1*f9fbec18Smcpowers /*
2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK *****
3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4*f9fbec18Smcpowers *
5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version
6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with
7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at
8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/
9*f9fbec18Smcpowers *
10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis,
11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the
13*f9fbec18Smcpowers * License.
14*f9fbec18Smcpowers *
15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for prime field curves.
16*f9fbec18Smcpowers *
17*f9fbec18Smcpowers * The Initial Developer of the Original Code is
18*f9fbec18Smcpowers * Sun Microsystems, Inc.
19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003
20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved.
21*f9fbec18Smcpowers *
22*f9fbec18Smcpowers * Contributor(s):
23*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>
24*f9fbec18Smcpowers *
25*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of
26*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or
27*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead
29*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only
30*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to
31*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your
32*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice
33*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete
34*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under
35*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL.
36*f9fbec18Smcpowers *
37*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */
38*f9fbec18Smcpowers /*
39*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
40*f9fbec18Smcpowers * Use is subject to license terms.
41*f9fbec18Smcpowers *
42*f9fbec18Smcpowers * Sun elects to use this software under the MPL license.
43*f9fbec18Smcpowers */
44*f9fbec18Smcpowers
45*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI"
46*f9fbec18Smcpowers
47*f9fbec18Smcpowers #include "ecp.h"
48*f9fbec18Smcpowers #include "mpi.h"
49*f9fbec18Smcpowers #include "mplogic.h"
50*f9fbec18Smcpowers #include "mpi-priv.h"
51*f9fbec18Smcpowers #ifndef _KERNEL
52*f9fbec18Smcpowers #include <stdlib.h>
53*f9fbec18Smcpowers #endif
54*f9fbec18Smcpowers
55*f9fbec18Smcpowers #define ECP521_DIGITS ECL_CURVE_DIGITS(521)
56*f9fbec18Smcpowers
57*f9fbec18Smcpowers /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses
58*f9fbec18Smcpowers * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
59*f9fbec18Smcpowers * Elliptic Curve Cryptography. */
60*f9fbec18Smcpowers mp_err
ec_GFp_nistp521_mod(const mp_int * a,mp_int * r,const GFMethod * meth)61*f9fbec18Smcpowers ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
62*f9fbec18Smcpowers {
63*f9fbec18Smcpowers mp_err res = MP_OKAY;
64*f9fbec18Smcpowers int a_bits = mpl_significant_bits(a);
65*f9fbec18Smcpowers int i;
66*f9fbec18Smcpowers
67*f9fbec18Smcpowers /* m1, m2 are statically-allocated mp_int of exactly the size we need */
68*f9fbec18Smcpowers mp_int m1;
69*f9fbec18Smcpowers
70*f9fbec18Smcpowers mp_digit s1[ECP521_DIGITS] = { 0 };
71*f9fbec18Smcpowers
72*f9fbec18Smcpowers MP_SIGN(&m1) = MP_ZPOS;
73*f9fbec18Smcpowers MP_ALLOC(&m1) = ECP521_DIGITS;
74*f9fbec18Smcpowers MP_USED(&m1) = ECP521_DIGITS;
75*f9fbec18Smcpowers MP_DIGITS(&m1) = s1;
76*f9fbec18Smcpowers
77*f9fbec18Smcpowers if (a_bits < 521) {
78*f9fbec18Smcpowers if (a==r) return MP_OKAY;
79*f9fbec18Smcpowers return mp_copy(a, r);
80*f9fbec18Smcpowers }
81*f9fbec18Smcpowers /* for polynomials larger than twice the field size or polynomials
82*f9fbec18Smcpowers * not using all words, use regular reduction */
83*f9fbec18Smcpowers if (a_bits > (521*2)) {
84*f9fbec18Smcpowers MP_CHECKOK(mp_mod(a, &meth->irr, r));
85*f9fbec18Smcpowers } else {
86*f9fbec18Smcpowers #define FIRST_DIGIT (ECP521_DIGITS-1)
87*f9fbec18Smcpowers for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
88*f9fbec18Smcpowers s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9)
89*f9fbec18Smcpowers | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
90*f9fbec18Smcpowers }
91*f9fbec18Smcpowers s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
92*f9fbec18Smcpowers
93*f9fbec18Smcpowers if ( a != r ) {
94*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
95*f9fbec18Smcpowers for (i = 0; i < ECP521_DIGITS; i++) {
96*f9fbec18Smcpowers MP_DIGIT(r,i) = MP_DIGIT(a, i);
97*f9fbec18Smcpowers }
98*f9fbec18Smcpowers }
99*f9fbec18Smcpowers MP_USED(r) = ECP521_DIGITS;
100*f9fbec18Smcpowers MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
101*f9fbec18Smcpowers
102*f9fbec18Smcpowers MP_CHECKOK(s_mp_add(r, &m1));
103*f9fbec18Smcpowers if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
104*f9fbec18Smcpowers MP_CHECKOK(s_mp_add_d(r,1));
105*f9fbec18Smcpowers MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
106*f9fbec18Smcpowers }
107*f9fbec18Smcpowers s_mp_clamp(r);
108*f9fbec18Smcpowers }
109*f9fbec18Smcpowers
110*f9fbec18Smcpowers CLEANUP:
111*f9fbec18Smcpowers return res;
112*f9fbec18Smcpowers }
113*f9fbec18Smcpowers
114*f9fbec18Smcpowers /* Compute the square of polynomial a, reduce modulo p521. Store the
115*f9fbec18Smcpowers * result in r. r could be a. Uses optimized modular reduction for p521.
116*f9fbec18Smcpowers */
117*f9fbec18Smcpowers mp_err
ec_GFp_nistp521_sqr(const mp_int * a,mp_int * r,const GFMethod * meth)118*f9fbec18Smcpowers ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
119*f9fbec18Smcpowers {
120*f9fbec18Smcpowers mp_err res = MP_OKAY;
121*f9fbec18Smcpowers
122*f9fbec18Smcpowers MP_CHECKOK(mp_sqr(a, r));
123*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
124*f9fbec18Smcpowers CLEANUP:
125*f9fbec18Smcpowers return res;
126*f9fbec18Smcpowers }
127*f9fbec18Smcpowers
128*f9fbec18Smcpowers /* Compute the product of two polynomials a and b, reduce modulo p521.
129*f9fbec18Smcpowers * Store the result in r. r could be a or b; a could be b. Uses
130*f9fbec18Smcpowers * optimized modular reduction for p521. */
131*f9fbec18Smcpowers mp_err
ec_GFp_nistp521_mul(const mp_int * a,const mp_int * b,mp_int * r,const GFMethod * meth)132*f9fbec18Smcpowers ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
133*f9fbec18Smcpowers const GFMethod *meth)
134*f9fbec18Smcpowers {
135*f9fbec18Smcpowers mp_err res = MP_OKAY;
136*f9fbec18Smcpowers
137*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, b, r));
138*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
139*f9fbec18Smcpowers CLEANUP:
140*f9fbec18Smcpowers return res;
141*f9fbec18Smcpowers }
142*f9fbec18Smcpowers
143*f9fbec18Smcpowers /* Divides two field elements. If a is NULL, then returns the inverse of
144*f9fbec18Smcpowers * b. */
145*f9fbec18Smcpowers mp_err
ec_GFp_nistp521_div(const mp_int * a,const mp_int * b,mp_int * r,const GFMethod * meth)146*f9fbec18Smcpowers ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
147*f9fbec18Smcpowers const GFMethod *meth)
148*f9fbec18Smcpowers {
149*f9fbec18Smcpowers mp_err res = MP_OKAY;
150*f9fbec18Smcpowers mp_int t;
151*f9fbec18Smcpowers
152*f9fbec18Smcpowers /* If a is NULL, then return the inverse of b, otherwise return a/b. */
153*f9fbec18Smcpowers if (a == NULL) {
154*f9fbec18Smcpowers return mp_invmod(b, &meth->irr, r);
155*f9fbec18Smcpowers } else {
156*f9fbec18Smcpowers /* MPI doesn't support divmod, so we implement it using invmod and
157*f9fbec18Smcpowers * mulmod. */
158*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t, FLAG(b)));
159*f9fbec18Smcpowers MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
160*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, &t, r));
161*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
162*f9fbec18Smcpowers CLEANUP:
163*f9fbec18Smcpowers mp_clear(&t);
164*f9fbec18Smcpowers return res;
165*f9fbec18Smcpowers }
166*f9fbec18Smcpowers }
167*f9fbec18Smcpowers
168*f9fbec18Smcpowers /* Wire in fast field arithmetic and precomputation of base point for
169*f9fbec18Smcpowers * named curves. */
170*f9fbec18Smcpowers mp_err
ec_group_set_gfp521(ECGroup * group,ECCurveName name)171*f9fbec18Smcpowers ec_group_set_gfp521(ECGroup *group, ECCurveName name)
172*f9fbec18Smcpowers {
173*f9fbec18Smcpowers if (name == ECCurve_NIST_P521) {
174*f9fbec18Smcpowers group->meth->field_mod = &ec_GFp_nistp521_mod;
175*f9fbec18Smcpowers group->meth->field_mul = &ec_GFp_nistp521_mul;
176*f9fbec18Smcpowers group->meth->field_sqr = &ec_GFp_nistp521_sqr;
177*f9fbec18Smcpowers group->meth->field_div = &ec_GFp_nistp521_div;
178*f9fbec18Smcpowers }
179*f9fbec18Smcpowers return MP_OKAY;
180*f9fbec18Smcpowers }
181