1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2014 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * AVL - generic AVL tree implementation for kernel use 32 * 33 * A complete description of AVL trees can be found in many CS textbooks. 34 * 35 * Here is a very brief overview. An AVL tree is a binary search tree that is 36 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 37 * any given node, the left and right subtrees are allowed to differ in height 38 * by at most 1 level. 39 * 40 * This relaxation from a perfectly balanced binary tree allows doing 41 * insertion and deletion relatively efficiently. Searching the tree is 42 * still a fast operation, roughly O(log(N)). 43 * 44 * The key to insertion and deletion is a set of tree manipulations called 45 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 46 * 47 * This implementation of AVL trees has the following peculiarities: 48 * 49 * - The AVL specific data structures are physically embedded as fields 50 * in the "using" data structures. To maintain generality the code 51 * must constantly translate between "avl_node_t *" and containing 52 * data structure "void *"s by adding/subtracting the avl_offset. 53 * 54 * - Since the AVL data is always embedded in other structures, there is 55 * no locking or memory allocation in the AVL routines. This must be 56 * provided for by the enclosing data structure's semantics. Typically, 57 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 58 * exclusive write lock. Other operations require a read lock. 59 * 60 * - The implementation uses iteration instead of explicit recursion, 61 * since it is intended to run on limited size kernel stacks. Since 62 * there is no recursion stack present to move "up" in the tree, 63 * there is an explicit "parent" link in the avl_node_t. 64 * 65 * - The left/right children pointers of a node are in an array. 66 * In the code, variables (instead of constants) are used to represent 67 * left and right indices. The implementation is written as if it only 68 * dealt with left handed manipulations. By changing the value assigned 69 * to "left", the code also works for right handed trees. The 70 * following variables/terms are frequently used: 71 * 72 * int left; // 0 when dealing with left children, 73 * // 1 for dealing with right children 74 * 75 * int left_heavy; // -1 when left subtree is taller at some node, 76 * // +1 when right subtree is taller 77 * 78 * int right; // will be the opposite of left (0 or 1) 79 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 80 * 81 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 82 * 83 * Though it is a little more confusing to read the code, the approach 84 * allows using half as much code (and hence cache footprint) for tree 85 * manipulations and eliminates many conditional branches. 86 * 87 * - The avl_index_t is an opaque "cookie" used to find nodes at or 88 * adjacent to where a new value would be inserted in the tree. The value 89 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 90 * pointer) is set to indicate if that the new node has a value greater 91 * than the value of the indicated "avl_node_t *". 92 * 93 * Note - in addition to userland (e.g. libavl and libutil) and the kernel 94 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module, 95 * which each have their own compilation environments and subsequent 96 * requirements. Each of these environments must be considered when adding 97 * dependencies from avl.c. 98 */ 99 100 #include <sys/types.h> 101 #include <sys/param.h> 102 #include <sys/debug.h> 103 #include <sys/avl.h> 104 #include <sys/cmn_err.h> 105 106 /* 107 * Small arrays to translate between balance (or diff) values and child indices. 108 * 109 * Code that deals with binary tree data structures will randomly use 110 * left and right children when examining a tree. C "if()" statements 111 * which evaluate randomly suffer from very poor hardware branch prediction. 112 * In this code we avoid some of the branch mispredictions by using the 113 * following translation arrays. They replace random branches with an 114 * additional memory reference. Since the translation arrays are both very 115 * small the data should remain efficiently in cache. 116 */ 117 static const int avl_child2balance[2] = {-1, 1}; 118 static const int avl_balance2child[] = {0, 0, 1}; 119 120 121 /* 122 * Walk from one node to the previous valued node (ie. an infix walk 123 * towards the left). At any given node we do one of 2 things: 124 * 125 * - If there is a left child, go to it, then to it's rightmost descendant. 126 * 127 * - otherwise we return through parent nodes until we've come from a right 128 * child. 129 * 130 * Return Value: 131 * NULL - if at the end of the nodes 132 * otherwise next node 133 */ 134 void * 135 avl_walk(avl_tree_t *tree, void *oldnode, int left) 136 { 137 size_t off = tree->avl_offset; 138 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 139 int right = 1 - left; 140 int was_child; 141 142 143 /* 144 * nowhere to walk to if tree is empty 145 */ 146 if (node == NULL) 147 return (NULL); 148 149 /* 150 * Visit the previous valued node. There are two possibilities: 151 * 152 * If this node has a left child, go down one left, then all 153 * the way right. 154 */ 155 if (node->avl_child[left] != NULL) { 156 for (node = node->avl_child[left]; 157 node->avl_child[right] != NULL; 158 node = node->avl_child[right]) 159 ; 160 /* 161 * Otherwise, return thru left children as far as we can. 162 */ 163 } else { 164 for (;;) { 165 was_child = AVL_XCHILD(node); 166 node = AVL_XPARENT(node); 167 if (node == NULL) 168 return (NULL); 169 if (was_child == right) 170 break; 171 } 172 } 173 174 return (AVL_NODE2DATA(node, off)); 175 } 176 177 /* 178 * Return the lowest valued node in a tree or NULL. 179 * (leftmost child from root of tree) 180 */ 181 void * 182 avl_first(avl_tree_t *tree) 183 { 184 avl_node_t *node; 185 avl_node_t *prev = NULL; 186 size_t off = tree->avl_offset; 187 188 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 189 prev = node; 190 191 if (prev != NULL) 192 return (AVL_NODE2DATA(prev, off)); 193 return (NULL); 194 } 195 196 /* 197 * Return the highest valued node in a tree or NULL. 198 * (rightmost child from root of tree) 199 */ 200 void * 201 avl_last(avl_tree_t *tree) 202 { 203 avl_node_t *node; 204 avl_node_t *prev = NULL; 205 size_t off = tree->avl_offset; 206 207 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 208 prev = node; 209 210 if (prev != NULL) 211 return (AVL_NODE2DATA(prev, off)); 212 return (NULL); 213 } 214 215 /* 216 * Access the node immediately before or after an insertion point. 217 * 218 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 219 * 220 * Return value: 221 * NULL: no node in the given direction 222 * "void *" of the found tree node 223 */ 224 void * 225 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 226 { 227 int child = AVL_INDEX2CHILD(where); 228 avl_node_t *node = AVL_INDEX2NODE(where); 229 void *data; 230 size_t off = tree->avl_offset; 231 232 if (node == NULL) { 233 ASSERT(tree->avl_root == NULL); 234 return (NULL); 235 } 236 data = AVL_NODE2DATA(node, off); 237 if (child != direction) 238 return (data); 239 240 return (avl_walk(tree, data, direction)); 241 } 242 243 244 /* 245 * Search for the node which contains "value". The algorithm is a 246 * simple binary tree search. 247 * 248 * return value: 249 * NULL: the value is not in the AVL tree 250 * *where (if not NULL) is set to indicate the insertion point 251 * "void *" of the found tree node 252 */ 253 void * 254 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) 255 { 256 avl_node_t *node; 257 avl_node_t *prev = NULL; 258 int child = 0; 259 int diff; 260 size_t off = tree->avl_offset; 261 262 for (node = tree->avl_root; node != NULL; 263 node = node->avl_child[child]) { 264 265 prev = node; 266 267 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 268 ASSERT(-1 <= diff && diff <= 1); 269 if (diff == 0) { 270 #ifdef DEBUG 271 if (where != NULL) 272 *where = 0; 273 #endif 274 return (AVL_NODE2DATA(node, off)); 275 } 276 child = avl_balance2child[1 + diff]; 277 278 } 279 280 if (where != NULL) 281 *where = AVL_MKINDEX(prev, child); 282 283 return (NULL); 284 } 285 286 287 /* 288 * Perform a rotation to restore balance at the subtree given by depth. 289 * 290 * This routine is used by both insertion and deletion. The return value 291 * indicates: 292 * 0 : subtree did not change height 293 * !0 : subtree was reduced in height 294 * 295 * The code is written as if handling left rotations, right rotations are 296 * symmetric and handled by swapping values of variables right/left[_heavy] 297 * 298 * On input balance is the "new" balance at "node". This value is either 299 * -2 or +2. 300 */ 301 static int 302 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 303 { 304 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 305 int right = 1 - left; 306 int left_heavy = balance >> 1; 307 int right_heavy = -left_heavy; 308 avl_node_t *parent = AVL_XPARENT(node); 309 avl_node_t *child = node->avl_child[left]; 310 avl_node_t *cright; 311 avl_node_t *gchild; 312 avl_node_t *gright; 313 avl_node_t *gleft; 314 int which_child = AVL_XCHILD(node); 315 int child_bal = AVL_XBALANCE(child); 316 317 /* BEGIN CSTYLED */ 318 /* 319 * case 1 : node is overly left heavy, the left child is balanced or 320 * also left heavy. This requires the following rotation. 321 * 322 * (node bal:-2) 323 * / \ 324 * / \ 325 * (child bal:0 or -1) 326 * / \ 327 * / \ 328 * cright 329 * 330 * becomes: 331 * 332 * (child bal:1 or 0) 333 * / \ 334 * / \ 335 * (node bal:-1 or 0) 336 * / \ 337 * / \ 338 * cright 339 * 340 * we detect this situation by noting that child's balance is not 341 * right_heavy. 342 */ 343 /* END CSTYLED */ 344 if (child_bal != right_heavy) { 345 346 /* 347 * compute new balance of nodes 348 * 349 * If child used to be left heavy (now balanced) we reduced 350 * the height of this sub-tree -- used in "return...;" below 351 */ 352 child_bal += right_heavy; /* adjust towards right */ 353 354 /* 355 * move "cright" to be node's left child 356 */ 357 cright = child->avl_child[right]; 358 node->avl_child[left] = cright; 359 if (cright != NULL) { 360 AVL_SETPARENT(cright, node); 361 AVL_SETCHILD(cright, left); 362 } 363 364 /* 365 * move node to be child's right child 366 */ 367 child->avl_child[right] = node; 368 AVL_SETBALANCE(node, -child_bal); 369 AVL_SETCHILD(node, right); 370 AVL_SETPARENT(node, child); 371 372 /* 373 * update the pointer into this subtree 374 */ 375 AVL_SETBALANCE(child, child_bal); 376 AVL_SETCHILD(child, which_child); 377 AVL_SETPARENT(child, parent); 378 if (parent != NULL) 379 parent->avl_child[which_child] = child; 380 else 381 tree->avl_root = child; 382 383 return (child_bal == 0); 384 } 385 386 /* BEGIN CSTYLED */ 387 /* 388 * case 2 : When node is left heavy, but child is right heavy we use 389 * a different rotation. 390 * 391 * (node b:-2) 392 * / \ 393 * / \ 394 * / \ 395 * (child b:+1) 396 * / \ 397 * / \ 398 * (gchild b: != 0) 399 * / \ 400 * / \ 401 * gleft gright 402 * 403 * becomes: 404 * 405 * (gchild b:0) 406 * / \ 407 * / \ 408 * / \ 409 * (child b:?) (node b:?) 410 * / \ / \ 411 * / \ / \ 412 * gleft gright 413 * 414 * computing the new balances is more complicated. As an example: 415 * if gchild was right_heavy, then child is now left heavy 416 * else it is balanced 417 */ 418 /* END CSTYLED */ 419 gchild = child->avl_child[right]; 420 gleft = gchild->avl_child[left]; 421 gright = gchild->avl_child[right]; 422 423 /* 424 * move gright to left child of node and 425 * 426 * move gleft to right child of node 427 */ 428 node->avl_child[left] = gright; 429 if (gright != NULL) { 430 AVL_SETPARENT(gright, node); 431 AVL_SETCHILD(gright, left); 432 } 433 434 child->avl_child[right] = gleft; 435 if (gleft != NULL) { 436 AVL_SETPARENT(gleft, child); 437 AVL_SETCHILD(gleft, right); 438 } 439 440 /* 441 * move child to left child of gchild and 442 * 443 * move node to right child of gchild and 444 * 445 * fixup parent of all this to point to gchild 446 */ 447 balance = AVL_XBALANCE(gchild); 448 gchild->avl_child[left] = child; 449 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 450 AVL_SETPARENT(child, gchild); 451 AVL_SETCHILD(child, left); 452 453 gchild->avl_child[right] = node; 454 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 455 AVL_SETPARENT(node, gchild); 456 AVL_SETCHILD(node, right); 457 458 AVL_SETBALANCE(gchild, 0); 459 AVL_SETPARENT(gchild, parent); 460 AVL_SETCHILD(gchild, which_child); 461 if (parent != NULL) 462 parent->avl_child[which_child] = gchild; 463 else 464 tree->avl_root = gchild; 465 466 return (1); /* the new tree is always shorter */ 467 } 468 469 470 /* 471 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 472 * 473 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 474 * searches out to the leaf positions. The avl_index_t indicates the node 475 * which will be the parent of the new node. 476 * 477 * After the node is inserted, a single rotation further up the tree may 478 * be necessary to maintain an acceptable AVL balance. 479 */ 480 void 481 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 482 { 483 avl_node_t *node; 484 avl_node_t *parent = AVL_INDEX2NODE(where); 485 int old_balance; 486 int new_balance; 487 int which_child = AVL_INDEX2CHILD(where); 488 size_t off = tree->avl_offset; 489 490 ASSERT(tree); 491 #ifdef _LP64 492 ASSERT(((uintptr_t)new_data & 0x7) == 0); 493 #endif 494 495 node = AVL_DATA2NODE(new_data, off); 496 497 /* 498 * First, add the node to the tree at the indicated position. 499 */ 500 ++tree->avl_numnodes; 501 502 node->avl_child[0] = NULL; 503 node->avl_child[1] = NULL; 504 505 AVL_SETCHILD(node, which_child); 506 AVL_SETBALANCE(node, 0); 507 AVL_SETPARENT(node, parent); 508 if (parent != NULL) { 509 ASSERT(parent->avl_child[which_child] == NULL); 510 parent->avl_child[which_child] = node; 511 } else { 512 ASSERT(tree->avl_root == NULL); 513 tree->avl_root = node; 514 } 515 /* 516 * Now, back up the tree modifying the balance of all nodes above the 517 * insertion point. If we get to a highly unbalanced ancestor, we 518 * need to do a rotation. If we back out of the tree we are done. 519 * If we brought any subtree into perfect balance (0), we are also done. 520 */ 521 for (;;) { 522 node = parent; 523 if (node == NULL) 524 return; 525 526 /* 527 * Compute the new balance 528 */ 529 old_balance = AVL_XBALANCE(node); 530 new_balance = old_balance + avl_child2balance[which_child]; 531 532 /* 533 * If we introduced equal balance, then we are done immediately 534 */ 535 if (new_balance == 0) { 536 AVL_SETBALANCE(node, 0); 537 return; 538 } 539 540 /* 541 * If both old and new are not zero we went 542 * from -1 to -2 balance, do a rotation. 543 */ 544 if (old_balance != 0) 545 break; 546 547 AVL_SETBALANCE(node, new_balance); 548 parent = AVL_XPARENT(node); 549 which_child = AVL_XCHILD(node); 550 } 551 552 /* 553 * perform a rotation to fix the tree and return 554 */ 555 (void) avl_rotation(tree, node, new_balance); 556 } 557 558 /* 559 * Insert "new_data" in "tree" in the given "direction" either after or 560 * before (AVL_AFTER, AVL_BEFORE) the data "here". 561 * 562 * Insertions can only be done at empty leaf points in the tree, therefore 563 * if the given child of the node is already present we move to either 564 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 565 * every other node in the tree is a leaf, this always works. 566 * 567 * To help developers using this interface, we assert that the new node 568 * is correctly ordered at every step of the way in DEBUG kernels. 569 */ 570 void 571 avl_insert_here( 572 avl_tree_t *tree, 573 void *new_data, 574 void *here, 575 int direction) 576 { 577 avl_node_t *node; 578 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 579 #ifdef DEBUG 580 int diff; 581 #endif 582 583 ASSERT(tree != NULL); 584 ASSERT(new_data != NULL); 585 ASSERT(here != NULL); 586 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 587 588 /* 589 * If corresponding child of node is not NULL, go to the neighboring 590 * node and reverse the insertion direction. 591 */ 592 node = AVL_DATA2NODE(here, tree->avl_offset); 593 594 #ifdef DEBUG 595 diff = tree->avl_compar(new_data, here); 596 ASSERT(-1 <= diff && diff <= 1); 597 ASSERT(diff != 0); 598 ASSERT(diff > 0 ? child == 1 : child == 0); 599 #endif 600 601 if (node->avl_child[child] != NULL) { 602 node = node->avl_child[child]; 603 child = 1 - child; 604 while (node->avl_child[child] != NULL) { 605 #ifdef DEBUG 606 diff = tree->avl_compar(new_data, 607 AVL_NODE2DATA(node, tree->avl_offset)); 608 ASSERT(-1 <= diff && diff <= 1); 609 ASSERT(diff != 0); 610 ASSERT(diff > 0 ? child == 1 : child == 0); 611 #endif 612 node = node->avl_child[child]; 613 } 614 #ifdef DEBUG 615 diff = tree->avl_compar(new_data, 616 AVL_NODE2DATA(node, tree->avl_offset)); 617 ASSERT(-1 <= diff && diff <= 1); 618 ASSERT(diff != 0); 619 ASSERT(diff > 0 ? child == 1 : child == 0); 620 #endif 621 } 622 ASSERT(node->avl_child[child] == NULL); 623 624 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 625 } 626 627 /* 628 * Add a new node to an AVL tree. 629 */ 630 void 631 avl_add(avl_tree_t *tree, void *new_node) 632 { 633 avl_index_t where; 634 635 /* 636 * This is unfortunate. We want to call panic() here, even for 637 * non-DEBUG kernels. In userland, however, we can't depend on anything 638 * in libc or else the rtld build process gets confused. So, all we can 639 * do in userland is resort to a normal ASSERT(). 640 */ 641 if (avl_find(tree, new_node, &where) != NULL) 642 #ifdef _KERNEL 643 panic("avl_find() succeeded inside avl_add()"); 644 #else 645 ASSERT(0); 646 #endif 647 avl_insert(tree, new_node, where); 648 } 649 650 /* 651 * Delete a node from the AVL tree. Deletion is similar to insertion, but 652 * with 2 complications. 653 * 654 * First, we may be deleting an interior node. Consider the following subtree: 655 * 656 * d c c 657 * / \ / \ / \ 658 * b e b e b e 659 * / \ / \ / 660 * a c a a 661 * 662 * When we are deleting node (d), we find and bring up an adjacent valued leaf 663 * node, say (c), to take the interior node's place. In the code this is 664 * handled by temporarily swapping (d) and (c) in the tree and then using 665 * common code to delete (d) from the leaf position. 666 * 667 * Secondly, an interior deletion from a deep tree may require more than one 668 * rotation to fix the balance. This is handled by moving up the tree through 669 * parents and applying rotations as needed. The return value from 670 * avl_rotation() is used to detect when a subtree did not change overall 671 * height due to a rotation. 672 */ 673 void 674 avl_remove(avl_tree_t *tree, void *data) 675 { 676 avl_node_t *delete; 677 avl_node_t *parent; 678 avl_node_t *node; 679 avl_node_t tmp; 680 int old_balance; 681 int new_balance; 682 int left; 683 int right; 684 int which_child; 685 size_t off = tree->avl_offset; 686 687 ASSERT(tree); 688 689 delete = AVL_DATA2NODE(data, off); 690 691 /* 692 * Deletion is easiest with a node that has at most 1 child. 693 * We swap a node with 2 children with a sequentially valued 694 * neighbor node. That node will have at most 1 child. Note this 695 * has no effect on the ordering of the remaining nodes. 696 * 697 * As an optimization, we choose the greater neighbor if the tree 698 * is right heavy, otherwise the left neighbor. This reduces the 699 * number of rotations needed. 700 */ 701 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 702 703 /* 704 * choose node to swap from whichever side is taller 705 */ 706 old_balance = AVL_XBALANCE(delete); 707 left = avl_balance2child[old_balance + 1]; 708 right = 1 - left; 709 710 /* 711 * get to the previous value'd node 712 * (down 1 left, as far as possible right) 713 */ 714 for (node = delete->avl_child[left]; 715 node->avl_child[right] != NULL; 716 node = node->avl_child[right]) 717 ; 718 719 /* 720 * create a temp placeholder for 'node' 721 * move 'node' to delete's spot in the tree 722 */ 723 tmp = *node; 724 725 *node = *delete; 726 if (node->avl_child[left] == node) 727 node->avl_child[left] = &tmp; 728 729 parent = AVL_XPARENT(node); 730 if (parent != NULL) 731 parent->avl_child[AVL_XCHILD(node)] = node; 732 else 733 tree->avl_root = node; 734 AVL_SETPARENT(node->avl_child[left], node); 735 AVL_SETPARENT(node->avl_child[right], node); 736 737 /* 738 * Put tmp where node used to be (just temporary). 739 * It always has a parent and at most 1 child. 740 */ 741 delete = &tmp; 742 parent = AVL_XPARENT(delete); 743 parent->avl_child[AVL_XCHILD(delete)] = delete; 744 which_child = (delete->avl_child[1] != 0); 745 if (delete->avl_child[which_child] != NULL) 746 AVL_SETPARENT(delete->avl_child[which_child], delete); 747 } 748 749 750 /* 751 * Here we know "delete" is at least partially a leaf node. It can 752 * be easily removed from the tree. 753 */ 754 ASSERT(tree->avl_numnodes > 0); 755 --tree->avl_numnodes; 756 parent = AVL_XPARENT(delete); 757 which_child = AVL_XCHILD(delete); 758 if (delete->avl_child[0] != NULL) 759 node = delete->avl_child[0]; 760 else 761 node = delete->avl_child[1]; 762 763 /* 764 * Connect parent directly to node (leaving out delete). 765 */ 766 if (node != NULL) { 767 AVL_SETPARENT(node, parent); 768 AVL_SETCHILD(node, which_child); 769 } 770 if (parent == NULL) { 771 tree->avl_root = node; 772 return; 773 } 774 parent->avl_child[which_child] = node; 775 776 777 /* 778 * Since the subtree is now shorter, begin adjusting parent balances 779 * and performing any needed rotations. 780 */ 781 do { 782 783 /* 784 * Move up the tree and adjust the balance 785 * 786 * Capture the parent and which_child values for the next 787 * iteration before any rotations occur. 788 */ 789 node = parent; 790 old_balance = AVL_XBALANCE(node); 791 new_balance = old_balance - avl_child2balance[which_child]; 792 parent = AVL_XPARENT(node); 793 which_child = AVL_XCHILD(node); 794 795 /* 796 * If a node was in perfect balance but isn't anymore then 797 * we can stop, since the height didn't change above this point 798 * due to a deletion. 799 */ 800 if (old_balance == 0) { 801 AVL_SETBALANCE(node, new_balance); 802 break; 803 } 804 805 /* 806 * If the new balance is zero, we don't need to rotate 807 * else 808 * need a rotation to fix the balance. 809 * If the rotation doesn't change the height 810 * of the sub-tree we have finished adjusting. 811 */ 812 if (new_balance == 0) 813 AVL_SETBALANCE(node, new_balance); 814 else if (!avl_rotation(tree, node, new_balance)) 815 break; 816 } while (parent != NULL); 817 } 818 819 #define AVL_REINSERT(tree, obj) \ 820 avl_remove((tree), (obj)); \ 821 avl_add((tree), (obj)) 822 823 boolean_t 824 avl_update_lt(avl_tree_t *t, void *obj) 825 { 826 void *neighbor; 827 828 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 829 (t->avl_compar(obj, neighbor) <= 0)); 830 831 neighbor = AVL_PREV(t, obj); 832 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 833 AVL_REINSERT(t, obj); 834 return (B_TRUE); 835 } 836 837 return (B_FALSE); 838 } 839 840 boolean_t 841 avl_update_gt(avl_tree_t *t, void *obj) 842 { 843 void *neighbor; 844 845 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 846 (t->avl_compar(obj, neighbor) >= 0)); 847 848 neighbor = AVL_NEXT(t, obj); 849 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 850 AVL_REINSERT(t, obj); 851 return (B_TRUE); 852 } 853 854 return (B_FALSE); 855 } 856 857 boolean_t 858 avl_update(avl_tree_t *t, void *obj) 859 { 860 void *neighbor; 861 862 neighbor = AVL_PREV(t, obj); 863 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 864 AVL_REINSERT(t, obj); 865 return (B_TRUE); 866 } 867 868 neighbor = AVL_NEXT(t, obj); 869 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 870 AVL_REINSERT(t, obj); 871 return (B_TRUE); 872 } 873 874 return (B_FALSE); 875 } 876 877 void 878 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2) 879 { 880 avl_node_t *temp_node; 881 ulong_t temp_numnodes; 882 883 ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar); 884 ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset); 885 ASSERT3U(tree1->avl_size, ==, tree2->avl_size); 886 887 temp_node = tree1->avl_root; 888 temp_numnodes = tree1->avl_numnodes; 889 tree1->avl_root = tree2->avl_root; 890 tree1->avl_numnodes = tree2->avl_numnodes; 891 tree2->avl_root = temp_node; 892 tree2->avl_numnodes = temp_numnodes; 893 } 894 895 /* 896 * initialize a new AVL tree 897 */ 898 void 899 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 900 size_t size, size_t offset) 901 { 902 ASSERT(tree); 903 ASSERT(compar); 904 ASSERT(size > 0); 905 ASSERT(size >= offset + sizeof (avl_node_t)); 906 #ifdef _LP64 907 ASSERT((offset & 0x7) == 0); 908 #endif 909 910 tree->avl_compar = compar; 911 tree->avl_root = NULL; 912 tree->avl_numnodes = 0; 913 tree->avl_size = size; 914 tree->avl_offset = offset; 915 } 916 917 /* 918 * Delete a tree. 919 */ 920 /* ARGSUSED */ 921 void 922 avl_destroy(avl_tree_t *tree) 923 { 924 ASSERT(tree); 925 ASSERT(tree->avl_numnodes == 0); 926 ASSERT(tree->avl_root == NULL); 927 } 928 929 930 /* 931 * Return the number of nodes in an AVL tree. 932 */ 933 ulong_t 934 avl_numnodes(avl_tree_t *tree) 935 { 936 ASSERT(tree); 937 return (tree->avl_numnodes); 938 } 939 940 boolean_t 941 avl_is_empty(avl_tree_t *tree) 942 { 943 ASSERT(tree); 944 return (tree->avl_numnodes == 0); 945 } 946 947 #define CHILDBIT (1L) 948 949 /* 950 * Post-order tree walk used to visit all tree nodes and destroy the tree 951 * in post order. This is used for destroying a tree without paying any cost 952 * for rebalancing it. 953 * 954 * example: 955 * 956 * void *cookie = NULL; 957 * my_data_t *node; 958 * 959 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 960 * free(node); 961 * avl_destroy(tree); 962 * 963 * The cookie is really an avl_node_t to the current node's parent and 964 * an indication of which child you looked at last. 965 * 966 * On input, a cookie value of CHILDBIT indicates the tree is done. 967 */ 968 void * 969 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 970 { 971 avl_node_t *node; 972 avl_node_t *parent; 973 int child; 974 void *first; 975 size_t off = tree->avl_offset; 976 977 /* 978 * Initial calls go to the first node or it's right descendant. 979 */ 980 if (*cookie == NULL) { 981 first = avl_first(tree); 982 983 /* 984 * deal with an empty tree 985 */ 986 if (first == NULL) { 987 *cookie = (void *)CHILDBIT; 988 return (NULL); 989 } 990 991 node = AVL_DATA2NODE(first, off); 992 parent = AVL_XPARENT(node); 993 goto check_right_side; 994 } 995 996 /* 997 * If there is no parent to return to we are done. 998 */ 999 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 1000 if (parent == NULL) { 1001 if (tree->avl_root != NULL) { 1002 ASSERT(tree->avl_numnodes == 1); 1003 tree->avl_root = NULL; 1004 tree->avl_numnodes = 0; 1005 } 1006 return (NULL); 1007 } 1008 1009 /* 1010 * Remove the child pointer we just visited from the parent and tree. 1011 */ 1012 child = (uintptr_t)(*cookie) & CHILDBIT; 1013 parent->avl_child[child] = NULL; 1014 ASSERT(tree->avl_numnodes > 1); 1015 --tree->avl_numnodes; 1016 1017 /* 1018 * If we just did a right child or there isn't one, go up to parent. 1019 */ 1020 if (child == 1 || parent->avl_child[1] == NULL) { 1021 node = parent; 1022 parent = AVL_XPARENT(parent); 1023 goto done; 1024 } 1025 1026 /* 1027 * Do parent's right child, then leftmost descendent. 1028 */ 1029 node = parent->avl_child[1]; 1030 while (node->avl_child[0] != NULL) { 1031 parent = node; 1032 node = node->avl_child[0]; 1033 } 1034 1035 /* 1036 * If here, we moved to a left child. It may have one 1037 * child on the right (when balance == +1). 1038 */ 1039 check_right_side: 1040 if (node->avl_child[1] != NULL) { 1041 ASSERT(AVL_XBALANCE(node) == 1); 1042 parent = node; 1043 node = node->avl_child[1]; 1044 ASSERT(node->avl_child[0] == NULL && 1045 node->avl_child[1] == NULL); 1046 } else { 1047 ASSERT(AVL_XBALANCE(node) <= 0); 1048 } 1049 1050 done: 1051 if (parent == NULL) { 1052 *cookie = (void *)CHILDBIT; 1053 ASSERT(node == tree->avl_root); 1054 } else { 1055 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1056 } 1057 1058 return (AVL_NODE2DATA(node, off)); 1059 } 1060