1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zil.h> 90 #include <sys/zil_impl.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/metaslab_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 #include <libnvpair.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 static int zopt_maxfaults; 129 130 #define BT_MAGIC 0x123456789abcdefULL 131 132 enum ztest_io_type { 133 ZTEST_IO_WRITE_TAG, 134 ZTEST_IO_WRITE_PATTERN, 135 ZTEST_IO_WRITE_ZEROES, 136 ZTEST_IO_TRUNCATE, 137 ZTEST_IO_SETATTR, 138 ZTEST_IO_TYPES 139 }; 140 141 typedef struct ztest_block_tag { 142 uint64_t bt_magic; 143 uint64_t bt_objset; 144 uint64_t bt_object; 145 uint64_t bt_offset; 146 uint64_t bt_gen; 147 uint64_t bt_txg; 148 uint64_t bt_crtxg; 149 } ztest_block_tag_t; 150 151 typedef struct bufwad { 152 uint64_t bw_index; 153 uint64_t bw_txg; 154 uint64_t bw_data; 155 } bufwad_t; 156 157 /* 158 * XXX -- fix zfs range locks to be generic so we can use them here. 159 */ 160 typedef enum { 161 RL_READER, 162 RL_WRITER, 163 RL_APPEND 164 } rl_type_t; 165 166 typedef struct rll { 167 void *rll_writer; 168 int rll_readers; 169 mutex_t rll_lock; 170 cond_t rll_cv; 171 } rll_t; 172 173 typedef struct rl { 174 uint64_t rl_object; 175 uint64_t rl_offset; 176 uint64_t rl_size; 177 rll_t *rl_lock; 178 } rl_t; 179 180 #define ZTEST_RANGE_LOCKS 64 181 #define ZTEST_OBJECT_LOCKS 64 182 183 /* 184 * Object descriptor. Used as a template for object lookup/create/remove. 185 */ 186 typedef struct ztest_od { 187 uint64_t od_dir; 188 uint64_t od_object; 189 dmu_object_type_t od_type; 190 dmu_object_type_t od_crtype; 191 uint64_t od_blocksize; 192 uint64_t od_crblocksize; 193 uint64_t od_gen; 194 uint64_t od_crgen; 195 char od_name[MAXNAMELEN]; 196 } ztest_od_t; 197 198 /* 199 * Per-dataset state. 200 */ 201 typedef struct ztest_ds { 202 objset_t *zd_os; 203 zilog_t *zd_zilog; 204 uint64_t zd_seq; 205 ztest_od_t *zd_od; /* debugging aid */ 206 char zd_name[MAXNAMELEN]; 207 mutex_t zd_dirobj_lock; 208 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 209 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 210 } ztest_ds_t; 211 212 /* 213 * Per-iteration state. 214 */ 215 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 216 217 typedef struct ztest_info { 218 ztest_func_t *zi_func; /* test function */ 219 uint64_t zi_iters; /* iterations per execution */ 220 uint64_t *zi_interval; /* execute every <interval> seconds */ 221 uint64_t zi_call_count; /* per-pass count */ 222 uint64_t zi_call_time; /* per-pass time */ 223 uint64_t zi_call_next; /* next time to call this function */ 224 } ztest_info_t; 225 226 /* 227 * Note: these aren't static because we want dladdr() to work. 228 */ 229 ztest_func_t ztest_dmu_read_write; 230 ztest_func_t ztest_dmu_write_parallel; 231 ztest_func_t ztest_dmu_object_alloc_free; 232 ztest_func_t ztest_dmu_commit_callbacks; 233 ztest_func_t ztest_zap; 234 ztest_func_t ztest_zap_parallel; 235 ztest_func_t ztest_zil_commit; 236 ztest_func_t ztest_dmu_read_write_zcopy; 237 ztest_func_t ztest_dmu_objset_create_destroy; 238 ztest_func_t ztest_dmu_prealloc; 239 ztest_func_t ztest_fzap; 240 ztest_func_t ztest_dmu_snapshot_create_destroy; 241 ztest_func_t ztest_dsl_prop_get_set; 242 ztest_func_t ztest_spa_prop_get_set; 243 ztest_func_t ztest_spa_create_destroy; 244 ztest_func_t ztest_fault_inject; 245 ztest_func_t ztest_ddt_repair; 246 ztest_func_t ztest_dmu_snapshot_hold; 247 ztest_func_t ztest_spa_rename; 248 ztest_func_t ztest_scrub; 249 ztest_func_t ztest_dsl_dataset_promote_busy; 250 ztest_func_t ztest_vdev_attach_detach; 251 ztest_func_t ztest_vdev_LUN_growth; 252 ztest_func_t ztest_vdev_add_remove; 253 ztest_func_t ztest_vdev_aux_add_remove; 254 255 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 256 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 257 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 258 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 259 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 260 261 ztest_info_t ztest_info[] = { 262 { ztest_dmu_read_write, 1, &zopt_always }, 263 { ztest_dmu_write_parallel, 10, &zopt_always }, 264 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 265 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 266 { ztest_zap, 30, &zopt_always }, 267 { ztest_zap_parallel, 100, &zopt_always }, 268 { ztest_zil_commit, 1, &zopt_incessant }, 269 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 270 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 271 { ztest_dsl_prop_get_set, 1, &zopt_often }, 272 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 273 #if 0 274 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 275 #endif 276 { ztest_fzap, 1, &zopt_sometimes }, 277 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 278 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 279 { ztest_fault_inject, 1, &zopt_sometimes }, 280 { ztest_ddt_repair, 1, &zopt_sometimes }, 281 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 282 { ztest_spa_rename, 1, &zopt_rarely }, 283 { ztest_scrub, 1, &zopt_rarely }, 284 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 285 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 286 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 287 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 288 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 289 }; 290 291 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 292 293 /* 294 * The following struct is used to hold a list of uncalled commit callbacks. 295 * The callbacks are ordered by txg number. 296 */ 297 typedef struct ztest_cb_list { 298 mutex_t zcl_callbacks_lock; 299 list_t zcl_callbacks; 300 } ztest_cb_list_t; 301 302 /* 303 * Stuff we need to share writably between parent and child. 304 */ 305 typedef struct ztest_shared { 306 char *zs_pool; 307 spa_t *zs_spa; 308 hrtime_t zs_proc_start; 309 hrtime_t zs_proc_stop; 310 hrtime_t zs_thread_start; 311 hrtime_t zs_thread_stop; 312 hrtime_t zs_thread_kill; 313 uint64_t zs_enospc_count; 314 uint64_t zs_vdev_next_leaf; 315 uint64_t zs_vdev_aux; 316 uint64_t zs_alloc; 317 uint64_t zs_space; 318 mutex_t zs_vdev_lock; 319 rwlock_t zs_name_lock; 320 ztest_info_t zs_info[ZTEST_FUNCS]; 321 ztest_ds_t zs_zd[]; 322 } ztest_shared_t; 323 324 #define ID_PARALLEL -1ULL 325 326 static char ztest_dev_template[] = "%s/%s.%llua"; 327 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 328 ztest_shared_t *ztest_shared; 329 uint64_t *ztest_seq; 330 331 static int ztest_random_fd; 332 static int ztest_dump_core = 1; 333 334 static boolean_t ztest_exiting; 335 336 /* Global commit callback list */ 337 static ztest_cb_list_t zcl; 338 339 extern uint64_t metaslab_gang_bang; 340 extern uint64_t metaslab_df_alloc_threshold; 341 static uint64_t metaslab_sz; 342 343 enum ztest_object { 344 ZTEST_META_DNODE = 0, 345 ZTEST_DIROBJ, 346 ZTEST_OBJECTS 347 }; 348 349 static void usage(boolean_t) __NORETURN; 350 351 /* 352 * These libumem hooks provide a reasonable set of defaults for the allocator's 353 * debugging facilities. 354 */ 355 const char * 356 _umem_debug_init() 357 { 358 return ("default,verbose"); /* $UMEM_DEBUG setting */ 359 } 360 361 const char * 362 _umem_logging_init(void) 363 { 364 return ("fail,contents"); /* $UMEM_LOGGING setting */ 365 } 366 367 #define FATAL_MSG_SZ 1024 368 369 char *fatal_msg; 370 371 static void 372 fatal(int do_perror, char *message, ...) 373 { 374 va_list args; 375 int save_errno = errno; 376 char buf[FATAL_MSG_SZ]; 377 378 (void) fflush(stdout); 379 380 va_start(args, message); 381 (void) sprintf(buf, "ztest: "); 382 /* LINTED */ 383 (void) vsprintf(buf + strlen(buf), message, args); 384 va_end(args); 385 if (do_perror) { 386 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 387 ": %s", strerror(save_errno)); 388 } 389 (void) fprintf(stderr, "%s\n", buf); 390 fatal_msg = buf; /* to ease debugging */ 391 if (ztest_dump_core) 392 abort(); 393 exit(3); 394 } 395 396 static int 397 str2shift(const char *buf) 398 { 399 const char *ends = "BKMGTPEZ"; 400 int i; 401 402 if (buf[0] == '\0') 403 return (0); 404 for (i = 0; i < strlen(ends); i++) { 405 if (toupper(buf[0]) == ends[i]) 406 break; 407 } 408 if (i == strlen(ends)) { 409 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 410 buf); 411 usage(B_FALSE); 412 } 413 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 414 return (10*i); 415 } 416 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 417 usage(B_FALSE); 418 /* NOTREACHED */ 419 } 420 421 static uint64_t 422 nicenumtoull(const char *buf) 423 { 424 char *end; 425 uint64_t val; 426 427 val = strtoull(buf, &end, 0); 428 if (end == buf) { 429 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 430 usage(B_FALSE); 431 } else if (end[0] == '.') { 432 double fval = strtod(buf, &end); 433 fval *= pow(2, str2shift(end)); 434 if (fval > UINT64_MAX) { 435 (void) fprintf(stderr, "ztest: value too large: %s\n", 436 buf); 437 usage(B_FALSE); 438 } 439 val = (uint64_t)fval; 440 } else { 441 int shift = str2shift(end); 442 if (shift >= 64 || (val << shift) >> shift != val) { 443 (void) fprintf(stderr, "ztest: value too large: %s\n", 444 buf); 445 usage(B_FALSE); 446 } 447 val <<= shift; 448 } 449 return (val); 450 } 451 452 static void 453 usage(boolean_t requested) 454 { 455 char nice_vdev_size[10]; 456 char nice_gang_bang[10]; 457 FILE *fp = requested ? stdout : stderr; 458 459 nicenum(zopt_vdev_size, nice_vdev_size); 460 nicenum(metaslab_gang_bang, nice_gang_bang); 461 462 (void) fprintf(fp, "Usage: %s\n" 463 "\t[-v vdevs (default: %llu)]\n" 464 "\t[-s size_of_each_vdev (default: %s)]\n" 465 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 466 "\t[-m mirror_copies (default: %d)]\n" 467 "\t[-r raidz_disks (default: %d)]\n" 468 "\t[-R raidz_parity (default: %d)]\n" 469 "\t[-d datasets (default: %d)]\n" 470 "\t[-t threads (default: %d)]\n" 471 "\t[-g gang_block_threshold (default: %s)]\n" 472 "\t[-i initialize pool i times (default: %d)]\n" 473 "\t[-k kill percentage (default: %llu%%)]\n" 474 "\t[-p pool_name (default: %s)]\n" 475 "\t[-f file directory for vdev files (default: %s)]\n" 476 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 477 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 478 "\t[-T time] total run time (default: %llu sec)\n" 479 "\t[-P passtime] time per pass (default: %llu sec)\n" 480 "\t[-h] (print help)\n" 481 "", 482 cmdname, 483 (u_longlong_t)zopt_vdevs, /* -v */ 484 nice_vdev_size, /* -s */ 485 zopt_ashift, /* -a */ 486 zopt_mirrors, /* -m */ 487 zopt_raidz, /* -r */ 488 zopt_raidz_parity, /* -R */ 489 zopt_datasets, /* -d */ 490 zopt_threads, /* -t */ 491 nice_gang_bang, /* -g */ 492 zopt_init, /* -i */ 493 (u_longlong_t)zopt_killrate, /* -k */ 494 zopt_pool, /* -p */ 495 zopt_dir, /* -f */ 496 (u_longlong_t)zopt_time, /* -T */ 497 (u_longlong_t)zopt_passtime); /* -P */ 498 exit(requested ? 0 : 1); 499 } 500 501 static void 502 process_options(int argc, char **argv) 503 { 504 int opt; 505 uint64_t value; 506 507 /* By default, test gang blocks for blocks 32K and greater */ 508 metaslab_gang_bang = 32 << 10; 509 510 while ((opt = getopt(argc, argv, 511 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 512 value = 0; 513 switch (opt) { 514 case 'v': 515 case 's': 516 case 'a': 517 case 'm': 518 case 'r': 519 case 'R': 520 case 'd': 521 case 't': 522 case 'g': 523 case 'i': 524 case 'k': 525 case 'T': 526 case 'P': 527 value = nicenumtoull(optarg); 528 } 529 switch (opt) { 530 case 'v': 531 zopt_vdevs = value; 532 break; 533 case 's': 534 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 535 break; 536 case 'a': 537 zopt_ashift = value; 538 break; 539 case 'm': 540 zopt_mirrors = value; 541 break; 542 case 'r': 543 zopt_raidz = MAX(1, value); 544 break; 545 case 'R': 546 zopt_raidz_parity = MIN(MAX(value, 1), 3); 547 break; 548 case 'd': 549 zopt_datasets = MAX(1, value); 550 break; 551 case 't': 552 zopt_threads = MAX(1, value); 553 break; 554 case 'g': 555 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 556 break; 557 case 'i': 558 zopt_init = value; 559 break; 560 case 'k': 561 zopt_killrate = value; 562 break; 563 case 'p': 564 zopt_pool = strdup(optarg); 565 break; 566 case 'f': 567 zopt_dir = strdup(optarg); 568 break; 569 case 'V': 570 zopt_verbose++; 571 break; 572 case 'E': 573 zopt_init = 0; 574 break; 575 case 'T': 576 zopt_time = value; 577 break; 578 case 'P': 579 zopt_passtime = MAX(1, value); 580 break; 581 case 'h': 582 usage(B_TRUE); 583 break; 584 case '?': 585 default: 586 usage(B_FALSE); 587 break; 588 } 589 } 590 591 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 592 593 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 594 UINT64_MAX >> 2); 595 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 596 } 597 598 static void 599 ztest_kill(ztest_shared_t *zs) 600 { 601 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 602 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 603 (void) kill(getpid(), SIGKILL); 604 } 605 606 static uint64_t 607 ztest_random(uint64_t range) 608 { 609 uint64_t r; 610 611 if (range == 0) 612 return (0); 613 614 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 615 fatal(1, "short read from /dev/urandom"); 616 617 return (r % range); 618 } 619 620 /* ARGSUSED */ 621 static void 622 ztest_record_enospc(const char *s) 623 { 624 ztest_shared->zs_enospc_count++; 625 } 626 627 static uint64_t 628 ztest_get_ashift(void) 629 { 630 if (zopt_ashift == 0) 631 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 632 return (zopt_ashift); 633 } 634 635 static nvlist_t * 636 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 637 { 638 char pathbuf[MAXPATHLEN]; 639 uint64_t vdev; 640 nvlist_t *file; 641 642 if (ashift == 0) 643 ashift = ztest_get_ashift(); 644 645 if (path == NULL) { 646 path = pathbuf; 647 648 if (aux != NULL) { 649 vdev = ztest_shared->zs_vdev_aux; 650 (void) sprintf(path, ztest_aux_template, 651 zopt_dir, zopt_pool, aux, vdev); 652 } else { 653 vdev = ztest_shared->zs_vdev_next_leaf++; 654 (void) sprintf(path, ztest_dev_template, 655 zopt_dir, zopt_pool, vdev); 656 } 657 } 658 659 if (size != 0) { 660 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 661 if (fd == -1) 662 fatal(1, "can't open %s", path); 663 if (ftruncate(fd, size) != 0) 664 fatal(1, "can't ftruncate %s", path); 665 (void) close(fd); 666 } 667 668 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 669 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 670 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 671 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 672 673 return (file); 674 } 675 676 static nvlist_t * 677 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 678 { 679 nvlist_t *raidz, **child; 680 int c; 681 682 if (r < 2) 683 return (make_vdev_file(path, aux, size, ashift)); 684 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 685 686 for (c = 0; c < r; c++) 687 child[c] = make_vdev_file(path, aux, size, ashift); 688 689 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 690 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 691 VDEV_TYPE_RAIDZ) == 0); 692 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 693 zopt_raidz_parity) == 0); 694 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 695 child, r) == 0); 696 697 for (c = 0; c < r; c++) 698 nvlist_free(child[c]); 699 700 umem_free(child, r * sizeof (nvlist_t *)); 701 702 return (raidz); 703 } 704 705 static nvlist_t * 706 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 707 int r, int m) 708 { 709 nvlist_t *mirror, **child; 710 int c; 711 712 if (m < 1) 713 return (make_vdev_raidz(path, aux, size, ashift, r)); 714 715 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 716 717 for (c = 0; c < m; c++) 718 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 719 720 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 721 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 722 VDEV_TYPE_MIRROR) == 0); 723 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 724 child, m) == 0); 725 726 for (c = 0; c < m; c++) 727 nvlist_free(child[c]); 728 729 umem_free(child, m * sizeof (nvlist_t *)); 730 731 return (mirror); 732 } 733 734 static nvlist_t * 735 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 736 int log, int r, int m, int t) 737 { 738 nvlist_t *root, **child; 739 int c; 740 741 ASSERT(t > 0); 742 743 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 744 745 for (c = 0; c < t; c++) { 746 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 747 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 748 log) == 0); 749 } 750 751 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 752 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 753 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 754 child, t) == 0); 755 756 for (c = 0; c < t; c++) 757 nvlist_free(child[c]); 758 759 umem_free(child, t * sizeof (nvlist_t *)); 760 761 return (root); 762 } 763 764 static int 765 ztest_random_blocksize(void) 766 { 767 return (1 << (SPA_MINBLOCKSHIFT + 768 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 769 } 770 771 static int 772 ztest_random_ibshift(void) 773 { 774 return (DN_MIN_INDBLKSHIFT + 775 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 776 } 777 778 static uint64_t 779 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 780 { 781 uint64_t top; 782 vdev_t *rvd = spa->spa_root_vdev; 783 vdev_t *tvd; 784 785 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 786 787 do { 788 top = ztest_random(rvd->vdev_children); 789 tvd = rvd->vdev_child[top]; 790 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 791 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 792 793 return (top); 794 } 795 796 static uint64_t 797 ztest_random_dsl_prop(zfs_prop_t prop) 798 { 799 uint64_t value; 800 801 do { 802 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 803 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 804 805 return (value); 806 } 807 808 static int 809 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 810 boolean_t inherit) 811 { 812 const char *propname = zfs_prop_to_name(prop); 813 const char *valname; 814 char setpoint[MAXPATHLEN]; 815 uint64_t curval; 816 int error; 817 818 error = dsl_prop_set(osname, propname, 819 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 820 sizeof (value), 1, &value); 821 822 if (error == ENOSPC) { 823 ztest_record_enospc(FTAG); 824 return (error); 825 } 826 ASSERT3U(error, ==, 0); 827 828 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 829 1, &curval, setpoint), ==, 0); 830 831 if (zopt_verbose >= 6) { 832 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 833 (void) printf("%s %s = %s at '%s'\n", 834 osname, propname, valname, setpoint); 835 } 836 837 return (error); 838 } 839 840 static int 841 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 842 { 843 spa_t *spa = zs->zs_spa; 844 nvlist_t *props = NULL; 845 int error; 846 847 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 848 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 849 850 error = spa_prop_set(spa, props); 851 852 nvlist_free(props); 853 854 if (error == ENOSPC) { 855 ztest_record_enospc(FTAG); 856 return (error); 857 } 858 ASSERT3U(error, ==, 0); 859 860 return (error); 861 } 862 863 static void 864 ztest_rll_init(rll_t *rll) 865 { 866 rll->rll_writer = NULL; 867 rll->rll_readers = 0; 868 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 869 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 870 } 871 872 static void 873 ztest_rll_destroy(rll_t *rll) 874 { 875 ASSERT(rll->rll_writer == NULL); 876 ASSERT(rll->rll_readers == 0); 877 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 878 VERIFY(cond_destroy(&rll->rll_cv) == 0); 879 } 880 881 static void 882 ztest_rll_lock(rll_t *rll, rl_type_t type) 883 { 884 VERIFY(mutex_lock(&rll->rll_lock) == 0); 885 886 if (type == RL_READER) { 887 while (rll->rll_writer != NULL) 888 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 889 rll->rll_readers++; 890 } else { 891 while (rll->rll_writer != NULL || rll->rll_readers) 892 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 893 rll->rll_writer = curthread; 894 } 895 896 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 897 } 898 899 static void 900 ztest_rll_unlock(rll_t *rll) 901 { 902 VERIFY(mutex_lock(&rll->rll_lock) == 0); 903 904 if (rll->rll_writer) { 905 ASSERT(rll->rll_readers == 0); 906 rll->rll_writer = NULL; 907 } else { 908 ASSERT(rll->rll_readers != 0); 909 ASSERT(rll->rll_writer == NULL); 910 rll->rll_readers--; 911 } 912 913 if (rll->rll_writer == NULL && rll->rll_readers == 0) 914 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 915 916 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 917 } 918 919 static void 920 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 921 { 922 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 923 924 ztest_rll_lock(rll, type); 925 } 926 927 static void 928 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 929 { 930 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 931 932 ztest_rll_unlock(rll); 933 } 934 935 static rl_t * 936 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 937 uint64_t size, rl_type_t type) 938 { 939 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 940 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 941 rl_t *rl; 942 943 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 944 rl->rl_object = object; 945 rl->rl_offset = offset; 946 rl->rl_size = size; 947 rl->rl_lock = rll; 948 949 ztest_rll_lock(rll, type); 950 951 return (rl); 952 } 953 954 static void 955 ztest_range_unlock(rl_t *rl) 956 { 957 rll_t *rll = rl->rl_lock; 958 959 ztest_rll_unlock(rll); 960 961 umem_free(rl, sizeof (*rl)); 962 } 963 964 static void 965 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 966 { 967 zd->zd_os = os; 968 zd->zd_zilog = dmu_objset_zil(os); 969 zd->zd_seq = 0; 970 dmu_objset_name(os, zd->zd_name); 971 972 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 973 974 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 975 ztest_rll_init(&zd->zd_object_lock[l]); 976 977 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 978 ztest_rll_init(&zd->zd_range_lock[l]); 979 } 980 981 static void 982 ztest_zd_fini(ztest_ds_t *zd) 983 { 984 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 985 986 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 987 ztest_rll_destroy(&zd->zd_object_lock[l]); 988 989 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 990 ztest_rll_destroy(&zd->zd_range_lock[l]); 991 } 992 993 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 994 995 static uint64_t 996 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 997 { 998 uint64_t txg; 999 int error; 1000 1001 /* 1002 * Attempt to assign tx to some transaction group. 1003 */ 1004 error = dmu_tx_assign(tx, txg_how); 1005 if (error) { 1006 if (error == ERESTART) { 1007 ASSERT(txg_how == TXG_NOWAIT); 1008 dmu_tx_wait(tx); 1009 } else { 1010 ASSERT3U(error, ==, ENOSPC); 1011 ztest_record_enospc(tag); 1012 } 1013 dmu_tx_abort(tx); 1014 return (0); 1015 } 1016 txg = dmu_tx_get_txg(tx); 1017 ASSERT(txg != 0); 1018 return (txg); 1019 } 1020 1021 static void 1022 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1023 { 1024 uint64_t *ip = buf; 1025 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1026 1027 while (ip < ip_end) 1028 *ip++ = value; 1029 } 1030 1031 static boolean_t 1032 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1033 { 1034 uint64_t *ip = buf; 1035 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1036 uint64_t diff = 0; 1037 1038 while (ip < ip_end) 1039 diff |= (value - *ip++); 1040 1041 return (diff == 0); 1042 } 1043 1044 static void 1045 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1046 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1047 { 1048 bt->bt_magic = BT_MAGIC; 1049 bt->bt_objset = dmu_objset_id(os); 1050 bt->bt_object = object; 1051 bt->bt_offset = offset; 1052 bt->bt_gen = gen; 1053 bt->bt_txg = txg; 1054 bt->bt_crtxg = crtxg; 1055 } 1056 1057 static void 1058 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1059 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1060 { 1061 ASSERT(bt->bt_magic == BT_MAGIC); 1062 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1063 ASSERT(bt->bt_object == object); 1064 ASSERT(bt->bt_offset == offset); 1065 ASSERT(bt->bt_gen <= gen); 1066 ASSERT(bt->bt_txg <= txg); 1067 ASSERT(bt->bt_crtxg == crtxg); 1068 } 1069 1070 static ztest_block_tag_t * 1071 ztest_bt_bonus(dmu_buf_t *db) 1072 { 1073 dmu_object_info_t doi; 1074 ztest_block_tag_t *bt; 1075 1076 dmu_object_info_from_db(db, &doi); 1077 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1078 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1079 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1080 1081 return (bt); 1082 } 1083 1084 /* 1085 * ZIL logging ops 1086 */ 1087 1088 #define lrz_type lr_mode 1089 #define lrz_blocksize lr_uid 1090 #define lrz_ibshift lr_gid 1091 #define lrz_bonustype lr_rdev 1092 #define lrz_bonuslen lr_crtime[1] 1093 1094 static uint64_t 1095 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1096 { 1097 char *name = (void *)(lr + 1); /* name follows lr */ 1098 size_t namesize = strlen(name) + 1; 1099 itx_t *itx; 1100 1101 if (zil_replaying(zd->zd_zilog, tx)) 1102 return (0); 1103 1104 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1105 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1106 sizeof (*lr) + namesize - sizeof (lr_t)); 1107 1108 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1109 } 1110 1111 static uint64_t 1112 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1113 { 1114 char *name = (void *)(lr + 1); /* name follows lr */ 1115 size_t namesize = strlen(name) + 1; 1116 itx_t *itx; 1117 1118 if (zil_replaying(zd->zd_zilog, tx)) 1119 return (0); 1120 1121 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1122 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1123 sizeof (*lr) + namesize - sizeof (lr_t)); 1124 1125 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1126 } 1127 1128 static uint64_t 1129 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1130 { 1131 itx_t *itx; 1132 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1133 1134 if (zil_replaying(zd->zd_zilog, tx)) 1135 return (0); 1136 1137 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1138 write_state = WR_INDIRECT; 1139 1140 itx = zil_itx_create(TX_WRITE, 1141 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1142 1143 if (write_state == WR_COPIED && 1144 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1145 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1146 zil_itx_destroy(itx); 1147 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1148 write_state = WR_NEED_COPY; 1149 } 1150 itx->itx_private = zd; 1151 itx->itx_wr_state = write_state; 1152 itx->itx_sync = (ztest_random(8) == 0); 1153 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1154 1155 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1156 sizeof (*lr) - sizeof (lr_t)); 1157 1158 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1159 } 1160 1161 static uint64_t 1162 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1163 { 1164 itx_t *itx; 1165 1166 if (zil_replaying(zd->zd_zilog, tx)) 1167 return (0); 1168 1169 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1170 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1171 sizeof (*lr) - sizeof (lr_t)); 1172 1173 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1174 } 1175 1176 static uint64_t 1177 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1178 { 1179 itx_t *itx; 1180 1181 if (zil_replaying(zd->zd_zilog, tx)) 1182 return (0); 1183 1184 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1185 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1186 sizeof (*lr) - sizeof (lr_t)); 1187 1188 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1189 } 1190 1191 /* 1192 * ZIL replay ops 1193 */ 1194 static int 1195 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1196 { 1197 char *name = (void *)(lr + 1); /* name follows lr */ 1198 objset_t *os = zd->zd_os; 1199 ztest_block_tag_t *bbt; 1200 dmu_buf_t *db; 1201 dmu_tx_t *tx; 1202 uint64_t txg; 1203 int error = 0; 1204 1205 if (byteswap) 1206 byteswap_uint64_array(lr, sizeof (*lr)); 1207 1208 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1209 ASSERT(name[0] != '\0'); 1210 1211 tx = dmu_tx_create(os); 1212 1213 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1214 1215 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1216 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1217 } else { 1218 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1219 } 1220 1221 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1222 if (txg == 0) 1223 return (ENOSPC); 1224 1225 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1226 1227 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1228 if (lr->lr_foid == 0) { 1229 lr->lr_foid = zap_create(os, 1230 lr->lrz_type, lr->lrz_bonustype, 1231 lr->lrz_bonuslen, tx); 1232 } else { 1233 error = zap_create_claim(os, lr->lr_foid, 1234 lr->lrz_type, lr->lrz_bonustype, 1235 lr->lrz_bonuslen, tx); 1236 } 1237 } else { 1238 if (lr->lr_foid == 0) { 1239 lr->lr_foid = dmu_object_alloc(os, 1240 lr->lrz_type, 0, lr->lrz_bonustype, 1241 lr->lrz_bonuslen, tx); 1242 } else { 1243 error = dmu_object_claim(os, lr->lr_foid, 1244 lr->lrz_type, 0, lr->lrz_bonustype, 1245 lr->lrz_bonuslen, tx); 1246 } 1247 } 1248 1249 if (error) { 1250 ASSERT3U(error, ==, EEXIST); 1251 ASSERT(zd->zd_zilog->zl_replay); 1252 dmu_tx_commit(tx); 1253 return (error); 1254 } 1255 1256 ASSERT(lr->lr_foid != 0); 1257 1258 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1259 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1260 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1261 1262 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1263 bbt = ztest_bt_bonus(db); 1264 dmu_buf_will_dirty(db, tx); 1265 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1266 dmu_buf_rele(db, FTAG); 1267 1268 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1269 &lr->lr_foid, tx)); 1270 1271 (void) ztest_log_create(zd, tx, lr); 1272 1273 dmu_tx_commit(tx); 1274 1275 return (0); 1276 } 1277 1278 static int 1279 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1280 { 1281 char *name = (void *)(lr + 1); /* name follows lr */ 1282 objset_t *os = zd->zd_os; 1283 dmu_object_info_t doi; 1284 dmu_tx_t *tx; 1285 uint64_t object, txg; 1286 1287 if (byteswap) 1288 byteswap_uint64_array(lr, sizeof (*lr)); 1289 1290 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1291 ASSERT(name[0] != '\0'); 1292 1293 VERIFY3U(0, ==, 1294 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1295 ASSERT(object != 0); 1296 1297 ztest_object_lock(zd, object, RL_WRITER); 1298 1299 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1300 1301 tx = dmu_tx_create(os); 1302 1303 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1304 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1305 1306 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1307 if (txg == 0) { 1308 ztest_object_unlock(zd, object); 1309 return (ENOSPC); 1310 } 1311 1312 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1313 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1314 } else { 1315 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1316 } 1317 1318 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1319 1320 (void) ztest_log_remove(zd, tx, lr); 1321 1322 dmu_tx_commit(tx); 1323 1324 ztest_object_unlock(zd, object); 1325 1326 return (0); 1327 } 1328 1329 static int 1330 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1331 { 1332 objset_t *os = zd->zd_os; 1333 void *data = lr + 1; /* data follows lr */ 1334 uint64_t offset, length; 1335 ztest_block_tag_t *bt = data; 1336 ztest_block_tag_t *bbt; 1337 uint64_t gen, txg, lrtxg, crtxg; 1338 dmu_object_info_t doi; 1339 dmu_tx_t *tx; 1340 dmu_buf_t *db; 1341 arc_buf_t *abuf = NULL; 1342 rl_t *rl; 1343 1344 if (byteswap) 1345 byteswap_uint64_array(lr, sizeof (*lr)); 1346 1347 offset = lr->lr_offset; 1348 length = lr->lr_length; 1349 1350 /* If it's a dmu_sync() block, write the whole block */ 1351 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1352 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1353 if (length < blocksize) { 1354 offset -= offset % blocksize; 1355 length = blocksize; 1356 } 1357 } 1358 1359 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1360 byteswap_uint64_array(bt, sizeof (*bt)); 1361 1362 if (bt->bt_magic != BT_MAGIC) 1363 bt = NULL; 1364 1365 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1366 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1367 1368 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1369 1370 dmu_object_info_from_db(db, &doi); 1371 1372 bbt = ztest_bt_bonus(db); 1373 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1374 gen = bbt->bt_gen; 1375 crtxg = bbt->bt_crtxg; 1376 lrtxg = lr->lr_common.lrc_txg; 1377 1378 tx = dmu_tx_create(os); 1379 1380 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1381 1382 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1383 P2PHASE(offset, length) == 0) 1384 abuf = dmu_request_arcbuf(db, length); 1385 1386 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1387 if (txg == 0) { 1388 if (abuf != NULL) 1389 dmu_return_arcbuf(abuf); 1390 dmu_buf_rele(db, FTAG); 1391 ztest_range_unlock(rl); 1392 ztest_object_unlock(zd, lr->lr_foid); 1393 return (ENOSPC); 1394 } 1395 1396 if (bt != NULL) { 1397 /* 1398 * Usually, verify the old data before writing new data -- 1399 * but not always, because we also want to verify correct 1400 * behavior when the data was not recently read into cache. 1401 */ 1402 ASSERT(offset % doi.doi_data_block_size == 0); 1403 if (ztest_random(4) != 0) { 1404 int prefetch = ztest_random(2) ? 1405 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1406 ztest_block_tag_t rbt; 1407 1408 VERIFY(dmu_read(os, lr->lr_foid, offset, 1409 sizeof (rbt), &rbt, prefetch) == 0); 1410 if (rbt.bt_magic == BT_MAGIC) { 1411 ztest_bt_verify(&rbt, os, lr->lr_foid, 1412 offset, gen, txg, crtxg); 1413 } 1414 } 1415 1416 /* 1417 * Writes can appear to be newer than the bonus buffer because 1418 * the ztest_get_data() callback does a dmu_read() of the 1419 * open-context data, which may be different than the data 1420 * as it was when the write was generated. 1421 */ 1422 if (zd->zd_zilog->zl_replay) { 1423 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1424 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1425 bt->bt_crtxg); 1426 } 1427 1428 /* 1429 * Set the bt's gen/txg to the bonus buffer's gen/txg 1430 * so that all of the usual ASSERTs will work. 1431 */ 1432 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1433 } 1434 1435 if (abuf == NULL) { 1436 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1437 } else { 1438 bcopy(data, abuf->b_data, length); 1439 dmu_assign_arcbuf(db, offset, abuf, tx); 1440 } 1441 1442 (void) ztest_log_write(zd, tx, lr); 1443 1444 dmu_buf_rele(db, FTAG); 1445 1446 dmu_tx_commit(tx); 1447 1448 ztest_range_unlock(rl); 1449 ztest_object_unlock(zd, lr->lr_foid); 1450 1451 return (0); 1452 } 1453 1454 static int 1455 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1456 { 1457 objset_t *os = zd->zd_os; 1458 dmu_tx_t *tx; 1459 uint64_t txg; 1460 rl_t *rl; 1461 1462 if (byteswap) 1463 byteswap_uint64_array(lr, sizeof (*lr)); 1464 1465 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1466 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1467 RL_WRITER); 1468 1469 tx = dmu_tx_create(os); 1470 1471 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1472 1473 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1474 if (txg == 0) { 1475 ztest_range_unlock(rl); 1476 ztest_object_unlock(zd, lr->lr_foid); 1477 return (ENOSPC); 1478 } 1479 1480 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1481 lr->lr_length, tx) == 0); 1482 1483 (void) ztest_log_truncate(zd, tx, lr); 1484 1485 dmu_tx_commit(tx); 1486 1487 ztest_range_unlock(rl); 1488 ztest_object_unlock(zd, lr->lr_foid); 1489 1490 return (0); 1491 } 1492 1493 static int 1494 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1495 { 1496 objset_t *os = zd->zd_os; 1497 dmu_tx_t *tx; 1498 dmu_buf_t *db; 1499 ztest_block_tag_t *bbt; 1500 uint64_t txg, lrtxg, crtxg; 1501 1502 if (byteswap) 1503 byteswap_uint64_array(lr, sizeof (*lr)); 1504 1505 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1506 1507 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1508 1509 tx = dmu_tx_create(os); 1510 dmu_tx_hold_bonus(tx, lr->lr_foid); 1511 1512 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1513 if (txg == 0) { 1514 dmu_buf_rele(db, FTAG); 1515 ztest_object_unlock(zd, lr->lr_foid); 1516 return (ENOSPC); 1517 } 1518 1519 bbt = ztest_bt_bonus(db); 1520 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1521 crtxg = bbt->bt_crtxg; 1522 lrtxg = lr->lr_common.lrc_txg; 1523 1524 if (zd->zd_zilog->zl_replay) { 1525 ASSERT(lr->lr_size != 0); 1526 ASSERT(lr->lr_mode != 0); 1527 ASSERT(lrtxg != 0); 1528 } else { 1529 /* 1530 * Randomly change the size and increment the generation. 1531 */ 1532 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1533 sizeof (*bbt); 1534 lr->lr_mode = bbt->bt_gen + 1; 1535 ASSERT(lrtxg == 0); 1536 } 1537 1538 /* 1539 * Verify that the current bonus buffer is not newer than our txg. 1540 */ 1541 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1542 MAX(txg, lrtxg), crtxg); 1543 1544 dmu_buf_will_dirty(db, tx); 1545 1546 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1547 ASSERT3U(lr->lr_size, <=, db->db_size); 1548 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1549 bbt = ztest_bt_bonus(db); 1550 1551 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1552 1553 dmu_buf_rele(db, FTAG); 1554 1555 (void) ztest_log_setattr(zd, tx, lr); 1556 1557 dmu_tx_commit(tx); 1558 1559 ztest_object_unlock(zd, lr->lr_foid); 1560 1561 return (0); 1562 } 1563 1564 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1565 NULL, /* 0 no such transaction type */ 1566 ztest_replay_create, /* TX_CREATE */ 1567 NULL, /* TX_MKDIR */ 1568 NULL, /* TX_MKXATTR */ 1569 NULL, /* TX_SYMLINK */ 1570 ztest_replay_remove, /* TX_REMOVE */ 1571 NULL, /* TX_RMDIR */ 1572 NULL, /* TX_LINK */ 1573 NULL, /* TX_RENAME */ 1574 ztest_replay_write, /* TX_WRITE */ 1575 ztest_replay_truncate, /* TX_TRUNCATE */ 1576 ztest_replay_setattr, /* TX_SETATTR */ 1577 NULL, /* TX_ACL */ 1578 NULL, /* TX_CREATE_ACL */ 1579 NULL, /* TX_CREATE_ATTR */ 1580 NULL, /* TX_CREATE_ACL_ATTR */ 1581 NULL, /* TX_MKDIR_ACL */ 1582 NULL, /* TX_MKDIR_ATTR */ 1583 NULL, /* TX_MKDIR_ACL_ATTR */ 1584 NULL, /* TX_WRITE2 */ 1585 }; 1586 1587 /* 1588 * ZIL get_data callbacks 1589 */ 1590 1591 static void 1592 ztest_get_done(zgd_t *zgd, int error) 1593 { 1594 ztest_ds_t *zd = zgd->zgd_private; 1595 uint64_t object = zgd->zgd_rl->rl_object; 1596 1597 if (zgd->zgd_db) 1598 dmu_buf_rele(zgd->zgd_db, zgd); 1599 1600 ztest_range_unlock(zgd->zgd_rl); 1601 ztest_object_unlock(zd, object); 1602 1603 if (error == 0 && zgd->zgd_bp) 1604 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1605 1606 umem_free(zgd, sizeof (*zgd)); 1607 } 1608 1609 static int 1610 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1611 { 1612 ztest_ds_t *zd = arg; 1613 objset_t *os = zd->zd_os; 1614 uint64_t object = lr->lr_foid; 1615 uint64_t offset = lr->lr_offset; 1616 uint64_t size = lr->lr_length; 1617 blkptr_t *bp = &lr->lr_blkptr; 1618 uint64_t txg = lr->lr_common.lrc_txg; 1619 uint64_t crtxg; 1620 dmu_object_info_t doi; 1621 dmu_buf_t *db; 1622 zgd_t *zgd; 1623 int error; 1624 1625 ztest_object_lock(zd, object, RL_READER); 1626 error = dmu_bonus_hold(os, object, FTAG, &db); 1627 if (error) { 1628 ztest_object_unlock(zd, object); 1629 return (error); 1630 } 1631 1632 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1633 1634 if (crtxg == 0 || crtxg > txg) { 1635 dmu_buf_rele(db, FTAG); 1636 ztest_object_unlock(zd, object); 1637 return (ENOENT); 1638 } 1639 1640 dmu_object_info_from_db(db, &doi); 1641 dmu_buf_rele(db, FTAG); 1642 db = NULL; 1643 1644 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1645 zgd->zgd_zilog = zd->zd_zilog; 1646 zgd->zgd_private = zd; 1647 1648 if (buf != NULL) { /* immediate write */ 1649 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1650 RL_READER); 1651 1652 error = dmu_read(os, object, offset, size, buf, 1653 DMU_READ_NO_PREFETCH); 1654 ASSERT(error == 0); 1655 } else { 1656 size = doi.doi_data_block_size; 1657 if (ISP2(size)) { 1658 offset = P2ALIGN(offset, size); 1659 } else { 1660 ASSERT(offset < size); 1661 offset = 0; 1662 } 1663 1664 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1665 RL_READER); 1666 1667 error = dmu_buf_hold(os, object, offset, zgd, &db); 1668 1669 if (error == 0) { 1670 zgd->zgd_db = db; 1671 zgd->zgd_bp = bp; 1672 1673 ASSERT(db->db_offset == offset); 1674 ASSERT(db->db_size == size); 1675 1676 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1677 ztest_get_done, zgd); 1678 1679 if (error == 0) 1680 return (0); 1681 } 1682 } 1683 1684 ztest_get_done(zgd, error); 1685 1686 return (error); 1687 } 1688 1689 static void * 1690 ztest_lr_alloc(size_t lrsize, char *name) 1691 { 1692 char *lr; 1693 size_t namesize = name ? strlen(name) + 1 : 0; 1694 1695 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1696 1697 if (name) 1698 bcopy(name, lr + lrsize, namesize); 1699 1700 return (lr); 1701 } 1702 1703 void 1704 ztest_lr_free(void *lr, size_t lrsize, char *name) 1705 { 1706 size_t namesize = name ? strlen(name) + 1 : 0; 1707 1708 umem_free(lr, lrsize + namesize); 1709 } 1710 1711 /* 1712 * Lookup a bunch of objects. Returns the number of objects not found. 1713 */ 1714 static int 1715 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1716 { 1717 int missing = 0; 1718 int error; 1719 1720 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1721 1722 for (int i = 0; i < count; i++, od++) { 1723 od->od_object = 0; 1724 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1725 sizeof (uint64_t), 1, &od->od_object); 1726 if (error) { 1727 ASSERT(error == ENOENT); 1728 ASSERT(od->od_object == 0); 1729 missing++; 1730 } else { 1731 dmu_buf_t *db; 1732 ztest_block_tag_t *bbt; 1733 dmu_object_info_t doi; 1734 1735 ASSERT(od->od_object != 0); 1736 ASSERT(missing == 0); /* there should be no gaps */ 1737 1738 ztest_object_lock(zd, od->od_object, RL_READER); 1739 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1740 od->od_object, FTAG, &db)); 1741 dmu_object_info_from_db(db, &doi); 1742 bbt = ztest_bt_bonus(db); 1743 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1744 od->od_type = doi.doi_type; 1745 od->od_blocksize = doi.doi_data_block_size; 1746 od->od_gen = bbt->bt_gen; 1747 dmu_buf_rele(db, FTAG); 1748 ztest_object_unlock(zd, od->od_object); 1749 } 1750 } 1751 1752 return (missing); 1753 } 1754 1755 static int 1756 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1757 { 1758 int missing = 0; 1759 1760 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1761 1762 for (int i = 0; i < count; i++, od++) { 1763 if (missing) { 1764 od->od_object = 0; 1765 missing++; 1766 continue; 1767 } 1768 1769 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1770 1771 lr->lr_doid = od->od_dir; 1772 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1773 lr->lrz_type = od->od_crtype; 1774 lr->lrz_blocksize = od->od_crblocksize; 1775 lr->lrz_ibshift = ztest_random_ibshift(); 1776 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1777 lr->lrz_bonuslen = dmu_bonus_max(); 1778 lr->lr_gen = od->od_crgen; 1779 lr->lr_crtime[0] = time(NULL); 1780 1781 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1782 ASSERT(missing == 0); 1783 od->od_object = 0; 1784 missing++; 1785 } else { 1786 od->od_object = lr->lr_foid; 1787 od->od_type = od->od_crtype; 1788 od->od_blocksize = od->od_crblocksize; 1789 od->od_gen = od->od_crgen; 1790 ASSERT(od->od_object != 0); 1791 } 1792 1793 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1794 } 1795 1796 return (missing); 1797 } 1798 1799 static int 1800 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1801 { 1802 int missing = 0; 1803 int error; 1804 1805 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1806 1807 od += count - 1; 1808 1809 for (int i = count - 1; i >= 0; i--, od--) { 1810 if (missing) { 1811 missing++; 1812 continue; 1813 } 1814 1815 if (od->od_object == 0) 1816 continue; 1817 1818 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1819 1820 lr->lr_doid = od->od_dir; 1821 1822 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1823 ASSERT3U(error, ==, ENOSPC); 1824 missing++; 1825 } else { 1826 od->od_object = 0; 1827 } 1828 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1829 } 1830 1831 return (missing); 1832 } 1833 1834 static int 1835 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1836 void *data) 1837 { 1838 lr_write_t *lr; 1839 int error; 1840 1841 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1842 1843 lr->lr_foid = object; 1844 lr->lr_offset = offset; 1845 lr->lr_length = size; 1846 lr->lr_blkoff = 0; 1847 BP_ZERO(&lr->lr_blkptr); 1848 1849 bcopy(data, lr + 1, size); 1850 1851 error = ztest_replay_write(zd, lr, B_FALSE); 1852 1853 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1854 1855 return (error); 1856 } 1857 1858 static int 1859 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1860 { 1861 lr_truncate_t *lr; 1862 int error; 1863 1864 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1865 1866 lr->lr_foid = object; 1867 lr->lr_offset = offset; 1868 lr->lr_length = size; 1869 1870 error = ztest_replay_truncate(zd, lr, B_FALSE); 1871 1872 ztest_lr_free(lr, sizeof (*lr), NULL); 1873 1874 return (error); 1875 } 1876 1877 static int 1878 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1879 { 1880 lr_setattr_t *lr; 1881 int error; 1882 1883 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1884 1885 lr->lr_foid = object; 1886 lr->lr_size = 0; 1887 lr->lr_mode = 0; 1888 1889 error = ztest_replay_setattr(zd, lr, B_FALSE); 1890 1891 ztest_lr_free(lr, sizeof (*lr), NULL); 1892 1893 return (error); 1894 } 1895 1896 static void 1897 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1898 { 1899 objset_t *os = zd->zd_os; 1900 dmu_tx_t *tx; 1901 uint64_t txg; 1902 rl_t *rl; 1903 1904 txg_wait_synced(dmu_objset_pool(os), 0); 1905 1906 ztest_object_lock(zd, object, RL_READER); 1907 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1908 1909 tx = dmu_tx_create(os); 1910 1911 dmu_tx_hold_write(tx, object, offset, size); 1912 1913 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1914 1915 if (txg != 0) { 1916 dmu_prealloc(os, object, offset, size, tx); 1917 dmu_tx_commit(tx); 1918 txg_wait_synced(dmu_objset_pool(os), txg); 1919 } else { 1920 (void) dmu_free_long_range(os, object, offset, size); 1921 } 1922 1923 ztest_range_unlock(rl); 1924 ztest_object_unlock(zd, object); 1925 } 1926 1927 static void 1928 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1929 { 1930 ztest_block_tag_t wbt; 1931 dmu_object_info_t doi; 1932 enum ztest_io_type io_type; 1933 uint64_t blocksize; 1934 void *data; 1935 1936 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1937 blocksize = doi.doi_data_block_size; 1938 data = umem_alloc(blocksize, UMEM_NOFAIL); 1939 1940 /* 1941 * Pick an i/o type at random, biased toward writing block tags. 1942 */ 1943 io_type = ztest_random(ZTEST_IO_TYPES); 1944 if (ztest_random(2) == 0) 1945 io_type = ZTEST_IO_WRITE_TAG; 1946 1947 switch (io_type) { 1948 1949 case ZTEST_IO_WRITE_TAG: 1950 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1951 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1952 break; 1953 1954 case ZTEST_IO_WRITE_PATTERN: 1955 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1956 if (ztest_random(2) == 0) { 1957 /* 1958 * Induce fletcher2 collisions to ensure that 1959 * zio_ddt_collision() detects and resolves them 1960 * when using fletcher2-verify for deduplication. 1961 */ 1962 ((uint64_t *)data)[0] ^= 1ULL << 63; 1963 ((uint64_t *)data)[4] ^= 1ULL << 63; 1964 } 1965 (void) ztest_write(zd, object, offset, blocksize, data); 1966 break; 1967 1968 case ZTEST_IO_WRITE_ZEROES: 1969 bzero(data, blocksize); 1970 (void) ztest_write(zd, object, offset, blocksize, data); 1971 break; 1972 1973 case ZTEST_IO_TRUNCATE: 1974 (void) ztest_truncate(zd, object, offset, blocksize); 1975 break; 1976 1977 case ZTEST_IO_SETATTR: 1978 (void) ztest_setattr(zd, object); 1979 break; 1980 } 1981 1982 umem_free(data, blocksize); 1983 } 1984 1985 /* 1986 * Initialize an object description template. 1987 */ 1988 static void 1989 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 1990 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 1991 { 1992 od->od_dir = ZTEST_DIROBJ; 1993 od->od_object = 0; 1994 1995 od->od_crtype = type; 1996 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 1997 od->od_crgen = gen; 1998 1999 od->od_type = DMU_OT_NONE; 2000 od->od_blocksize = 0; 2001 od->od_gen = 0; 2002 2003 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2004 tag, (int64_t)id, index); 2005 } 2006 2007 /* 2008 * Lookup or create the objects for a test using the od template. 2009 * If the objects do not all exist, or if 'remove' is specified, 2010 * remove any existing objects and create new ones. Otherwise, 2011 * use the existing objects. 2012 */ 2013 static int 2014 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2015 { 2016 int count = size / sizeof (*od); 2017 int rv = 0; 2018 2019 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2020 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2021 (ztest_remove(zd, od, count) != 0 || 2022 ztest_create(zd, od, count) != 0)) 2023 rv = -1; 2024 zd->zd_od = od; 2025 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2026 2027 return (rv); 2028 } 2029 2030 /* ARGSUSED */ 2031 void 2032 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2033 { 2034 zilog_t *zilog = zd->zd_zilog; 2035 2036 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2037 2038 /* 2039 * Remember the committed values in zd, which is in parent/child 2040 * shared memory. If we die, the next iteration of ztest_run() 2041 * will verify that the log really does contain this record. 2042 */ 2043 mutex_enter(&zilog->zl_lock); 2044 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2045 zd->zd_seq = zilog->zl_commit_lr_seq; 2046 mutex_exit(&zilog->zl_lock); 2047 } 2048 2049 /* 2050 * Verify that we can't destroy an active pool, create an existing pool, 2051 * or create a pool with a bad vdev spec. 2052 */ 2053 /* ARGSUSED */ 2054 void 2055 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2056 { 2057 ztest_shared_t *zs = ztest_shared; 2058 spa_t *spa; 2059 nvlist_t *nvroot; 2060 2061 /* 2062 * Attempt to create using a bad file. 2063 */ 2064 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2065 VERIFY3U(ENOENT, ==, 2066 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2067 nvlist_free(nvroot); 2068 2069 /* 2070 * Attempt to create using a bad mirror. 2071 */ 2072 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2073 VERIFY3U(ENOENT, ==, 2074 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2075 nvlist_free(nvroot); 2076 2077 /* 2078 * Attempt to create an existing pool. It shouldn't matter 2079 * what's in the nvroot; we should fail with EEXIST. 2080 */ 2081 (void) rw_rdlock(&zs->zs_name_lock); 2082 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2083 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2084 nvlist_free(nvroot); 2085 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2086 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2087 spa_close(spa, FTAG); 2088 2089 (void) rw_unlock(&zs->zs_name_lock); 2090 } 2091 2092 static vdev_t * 2093 vdev_lookup_by_path(vdev_t *vd, const char *path) 2094 { 2095 vdev_t *mvd; 2096 2097 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2098 return (vd); 2099 2100 for (int c = 0; c < vd->vdev_children; c++) 2101 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2102 NULL) 2103 return (mvd); 2104 2105 return (NULL); 2106 } 2107 2108 /* 2109 * Find the first available hole which can be used as a top-level. 2110 */ 2111 int 2112 find_vdev_hole(spa_t *spa) 2113 { 2114 vdev_t *rvd = spa->spa_root_vdev; 2115 int c; 2116 2117 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2118 2119 for (c = 0; c < rvd->vdev_children; c++) { 2120 vdev_t *cvd = rvd->vdev_child[c]; 2121 2122 if (cvd->vdev_ishole) 2123 break; 2124 } 2125 return (c); 2126 } 2127 2128 /* 2129 * Verify that vdev_add() works as expected. 2130 */ 2131 /* ARGSUSED */ 2132 void 2133 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2134 { 2135 ztest_shared_t *zs = ztest_shared; 2136 spa_t *spa = zs->zs_spa; 2137 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2138 uint64_t guid; 2139 nvlist_t *nvroot; 2140 int error; 2141 2142 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2143 2144 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2145 2146 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2147 2148 /* 2149 * If we have slogs then remove them 1/4 of the time. 2150 */ 2151 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2152 /* 2153 * Grab the guid from the head of the log class rotor. 2154 */ 2155 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2156 2157 spa_config_exit(spa, SCL_VDEV, FTAG); 2158 2159 /* 2160 * We have to grab the zs_name_lock as writer to 2161 * prevent a race between removing a slog (dmu_objset_find) 2162 * and destroying a dataset. Removing the slog will 2163 * grab a reference on the dataset which may cause 2164 * dmu_objset_destroy() to fail with EBUSY thus 2165 * leaving the dataset in an inconsistent state. 2166 */ 2167 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2168 error = spa_vdev_remove(spa, guid, B_FALSE); 2169 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2170 2171 if (error && error != EEXIST) 2172 fatal(0, "spa_vdev_remove() = %d", error); 2173 } else { 2174 spa_config_exit(spa, SCL_VDEV, FTAG); 2175 2176 /* 2177 * Make 1/4 of the devices be log devices. 2178 */ 2179 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2180 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 2181 2182 error = spa_vdev_add(spa, nvroot); 2183 nvlist_free(nvroot); 2184 2185 if (error == ENOSPC) 2186 ztest_record_enospc("spa_vdev_add"); 2187 else if (error != 0) 2188 fatal(0, "spa_vdev_add() = %d", error); 2189 } 2190 2191 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2192 } 2193 2194 /* 2195 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2196 */ 2197 /* ARGSUSED */ 2198 void 2199 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2200 { 2201 ztest_shared_t *zs = ztest_shared; 2202 spa_t *spa = zs->zs_spa; 2203 vdev_t *rvd = spa->spa_root_vdev; 2204 spa_aux_vdev_t *sav; 2205 char *aux; 2206 uint64_t guid = 0; 2207 int error; 2208 2209 if (ztest_random(2) == 0) { 2210 sav = &spa->spa_spares; 2211 aux = ZPOOL_CONFIG_SPARES; 2212 } else { 2213 sav = &spa->spa_l2cache; 2214 aux = ZPOOL_CONFIG_L2CACHE; 2215 } 2216 2217 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2218 2219 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2220 2221 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2222 /* 2223 * Pick a random device to remove. 2224 */ 2225 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2226 } else { 2227 /* 2228 * Find an unused device we can add. 2229 */ 2230 zs->zs_vdev_aux = 0; 2231 for (;;) { 2232 char path[MAXPATHLEN]; 2233 int c; 2234 (void) sprintf(path, ztest_aux_template, zopt_dir, 2235 zopt_pool, aux, zs->zs_vdev_aux); 2236 for (c = 0; c < sav->sav_count; c++) 2237 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2238 path) == 0) 2239 break; 2240 if (c == sav->sav_count && 2241 vdev_lookup_by_path(rvd, path) == NULL) 2242 break; 2243 zs->zs_vdev_aux++; 2244 } 2245 } 2246 2247 spa_config_exit(spa, SCL_VDEV, FTAG); 2248 2249 if (guid == 0) { 2250 /* 2251 * Add a new device. 2252 */ 2253 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2254 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2255 error = spa_vdev_add(spa, nvroot); 2256 if (error != 0) 2257 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2258 nvlist_free(nvroot); 2259 } else { 2260 /* 2261 * Remove an existing device. Sometimes, dirty its 2262 * vdev state first to make sure we handle removal 2263 * of devices that have pending state changes. 2264 */ 2265 if (ztest_random(2) == 0) 2266 (void) vdev_online(spa, guid, 0, NULL); 2267 2268 error = spa_vdev_remove(spa, guid, B_FALSE); 2269 if (error != 0 && error != EBUSY) 2270 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2271 } 2272 2273 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2274 } 2275 2276 /* 2277 * Verify that we can attach and detach devices. 2278 */ 2279 /* ARGSUSED */ 2280 void 2281 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2282 { 2283 ztest_shared_t *zs = ztest_shared; 2284 spa_t *spa = zs->zs_spa; 2285 spa_aux_vdev_t *sav = &spa->spa_spares; 2286 vdev_t *rvd = spa->spa_root_vdev; 2287 vdev_t *oldvd, *newvd, *pvd; 2288 nvlist_t *root; 2289 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2290 uint64_t leaf, top; 2291 uint64_t ashift = ztest_get_ashift(); 2292 uint64_t oldguid, pguid; 2293 size_t oldsize, newsize; 2294 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2295 int replacing; 2296 int oldvd_has_siblings = B_FALSE; 2297 int newvd_is_spare = B_FALSE; 2298 int oldvd_is_log; 2299 int error, expected_error; 2300 2301 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2302 2303 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2304 2305 /* 2306 * Decide whether to do an attach or a replace. 2307 */ 2308 replacing = ztest_random(2); 2309 2310 /* 2311 * Pick a random top-level vdev. 2312 */ 2313 top = ztest_random_vdev_top(spa, B_TRUE); 2314 2315 /* 2316 * Pick a random leaf within it. 2317 */ 2318 leaf = ztest_random(leaves); 2319 2320 /* 2321 * Locate this vdev. 2322 */ 2323 oldvd = rvd->vdev_child[top]; 2324 if (zopt_mirrors >= 1) { 2325 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2326 ASSERT(oldvd->vdev_children >= zopt_mirrors); 2327 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2328 } 2329 if (zopt_raidz > 1) { 2330 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2331 ASSERT(oldvd->vdev_children == zopt_raidz); 2332 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2333 } 2334 2335 /* 2336 * If we're already doing an attach or replace, oldvd may be a 2337 * mirror vdev -- in which case, pick a random child. 2338 */ 2339 while (oldvd->vdev_children != 0) { 2340 oldvd_has_siblings = B_TRUE; 2341 ASSERT(oldvd->vdev_children >= 2); 2342 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2343 } 2344 2345 oldguid = oldvd->vdev_guid; 2346 oldsize = vdev_get_min_asize(oldvd); 2347 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2348 (void) strcpy(oldpath, oldvd->vdev_path); 2349 pvd = oldvd->vdev_parent; 2350 pguid = pvd->vdev_guid; 2351 2352 /* 2353 * If oldvd has siblings, then half of the time, detach it. 2354 */ 2355 if (oldvd_has_siblings && ztest_random(2) == 0) { 2356 spa_config_exit(spa, SCL_VDEV, FTAG); 2357 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2358 if (error != 0 && error != ENODEV && error != EBUSY && 2359 error != ENOTSUP) 2360 fatal(0, "detach (%s) returned %d", oldpath, error); 2361 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2362 return; 2363 } 2364 2365 /* 2366 * For the new vdev, choose with equal probability between the two 2367 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2368 */ 2369 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2370 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2371 newvd_is_spare = B_TRUE; 2372 (void) strcpy(newpath, newvd->vdev_path); 2373 } else { 2374 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2375 zopt_dir, zopt_pool, top * leaves + leaf); 2376 if (ztest_random(2) == 0) 2377 newpath[strlen(newpath) - 1] = 'b'; 2378 newvd = vdev_lookup_by_path(rvd, newpath); 2379 } 2380 2381 if (newvd) { 2382 newsize = vdev_get_min_asize(newvd); 2383 } else { 2384 /* 2385 * Make newsize a little bigger or smaller than oldsize. 2386 * If it's smaller, the attach should fail. 2387 * If it's larger, and we're doing a replace, 2388 * we should get dynamic LUN growth when we're done. 2389 */ 2390 newsize = 10 * oldsize / (9 + ztest_random(3)); 2391 } 2392 2393 /* 2394 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2395 * unless it's a replace; in that case any non-replacing parent is OK. 2396 * 2397 * If newvd is already part of the pool, it should fail with EBUSY. 2398 * 2399 * If newvd is too small, it should fail with EOVERFLOW. 2400 */ 2401 if (pvd->vdev_ops != &vdev_mirror_ops && 2402 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2403 pvd->vdev_ops == &vdev_replacing_ops || 2404 pvd->vdev_ops == &vdev_spare_ops)) 2405 expected_error = ENOTSUP; 2406 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2407 expected_error = ENOTSUP; 2408 else if (newvd == oldvd) 2409 expected_error = replacing ? 0 : EBUSY; 2410 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2411 expected_error = EBUSY; 2412 else if (newsize < oldsize) 2413 expected_error = EOVERFLOW; 2414 else if (ashift > oldvd->vdev_top->vdev_ashift) 2415 expected_error = EDOM; 2416 else 2417 expected_error = 0; 2418 2419 spa_config_exit(spa, SCL_VDEV, FTAG); 2420 2421 /* 2422 * Build the nvlist describing newpath. 2423 */ 2424 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2425 ashift, 0, 0, 0, 1); 2426 2427 error = spa_vdev_attach(spa, oldguid, root, replacing); 2428 2429 nvlist_free(root); 2430 2431 /* 2432 * If our parent was the replacing vdev, but the replace completed, 2433 * then instead of failing with ENOTSUP we may either succeed, 2434 * fail with ENODEV, or fail with EOVERFLOW. 2435 */ 2436 if (expected_error == ENOTSUP && 2437 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2438 expected_error = error; 2439 2440 /* 2441 * If someone grew the LUN, the replacement may be too small. 2442 */ 2443 if (error == EOVERFLOW || error == EBUSY) 2444 expected_error = error; 2445 2446 /* XXX workaround 6690467 */ 2447 if (error != expected_error && expected_error != EBUSY) { 2448 fatal(0, "attach (%s %llu, %s %llu, %d) " 2449 "returned %d, expected %d", 2450 oldpath, (longlong_t)oldsize, newpath, 2451 (longlong_t)newsize, replacing, error, expected_error); 2452 } 2453 2454 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2455 } 2456 2457 /* 2458 * Callback function which expands the physical size of the vdev. 2459 */ 2460 vdev_t * 2461 grow_vdev(vdev_t *vd, void *arg) 2462 { 2463 spa_t *spa = vd->vdev_spa; 2464 size_t *newsize = arg; 2465 size_t fsize; 2466 int fd; 2467 2468 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2469 ASSERT(vd->vdev_ops->vdev_op_leaf); 2470 2471 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2472 return (vd); 2473 2474 fsize = lseek(fd, 0, SEEK_END); 2475 (void) ftruncate(fd, *newsize); 2476 2477 if (zopt_verbose >= 6) { 2478 (void) printf("%s grew from %lu to %lu bytes\n", 2479 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2480 } 2481 (void) close(fd); 2482 return (NULL); 2483 } 2484 2485 /* 2486 * Callback function which expands a given vdev by calling vdev_online(). 2487 */ 2488 /* ARGSUSED */ 2489 vdev_t * 2490 online_vdev(vdev_t *vd, void *arg) 2491 { 2492 spa_t *spa = vd->vdev_spa; 2493 vdev_t *tvd = vd->vdev_top; 2494 uint64_t guid = vd->vdev_guid; 2495 uint64_t generation = spa->spa_config_generation + 1; 2496 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2497 int error; 2498 2499 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2500 ASSERT(vd->vdev_ops->vdev_op_leaf); 2501 2502 /* Calling vdev_online will initialize the new metaslabs */ 2503 spa_config_exit(spa, SCL_STATE, spa); 2504 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2505 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2506 2507 /* 2508 * If vdev_online returned an error or the underlying vdev_open 2509 * failed then we abort the expand. The only way to know that 2510 * vdev_open fails is by checking the returned newstate. 2511 */ 2512 if (error || newstate != VDEV_STATE_HEALTHY) { 2513 if (zopt_verbose >= 5) { 2514 (void) printf("Unable to expand vdev, state %llu, " 2515 "error %d\n", (u_longlong_t)newstate, error); 2516 } 2517 return (vd); 2518 } 2519 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2520 2521 /* 2522 * Since we dropped the lock we need to ensure that we're 2523 * still talking to the original vdev. It's possible this 2524 * vdev may have been detached/replaced while we were 2525 * trying to online it. 2526 */ 2527 if (generation != spa->spa_config_generation) { 2528 if (zopt_verbose >= 5) { 2529 (void) printf("vdev configuration has changed, " 2530 "guid %llu, state %llu, expected gen %llu, " 2531 "got gen %llu\n", 2532 (u_longlong_t)guid, 2533 (u_longlong_t)tvd->vdev_state, 2534 (u_longlong_t)generation, 2535 (u_longlong_t)spa->spa_config_generation); 2536 } 2537 return (vd); 2538 } 2539 return (NULL); 2540 } 2541 2542 /* 2543 * Traverse the vdev tree calling the supplied function. 2544 * We continue to walk the tree until we either have walked all 2545 * children or we receive a non-NULL return from the callback. 2546 * If a NULL callback is passed, then we just return back the first 2547 * leaf vdev we encounter. 2548 */ 2549 vdev_t * 2550 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2551 { 2552 if (vd->vdev_ops->vdev_op_leaf) { 2553 if (func == NULL) 2554 return (vd); 2555 else 2556 return (func(vd, arg)); 2557 } 2558 2559 for (uint_t c = 0; c < vd->vdev_children; c++) { 2560 vdev_t *cvd = vd->vdev_child[c]; 2561 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2562 return (cvd); 2563 } 2564 return (NULL); 2565 } 2566 2567 /* 2568 * Verify that dynamic LUN growth works as expected. 2569 */ 2570 /* ARGSUSED */ 2571 void 2572 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2573 { 2574 ztest_shared_t *zs = ztest_shared; 2575 spa_t *spa = zs->zs_spa; 2576 vdev_t *vd, *tvd; 2577 metaslab_class_t *mc; 2578 metaslab_group_t *mg; 2579 size_t psize, newsize; 2580 uint64_t top; 2581 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2582 2583 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2584 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2585 2586 top = ztest_random_vdev_top(spa, B_TRUE); 2587 2588 tvd = spa->spa_root_vdev->vdev_child[top]; 2589 mg = tvd->vdev_mg; 2590 mc = mg->mg_class; 2591 old_ms_count = tvd->vdev_ms_count; 2592 old_class_space = metaslab_class_get_space(mc); 2593 2594 /* 2595 * Determine the size of the first leaf vdev associated with 2596 * our top-level device. 2597 */ 2598 vd = vdev_walk_tree(tvd, NULL, NULL); 2599 ASSERT3P(vd, !=, NULL); 2600 ASSERT(vd->vdev_ops->vdev_op_leaf); 2601 2602 psize = vd->vdev_psize; 2603 2604 /* 2605 * We only try to expand the vdev if it's healthy, less than 4x its 2606 * original size, and it has a valid psize. 2607 */ 2608 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2609 psize == 0 || psize >= 4 * zopt_vdev_size) { 2610 spa_config_exit(spa, SCL_STATE, spa); 2611 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2612 return; 2613 } 2614 ASSERT(psize > 0); 2615 newsize = psize + psize / 8; 2616 ASSERT3U(newsize, >, psize); 2617 2618 if (zopt_verbose >= 6) { 2619 (void) printf("Expanding LUN %s from %lu to %lu\n", 2620 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2621 } 2622 2623 /* 2624 * Growing the vdev is a two step process: 2625 * 1). expand the physical size (i.e. relabel) 2626 * 2). online the vdev to create the new metaslabs 2627 */ 2628 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2629 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2630 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2631 if (zopt_verbose >= 5) { 2632 (void) printf("Could not expand LUN because " 2633 "the vdev configuration changed.\n"); 2634 } 2635 spa_config_exit(spa, SCL_STATE, spa); 2636 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2637 return; 2638 } 2639 2640 spa_config_exit(spa, SCL_STATE, spa); 2641 2642 /* 2643 * Expanding the LUN will update the config asynchronously, 2644 * thus we must wait for the async thread to complete any 2645 * pending tasks before proceeding. 2646 */ 2647 for (;;) { 2648 boolean_t done; 2649 mutex_enter(&spa->spa_async_lock); 2650 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2651 mutex_exit(&spa->spa_async_lock); 2652 if (done) 2653 break; 2654 txg_wait_synced(spa_get_dsl(spa), 0); 2655 (void) poll(NULL, 0, 100); 2656 } 2657 2658 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2659 2660 tvd = spa->spa_root_vdev->vdev_child[top]; 2661 new_ms_count = tvd->vdev_ms_count; 2662 new_class_space = metaslab_class_get_space(mc); 2663 2664 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2665 if (zopt_verbose >= 5) { 2666 (void) printf("Could not verify LUN expansion due to " 2667 "intervening vdev offline or remove.\n"); 2668 } 2669 spa_config_exit(spa, SCL_STATE, spa); 2670 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2671 return; 2672 } 2673 2674 /* 2675 * Make sure we were able to grow the vdev. 2676 */ 2677 if (new_ms_count <= old_ms_count) 2678 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2679 old_ms_count, new_ms_count); 2680 2681 /* 2682 * Make sure we were able to grow the pool. 2683 */ 2684 if (new_class_space <= old_class_space) 2685 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2686 old_class_space, new_class_space); 2687 2688 if (zopt_verbose >= 5) { 2689 char oldnumbuf[6], newnumbuf[6]; 2690 2691 nicenum(old_class_space, oldnumbuf); 2692 nicenum(new_class_space, newnumbuf); 2693 (void) printf("%s grew from %s to %s\n", 2694 spa->spa_name, oldnumbuf, newnumbuf); 2695 } 2696 2697 spa_config_exit(spa, SCL_STATE, spa); 2698 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2699 } 2700 2701 /* 2702 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2703 */ 2704 /* ARGSUSED */ 2705 static void 2706 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2707 { 2708 /* 2709 * Create the objects common to all ztest datasets. 2710 */ 2711 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2712 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2713 } 2714 2715 /* ARGSUSED */ 2716 static int 2717 ztest_objset_destroy_cb(char *name, void *arg) 2718 { 2719 objset_t *os; 2720 dmu_object_info_t doi; 2721 int error; 2722 2723 /* 2724 * Verify that the dataset contains a directory object. 2725 */ 2726 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2727 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2728 if (error != ENOENT) { 2729 /* We could have crashed in the middle of destroying it */ 2730 ASSERT3U(error, ==, 0); 2731 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2732 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2733 } 2734 dmu_objset_rele(os, FTAG); 2735 2736 /* 2737 * Destroy the dataset. 2738 */ 2739 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2740 return (0); 2741 } 2742 2743 static boolean_t 2744 ztest_snapshot_create(char *osname, uint64_t id) 2745 { 2746 char snapname[MAXNAMELEN]; 2747 int error; 2748 2749 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2750 (u_longlong_t)id); 2751 2752 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2753 NULL, B_FALSE); 2754 if (error == ENOSPC) { 2755 ztest_record_enospc(FTAG); 2756 return (B_FALSE); 2757 } 2758 if (error != 0 && error != EEXIST) 2759 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2760 return (B_TRUE); 2761 } 2762 2763 static boolean_t 2764 ztest_snapshot_destroy(char *osname, uint64_t id) 2765 { 2766 char snapname[MAXNAMELEN]; 2767 int error; 2768 2769 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2770 (u_longlong_t)id); 2771 2772 error = dmu_objset_destroy(snapname, B_FALSE); 2773 if (error != 0 && error != ENOENT) 2774 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2775 return (B_TRUE); 2776 } 2777 2778 /* ARGSUSED */ 2779 void 2780 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2781 { 2782 ztest_shared_t *zs = ztest_shared; 2783 ztest_ds_t zdtmp; 2784 int iters; 2785 int error; 2786 objset_t *os, *os2; 2787 char name[MAXNAMELEN]; 2788 zilog_t *zilog; 2789 2790 (void) rw_rdlock(&zs->zs_name_lock); 2791 2792 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2793 zs->zs_pool, (u_longlong_t)id); 2794 2795 /* 2796 * If this dataset exists from a previous run, process its replay log 2797 * half of the time. If we don't replay it, then dmu_objset_destroy() 2798 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2799 */ 2800 if (ztest_random(2) == 0 && 2801 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2802 ztest_zd_init(&zdtmp, os); 2803 zil_replay(os, &zdtmp, ztest_replay_vector); 2804 ztest_zd_fini(&zdtmp); 2805 dmu_objset_disown(os, FTAG); 2806 } 2807 2808 /* 2809 * There may be an old instance of the dataset we're about to 2810 * create lying around from a previous run. If so, destroy it 2811 * and all of its snapshots. 2812 */ 2813 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2814 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2815 2816 /* 2817 * Verify that the destroyed dataset is no longer in the namespace. 2818 */ 2819 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2820 2821 /* 2822 * Verify that we can create a new dataset. 2823 */ 2824 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 2825 ztest_objset_create_cb, NULL); 2826 if (error) { 2827 if (error == ENOSPC) { 2828 ztest_record_enospc(FTAG); 2829 (void) rw_unlock(&zs->zs_name_lock); 2830 return; 2831 } 2832 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2833 } 2834 2835 VERIFY3U(0, ==, 2836 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2837 2838 ztest_zd_init(&zdtmp, os); 2839 2840 /* 2841 * Open the intent log for it. 2842 */ 2843 zilog = zil_open(os, ztest_get_data); 2844 2845 /* 2846 * Put some objects in there, do a little I/O to them, 2847 * and randomly take a couple of snapshots along the way. 2848 */ 2849 iters = ztest_random(5); 2850 for (int i = 0; i < iters; i++) { 2851 ztest_dmu_object_alloc_free(&zdtmp, id); 2852 if (ztest_random(iters) == 0) 2853 (void) ztest_snapshot_create(name, i); 2854 } 2855 2856 /* 2857 * Verify that we cannot create an existing dataset. 2858 */ 2859 VERIFY3U(EEXIST, ==, 2860 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2861 2862 /* 2863 * Verify that we can hold an objset that is also owned. 2864 */ 2865 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2866 dmu_objset_rele(os2, FTAG); 2867 2868 /* 2869 * Verify that we cannot own an objset that is already owned. 2870 */ 2871 VERIFY3U(EBUSY, ==, 2872 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2873 2874 zil_close(zilog); 2875 dmu_objset_disown(os, FTAG); 2876 ztest_zd_fini(&zdtmp); 2877 2878 (void) rw_unlock(&zs->zs_name_lock); 2879 } 2880 2881 /* 2882 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 2883 */ 2884 void 2885 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 2886 { 2887 ztest_shared_t *zs = ztest_shared; 2888 2889 (void) rw_rdlock(&zs->zs_name_lock); 2890 (void) ztest_snapshot_destroy(zd->zd_name, id); 2891 (void) ztest_snapshot_create(zd->zd_name, id); 2892 (void) rw_unlock(&zs->zs_name_lock); 2893 } 2894 2895 /* 2896 * Cleanup non-standard snapshots and clones. 2897 */ 2898 void 2899 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 2900 { 2901 char snap1name[MAXNAMELEN]; 2902 char clone1name[MAXNAMELEN]; 2903 char snap2name[MAXNAMELEN]; 2904 char clone2name[MAXNAMELEN]; 2905 char snap3name[MAXNAMELEN]; 2906 int error; 2907 2908 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 2909 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 2910 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 2911 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 2912 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 2913 2914 error = dmu_objset_destroy(clone2name, B_FALSE); 2915 if (error && error != ENOENT) 2916 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 2917 error = dmu_objset_destroy(snap3name, B_FALSE); 2918 if (error && error != ENOENT) 2919 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 2920 error = dmu_objset_destroy(snap2name, B_FALSE); 2921 if (error && error != ENOENT) 2922 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 2923 error = dmu_objset_destroy(clone1name, B_FALSE); 2924 if (error && error != ENOENT) 2925 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 2926 error = dmu_objset_destroy(snap1name, B_FALSE); 2927 if (error && error != ENOENT) 2928 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 2929 } 2930 2931 /* 2932 * Verify dsl_dataset_promote handles EBUSY 2933 */ 2934 void 2935 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 2936 { 2937 ztest_shared_t *zs = ztest_shared; 2938 objset_t *clone; 2939 dsl_dataset_t *ds; 2940 char snap1name[MAXNAMELEN]; 2941 char clone1name[MAXNAMELEN]; 2942 char snap2name[MAXNAMELEN]; 2943 char clone2name[MAXNAMELEN]; 2944 char snap3name[MAXNAMELEN]; 2945 char *osname = zd->zd_name; 2946 int error; 2947 2948 (void) rw_rdlock(&zs->zs_name_lock); 2949 2950 ztest_dsl_dataset_cleanup(osname, id); 2951 2952 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 2953 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 2954 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 2955 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 2956 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 2957 2958 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 2959 NULL, B_FALSE); 2960 if (error && error != EEXIST) { 2961 if (error == ENOSPC) { 2962 ztest_record_enospc(FTAG); 2963 goto out; 2964 } 2965 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 2966 } 2967 2968 error = dmu_objset_hold(snap1name, FTAG, &clone); 2969 if (error) 2970 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 2971 2972 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 2973 dmu_objset_rele(clone, FTAG); 2974 if (error) { 2975 if (error == ENOSPC) { 2976 ztest_record_enospc(FTAG); 2977 goto out; 2978 } 2979 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 2980 } 2981 2982 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 2983 NULL, B_FALSE); 2984 if (error && error != EEXIST) { 2985 if (error == ENOSPC) { 2986 ztest_record_enospc(FTAG); 2987 goto out; 2988 } 2989 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 2990 } 2991 2992 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 2993 NULL, B_FALSE); 2994 if (error && error != EEXIST) { 2995 if (error == ENOSPC) { 2996 ztest_record_enospc(FTAG); 2997 goto out; 2998 } 2999 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3000 } 3001 3002 error = dmu_objset_hold(snap3name, FTAG, &clone); 3003 if (error) 3004 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3005 3006 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3007 dmu_objset_rele(clone, FTAG); 3008 if (error) { 3009 if (error == ENOSPC) { 3010 ztest_record_enospc(FTAG); 3011 goto out; 3012 } 3013 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3014 } 3015 3016 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 3017 if (error) 3018 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 3019 error = dsl_dataset_promote(clone2name, NULL); 3020 if (error != EBUSY) 3021 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3022 error); 3023 dsl_dataset_disown(ds, FTAG); 3024 3025 out: 3026 ztest_dsl_dataset_cleanup(osname, id); 3027 3028 (void) rw_unlock(&zs->zs_name_lock); 3029 } 3030 3031 /* 3032 * Verify that dmu_object_{alloc,free} work as expected. 3033 */ 3034 void 3035 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3036 { 3037 ztest_od_t od[4]; 3038 int batchsize = sizeof (od) / sizeof (od[0]); 3039 3040 for (int b = 0; b < batchsize; b++) 3041 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3042 3043 /* 3044 * Destroy the previous batch of objects, create a new batch, 3045 * and do some I/O on the new objects. 3046 */ 3047 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3048 return; 3049 3050 while (ztest_random(4 * batchsize) != 0) 3051 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3052 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3053 } 3054 3055 /* 3056 * Verify that dmu_{read,write} work as expected. 3057 */ 3058 void 3059 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3060 { 3061 objset_t *os = zd->zd_os; 3062 ztest_od_t od[2]; 3063 dmu_tx_t *tx; 3064 int i, freeit, error; 3065 uint64_t n, s, txg; 3066 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3067 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3068 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3069 uint64_t regions = 997; 3070 uint64_t stride = 123456789ULL; 3071 uint64_t width = 40; 3072 int free_percent = 5; 3073 3074 /* 3075 * This test uses two objects, packobj and bigobj, that are always 3076 * updated together (i.e. in the same tx) so that their contents are 3077 * in sync and can be compared. Their contents relate to each other 3078 * in a simple way: packobj is a dense array of 'bufwad' structures, 3079 * while bigobj is a sparse array of the same bufwads. Specifically, 3080 * for any index n, there are three bufwads that should be identical: 3081 * 3082 * packobj, at offset n * sizeof (bufwad_t) 3083 * bigobj, at the head of the nth chunk 3084 * bigobj, at the tail of the nth chunk 3085 * 3086 * The chunk size is arbitrary. It doesn't have to be a power of two, 3087 * and it doesn't have any relation to the object blocksize. 3088 * The only requirement is that it can hold at least two bufwads. 3089 * 3090 * Normally, we write the bufwad to each of these locations. 3091 * However, free_percent of the time we instead write zeroes to 3092 * packobj and perform a dmu_free_range() on bigobj. By comparing 3093 * bigobj to packobj, we can verify that the DMU is correctly 3094 * tracking which parts of an object are allocated and free, 3095 * and that the contents of the allocated blocks are correct. 3096 */ 3097 3098 /* 3099 * Read the directory info. If it's the first time, set things up. 3100 */ 3101 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3102 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3103 3104 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3105 return; 3106 3107 bigobj = od[0].od_object; 3108 packobj = od[1].od_object; 3109 chunksize = od[0].od_gen; 3110 ASSERT(chunksize == od[1].od_gen); 3111 3112 /* 3113 * Prefetch a random chunk of the big object. 3114 * Our aim here is to get some async reads in flight 3115 * for blocks that we may free below; the DMU should 3116 * handle this race correctly. 3117 */ 3118 n = ztest_random(regions) * stride + ztest_random(width); 3119 s = 1 + ztest_random(2 * width - 1); 3120 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3121 3122 /* 3123 * Pick a random index and compute the offsets into packobj and bigobj. 3124 */ 3125 n = ztest_random(regions) * stride + ztest_random(width); 3126 s = 1 + ztest_random(width - 1); 3127 3128 packoff = n * sizeof (bufwad_t); 3129 packsize = s * sizeof (bufwad_t); 3130 3131 bigoff = n * chunksize; 3132 bigsize = s * chunksize; 3133 3134 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3135 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3136 3137 /* 3138 * free_percent of the time, free a range of bigobj rather than 3139 * overwriting it. 3140 */ 3141 freeit = (ztest_random(100) < free_percent); 3142 3143 /* 3144 * Read the current contents of our objects. 3145 */ 3146 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3147 DMU_READ_PREFETCH); 3148 ASSERT3U(error, ==, 0); 3149 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3150 DMU_READ_PREFETCH); 3151 ASSERT3U(error, ==, 0); 3152 3153 /* 3154 * Get a tx for the mods to both packobj and bigobj. 3155 */ 3156 tx = dmu_tx_create(os); 3157 3158 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3159 3160 if (freeit) 3161 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3162 else 3163 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3164 3165 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3166 if (txg == 0) { 3167 umem_free(packbuf, packsize); 3168 umem_free(bigbuf, bigsize); 3169 return; 3170 } 3171 3172 dmu_object_set_checksum(os, bigobj, 3173 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3174 3175 dmu_object_set_compress(os, bigobj, 3176 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3177 3178 /* 3179 * For each index from n to n + s, verify that the existing bufwad 3180 * in packobj matches the bufwads at the head and tail of the 3181 * corresponding chunk in bigobj. Then update all three bufwads 3182 * with the new values we want to write out. 3183 */ 3184 for (i = 0; i < s; i++) { 3185 /* LINTED */ 3186 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3187 /* LINTED */ 3188 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3189 /* LINTED */ 3190 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3191 3192 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3193 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3194 3195 if (pack->bw_txg > txg) 3196 fatal(0, "future leak: got %llx, open txg is %llx", 3197 pack->bw_txg, txg); 3198 3199 if (pack->bw_data != 0 && pack->bw_index != n + i) 3200 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3201 pack->bw_index, n, i); 3202 3203 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3204 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3205 3206 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3207 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3208 3209 if (freeit) { 3210 bzero(pack, sizeof (bufwad_t)); 3211 } else { 3212 pack->bw_index = n + i; 3213 pack->bw_txg = txg; 3214 pack->bw_data = 1 + ztest_random(-2ULL); 3215 } 3216 *bigH = *pack; 3217 *bigT = *pack; 3218 } 3219 3220 /* 3221 * We've verified all the old bufwads, and made new ones. 3222 * Now write them out. 3223 */ 3224 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3225 3226 if (freeit) { 3227 if (zopt_verbose >= 7) { 3228 (void) printf("freeing offset %llx size %llx" 3229 " txg %llx\n", 3230 (u_longlong_t)bigoff, 3231 (u_longlong_t)bigsize, 3232 (u_longlong_t)txg); 3233 } 3234 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3235 } else { 3236 if (zopt_verbose >= 7) { 3237 (void) printf("writing offset %llx size %llx" 3238 " txg %llx\n", 3239 (u_longlong_t)bigoff, 3240 (u_longlong_t)bigsize, 3241 (u_longlong_t)txg); 3242 } 3243 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3244 } 3245 3246 dmu_tx_commit(tx); 3247 3248 /* 3249 * Sanity check the stuff we just wrote. 3250 */ 3251 { 3252 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3253 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3254 3255 VERIFY(0 == dmu_read(os, packobj, packoff, 3256 packsize, packcheck, DMU_READ_PREFETCH)); 3257 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3258 bigsize, bigcheck, DMU_READ_PREFETCH)); 3259 3260 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3261 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3262 3263 umem_free(packcheck, packsize); 3264 umem_free(bigcheck, bigsize); 3265 } 3266 3267 umem_free(packbuf, packsize); 3268 umem_free(bigbuf, bigsize); 3269 } 3270 3271 void 3272 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3273 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3274 { 3275 uint64_t i; 3276 bufwad_t *pack; 3277 bufwad_t *bigH; 3278 bufwad_t *bigT; 3279 3280 /* 3281 * For each index from n to n + s, verify that the existing bufwad 3282 * in packobj matches the bufwads at the head and tail of the 3283 * corresponding chunk in bigobj. Then update all three bufwads 3284 * with the new values we want to write out. 3285 */ 3286 for (i = 0; i < s; i++) { 3287 /* LINTED */ 3288 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3289 /* LINTED */ 3290 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3291 /* LINTED */ 3292 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3293 3294 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3295 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3296 3297 if (pack->bw_txg > txg) 3298 fatal(0, "future leak: got %llx, open txg is %llx", 3299 pack->bw_txg, txg); 3300 3301 if (pack->bw_data != 0 && pack->bw_index != n + i) 3302 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3303 pack->bw_index, n, i); 3304 3305 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3306 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3307 3308 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3309 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3310 3311 pack->bw_index = n + i; 3312 pack->bw_txg = txg; 3313 pack->bw_data = 1 + ztest_random(-2ULL); 3314 3315 *bigH = *pack; 3316 *bigT = *pack; 3317 } 3318 } 3319 3320 void 3321 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3322 { 3323 objset_t *os = zd->zd_os; 3324 ztest_od_t od[2]; 3325 dmu_tx_t *tx; 3326 uint64_t i; 3327 int error; 3328 uint64_t n, s, txg; 3329 bufwad_t *packbuf, *bigbuf; 3330 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3331 uint64_t blocksize = ztest_random_blocksize(); 3332 uint64_t chunksize = blocksize; 3333 uint64_t regions = 997; 3334 uint64_t stride = 123456789ULL; 3335 uint64_t width = 9; 3336 dmu_buf_t *bonus_db; 3337 arc_buf_t **bigbuf_arcbufs; 3338 dmu_object_info_t doi; 3339 3340 /* 3341 * This test uses two objects, packobj and bigobj, that are always 3342 * updated together (i.e. in the same tx) so that their contents are 3343 * in sync and can be compared. Their contents relate to each other 3344 * in a simple way: packobj is a dense array of 'bufwad' structures, 3345 * while bigobj is a sparse array of the same bufwads. Specifically, 3346 * for any index n, there are three bufwads that should be identical: 3347 * 3348 * packobj, at offset n * sizeof (bufwad_t) 3349 * bigobj, at the head of the nth chunk 3350 * bigobj, at the tail of the nth chunk 3351 * 3352 * The chunk size is set equal to bigobj block size so that 3353 * dmu_assign_arcbuf() can be tested for object updates. 3354 */ 3355 3356 /* 3357 * Read the directory info. If it's the first time, set things up. 3358 */ 3359 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3360 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3361 3362 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3363 return; 3364 3365 bigobj = od[0].od_object; 3366 packobj = od[1].od_object; 3367 blocksize = od[0].od_blocksize; 3368 chunksize = blocksize; 3369 ASSERT(chunksize == od[1].od_gen); 3370 3371 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3372 VERIFY(ISP2(doi.doi_data_block_size)); 3373 VERIFY(chunksize == doi.doi_data_block_size); 3374 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3375 3376 /* 3377 * Pick a random index and compute the offsets into packobj and bigobj. 3378 */ 3379 n = ztest_random(regions) * stride + ztest_random(width); 3380 s = 1 + ztest_random(width - 1); 3381 3382 packoff = n * sizeof (bufwad_t); 3383 packsize = s * sizeof (bufwad_t); 3384 3385 bigoff = n * chunksize; 3386 bigsize = s * chunksize; 3387 3388 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3389 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3390 3391 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3392 3393 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3394 3395 /* 3396 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3397 * Iteration 1 test zcopy to already referenced dbufs. 3398 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3399 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3400 * Iteration 4 test zcopy when dbuf is no longer dirty. 3401 * Iteration 5 test zcopy when it can't be done. 3402 * Iteration 6 one more zcopy write. 3403 */ 3404 for (i = 0; i < 7; i++) { 3405 uint64_t j; 3406 uint64_t off; 3407 3408 /* 3409 * In iteration 5 (i == 5) use arcbufs 3410 * that don't match bigobj blksz to test 3411 * dmu_assign_arcbuf() when it can't directly 3412 * assign an arcbuf to a dbuf. 3413 */ 3414 for (j = 0; j < s; j++) { 3415 if (i != 5) { 3416 bigbuf_arcbufs[j] = 3417 dmu_request_arcbuf(bonus_db, chunksize); 3418 } else { 3419 bigbuf_arcbufs[2 * j] = 3420 dmu_request_arcbuf(bonus_db, chunksize / 2); 3421 bigbuf_arcbufs[2 * j + 1] = 3422 dmu_request_arcbuf(bonus_db, chunksize / 2); 3423 } 3424 } 3425 3426 /* 3427 * Get a tx for the mods to both packobj and bigobj. 3428 */ 3429 tx = dmu_tx_create(os); 3430 3431 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3432 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3433 3434 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3435 if (txg == 0) { 3436 umem_free(packbuf, packsize); 3437 umem_free(bigbuf, bigsize); 3438 for (j = 0; j < s; j++) { 3439 if (i != 5) { 3440 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3441 } else { 3442 dmu_return_arcbuf( 3443 bigbuf_arcbufs[2 * j]); 3444 dmu_return_arcbuf( 3445 bigbuf_arcbufs[2 * j + 1]); 3446 } 3447 } 3448 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3449 dmu_buf_rele(bonus_db, FTAG); 3450 return; 3451 } 3452 3453 /* 3454 * 50% of the time don't read objects in the 1st iteration to 3455 * test dmu_assign_arcbuf() for the case when there're no 3456 * existing dbufs for the specified offsets. 3457 */ 3458 if (i != 0 || ztest_random(2) != 0) { 3459 error = dmu_read(os, packobj, packoff, 3460 packsize, packbuf, DMU_READ_PREFETCH); 3461 ASSERT3U(error, ==, 0); 3462 error = dmu_read(os, bigobj, bigoff, bigsize, 3463 bigbuf, DMU_READ_PREFETCH); 3464 ASSERT3U(error, ==, 0); 3465 } 3466 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3467 n, chunksize, txg); 3468 3469 /* 3470 * We've verified all the old bufwads, and made new ones. 3471 * Now write them out. 3472 */ 3473 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3474 if (zopt_verbose >= 7) { 3475 (void) printf("writing offset %llx size %llx" 3476 " txg %llx\n", 3477 (u_longlong_t)bigoff, 3478 (u_longlong_t)bigsize, 3479 (u_longlong_t)txg); 3480 } 3481 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3482 dmu_buf_t *dbt; 3483 if (i != 5) { 3484 bcopy((caddr_t)bigbuf + (off - bigoff), 3485 bigbuf_arcbufs[j]->b_data, chunksize); 3486 } else { 3487 bcopy((caddr_t)bigbuf + (off - bigoff), 3488 bigbuf_arcbufs[2 * j]->b_data, 3489 chunksize / 2); 3490 bcopy((caddr_t)bigbuf + (off - bigoff) + 3491 chunksize / 2, 3492 bigbuf_arcbufs[2 * j + 1]->b_data, 3493 chunksize / 2); 3494 } 3495 3496 if (i == 1) { 3497 VERIFY(dmu_buf_hold(os, bigobj, off, 3498 FTAG, &dbt) == 0); 3499 } 3500 if (i != 5) { 3501 dmu_assign_arcbuf(bonus_db, off, 3502 bigbuf_arcbufs[j], tx); 3503 } else { 3504 dmu_assign_arcbuf(bonus_db, off, 3505 bigbuf_arcbufs[2 * j], tx); 3506 dmu_assign_arcbuf(bonus_db, 3507 off + chunksize / 2, 3508 bigbuf_arcbufs[2 * j + 1], tx); 3509 } 3510 if (i == 1) { 3511 dmu_buf_rele(dbt, FTAG); 3512 } 3513 } 3514 dmu_tx_commit(tx); 3515 3516 /* 3517 * Sanity check the stuff we just wrote. 3518 */ 3519 { 3520 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3521 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3522 3523 VERIFY(0 == dmu_read(os, packobj, packoff, 3524 packsize, packcheck, DMU_READ_PREFETCH)); 3525 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3526 bigsize, bigcheck, DMU_READ_PREFETCH)); 3527 3528 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3529 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3530 3531 umem_free(packcheck, packsize); 3532 umem_free(bigcheck, bigsize); 3533 } 3534 if (i == 2) { 3535 txg_wait_open(dmu_objset_pool(os), 0); 3536 } else if (i == 3) { 3537 txg_wait_synced(dmu_objset_pool(os), 0); 3538 } 3539 } 3540 3541 dmu_buf_rele(bonus_db, FTAG); 3542 umem_free(packbuf, packsize); 3543 umem_free(bigbuf, bigsize); 3544 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3545 } 3546 3547 /* ARGSUSED */ 3548 void 3549 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3550 { 3551 ztest_od_t od[1]; 3552 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3553 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3554 3555 /* 3556 * Have multiple threads write to large offsets in an object 3557 * to verify that parallel writes to an object -- even to the 3558 * same blocks within the object -- doesn't cause any trouble. 3559 */ 3560 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3561 3562 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3563 return; 3564 3565 while (ztest_random(10) != 0) 3566 ztest_io(zd, od[0].od_object, offset); 3567 } 3568 3569 void 3570 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3571 { 3572 ztest_od_t od[1]; 3573 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3574 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3575 uint64_t count = ztest_random(20) + 1; 3576 uint64_t blocksize = ztest_random_blocksize(); 3577 void *data; 3578 3579 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3580 3581 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3582 return; 3583 3584 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3585 return; 3586 3587 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3588 3589 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3590 3591 while (ztest_random(count) != 0) { 3592 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3593 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3594 data) != 0) 3595 break; 3596 while (ztest_random(4) != 0) 3597 ztest_io(zd, od[0].od_object, randoff); 3598 } 3599 3600 umem_free(data, blocksize); 3601 } 3602 3603 /* 3604 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3605 */ 3606 #define ZTEST_ZAP_MIN_INTS 1 3607 #define ZTEST_ZAP_MAX_INTS 4 3608 #define ZTEST_ZAP_MAX_PROPS 1000 3609 3610 void 3611 ztest_zap(ztest_ds_t *zd, uint64_t id) 3612 { 3613 objset_t *os = zd->zd_os; 3614 ztest_od_t od[1]; 3615 uint64_t object; 3616 uint64_t txg, last_txg; 3617 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3618 uint64_t zl_ints, zl_intsize, prop; 3619 int i, ints; 3620 dmu_tx_t *tx; 3621 char propname[100], txgname[100]; 3622 int error; 3623 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3624 3625 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3626 3627 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3628 return; 3629 3630 object = od[0].od_object; 3631 3632 /* 3633 * Generate a known hash collision, and verify that 3634 * we can lookup and remove both entries. 3635 */ 3636 tx = dmu_tx_create(os); 3637 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3638 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3639 if (txg == 0) 3640 return; 3641 for (i = 0; i < 2; i++) { 3642 value[i] = i; 3643 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3644 1, &value[i], tx)); 3645 } 3646 for (i = 0; i < 2; i++) { 3647 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3648 sizeof (uint64_t), 1, &value[i], tx)); 3649 VERIFY3U(0, ==, 3650 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3651 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3652 ASSERT3U(zl_ints, ==, 1); 3653 } 3654 for (i = 0; i < 2; i++) { 3655 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3656 } 3657 dmu_tx_commit(tx); 3658 3659 /* 3660 * Generate a buch of random entries. 3661 */ 3662 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3663 3664 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3665 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3666 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3667 bzero(value, sizeof (value)); 3668 last_txg = 0; 3669 3670 /* 3671 * If these zap entries already exist, validate their contents. 3672 */ 3673 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3674 if (error == 0) { 3675 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3676 ASSERT3U(zl_ints, ==, 1); 3677 3678 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3679 zl_ints, &last_txg) == 0); 3680 3681 VERIFY(zap_length(os, object, propname, &zl_intsize, 3682 &zl_ints) == 0); 3683 3684 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3685 ASSERT3U(zl_ints, ==, ints); 3686 3687 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3688 zl_ints, value) == 0); 3689 3690 for (i = 0; i < ints; i++) { 3691 ASSERT3U(value[i], ==, last_txg + object + i); 3692 } 3693 } else { 3694 ASSERT3U(error, ==, ENOENT); 3695 } 3696 3697 /* 3698 * Atomically update two entries in our zap object. 3699 * The first is named txg_%llu, and contains the txg 3700 * in which the property was last updated. The second 3701 * is named prop_%llu, and the nth element of its value 3702 * should be txg + object + n. 3703 */ 3704 tx = dmu_tx_create(os); 3705 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3706 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3707 if (txg == 0) 3708 return; 3709 3710 if (last_txg > txg) 3711 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3712 3713 for (i = 0; i < ints; i++) 3714 value[i] = txg + object + i; 3715 3716 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3717 1, &txg, tx)); 3718 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3719 ints, value, tx)); 3720 3721 dmu_tx_commit(tx); 3722 3723 /* 3724 * Remove a random pair of entries. 3725 */ 3726 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3727 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3728 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3729 3730 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3731 3732 if (error == ENOENT) 3733 return; 3734 3735 ASSERT3U(error, ==, 0); 3736 3737 tx = dmu_tx_create(os); 3738 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3739 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3740 if (txg == 0) 3741 return; 3742 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3743 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3744 dmu_tx_commit(tx); 3745 } 3746 3747 /* 3748 * Testcase to test the upgrading of a microzap to fatzap. 3749 */ 3750 void 3751 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3752 { 3753 objset_t *os = zd->zd_os; 3754 ztest_od_t od[1]; 3755 uint64_t object, txg; 3756 3757 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3758 3759 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3760 return; 3761 3762 object = od[0].od_object; 3763 3764 /* 3765 * Add entries to this ZAP and make sure it spills over 3766 * and gets upgraded to a fatzap. Also, since we are adding 3767 * 2050 entries we should see ptrtbl growth and leaf-block split. 3768 */ 3769 for (int i = 0; i < 2050; i++) { 3770 char name[MAXNAMELEN]; 3771 uint64_t value = i; 3772 dmu_tx_t *tx; 3773 int error; 3774 3775 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3776 id, value); 3777 3778 tx = dmu_tx_create(os); 3779 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3780 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3781 if (txg == 0) 3782 return; 3783 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3784 &value, tx); 3785 ASSERT(error == 0 || error == EEXIST); 3786 dmu_tx_commit(tx); 3787 } 3788 } 3789 3790 /* ARGSUSED */ 3791 void 3792 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3793 { 3794 objset_t *os = zd->zd_os; 3795 ztest_od_t od[1]; 3796 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3797 dmu_tx_t *tx; 3798 int i, namelen, error; 3799 int micro = ztest_random(2); 3800 char name[20], string_value[20]; 3801 void *data; 3802 3803 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3804 3805 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3806 return; 3807 3808 object = od[0].od_object; 3809 3810 /* 3811 * Generate a random name of the form 'xxx.....' where each 3812 * x is a random printable character and the dots are dots. 3813 * There are 94 such characters, and the name length goes from 3814 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3815 */ 3816 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3817 3818 for (i = 0; i < 3; i++) 3819 name[i] = '!' + ztest_random('~' - '!' + 1); 3820 for (; i < namelen - 1; i++) 3821 name[i] = '.'; 3822 name[i] = '\0'; 3823 3824 if ((namelen & 1) || micro) { 3825 wsize = sizeof (txg); 3826 wc = 1; 3827 data = &txg; 3828 } else { 3829 wsize = 1; 3830 wc = namelen; 3831 data = string_value; 3832 } 3833 3834 count = -1ULL; 3835 VERIFY(zap_count(os, object, &count) == 0); 3836 ASSERT(count != -1ULL); 3837 3838 /* 3839 * Select an operation: length, lookup, add, update, remove. 3840 */ 3841 i = ztest_random(5); 3842 3843 if (i >= 2) { 3844 tx = dmu_tx_create(os); 3845 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3846 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3847 if (txg == 0) 3848 return; 3849 bcopy(name, string_value, namelen); 3850 } else { 3851 tx = NULL; 3852 txg = 0; 3853 bzero(string_value, namelen); 3854 } 3855 3856 switch (i) { 3857 3858 case 0: 3859 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3860 if (error == 0) { 3861 ASSERT3U(wsize, ==, zl_wsize); 3862 ASSERT3U(wc, ==, zl_wc); 3863 } else { 3864 ASSERT3U(error, ==, ENOENT); 3865 } 3866 break; 3867 3868 case 1: 3869 error = zap_lookup(os, object, name, wsize, wc, data); 3870 if (error == 0) { 3871 if (data == string_value && 3872 bcmp(name, data, namelen) != 0) 3873 fatal(0, "name '%s' != val '%s' len %d", 3874 name, data, namelen); 3875 } else { 3876 ASSERT3U(error, ==, ENOENT); 3877 } 3878 break; 3879 3880 case 2: 3881 error = zap_add(os, object, name, wsize, wc, data, tx); 3882 ASSERT(error == 0 || error == EEXIST); 3883 break; 3884 3885 case 3: 3886 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3887 break; 3888 3889 case 4: 3890 error = zap_remove(os, object, name, tx); 3891 ASSERT(error == 0 || error == ENOENT); 3892 break; 3893 } 3894 3895 if (tx != NULL) 3896 dmu_tx_commit(tx); 3897 } 3898 3899 /* 3900 * Commit callback data. 3901 */ 3902 typedef struct ztest_cb_data { 3903 list_node_t zcd_node; 3904 uint64_t zcd_txg; 3905 int zcd_expected_err; 3906 boolean_t zcd_added; 3907 boolean_t zcd_called; 3908 spa_t *zcd_spa; 3909 } ztest_cb_data_t; 3910 3911 /* This is the actual commit callback function */ 3912 static void 3913 ztest_commit_callback(void *arg, int error) 3914 { 3915 ztest_cb_data_t *data = arg; 3916 uint64_t synced_txg; 3917 3918 VERIFY(data != NULL); 3919 VERIFY3S(data->zcd_expected_err, ==, error); 3920 VERIFY(!data->zcd_called); 3921 3922 synced_txg = spa_last_synced_txg(data->zcd_spa); 3923 if (data->zcd_txg > synced_txg) 3924 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 3925 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 3926 synced_txg); 3927 3928 data->zcd_called = B_TRUE; 3929 3930 if (error == ECANCELED) { 3931 ASSERT3U(data->zcd_txg, ==, 0); 3932 ASSERT(!data->zcd_added); 3933 3934 /* 3935 * The private callback data should be destroyed here, but 3936 * since we are going to check the zcd_called field after 3937 * dmu_tx_abort(), we will destroy it there. 3938 */ 3939 return; 3940 } 3941 3942 /* Was this callback added to the global callback list? */ 3943 if (!data->zcd_added) 3944 goto out; 3945 3946 ASSERT3U(data->zcd_txg, !=, 0); 3947 3948 /* Remove our callback from the list */ 3949 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3950 list_remove(&zcl.zcl_callbacks, data); 3951 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3952 3953 out: 3954 umem_free(data, sizeof (ztest_cb_data_t)); 3955 } 3956 3957 /* Allocate and initialize callback data structure */ 3958 static ztest_cb_data_t * 3959 ztest_create_cb_data(objset_t *os, uint64_t txg) 3960 { 3961 ztest_cb_data_t *cb_data; 3962 3963 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 3964 3965 cb_data->zcd_txg = txg; 3966 cb_data->zcd_spa = dmu_objset_spa(os); 3967 3968 return (cb_data); 3969 } 3970 3971 /* 3972 * If a number of txgs equal to this threshold have been created after a commit 3973 * callback has been registered but not called, then we assume there is an 3974 * implementation bug. 3975 */ 3976 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 3977 3978 /* 3979 * Commit callback test. 3980 */ 3981 void 3982 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 3983 { 3984 objset_t *os = zd->zd_os; 3985 ztest_od_t od[1]; 3986 dmu_tx_t *tx; 3987 ztest_cb_data_t *cb_data[3], *tmp_cb; 3988 uint64_t old_txg, txg; 3989 int i, error; 3990 3991 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3992 3993 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3994 return; 3995 3996 tx = dmu_tx_create(os); 3997 3998 cb_data[0] = ztest_create_cb_data(os, 0); 3999 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4000 4001 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4002 4003 /* Every once in a while, abort the transaction on purpose */ 4004 if (ztest_random(100) == 0) 4005 error = -1; 4006 4007 if (!error) 4008 error = dmu_tx_assign(tx, TXG_NOWAIT); 4009 4010 txg = error ? 0 : dmu_tx_get_txg(tx); 4011 4012 cb_data[0]->zcd_txg = txg; 4013 cb_data[1] = ztest_create_cb_data(os, txg); 4014 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4015 4016 if (error) { 4017 /* 4018 * It's not a strict requirement to call the registered 4019 * callbacks from inside dmu_tx_abort(), but that's what 4020 * it's supposed to happen in the current implementation 4021 * so we will check for that. 4022 */ 4023 for (i = 0; i < 2; i++) { 4024 cb_data[i]->zcd_expected_err = ECANCELED; 4025 VERIFY(!cb_data[i]->zcd_called); 4026 } 4027 4028 dmu_tx_abort(tx); 4029 4030 for (i = 0; i < 2; i++) { 4031 VERIFY(cb_data[i]->zcd_called); 4032 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4033 } 4034 4035 return; 4036 } 4037 4038 cb_data[2] = ztest_create_cb_data(os, txg); 4039 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4040 4041 /* 4042 * Read existing data to make sure there isn't a future leak. 4043 */ 4044 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4045 &old_txg, DMU_READ_PREFETCH)); 4046 4047 if (old_txg > txg) 4048 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4049 old_txg, txg); 4050 4051 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4052 4053 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4054 4055 /* 4056 * Since commit callbacks don't have any ordering requirement and since 4057 * it is theoretically possible for a commit callback to be called 4058 * after an arbitrary amount of time has elapsed since its txg has been 4059 * synced, it is difficult to reliably determine whether a commit 4060 * callback hasn't been called due to high load or due to a flawed 4061 * implementation. 4062 * 4063 * In practice, we will assume that if after a certain number of txgs a 4064 * commit callback hasn't been called, then most likely there's an 4065 * implementation bug.. 4066 */ 4067 tmp_cb = list_head(&zcl.zcl_callbacks); 4068 if (tmp_cb != NULL && 4069 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4070 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4071 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4072 } 4073 4074 /* 4075 * Let's find the place to insert our callbacks. 4076 * 4077 * Even though the list is ordered by txg, it is possible for the 4078 * insertion point to not be the end because our txg may already be 4079 * quiescing at this point and other callbacks in the open txg 4080 * (from other objsets) may have sneaked in. 4081 */ 4082 tmp_cb = list_tail(&zcl.zcl_callbacks); 4083 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4084 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4085 4086 /* Add the 3 callbacks to the list */ 4087 for (i = 0; i < 3; i++) { 4088 if (tmp_cb == NULL) 4089 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4090 else 4091 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4092 cb_data[i]); 4093 4094 cb_data[i]->zcd_added = B_TRUE; 4095 VERIFY(!cb_data[i]->zcd_called); 4096 4097 tmp_cb = cb_data[i]; 4098 } 4099 4100 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4101 4102 dmu_tx_commit(tx); 4103 } 4104 4105 /* ARGSUSED */ 4106 void 4107 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4108 { 4109 zfs_prop_t proplist[] = { 4110 ZFS_PROP_CHECKSUM, 4111 ZFS_PROP_COMPRESSION, 4112 ZFS_PROP_COPIES, 4113 ZFS_PROP_DEDUP 4114 }; 4115 ztest_shared_t *zs = ztest_shared; 4116 4117 (void) rw_rdlock(&zs->zs_name_lock); 4118 4119 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4120 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4121 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4122 4123 (void) rw_unlock(&zs->zs_name_lock); 4124 } 4125 4126 /* ARGSUSED */ 4127 void 4128 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4129 { 4130 ztest_shared_t *zs = ztest_shared; 4131 nvlist_t *props = NULL; 4132 4133 (void) rw_rdlock(&zs->zs_name_lock); 4134 4135 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4136 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4137 4138 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4139 4140 if (zopt_verbose >= 6) 4141 dump_nvlist(props, 4); 4142 4143 nvlist_free(props); 4144 4145 (void) rw_unlock(&zs->zs_name_lock); 4146 } 4147 4148 /* 4149 * Test snapshot hold/release and deferred destroy. 4150 */ 4151 void 4152 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4153 { 4154 int error; 4155 objset_t *os = zd->zd_os; 4156 objset_t *origin; 4157 char snapname[100]; 4158 char fullname[100]; 4159 char clonename[100]; 4160 char tag[100]; 4161 char osname[MAXNAMELEN]; 4162 4163 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4164 4165 dmu_objset_name(os, osname); 4166 4167 (void) snprintf(snapname, 100, "sh1_%llu", id); 4168 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4169 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4170 (void) snprintf(tag, 100, "%tag_%llu", id); 4171 4172 /* 4173 * Clean up from any previous run. 4174 */ 4175 (void) dmu_objset_destroy(clonename, B_FALSE); 4176 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4177 (void) dmu_objset_destroy(fullname, B_FALSE); 4178 4179 /* 4180 * Create snapshot, clone it, mark snap for deferred destroy, 4181 * destroy clone, verify snap was also destroyed. 4182 */ 4183 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4184 if (error) { 4185 if (error == ENOSPC) { 4186 ztest_record_enospc("dmu_objset_snapshot"); 4187 goto out; 4188 } 4189 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4190 } 4191 4192 error = dmu_objset_hold(fullname, FTAG, &origin); 4193 if (error) 4194 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4195 4196 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4197 dmu_objset_rele(origin, FTAG); 4198 if (error) { 4199 if (error == ENOSPC) { 4200 ztest_record_enospc("dmu_objset_clone"); 4201 goto out; 4202 } 4203 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4204 } 4205 4206 error = dmu_objset_destroy(fullname, B_TRUE); 4207 if (error) { 4208 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4209 fullname, error); 4210 } 4211 4212 error = dmu_objset_destroy(clonename, B_FALSE); 4213 if (error) 4214 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4215 4216 error = dmu_objset_hold(fullname, FTAG, &origin); 4217 if (error != ENOENT) 4218 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4219 4220 /* 4221 * Create snapshot, add temporary hold, verify that we can't 4222 * destroy a held snapshot, mark for deferred destroy, 4223 * release hold, verify snapshot was destroyed. 4224 */ 4225 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4226 if (error) { 4227 if (error == ENOSPC) { 4228 ztest_record_enospc("dmu_objset_snapshot"); 4229 goto out; 4230 } 4231 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4232 } 4233 4234 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 4235 if (error) 4236 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4237 4238 error = dmu_objset_destroy(fullname, B_FALSE); 4239 if (error != EBUSY) { 4240 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4241 fullname, error); 4242 } 4243 4244 error = dmu_objset_destroy(fullname, B_TRUE); 4245 if (error) { 4246 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4247 fullname, error); 4248 } 4249 4250 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4251 if (error) 4252 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4253 4254 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4255 4256 out: 4257 (void) rw_unlock(&ztest_shared->zs_name_lock); 4258 } 4259 4260 /* 4261 * Inject random faults into the on-disk data. 4262 */ 4263 /* ARGSUSED */ 4264 void 4265 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4266 { 4267 ztest_shared_t *zs = ztest_shared; 4268 spa_t *spa = zs->zs_spa; 4269 int fd; 4270 uint64_t offset; 4271 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 4272 uint64_t bad = 0x1990c0ffeedecade; 4273 uint64_t top, leaf; 4274 char path0[MAXPATHLEN]; 4275 char pathrand[MAXPATHLEN]; 4276 size_t fsize; 4277 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4278 int iters = 1000; 4279 int maxfaults = zopt_maxfaults; 4280 vdev_t *vd0 = NULL; 4281 uint64_t guid0 = 0; 4282 boolean_t islog = B_FALSE; 4283 4284 ASSERT(leaves >= 1); 4285 4286 /* 4287 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4288 */ 4289 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4290 4291 if (ztest_random(2) == 0) { 4292 /* 4293 * Inject errors on a normal data device or slog device. 4294 */ 4295 top = ztest_random_vdev_top(spa, B_TRUE); 4296 leaf = ztest_random(leaves); 4297 4298 /* 4299 * Generate paths to the first leaf in this top-level vdev, 4300 * and to the random leaf we selected. We'll induce transient 4301 * write failures and random online/offline activity on leaf 0, 4302 * and we'll write random garbage to the randomly chosen leaf. 4303 */ 4304 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4305 zopt_dir, zopt_pool, top * leaves + 0); 4306 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4307 zopt_dir, zopt_pool, top * leaves + leaf); 4308 4309 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4310 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4311 islog = B_TRUE; 4312 4313 if (vd0 != NULL && maxfaults != 1) { 4314 /* 4315 * Make vd0 explicitly claim to be unreadable, 4316 * or unwriteable, or reach behind its back 4317 * and close the underlying fd. We can do this if 4318 * maxfaults == 0 because we'll fail and reexecute, 4319 * and we can do it if maxfaults >= 2 because we'll 4320 * have enough redundancy. If maxfaults == 1, the 4321 * combination of this with injection of random data 4322 * corruption below exceeds the pool's fault tolerance. 4323 */ 4324 vdev_file_t *vf = vd0->vdev_tsd; 4325 4326 if (vf != NULL && ztest_random(3) == 0) { 4327 (void) close(vf->vf_vnode->v_fd); 4328 vf->vf_vnode->v_fd = -1; 4329 } else if (ztest_random(2) == 0) { 4330 vd0->vdev_cant_read = B_TRUE; 4331 } else { 4332 vd0->vdev_cant_write = B_TRUE; 4333 } 4334 guid0 = vd0->vdev_guid; 4335 } 4336 } else { 4337 /* 4338 * Inject errors on an l2cache device. 4339 */ 4340 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4341 4342 if (sav->sav_count == 0) { 4343 spa_config_exit(spa, SCL_STATE, FTAG); 4344 return; 4345 } 4346 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4347 guid0 = vd0->vdev_guid; 4348 (void) strcpy(path0, vd0->vdev_path); 4349 (void) strcpy(pathrand, vd0->vdev_path); 4350 4351 leaf = 0; 4352 leaves = 1; 4353 maxfaults = INT_MAX; /* no limit on cache devices */ 4354 } 4355 4356 spa_config_exit(spa, SCL_STATE, FTAG); 4357 4358 /* 4359 * If we can tolerate two or more faults, or we're dealing 4360 * with a slog, randomly online/offline vd0. 4361 */ 4362 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4363 if (ztest_random(10) < 6) { 4364 int flags = (ztest_random(2) == 0 ? 4365 ZFS_OFFLINE_TEMPORARY : 0); 4366 4367 /* 4368 * We have to grab the zs_name_lock as writer to 4369 * prevent a race between offlining a slog and 4370 * destroying a dataset. Offlining the slog will 4371 * grab a reference on the dataset which may cause 4372 * dmu_objset_destroy() to fail with EBUSY thus 4373 * leaving the dataset in an inconsistent state. 4374 */ 4375 if (islog) 4376 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4377 4378 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4379 4380 if (islog) 4381 (void) rw_unlock(&ztest_shared->zs_name_lock); 4382 } else { 4383 (void) vdev_online(spa, guid0, 0, NULL); 4384 } 4385 } 4386 4387 if (maxfaults == 0) 4388 return; 4389 4390 /* 4391 * We have at least single-fault tolerance, so inject data corruption. 4392 */ 4393 fd = open(pathrand, O_RDWR); 4394 4395 if (fd == -1) /* we hit a gap in the device namespace */ 4396 return; 4397 4398 fsize = lseek(fd, 0, SEEK_END); 4399 4400 while (--iters != 0) { 4401 offset = ztest_random(fsize / (leaves << bshift)) * 4402 (leaves << bshift) + (leaf << bshift) + 4403 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4404 4405 if (offset >= fsize) 4406 continue; 4407 4408 if (zopt_verbose >= 7) 4409 (void) printf("injecting bad word into %s," 4410 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4411 4412 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4413 fatal(1, "can't inject bad word at 0x%llx in %s", 4414 offset, pathrand); 4415 } 4416 4417 (void) close(fd); 4418 } 4419 4420 /* 4421 * Verify that DDT repair works as expected. 4422 */ 4423 void 4424 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4425 { 4426 ztest_shared_t *zs = ztest_shared; 4427 spa_t *spa = zs->zs_spa; 4428 objset_t *os = zd->zd_os; 4429 ztest_od_t od[1]; 4430 uint64_t object, blocksize, txg, pattern, psize; 4431 enum zio_checksum checksum = spa_dedup_checksum(spa); 4432 dmu_buf_t *db; 4433 dmu_tx_t *tx; 4434 void *buf; 4435 blkptr_t blk; 4436 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4437 4438 blocksize = ztest_random_blocksize(); 4439 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4440 4441 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4442 4443 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4444 return; 4445 4446 /* 4447 * Take the name lock as writer to prevent anyone else from changing 4448 * the pool and dataset properies we need to maintain during this test. 4449 */ 4450 (void) rw_wrlock(&zs->zs_name_lock); 4451 4452 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4453 B_FALSE) != 0 || 4454 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4455 B_FALSE) != 0) { 4456 (void) rw_unlock(&zs->zs_name_lock); 4457 return; 4458 } 4459 4460 object = od[0].od_object; 4461 blocksize = od[0].od_blocksize; 4462 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4463 4464 ASSERT(object != 0); 4465 4466 tx = dmu_tx_create(os); 4467 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4468 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4469 if (txg == 0) { 4470 (void) rw_unlock(&zs->zs_name_lock); 4471 return; 4472 } 4473 4474 /* 4475 * Write all the copies of our block. 4476 */ 4477 for (int i = 0; i < copies; i++) { 4478 uint64_t offset = i * blocksize; 4479 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db) == 0); 4480 ASSERT(db->db_offset == offset); 4481 ASSERT(db->db_size == blocksize); 4482 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4483 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4484 dmu_buf_will_fill(db, tx); 4485 ztest_pattern_set(db->db_data, db->db_size, pattern); 4486 dmu_buf_rele(db, FTAG); 4487 } 4488 4489 dmu_tx_commit(tx); 4490 txg_wait_synced(spa_get_dsl(spa), txg); 4491 4492 /* 4493 * Find out what block we got. 4494 */ 4495 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db) == 0); 4496 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4497 dmu_buf_rele(db, FTAG); 4498 4499 /* 4500 * Damage the block. Dedup-ditto will save us when we read it later. 4501 */ 4502 psize = BP_GET_PSIZE(&blk); 4503 buf = zio_buf_alloc(psize); 4504 ztest_pattern_set(buf, psize, ~pattern); 4505 4506 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4507 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4508 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4509 4510 zio_buf_free(buf, psize); 4511 4512 (void) rw_unlock(&zs->zs_name_lock); 4513 } 4514 4515 /* 4516 * Scrub the pool. 4517 */ 4518 /* ARGSUSED */ 4519 void 4520 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4521 { 4522 ztest_shared_t *zs = ztest_shared; 4523 spa_t *spa = zs->zs_spa; 4524 4525 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4526 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4527 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4528 } 4529 4530 /* 4531 * Rename the pool to a different name and then rename it back. 4532 */ 4533 /* ARGSUSED */ 4534 void 4535 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4536 { 4537 ztest_shared_t *zs = ztest_shared; 4538 char *oldname, *newname; 4539 spa_t *spa; 4540 4541 (void) rw_wrlock(&zs->zs_name_lock); 4542 4543 oldname = zs->zs_pool; 4544 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4545 (void) strcpy(newname, oldname); 4546 (void) strcat(newname, "_tmp"); 4547 4548 /* 4549 * Do the rename 4550 */ 4551 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4552 4553 /* 4554 * Try to open it under the old name, which shouldn't exist 4555 */ 4556 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4557 4558 /* 4559 * Open it under the new name and make sure it's still the same spa_t. 4560 */ 4561 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4562 4563 ASSERT(spa == zs->zs_spa); 4564 spa_close(spa, FTAG); 4565 4566 /* 4567 * Rename it back to the original 4568 */ 4569 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4570 4571 /* 4572 * Make sure it can still be opened 4573 */ 4574 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4575 4576 ASSERT(spa == zs->zs_spa); 4577 spa_close(spa, FTAG); 4578 4579 umem_free(newname, strlen(newname) + 1); 4580 4581 (void) rw_unlock(&zs->zs_name_lock); 4582 } 4583 4584 /* 4585 * Verify pool integrity by running zdb. 4586 */ 4587 static void 4588 ztest_run_zdb(char *pool) 4589 { 4590 int status; 4591 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4592 char zbuf[1024]; 4593 char *bin; 4594 char *ztest; 4595 char *isa; 4596 int isalen; 4597 FILE *fp; 4598 4599 (void) realpath(getexecname(), zdb); 4600 4601 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4602 bin = strstr(zdb, "/usr/bin/"); 4603 ztest = strstr(bin, "/ztest"); 4604 isa = bin + 8; 4605 isalen = ztest - isa; 4606 isa = strdup(isa); 4607 /* LINTED */ 4608 (void) sprintf(bin, 4609 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 4610 isalen, 4611 isa, 4612 zopt_verbose >= 3 ? "s" : "", 4613 zopt_verbose >= 4 ? "v" : "", 4614 pool); 4615 free(isa); 4616 4617 if (zopt_verbose >= 5) 4618 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4619 4620 fp = popen(zdb, "r"); 4621 4622 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4623 if (zopt_verbose >= 3) 4624 (void) printf("%s", zbuf); 4625 4626 status = pclose(fp); 4627 4628 if (status == 0) 4629 return; 4630 4631 ztest_dump_core = 0; 4632 if (WIFEXITED(status)) 4633 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4634 else 4635 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4636 } 4637 4638 static void 4639 ztest_walk_pool_directory(char *header) 4640 { 4641 spa_t *spa = NULL; 4642 4643 if (zopt_verbose >= 6) 4644 (void) printf("%s\n", header); 4645 4646 mutex_enter(&spa_namespace_lock); 4647 while ((spa = spa_next(spa)) != NULL) 4648 if (zopt_verbose >= 6) 4649 (void) printf("\t%s\n", spa_name(spa)); 4650 mutex_exit(&spa_namespace_lock); 4651 } 4652 4653 static void 4654 ztest_spa_import_export(char *oldname, char *newname) 4655 { 4656 nvlist_t *config, *newconfig; 4657 uint64_t pool_guid; 4658 spa_t *spa; 4659 4660 if (zopt_verbose >= 4) { 4661 (void) printf("import/export: old = %s, new = %s\n", 4662 oldname, newname); 4663 } 4664 4665 /* 4666 * Clean up from previous runs. 4667 */ 4668 (void) spa_destroy(newname); 4669 4670 /* 4671 * Get the pool's configuration and guid. 4672 */ 4673 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4674 4675 /* 4676 * Kick off a scrub to tickle scrub/export races. 4677 */ 4678 if (ztest_random(2) == 0) 4679 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4680 4681 pool_guid = spa_guid(spa); 4682 spa_close(spa, FTAG); 4683 4684 ztest_walk_pool_directory("pools before export"); 4685 4686 /* 4687 * Export it. 4688 */ 4689 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4690 4691 ztest_walk_pool_directory("pools after export"); 4692 4693 /* 4694 * Try to import it. 4695 */ 4696 newconfig = spa_tryimport(config); 4697 ASSERT(newconfig != NULL); 4698 nvlist_free(newconfig); 4699 4700 /* 4701 * Import it under the new name. 4702 */ 4703 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4704 4705 ztest_walk_pool_directory("pools after import"); 4706 4707 /* 4708 * Try to import it again -- should fail with EEXIST. 4709 */ 4710 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4711 4712 /* 4713 * Try to import it under a different name -- should fail with EEXIST. 4714 */ 4715 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4716 4717 /* 4718 * Verify that the pool is no longer visible under the old name. 4719 */ 4720 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4721 4722 /* 4723 * Verify that we can open and close the pool using the new name. 4724 */ 4725 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4726 ASSERT(pool_guid == spa_guid(spa)); 4727 spa_close(spa, FTAG); 4728 4729 nvlist_free(config); 4730 } 4731 4732 static void 4733 ztest_resume(spa_t *spa) 4734 { 4735 if (spa_suspended(spa) && zopt_verbose >= 6) 4736 (void) printf("resuming from suspended state\n"); 4737 spa_vdev_state_enter(spa, SCL_NONE); 4738 vdev_clear(spa, NULL); 4739 (void) spa_vdev_state_exit(spa, NULL, 0); 4740 (void) zio_resume(spa); 4741 } 4742 4743 static void * 4744 ztest_resume_thread(void *arg) 4745 { 4746 spa_t *spa = arg; 4747 4748 while (!ztest_exiting) { 4749 if (spa_suspended(spa)) 4750 ztest_resume(spa); 4751 (void) poll(NULL, 0, 100); 4752 } 4753 return (NULL); 4754 } 4755 4756 static void * 4757 ztest_deadman_thread(void *arg) 4758 { 4759 ztest_shared_t *zs = arg; 4760 int grace = 300; 4761 hrtime_t delta; 4762 4763 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4764 4765 (void) poll(NULL, 0, (int)(1000 * delta)); 4766 4767 fatal(0, "failed to complete within %d seconds of deadline", grace); 4768 4769 return (NULL); 4770 } 4771 4772 static void 4773 ztest_execute(ztest_info_t *zi, uint64_t id) 4774 { 4775 ztest_shared_t *zs = ztest_shared; 4776 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4777 hrtime_t functime = gethrtime(); 4778 4779 for (int i = 0; i < zi->zi_iters; i++) 4780 zi->zi_func(zd, id); 4781 4782 functime = gethrtime() - functime; 4783 4784 atomic_add_64(&zi->zi_call_count, 1); 4785 atomic_add_64(&zi->zi_call_time, functime); 4786 4787 if (zopt_verbose >= 4) { 4788 Dl_info dli; 4789 (void) dladdr((void *)zi->zi_func, &dli); 4790 (void) printf("%6.2f sec in %s\n", 4791 (double)functime / NANOSEC, dli.dli_sname); 4792 } 4793 } 4794 4795 static void * 4796 ztest_thread(void *arg) 4797 { 4798 uint64_t id = (uintptr_t)arg; 4799 ztest_shared_t *zs = ztest_shared; 4800 uint64_t call_next; 4801 hrtime_t now; 4802 ztest_info_t *zi; 4803 4804 while ((now = gethrtime()) < zs->zs_thread_stop) { 4805 /* 4806 * See if it's time to force a crash. 4807 */ 4808 if (now > zs->zs_thread_kill) 4809 ztest_kill(zs); 4810 4811 /* 4812 * If we're getting ENOSPC with some regularity, stop. 4813 */ 4814 if (zs->zs_enospc_count > 10) 4815 break; 4816 4817 /* 4818 * Pick a random function to execute. 4819 */ 4820 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4821 call_next = zi->zi_call_next; 4822 4823 if (now >= call_next && 4824 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4825 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4826 ztest_execute(zi, id); 4827 } 4828 4829 return (NULL); 4830 } 4831 4832 static void 4833 ztest_dataset_name(char *dsname, char *pool, int d) 4834 { 4835 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4836 } 4837 4838 static void 4839 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4840 { 4841 char name[MAXNAMELEN]; 4842 4843 ztest_dataset_name(name, zs->zs_pool, d); 4844 4845 if (zopt_verbose >= 3) 4846 (void) printf("Destroying %s to free up space\n", name); 4847 4848 /* 4849 * Cleanup any non-standard clones and snapshots. In general, 4850 * ztest thread t operates on dataset (t % zopt_datasets), 4851 * so there may be more than one thing to clean up. 4852 */ 4853 for (int t = d; t < zopt_threads; t += zopt_datasets) 4854 ztest_dsl_dataset_cleanup(name, t); 4855 4856 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4857 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4858 } 4859 4860 static void 4861 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 4862 { 4863 uint64_t usedobjs, dirobjs, scratch; 4864 4865 /* 4866 * ZTEST_DIROBJ is the object directory for the entire dataset. 4867 * Therefore, the number of objects in use should equal the 4868 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 4869 * If not, we have an object leak. 4870 * 4871 * Note that we can only check this in ztest_dataset_open(), 4872 * when the open-context and syncing-context values agree. 4873 * That's because zap_count() returns the open-context value, 4874 * while dmu_objset_space() returns the rootbp fill count. 4875 */ 4876 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 4877 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 4878 ASSERT3U(dirobjs + 1, ==, usedobjs); 4879 } 4880 4881 static int 4882 ztest_dataset_open(ztest_shared_t *zs, int d) 4883 { 4884 ztest_ds_t *zd = &zs->zs_zd[d]; 4885 uint64_t committed_seq = zd->zd_seq; 4886 objset_t *os; 4887 zilog_t *zilog; 4888 char name[MAXNAMELEN]; 4889 int error; 4890 4891 ztest_dataset_name(name, zs->zs_pool, d); 4892 4893 (void) rw_rdlock(&zs->zs_name_lock); 4894 4895 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 4896 ztest_objset_create_cb, NULL); 4897 if (error == ENOSPC) { 4898 (void) rw_unlock(&zs->zs_name_lock); 4899 ztest_record_enospc(FTAG); 4900 return (error); 4901 } 4902 ASSERT(error == 0 || error == EEXIST); 4903 4904 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 4905 (void) rw_unlock(&zs->zs_name_lock); 4906 4907 ztest_zd_init(zd, os); 4908 4909 zilog = zd->zd_zilog; 4910 4911 if (zilog->zl_header->zh_claim_lr_seq != 0 && 4912 zilog->zl_header->zh_claim_lr_seq < committed_seq) 4913 fatal(0, "missing log records: claimed %llu < committed %llu", 4914 zilog->zl_header->zh_claim_lr_seq, committed_seq); 4915 4916 ztest_dataset_dirobj_verify(zd); 4917 4918 zil_replay(os, zd, ztest_replay_vector); 4919 4920 ztest_dataset_dirobj_verify(zd); 4921 4922 if (zopt_verbose >= 6) 4923 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 4924 zd->zd_name, 4925 (u_longlong_t)zilog->zl_parse_blk_count, 4926 (u_longlong_t)zilog->zl_parse_lr_count, 4927 (u_longlong_t)zilog->zl_replaying_seq); 4928 4929 zilog = zil_open(os, ztest_get_data); 4930 4931 if (zilog->zl_replaying_seq != 0 && 4932 zilog->zl_replaying_seq < committed_seq) 4933 fatal(0, "missing log records: replayed %llu < committed %llu", 4934 zilog->zl_replaying_seq, committed_seq); 4935 4936 return (0); 4937 } 4938 4939 static void 4940 ztest_dataset_close(ztest_shared_t *zs, int d) 4941 { 4942 ztest_ds_t *zd = &zs->zs_zd[d]; 4943 4944 zil_close(zd->zd_zilog); 4945 dmu_objset_rele(zd->zd_os, zd); 4946 4947 ztest_zd_fini(zd); 4948 } 4949 4950 /* 4951 * Kick off threads to run tests on all datasets in parallel. 4952 */ 4953 static void 4954 ztest_run(ztest_shared_t *zs) 4955 { 4956 thread_t *tid; 4957 spa_t *spa; 4958 thread_t resume_tid; 4959 int error; 4960 4961 ztest_exiting = B_FALSE; 4962 4963 /* 4964 * Initialize parent/child shared state. 4965 */ 4966 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 4967 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 4968 4969 zs->zs_thread_start = gethrtime(); 4970 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 4971 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 4972 zs->zs_thread_kill = zs->zs_thread_stop; 4973 if (ztest_random(100) < zopt_killrate) 4974 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 4975 4976 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 4977 4978 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 4979 offsetof(ztest_cb_data_t, zcd_node)); 4980 4981 /* 4982 * Open our pool. 4983 */ 4984 kernel_init(FREAD | FWRITE); 4985 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 4986 zs->zs_spa = spa; 4987 4988 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 4989 4990 /* 4991 * We don't expect the pool to suspend unless maxfaults == 0, 4992 * in which case ztest_fault_inject() temporarily takes away 4993 * the only valid replica. 4994 */ 4995 if (zopt_maxfaults == 0) 4996 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 4997 else 4998 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 4999 5000 /* 5001 * Create a thread to periodically resume suspended I/O. 5002 */ 5003 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5004 &resume_tid) == 0); 5005 5006 /* 5007 * Create a deadman thread to abort() if we hang. 5008 */ 5009 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5010 NULL) == 0); 5011 5012 /* 5013 * Verify that we can safely inquire about about any object, 5014 * whether it's allocated or not. To make it interesting, 5015 * we probe a 5-wide window around each power of two. 5016 * This hits all edge cases, including zero and the max. 5017 */ 5018 for (int t = 0; t < 64; t++) { 5019 for (int d = -5; d <= 5; d++) { 5020 error = dmu_object_info(spa->spa_meta_objset, 5021 (1ULL << t) + d, NULL); 5022 ASSERT(error == 0 || error == ENOENT || 5023 error == EINVAL); 5024 } 5025 } 5026 5027 /* 5028 * If we got any ENOSPC errors on the previous run, destroy something. 5029 */ 5030 if (zs->zs_enospc_count != 0) { 5031 int d = ztest_random(zopt_datasets); 5032 ztest_dataset_destroy(zs, d); 5033 } 5034 zs->zs_enospc_count = 0; 5035 5036 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5037 5038 if (zopt_verbose >= 4) 5039 (void) printf("starting main threads...\n"); 5040 5041 /* 5042 * Kick off all the tests that run in parallel. 5043 */ 5044 for (int t = 0; t < zopt_threads; t++) { 5045 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5046 return; 5047 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5048 THR_BOUND, &tid[t]) == 0); 5049 } 5050 5051 /* 5052 * Wait for all of the tests to complete. We go in reverse order 5053 * so we don't close datasets while threads are still using them. 5054 */ 5055 for (int t = zopt_threads - 1; t >= 0; t--) { 5056 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5057 if (t < zopt_datasets) 5058 ztest_dataset_close(zs, t); 5059 } 5060 5061 txg_wait_synced(spa_get_dsl(spa), 0); 5062 5063 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5064 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5065 5066 umem_free(tid, zopt_threads * sizeof (thread_t)); 5067 5068 /* Kill the resume thread */ 5069 ztest_exiting = B_TRUE; 5070 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5071 ztest_resume(spa); 5072 5073 /* 5074 * Right before closing the pool, kick off a bunch of async I/O; 5075 * spa_close() should wait for it to complete. 5076 */ 5077 for (uint64_t object = 1; object < 50; object++) 5078 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5079 5080 spa_close(spa, FTAG); 5081 5082 /* 5083 * Verify that we can loop over all pools. 5084 */ 5085 mutex_enter(&spa_namespace_lock); 5086 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5087 if (zopt_verbose > 3) 5088 (void) printf("spa_next: found %s\n", spa_name(spa)); 5089 mutex_exit(&spa_namespace_lock); 5090 5091 /* 5092 * Verify that we can export the pool and reimport it under a 5093 * different name. 5094 */ 5095 if (ztest_random(2) == 0) { 5096 char name[MAXNAMELEN]; 5097 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5098 ztest_spa_import_export(zs->zs_pool, name); 5099 ztest_spa_import_export(name, zs->zs_pool); 5100 } 5101 5102 kernel_fini(); 5103 } 5104 5105 static void 5106 ztest_freeze(ztest_shared_t *zs) 5107 { 5108 ztest_ds_t *zd = &zs->zs_zd[0]; 5109 spa_t *spa; 5110 5111 if (zopt_verbose >= 3) 5112 (void) printf("testing spa_freeze()...\n"); 5113 5114 kernel_init(FREAD | FWRITE); 5115 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5116 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5117 5118 /* 5119 * Force the first log block to be transactionally allocated. 5120 * We have to do this before we freeze the pool -- otherwise 5121 * the log chain won't be anchored. 5122 */ 5123 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5124 ztest_dmu_object_alloc_free(zd, 0); 5125 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5126 } 5127 5128 txg_wait_synced(spa_get_dsl(spa), 0); 5129 5130 /* 5131 * Freeze the pool. This stops spa_sync() from doing anything, 5132 * so that the only way to record changes from now on is the ZIL. 5133 */ 5134 spa_freeze(spa); 5135 5136 /* 5137 * Run tests that generate log records but don't alter the pool config 5138 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5139 * We do a txg_wait_synced() after each iteration to force the txg 5140 * to increase well beyond the last synced value in the uberblock. 5141 * The ZIL should be OK with that. 5142 */ 5143 while (ztest_random(20) != 0) { 5144 ztest_dmu_write_parallel(zd, 0); 5145 ztest_dmu_object_alloc_free(zd, 0); 5146 txg_wait_synced(spa_get_dsl(spa), 0); 5147 } 5148 5149 /* 5150 * Commit all of the changes we just generated. 5151 */ 5152 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5153 txg_wait_synced(spa_get_dsl(spa), 0); 5154 5155 /* 5156 * Close our dataset and close the pool. 5157 */ 5158 ztest_dataset_close(zs, 0); 5159 spa_close(spa, FTAG); 5160 kernel_fini(); 5161 5162 /* 5163 * Open and close the pool and dataset to induce log replay. 5164 */ 5165 kernel_init(FREAD | FWRITE); 5166 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5167 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5168 ztest_dataset_close(zs, 0); 5169 spa_close(spa, FTAG); 5170 kernel_fini(); 5171 5172 list_destroy(&zcl.zcl_callbacks); 5173 5174 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5175 5176 (void) rwlock_destroy(&zs->zs_name_lock); 5177 (void) _mutex_destroy(&zs->zs_vdev_lock); 5178 } 5179 5180 void 5181 print_time(hrtime_t t, char *timebuf) 5182 { 5183 hrtime_t s = t / NANOSEC; 5184 hrtime_t m = s / 60; 5185 hrtime_t h = m / 60; 5186 hrtime_t d = h / 24; 5187 5188 s -= m * 60; 5189 m -= h * 60; 5190 h -= d * 24; 5191 5192 timebuf[0] = '\0'; 5193 5194 if (d) 5195 (void) sprintf(timebuf, 5196 "%llud%02lluh%02llum%02llus", d, h, m, s); 5197 else if (h) 5198 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5199 else if (m) 5200 (void) sprintf(timebuf, "%llum%02llus", m, s); 5201 else 5202 (void) sprintf(timebuf, "%llus", s); 5203 } 5204 5205 /* 5206 * Create a storage pool with the given name and initial vdev size. 5207 * Then test spa_freeze() functionality. 5208 */ 5209 static void 5210 ztest_init(ztest_shared_t *zs) 5211 { 5212 spa_t *spa; 5213 nvlist_t *nvroot; 5214 5215 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5216 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5217 5218 kernel_init(FREAD | FWRITE); 5219 5220 /* 5221 * Create the storage pool. 5222 */ 5223 (void) spa_destroy(zs->zs_pool); 5224 ztest_shared->zs_vdev_next_leaf = 0; 5225 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5226 0, zopt_raidz, zopt_mirrors, 1); 5227 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 5228 nvlist_free(nvroot); 5229 5230 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5231 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5232 spa_close(spa, FTAG); 5233 5234 kernel_fini(); 5235 5236 ztest_run_zdb(zs->zs_pool); 5237 5238 ztest_freeze(zs); 5239 5240 ztest_run_zdb(zs->zs_pool); 5241 } 5242 5243 int 5244 main(int argc, char **argv) 5245 { 5246 int kills = 0; 5247 int iters = 0; 5248 ztest_shared_t *zs; 5249 size_t shared_size; 5250 ztest_info_t *zi; 5251 char timebuf[100]; 5252 char numbuf[6]; 5253 spa_t *spa; 5254 5255 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5256 5257 /* Override location of zpool.cache */ 5258 spa_config_path = "/tmp/zpool.cache"; 5259 5260 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5261 5262 process_options(argc, argv); 5263 5264 /* 5265 * Blow away any existing copy of zpool.cache 5266 */ 5267 if (zopt_init != 0) 5268 (void) remove("/tmp/zpool.cache"); 5269 5270 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5271 5272 zs = ztest_shared = (void *)mmap(0, 5273 P2ROUNDUP(shared_size, getpagesize()), 5274 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5275 5276 if (zopt_verbose >= 1) { 5277 (void) printf("%llu vdevs, %d datasets, %d threads," 5278 " %llu seconds...\n", 5279 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5280 (u_longlong_t)zopt_time); 5281 } 5282 5283 /* 5284 * Create and initialize our storage pool. 5285 */ 5286 for (int i = 1; i <= zopt_init; i++) { 5287 bzero(zs, sizeof (ztest_shared_t)); 5288 if (zopt_verbose >= 3 && zopt_init != 1) 5289 (void) printf("ztest_init(), pass %d\n", i); 5290 zs->zs_pool = zopt_pool; 5291 ztest_init(zs); 5292 } 5293 5294 zs->zs_pool = zopt_pool; 5295 zs->zs_proc_start = gethrtime(); 5296 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5297 5298 for (int f = 0; f < ZTEST_FUNCS; f++) { 5299 zi = &zs->zs_info[f]; 5300 *zi = ztest_info[f]; 5301 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5302 zi->zi_call_next = UINT64_MAX; 5303 else 5304 zi->zi_call_next = zs->zs_proc_start + 5305 ztest_random(2 * zi->zi_interval[0] + 1); 5306 } 5307 5308 /* 5309 * Run the tests in a loop. These tests include fault injection 5310 * to verify that self-healing data works, and forced crashes 5311 * to verify that we never lose on-disk consistency. 5312 */ 5313 while (gethrtime() < zs->zs_proc_stop) { 5314 int status; 5315 pid_t pid; 5316 5317 /* 5318 * Initialize the workload counters for each function. 5319 */ 5320 for (int f = 0; f < ZTEST_FUNCS; f++) { 5321 zi = &zs->zs_info[f]; 5322 zi->zi_call_count = 0; 5323 zi->zi_call_time = 0; 5324 } 5325 5326 /* Set the allocation switch size */ 5327 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5328 5329 pid = fork(); 5330 5331 if (pid == -1) 5332 fatal(1, "fork failed"); 5333 5334 if (pid == 0) { /* child */ 5335 struct rlimit rl = { 1024, 1024 }; 5336 (void) setrlimit(RLIMIT_NOFILE, &rl); 5337 (void) enable_extended_FILE_stdio(-1, -1); 5338 ztest_run(zs); 5339 exit(0); 5340 } 5341 5342 while (waitpid(pid, &status, 0) != pid) 5343 continue; 5344 5345 if (WIFEXITED(status)) { 5346 if (WEXITSTATUS(status) != 0) { 5347 (void) fprintf(stderr, 5348 "child exited with code %d\n", 5349 WEXITSTATUS(status)); 5350 exit(2); 5351 } 5352 } else if (WIFSIGNALED(status)) { 5353 if (WTERMSIG(status) != SIGKILL) { 5354 (void) fprintf(stderr, 5355 "child died with signal %d\n", 5356 WTERMSIG(status)); 5357 exit(3); 5358 } 5359 kills++; 5360 } else { 5361 (void) fprintf(stderr, "something strange happened " 5362 "to child\n"); 5363 exit(4); 5364 } 5365 5366 iters++; 5367 5368 if (zopt_verbose >= 1) { 5369 hrtime_t now = gethrtime(); 5370 5371 now = MIN(now, zs->zs_proc_stop); 5372 print_time(zs->zs_proc_stop - now, timebuf); 5373 nicenum(zs->zs_space, numbuf); 5374 5375 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5376 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5377 iters, 5378 WIFEXITED(status) ? "Complete" : "SIGKILL", 5379 (u_longlong_t)zs->zs_enospc_count, 5380 100.0 * zs->zs_alloc / zs->zs_space, 5381 numbuf, 5382 100.0 * (now - zs->zs_proc_start) / 5383 (zopt_time * NANOSEC), timebuf); 5384 } 5385 5386 if (zopt_verbose >= 2) { 5387 (void) printf("\nWorkload summary:\n\n"); 5388 (void) printf("%7s %9s %s\n", 5389 "Calls", "Time", "Function"); 5390 (void) printf("%7s %9s %s\n", 5391 "-----", "----", "--------"); 5392 for (int f = 0; f < ZTEST_FUNCS; f++) { 5393 Dl_info dli; 5394 5395 zi = &zs->zs_info[f]; 5396 print_time(zi->zi_call_time, timebuf); 5397 (void) dladdr((void *)zi->zi_func, &dli); 5398 (void) printf("%7llu %9s %s\n", 5399 (u_longlong_t)zi->zi_call_count, timebuf, 5400 dli.dli_sname); 5401 } 5402 (void) printf("\n"); 5403 } 5404 5405 /* 5406 * It's possible that we killed a child during a rename test, 5407 * in which case we'll have a 'ztest_tmp' pool lying around 5408 * instead of 'ztest'. Do a blind rename in case this happened. 5409 */ 5410 kernel_init(FREAD); 5411 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5412 spa_close(spa, FTAG); 5413 } else { 5414 char tmpname[MAXNAMELEN]; 5415 kernel_fini(); 5416 kernel_init(FREAD | FWRITE); 5417 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5418 zopt_pool); 5419 (void) spa_rename(tmpname, zopt_pool); 5420 } 5421 kernel_fini(); 5422 5423 ztest_run_zdb(zopt_pool); 5424 } 5425 5426 if (zopt_verbose >= 1) { 5427 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5428 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5429 } 5430 5431 return (0); 5432 } 5433