Where
46*495db6fbSLori Alt  *	a_0 = b_0 = c_0 = d_0 = 0
47*495db6fbSLori Alt  * and
48*495db6fbSLori Alt  *	f_0 .. f_(n-1) are the input data.
49*495db6fbSLori Alt  *
50*495db6fbSLori Alt  * Using standard techniques, these translate into the following series:
51*495db6fbSLori Alt  *
52*495db6fbSLori Alt  *	     __n_			     __n_
53*495db6fbSLori Alt  *	     \   |			     \   |
54*495db6fbSLori Alt  *	a  =  >     f			b  =  >     i * f
55*495db6fbSLori Alt  *	 n   /___|   n - i		 n   /___|	 n - i
56*495db6fbSLori Alt  *	     i = 1			     i = 1
57*495db6fbSLori Alt  *
58*495db6fbSLori Alt  *
59*495db6fbSLori Alt  *	     __n_			     __n_
60*495db6fbSLori Alt  *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
61*495db6fbSLori Alt  *	c  =  >     ------- f		d  =  >     ------------- f
62*495db6fbSLori Alt  *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
63*495db6fbSLori Alt  *	     i = 1			     i = 1
64*495db6fbSLori Alt  *
65*495db6fbSLori Alt  * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
66*495db6fbSLori Alt  * Since the additions are done mod (2^64), errors in the high bits may not
67*495db6fbSLori Alt  * be noticed.  For this reason, fletcher-2 is deprecated.
68*495db6fbSLori Alt  *
69*495db6fbSLori Alt  * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
70*495db6fbSLori Alt  * A conservative estimate of how big the buffer can get before we overflow
71*495db6fbSLori Alt  * can be estimated using f_i = 0xffffffff for all i:
72*495db6fbSLori Alt  *
73*495db6fbSLori Alt  * % bc
74*495db6fbSLori Alt  *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
75*495db6fbSLori Alt  * 2264
76*495db6fbSLori Alt  *  quit
77*495db6fbSLori Alt  * %
78*495db6fbSLori Alt  *
79*495db6fbSLori Alt  * So blocks of up to 2k will not overflow.  Our largest block size is
80*495db6fbSLori Alt  * 128k, which has 32k 4-byte words, so we can compute the largest possible
81*495db6fbSLori Alt  * accumulators, then divide by 2^64 to figure the max amount of overflow:
82*495db6fbSLori Alt  *
83*495db6fbSLori Alt  * % bc
84*495db6fbSLori Alt  *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
85*495db6fbSLori Alt  *  a/2^64;b/2^64;c/2^64;d/2^64
86*495db6fbSLori Alt  * 0
87*495db6fbSLori Alt  * 0
88*495db6fbSLori Alt  * 1365
89*495db6fbSLori Alt  * 11186858
90*495db6fbSLori Alt  *  quit
91*495db6fbSLori Alt  * %
92*495db6fbSLori Alt  *
93*495db6fbSLori Alt  * So a and b cannot overflow.  To make sure each bit of input has some
94*495db6fbSLori Alt  * effect on the contents of c and d, we can look at what the factors of
95*495db6fbSLori Alt  * the coefficients in the equations for c_n and d_n are.  The number of 2s
96*495db6fbSLori Alt  * in the factors determines the lowest set bit in the multiplier.  Running
97*495db6fbSLori Alt  * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
98*495db6fbSLori Alt  * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
99*495db6fbSLori Alt  * the 64-bit accumulators, every bit of every f_i effects every accumulator,
100*495db6fbSLori Alt  * even for 128k blocks.
101*495db6fbSLori Alt  *
102*495db6fbSLori Alt  * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
103*495db6fbSLori Alt  * we could do our calculations mod (2^32 - 1) by adding in the carries
104*495db6fbSLori Alt  * periodically, and store the number of carries in the top 32-bits.
105*495db6fbSLori Alt  *
106*495db6fbSLori Alt  * --------------------
107*495db6fbSLori Alt  * Checksum Performance
108*495db6fbSLori Alt  * --------------------
109*495db6fbSLori Alt  *
110*495db6fbSLori Alt  * There are two interesting components to checksum performance: cached and
111*495db6fbSLori Alt  * uncached performance.  With cached data, fletcher-2 is about four times
112*495db6fbSLori Alt  * faster than fletcher-4.  With uncached data, the performance difference is
113*495db6fbSLori Alt  * negligible, since the cost of a cache fill dominates the processing time.
114*495db6fbSLori Alt  * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
115*495db6fbSLori Alt  * efficient pass over the data.
116*495db6fbSLori Alt  *
117*495db6fbSLori Alt  * In normal operation, the data which is being checksummed is in a buffer
118*495db6fbSLori Alt  * which has been filled either by:
119*495db6fbSLori Alt  *
120*495db6fbSLori Alt  *	1. a compression step, which will be mostly cached, or
121*495db6fbSLori Alt  *	2. a bcopy() or copyin(), which will be uncached (because the
122*495db6fbSLori Alt  *	   copy is cache-bypassing).
123*495db6fbSLori Alt  *
124*495db6fbSLori Alt  * For both cached and uncached data, both fletcher checksums are much faster
125*495db6fbSLori Alt  * than sha-256, and slower than 'off', which doesn't touch the data at all.
126*495db6fbSLori Alt  */
127*495db6fbSLori Alt 
128*495db6fbSLori Alt #include <sys/types.h>
129*495db6fbSLori Alt #include <sys/sysmacros.h>
130*495db6fbSLori Alt #include <sys/byteorder.h>
131*495db6fbSLori Alt #include <sys/spa.h>
132*495db6fbSLori Alt 
133*495db6fbSLori Alt void
134*495db6fbSLori Alt fletcher_2_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
135*495db6fbSLori Alt {
136*495db6fbSLori Alt 	const uint64_t *ip = buf;
137*495db6fbSLori Alt 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
138*495db6fbSLori Alt 	uint64_t a0, b0, a1, b1;
139*495db6fbSLori Alt 
140*495db6fbSLori Alt 	for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
141*495db6fbSLori Alt 		a0 += ip[0];
142*495db6fbSLori Alt 		a1 += ip[1];
143*495db6fbSLori Alt 		b0 += a0;
144*495db6fbSLori Alt 		b1 += a1;
145*495db6fbSLori Alt 	}
146*495db6fbSLori Alt 
147*495db6fbSLori Alt 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
148*495db6fbSLori Alt }
149*495db6fbSLori Alt 
150*495db6fbSLori Alt void
151*495db6fbSLori Alt fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
152*495db6fbSLori Alt {
153*495db6fbSLori Alt 	const uint64_t *ip = buf;
154*495db6fbSLori Alt 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
155*495db6fbSLori Alt 	uint64_t a0, b0, a1, b1;
156*495db6fbSLori Alt 
157*495db6fbSLori Alt 	for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
158*495db6fbSLori Alt 		a0 += BSWAP_64(ip[0]);
159*495db6fbSLori Alt 		a1 += BSWAP_64(ip[1]);
160*495db6fbSLori Alt 		b0 += a0;
161*495db6fbSLori Alt 		b1 += a1;
162*495db6fbSLori Alt 	}
163*495db6fbSLori Alt 
164*495db6fbSLori Alt 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
165*495db6fbSLori Alt }
166*495db6fbSLori Alt 
167*495db6fbSLori Alt void
168*495db6fbSLori Alt fletcher_4_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
169*495db6fbSLori Alt {
170*495db6fbSLori Alt 	const uint32_t *ip = buf;
171*495db6fbSLori Alt 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
172*495db6fbSLori Alt 	uint64_t a, b, c, d;
173*495db6fbSLori Alt 
174*495db6fbSLori Alt 	for (a = b = c = d = 0; ip < ipend; ip++) {
175*495db6fbSLori Alt 		a += ip[0];
176*495db6fbSLori Alt 		b += a;
177*495db6fbSLori Alt 		c += b;
178*495db6fbSLori Alt 		d += c;
179*495db6fbSLori Alt 	}
180*495db6fbSLori Alt 
181*495db6fbSLori Alt 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
182*495db6fbSLori Alt }
183*495db6fbSLori Alt 
184*495db6fbSLori Alt void
185*495db6fbSLori Alt fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
186*495db6fbSLori Alt {
187*495db6fbSLori Alt 	const uint32_t *ip = buf;
188*495db6fbSLori Alt 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
189*495db6fbSLori Alt 	uint64_t a, b, c, d;
190*495db6fbSLori Alt 
191*495db6fbSLori Alt 	for (a = b = c = d = 0; ip < ipend; ip++) {
192*495db6fbSLori Alt 		a += BSWAP_32(ip[0]);
193*495db6fbSLori Alt 		b += a;
194*495db6fbSLori Alt 		c += b;
195*495db6fbSLori Alt 		d += c;
196*495db6fbSLori Alt 	}
197*495db6fbSLori Alt 
198*495db6fbSLori Alt 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
199*495db6fbSLori Alt }
200*495db6fbSLori Alt 
201*495db6fbSLori Alt void
202*495db6fbSLori Alt fletcher_4_incremental_native(const void *buf, uint64_t size,
203*495db6fbSLori Alt     zio_cksum_t *zcp)
204*495db6fbSLori Alt {
205*495db6fbSLori Alt 	const uint32_t *ip = buf;
206*495db6fbSLori Alt 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
207*495db6fbSLori Alt 	uint64_t a, b, c, d;
208*495db6fbSLori Alt 
209*495db6fbSLori Alt 	a = zcp->zc_word[0];
210*495db6fbSLori Alt 	b = zcp->zc_word[1];
211*495db6fbSLori Alt 	c = zcp->zc_word[2];
212*495db6fbSLori Alt 	d = zcp->zc_word[3];
213*495db6fbSLori Alt 
214*495db6fbSLori Alt 	for (; ip < ipend; ip++) {
215*495db6fbSLori Alt 		a += ip[0];
216*495db6fbSLori Alt 		b += a;
217*495db6fbSLori Alt 		c += b;
218*495db6fbSLori Alt 		d += c;
219*495db6fbSLori Alt 	}
220*495db6fbSLori Alt 
221*495db6fbSLori Alt 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
222*495db6fbSLori Alt }
223*495db6fbSLori Alt 
224*495db6fbSLori Alt void
225*495db6fbSLori Alt fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
226*495db6fbSLori Alt     zio_cksum_t *zcp)
227*495db6fbSLori Alt {
228*495db6fbSLori Alt 	const uint32_t *ip = buf;
229*495db6fbSLori Alt 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
230*495db6fbSLori Alt 	uint64_t a, b, c, d;
231*495db6fbSLori Alt 
232*495db6fbSLori Alt 	a = zcp->zc_word[0];
233*495db6fbSLori Alt 	b = zcp->zc_word[1];
234*495db6fbSLori Alt 	c = zcp->zc_word[2];
235*495db6fbSLori Alt 	d = zcp->zc_word[3];
236*495db6fbSLori Alt 
237*495db6fbSLori Alt 	for (; ip < ipend; ip++) {
238*495db6fbSLori Alt 		a += BSWAP_32(ip[0]);
239*495db6fbSLori Alt 		b += a;
240*495db6fbSLori Alt 		c += b;
241*495db6fbSLori Alt 		d += c;
242*495db6fbSLori Alt 	}
243*495db6fbSLori Alt 
244*495db6fbSLori Alt 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
245*495db6fbSLori Alt }
246