xref: /titanic_44/usr/src/common/crypto/ecc/ecp_aff.c (revision f9fbec18f5b458b560ecf45d3db8e8bd56bf6942)
1*f9fbec18Smcpowers /*
2*f9fbec18Smcpowers  * ***** BEGIN LICENSE BLOCK *****
3*f9fbec18Smcpowers  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4*f9fbec18Smcpowers  *
5*f9fbec18Smcpowers  * The contents of this file are subject to the Mozilla Public License Version
6*f9fbec18Smcpowers  * 1.1 (the "License"); you may not use this file except in compliance with
7*f9fbec18Smcpowers  * the License. You may obtain a copy of the License at
8*f9fbec18Smcpowers  * http://www.mozilla.org/MPL/
9*f9fbec18Smcpowers  *
10*f9fbec18Smcpowers  * Software distributed under the License is distributed on an "AS IS" basis,
11*f9fbec18Smcpowers  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12*f9fbec18Smcpowers  * for the specific language governing rights and limitations under the
13*f9fbec18Smcpowers  * License.
14*f9fbec18Smcpowers  *
15*f9fbec18Smcpowers  * The Original Code is the elliptic curve math library for prime field curves.
16*f9fbec18Smcpowers  *
17*f9fbec18Smcpowers  * The Initial Developer of the Original Code is
18*f9fbec18Smcpowers  * Sun Microsystems, Inc.
19*f9fbec18Smcpowers  * Portions created by the Initial Developer are Copyright (C) 2003
20*f9fbec18Smcpowers  * the Initial Developer. All Rights Reserved.
21*f9fbec18Smcpowers  *
22*f9fbec18Smcpowers  * Contributor(s):
23*f9fbec18Smcpowers  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24*f9fbec18Smcpowers  *   Stephen Fung <fungstep@hotmail.com>, and
25*f9fbec18Smcpowers  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26*f9fbec18Smcpowers  *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
27*f9fbec18Smcpowers  *   Nils Larsch <nla@trustcenter.de>, and
28*f9fbec18Smcpowers  *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
29*f9fbec18Smcpowers  *
30*f9fbec18Smcpowers  * Alternatively, the contents of this file may be used under the terms of
31*f9fbec18Smcpowers  * either the GNU General Public License Version 2 or later (the "GPL"), or
32*f9fbec18Smcpowers  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
33*f9fbec18Smcpowers  * in which case the provisions of the GPL or the LGPL are applicable instead
34*f9fbec18Smcpowers  * of those above. If you wish to allow use of your version of this file only
35*f9fbec18Smcpowers  * under the terms of either the GPL or the LGPL, and not to allow others to
36*f9fbec18Smcpowers  * use your version of this file under the terms of the MPL, indicate your
37*f9fbec18Smcpowers  * decision by deleting the provisions above and replace them with the notice
38*f9fbec18Smcpowers  * and other provisions required by the GPL or the LGPL. If you do not delete
39*f9fbec18Smcpowers  * the provisions above, a recipient may use your version of this file under
40*f9fbec18Smcpowers  * the terms of any one of the MPL, the GPL or the LGPL.
41*f9fbec18Smcpowers  *
42*f9fbec18Smcpowers  * ***** END LICENSE BLOCK ***** */
43*f9fbec18Smcpowers /*
44*f9fbec18Smcpowers  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
45*f9fbec18Smcpowers  * Use is subject to license terms.
46*f9fbec18Smcpowers  *
47*f9fbec18Smcpowers  * Sun elects to use this software under the MPL license.
48*f9fbec18Smcpowers  */
49*f9fbec18Smcpowers 
50*f9fbec18Smcpowers #pragma ident	"%Z%%M%	%I%	%E% SMI"
51*f9fbec18Smcpowers 
52*f9fbec18Smcpowers #include "ecp.h"
53*f9fbec18Smcpowers #include "mplogic.h"
54*f9fbec18Smcpowers #ifndef _KERNEL
55*f9fbec18Smcpowers #include <stdlib.h>
56*f9fbec18Smcpowers #endif
57*f9fbec18Smcpowers 
58*f9fbec18Smcpowers /* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
59*f9fbec18Smcpowers mp_err
ec_GFp_pt_is_inf_aff(const mp_int * px,const mp_int * py)60*f9fbec18Smcpowers ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
61*f9fbec18Smcpowers {
62*f9fbec18Smcpowers 
63*f9fbec18Smcpowers 	if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
64*f9fbec18Smcpowers 		return MP_YES;
65*f9fbec18Smcpowers 	} else {
66*f9fbec18Smcpowers 		return MP_NO;
67*f9fbec18Smcpowers 	}
68*f9fbec18Smcpowers 
69*f9fbec18Smcpowers }
70*f9fbec18Smcpowers 
71*f9fbec18Smcpowers /* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
72*f9fbec18Smcpowers mp_err
ec_GFp_pt_set_inf_aff(mp_int * px,mp_int * py)73*f9fbec18Smcpowers ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
74*f9fbec18Smcpowers {
75*f9fbec18Smcpowers 	mp_zero(px);
76*f9fbec18Smcpowers 	mp_zero(py);
77*f9fbec18Smcpowers 	return MP_OKAY;
78*f9fbec18Smcpowers }
79*f9fbec18Smcpowers 
80*f9fbec18Smcpowers /* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
81*f9fbec18Smcpowers  * Q, and R can all be identical. Uses affine coordinates. Assumes input
82*f9fbec18Smcpowers  * is already field-encoded using field_enc, and returns output that is
83*f9fbec18Smcpowers  * still field-encoded. */
84*f9fbec18Smcpowers mp_err
ec_GFp_pt_add_aff(const mp_int * px,const mp_int * py,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,const ECGroup * group)85*f9fbec18Smcpowers ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
86*f9fbec18Smcpowers 				  const mp_int *qy, mp_int *rx, mp_int *ry,
87*f9fbec18Smcpowers 				  const ECGroup *group)
88*f9fbec18Smcpowers {
89*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
90*f9fbec18Smcpowers 	mp_int lambda, temp, tempx, tempy;
91*f9fbec18Smcpowers 
92*f9fbec18Smcpowers 	MP_DIGITS(&lambda) = 0;
93*f9fbec18Smcpowers 	MP_DIGITS(&temp) = 0;
94*f9fbec18Smcpowers 	MP_DIGITS(&tempx) = 0;
95*f9fbec18Smcpowers 	MP_DIGITS(&tempy) = 0;
96*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&lambda, FLAG(px)));
97*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&temp, FLAG(px)));
98*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&tempx, FLAG(px)));
99*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&tempy, FLAG(px)));
100*f9fbec18Smcpowers 	/* if P = inf, then R = Q */
101*f9fbec18Smcpowers 	if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
102*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(qx, rx));
103*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(qy, ry));
104*f9fbec18Smcpowers 		res = MP_OKAY;
105*f9fbec18Smcpowers 		goto CLEANUP;
106*f9fbec18Smcpowers 	}
107*f9fbec18Smcpowers 	/* if Q = inf, then R = P */
108*f9fbec18Smcpowers 	if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
109*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(px, rx));
110*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(py, ry));
111*f9fbec18Smcpowers 		res = MP_OKAY;
112*f9fbec18Smcpowers 		goto CLEANUP;
113*f9fbec18Smcpowers 	}
114*f9fbec18Smcpowers 	/* if px != qx, then lambda = (py-qy) / (px-qx) */
115*f9fbec18Smcpowers 	if (mp_cmp(px, qx) != 0) {
116*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
117*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
118*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->
119*f9fbec18Smcpowers 				   field_div(&tempy, &tempx, &lambda, group->meth));
120*f9fbec18Smcpowers 	} else {
121*f9fbec18Smcpowers 		/* if py != qy or qy = 0, then R = inf */
122*f9fbec18Smcpowers 		if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
123*f9fbec18Smcpowers 			mp_zero(rx);
124*f9fbec18Smcpowers 			mp_zero(ry);
125*f9fbec18Smcpowers 			res = MP_OKAY;
126*f9fbec18Smcpowers 			goto CLEANUP;
127*f9fbec18Smcpowers 		}
128*f9fbec18Smcpowers 		/* lambda = (3qx^2+a) / (2qy) */
129*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
130*f9fbec18Smcpowers 		MP_CHECKOK(mp_set_int(&temp, 3));
131*f9fbec18Smcpowers 		if (group->meth->field_enc) {
132*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
133*f9fbec18Smcpowers 		}
134*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->
135*f9fbec18Smcpowers 				   field_mul(&tempx, &temp, &tempx, group->meth));
136*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->
137*f9fbec18Smcpowers 				   field_add(&tempx, &group->curvea, &tempx, group->meth));
138*f9fbec18Smcpowers 		MP_CHECKOK(mp_set_int(&temp, 2));
139*f9fbec18Smcpowers 		if (group->meth->field_enc) {
140*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
141*f9fbec18Smcpowers 		}
142*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
143*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->
144*f9fbec18Smcpowers 				   field_div(&tempx, &tempy, &lambda, group->meth));
145*f9fbec18Smcpowers 	}
146*f9fbec18Smcpowers 	/* rx = lambda^2 - px - qx */
147*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
148*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
149*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
150*f9fbec18Smcpowers 	/* ry = (x1-x2) * lambda - y1 */
151*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
152*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->
153*f9fbec18Smcpowers 			   field_mul(&tempy, &lambda, &tempy, group->meth));
154*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
155*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&tempx, rx));
156*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&tempy, ry));
157*f9fbec18Smcpowers 
158*f9fbec18Smcpowers   CLEANUP:
159*f9fbec18Smcpowers 	mp_clear(&lambda);
160*f9fbec18Smcpowers 	mp_clear(&temp);
161*f9fbec18Smcpowers 	mp_clear(&tempx);
162*f9fbec18Smcpowers 	mp_clear(&tempy);
163*f9fbec18Smcpowers 	return res;
164*f9fbec18Smcpowers }
165*f9fbec18Smcpowers 
166*f9fbec18Smcpowers /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
167*f9fbec18Smcpowers  * identical. Uses affine coordinates. Assumes input is already
168*f9fbec18Smcpowers  * field-encoded using field_enc, and returns output that is still
169*f9fbec18Smcpowers  * field-encoded. */
170*f9fbec18Smcpowers mp_err
ec_GFp_pt_sub_aff(const mp_int * px,const mp_int * py,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,const ECGroup * group)171*f9fbec18Smcpowers ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
172*f9fbec18Smcpowers 				  const mp_int *qy, mp_int *rx, mp_int *ry,
173*f9fbec18Smcpowers 				  const ECGroup *group)
174*f9fbec18Smcpowers {
175*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
176*f9fbec18Smcpowers 	mp_int nqy;
177*f9fbec18Smcpowers 
178*f9fbec18Smcpowers 	MP_DIGITS(&nqy) = 0;
179*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&nqy, FLAG(px)));
180*f9fbec18Smcpowers 	/* nqy = -qy */
181*f9fbec18Smcpowers 	MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
182*f9fbec18Smcpowers 	res = group->point_add(px, py, qx, &nqy, rx, ry, group);
183*f9fbec18Smcpowers   CLEANUP:
184*f9fbec18Smcpowers 	mp_clear(&nqy);
185*f9fbec18Smcpowers 	return res;
186*f9fbec18Smcpowers }
187*f9fbec18Smcpowers 
188*f9fbec18Smcpowers /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
189*f9fbec18Smcpowers  * affine coordinates. Assumes input is already field-encoded using
190*f9fbec18Smcpowers  * field_enc, and returns output that is still field-encoded. */
191*f9fbec18Smcpowers mp_err
ec_GFp_pt_dbl_aff(const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)192*f9fbec18Smcpowers ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
193*f9fbec18Smcpowers 				  mp_int *ry, const ECGroup *group)
194*f9fbec18Smcpowers {
195*f9fbec18Smcpowers 	return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
196*f9fbec18Smcpowers }
197*f9fbec18Smcpowers 
198*f9fbec18Smcpowers /* by default, this routine is unused and thus doesn't need to be compiled */
199*f9fbec18Smcpowers #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
200*f9fbec18Smcpowers /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
201*f9fbec18Smcpowers  * R can be identical. Uses affine coordinates. Assumes input is already
202*f9fbec18Smcpowers  * field-encoded using field_enc, and returns output that is still
203*f9fbec18Smcpowers  * field-encoded. */
204*f9fbec18Smcpowers mp_err
ec_GFp_pt_mul_aff(const mp_int * n,const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)205*f9fbec18Smcpowers ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
206*f9fbec18Smcpowers 				  mp_int *rx, mp_int *ry, const ECGroup *group)
207*f9fbec18Smcpowers {
208*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
209*f9fbec18Smcpowers 	mp_int k, k3, qx, qy, sx, sy;
210*f9fbec18Smcpowers 	int b1, b3, i, l;
211*f9fbec18Smcpowers 
212*f9fbec18Smcpowers 	MP_DIGITS(&k) = 0;
213*f9fbec18Smcpowers 	MP_DIGITS(&k3) = 0;
214*f9fbec18Smcpowers 	MP_DIGITS(&qx) = 0;
215*f9fbec18Smcpowers 	MP_DIGITS(&qy) = 0;
216*f9fbec18Smcpowers 	MP_DIGITS(&sx) = 0;
217*f9fbec18Smcpowers 	MP_DIGITS(&sy) = 0;
218*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&k));
219*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&k3));
220*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&qx));
221*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&qy));
222*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&sx));
223*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&sy));
224*f9fbec18Smcpowers 
225*f9fbec18Smcpowers 	/* if n = 0 then r = inf */
226*f9fbec18Smcpowers 	if (mp_cmp_z(n) == 0) {
227*f9fbec18Smcpowers 		mp_zero(rx);
228*f9fbec18Smcpowers 		mp_zero(ry);
229*f9fbec18Smcpowers 		res = MP_OKAY;
230*f9fbec18Smcpowers 		goto CLEANUP;
231*f9fbec18Smcpowers 	}
232*f9fbec18Smcpowers 	/* Q = P, k = n */
233*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(px, &qx));
234*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(py, &qy));
235*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(n, &k));
236*f9fbec18Smcpowers 	/* if n < 0 then Q = -Q, k = -k */
237*f9fbec18Smcpowers 	if (mp_cmp_z(n) < 0) {
238*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
239*f9fbec18Smcpowers 		MP_CHECKOK(mp_neg(&k, &k));
240*f9fbec18Smcpowers 	}
241*f9fbec18Smcpowers #ifdef ECL_DEBUG				/* basic double and add method */
242*f9fbec18Smcpowers 	l = mpl_significant_bits(&k) - 1;
243*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&qx, &sx));
244*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&qy, &sy));
245*f9fbec18Smcpowers 	for (i = l - 1; i >= 0; i--) {
246*f9fbec18Smcpowers 		/* S = 2S */
247*f9fbec18Smcpowers 		MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
248*f9fbec18Smcpowers 		/* if k_i = 1, then S = S + Q */
249*f9fbec18Smcpowers 		if (mpl_get_bit(&k, i) != 0) {
250*f9fbec18Smcpowers 			MP_CHECKOK(group->
251*f9fbec18Smcpowers 					   point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
252*f9fbec18Smcpowers 		}
253*f9fbec18Smcpowers 	}
254*f9fbec18Smcpowers #else							/* double and add/subtract method from
255*f9fbec18Smcpowers 								 * standard */
256*f9fbec18Smcpowers 	/* k3 = 3 * k */
257*f9fbec18Smcpowers 	MP_CHECKOK(mp_set_int(&k3, 3));
258*f9fbec18Smcpowers 	MP_CHECKOK(mp_mul(&k, &k3, &k3));
259*f9fbec18Smcpowers 	/* S = Q */
260*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&qx, &sx));
261*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&qy, &sy));
262*f9fbec18Smcpowers 	/* l = index of high order bit in binary representation of 3*k */
263*f9fbec18Smcpowers 	l = mpl_significant_bits(&k3) - 1;
264*f9fbec18Smcpowers 	/* for i = l-1 downto 1 */
265*f9fbec18Smcpowers 	for (i = l - 1; i >= 1; i--) {
266*f9fbec18Smcpowers 		/* S = 2S */
267*f9fbec18Smcpowers 		MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
268*f9fbec18Smcpowers 		b3 = MP_GET_BIT(&k3, i);
269*f9fbec18Smcpowers 		b1 = MP_GET_BIT(&k, i);
270*f9fbec18Smcpowers 		/* if k3_i = 1 and k_i = 0, then S = S + Q */
271*f9fbec18Smcpowers 		if ((b3 == 1) && (b1 == 0)) {
272*f9fbec18Smcpowers 			MP_CHECKOK(group->
273*f9fbec18Smcpowers 					   point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
274*f9fbec18Smcpowers 			/* if k3_i = 0 and k_i = 1, then S = S - Q */
275*f9fbec18Smcpowers 		} else if ((b3 == 0) && (b1 == 1)) {
276*f9fbec18Smcpowers 			MP_CHECKOK(group->
277*f9fbec18Smcpowers 					   point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
278*f9fbec18Smcpowers 		}
279*f9fbec18Smcpowers 	}
280*f9fbec18Smcpowers #endif
281*f9fbec18Smcpowers 	/* output S */
282*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&sx, rx));
283*f9fbec18Smcpowers 	MP_CHECKOK(mp_copy(&sy, ry));
284*f9fbec18Smcpowers 
285*f9fbec18Smcpowers   CLEANUP:
286*f9fbec18Smcpowers 	mp_clear(&k);
287*f9fbec18Smcpowers 	mp_clear(&k3);
288*f9fbec18Smcpowers 	mp_clear(&qx);
289*f9fbec18Smcpowers 	mp_clear(&qy);
290*f9fbec18Smcpowers 	mp_clear(&sx);
291*f9fbec18Smcpowers 	mp_clear(&sy);
292*f9fbec18Smcpowers 	return res;
293*f9fbec18Smcpowers }
294*f9fbec18Smcpowers #endif
295*f9fbec18Smcpowers 
296*f9fbec18Smcpowers /* Validates a point on a GFp curve. */
297*f9fbec18Smcpowers mp_err
ec_GFp_validate_point(const mp_int * px,const mp_int * py,const ECGroup * group)298*f9fbec18Smcpowers ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
299*f9fbec18Smcpowers {
300*f9fbec18Smcpowers 	mp_err res = MP_NO;
301*f9fbec18Smcpowers 	mp_int accl, accr, tmp, pxt, pyt;
302*f9fbec18Smcpowers 
303*f9fbec18Smcpowers 	MP_DIGITS(&accl) = 0;
304*f9fbec18Smcpowers 	MP_DIGITS(&accr) = 0;
305*f9fbec18Smcpowers 	MP_DIGITS(&tmp) = 0;
306*f9fbec18Smcpowers 	MP_DIGITS(&pxt) = 0;
307*f9fbec18Smcpowers 	MP_DIGITS(&pyt) = 0;
308*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&accl, FLAG(px)));
309*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&accr, FLAG(px)));
310*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&tmp, FLAG(px)));
311*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&pxt, FLAG(px)));
312*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&pyt, FLAG(px)));
313*f9fbec18Smcpowers 
314*f9fbec18Smcpowers     /* 1: Verify that publicValue is not the point at infinity */
315*f9fbec18Smcpowers 	if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
316*f9fbec18Smcpowers 		res = MP_NO;
317*f9fbec18Smcpowers 		goto CLEANUP;
318*f9fbec18Smcpowers 	}
319*f9fbec18Smcpowers     /* 2: Verify that the coordinates of publicValue are elements
320*f9fbec18Smcpowers      *    of the field.
321*f9fbec18Smcpowers      */
322*f9fbec18Smcpowers 	if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
323*f9fbec18Smcpowers 		(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
324*f9fbec18Smcpowers 		res = MP_NO;
325*f9fbec18Smcpowers 		goto CLEANUP;
326*f9fbec18Smcpowers 	}
327*f9fbec18Smcpowers     /* 3: Verify that publicValue is on the curve. */
328*f9fbec18Smcpowers 	if (group->meth->field_enc) {
329*f9fbec18Smcpowers 		group->meth->field_enc(px, &pxt, group->meth);
330*f9fbec18Smcpowers 		group->meth->field_enc(py, &pyt, group->meth);
331*f9fbec18Smcpowers 	} else {
332*f9fbec18Smcpowers 		mp_copy(px, &pxt);
333*f9fbec18Smcpowers 		mp_copy(py, &pyt);
334*f9fbec18Smcpowers 	}
335*f9fbec18Smcpowers 	/* left-hand side: y^2  */
336*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
337*f9fbec18Smcpowers 	/* right-hand side: x^3 + a*x + b */
338*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
339*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
340*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
341*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
342*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
343*f9fbec18Smcpowers 	/* check LHS - RHS == 0 */
344*f9fbec18Smcpowers 	MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
345*f9fbec18Smcpowers 	if (mp_cmp_z(&accr) != 0) {
346*f9fbec18Smcpowers 		res = MP_NO;
347*f9fbec18Smcpowers 		goto CLEANUP;
348*f9fbec18Smcpowers 	}
349*f9fbec18Smcpowers     /* 4: Verify that the order of the curve times the publicValue
350*f9fbec18Smcpowers      *    is the point at infinity.
351*f9fbec18Smcpowers      */
352*f9fbec18Smcpowers 	MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
353*f9fbec18Smcpowers 	if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
354*f9fbec18Smcpowers 		res = MP_NO;
355*f9fbec18Smcpowers 		goto CLEANUP;
356*f9fbec18Smcpowers 	}
357*f9fbec18Smcpowers 
358*f9fbec18Smcpowers 	res = MP_YES;
359*f9fbec18Smcpowers 
360*f9fbec18Smcpowers CLEANUP:
361*f9fbec18Smcpowers 	mp_clear(&accl);
362*f9fbec18Smcpowers 	mp_clear(&accr);
363*f9fbec18Smcpowers 	mp_clear(&tmp);
364*f9fbec18Smcpowers 	mp_clear(&pxt);
365*f9fbec18Smcpowers 	mp_clear(&pyt);
366*f9fbec18Smcpowers 	return res;
367*f9fbec18Smcpowers }
368