1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * The objective of this program is to provide a DMU/ZAP/SPA stress test 29 * that runs entirely in userland, is easy to use, and easy to extend. 30 * 31 * The overall design of the ztest program is as follows: 32 * 33 * (1) For each major functional area (e.g. adding vdevs to a pool, 34 * creating and destroying datasets, reading and writing objects, etc) 35 * we have a simple routine to test that functionality. These 36 * individual routines do not have to do anything "stressful". 37 * 38 * (2) We turn these simple functionality tests into a stress test by 39 * running them all in parallel, with as many threads as desired, 40 * and spread across as many datasets, objects, and vdevs as desired. 41 * 42 * (3) While all this is happening, we inject faults into the pool to 43 * verify that self-healing data really works. 44 * 45 * (4) Every time we open a dataset, we change its checksum and compression 46 * functions. Thus even individual objects vary from block to block 47 * in which checksum they use and whether they're compressed. 48 * 49 * (5) To verify that we never lose on-disk consistency after a crash, 50 * we run the entire test in a child of the main process. 51 * At random times, the child self-immolates with a SIGKILL. 52 * This is the software equivalent of pulling the power cord. 53 * The parent then runs the test again, using the existing 54 * storage pool, as many times as desired. If backwards compatability 55 * testing is enabled ztest will sometimes run the "older" version 56 * of ztest after a SIGKILL. 57 * 58 * (6) To verify that we don't have future leaks or temporal incursions, 59 * many of the functional tests record the transaction group number 60 * as part of their data. When reading old data, they verify that 61 * the transaction group number is less than the current, open txg. 62 * If you add a new test, please do this if applicable. 63 * 64 * When run with no arguments, ztest runs for about five minutes and 65 * produces no output if successful. To get a little bit of information, 66 * specify -V. To get more information, specify -VV, and so on. 67 * 68 * To turn this into an overnight stress test, use -T to specify run time. 69 * 70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 71 * to increase the pool capacity, fanout, and overall stress level. 72 * 73 * Use the -k option to set the desired frequency of kills. 74 * 75 * When ztest invokes itself it passes all relevant information through a 76 * temporary file which is mmap-ed in the child process. This allows shared 77 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 78 * stored at offset 0 of this file and contains information on the size and 79 * number of shared structures in the file. The information stored in this file 80 * must remain backwards compatible with older versions of ztest so that 81 * ztest can invoke them during backwards compatibility testing (-B). 82 */ 83 84 #include <sys/zfs_context.h> 85 #include <sys/spa.h> 86 #include <sys/dmu.h> 87 #include <sys/txg.h> 88 #include <sys/dbuf.h> 89 #include <sys/zap.h> 90 #include <sys/dmu_objset.h> 91 #include <sys/poll.h> 92 #include <sys/stat.h> 93 #include <sys/time.h> 94 #include <sys/wait.h> 95 #include <sys/mman.h> 96 #include <sys/resource.h> 97 #include <sys/zio.h> 98 #include <sys/zil.h> 99 #include <sys/zil_impl.h> 100 #include <sys/vdev_impl.h> 101 #include <sys/vdev_file.h> 102 #include <sys/spa_impl.h> 103 #include <sys/metaslab_impl.h> 104 #include <sys/dsl_prop.h> 105 #include <sys/dsl_dataset.h> 106 #include <sys/dsl_destroy.h> 107 #include <sys/dsl_scan.h> 108 #include <sys/zio_checksum.h> 109 #include <sys/refcount.h> 110 #include <sys/zfeature.h> 111 #include <sys/dsl_userhold.h> 112 #include <stdio.h> 113 #include <stdio_ext.h> 114 #include <stdlib.h> 115 #include <unistd.h> 116 #include <signal.h> 117 #include <umem.h> 118 #include <dlfcn.h> 119 #include <ctype.h> 120 #include <math.h> 121 #include <sys/fs/zfs.h> 122 #include <libnvpair.h> 123 124 static int ztest_fd_data = -1; 125 static int ztest_fd_rand = -1; 126 127 typedef struct ztest_shared_hdr { 128 uint64_t zh_hdr_size; 129 uint64_t zh_opts_size; 130 uint64_t zh_size; 131 uint64_t zh_stats_size; 132 uint64_t zh_stats_count; 133 uint64_t zh_ds_size; 134 uint64_t zh_ds_count; 135 } ztest_shared_hdr_t; 136 137 static ztest_shared_hdr_t *ztest_shared_hdr; 138 139 typedef struct ztest_shared_opts { 140 char zo_pool[MAXNAMELEN]; 141 char zo_dir[MAXNAMELEN]; 142 char zo_alt_ztest[MAXNAMELEN]; 143 char zo_alt_libpath[MAXNAMELEN]; 144 uint64_t zo_vdevs; 145 uint64_t zo_vdevtime; 146 size_t zo_vdev_size; 147 int zo_ashift; 148 int zo_mirrors; 149 int zo_raidz; 150 int zo_raidz_parity; 151 int zo_datasets; 152 int zo_threads; 153 uint64_t zo_passtime; 154 uint64_t zo_killrate; 155 int zo_verbose; 156 int zo_init; 157 uint64_t zo_time; 158 uint64_t zo_maxloops; 159 uint64_t zo_metaslab_gang_bang; 160 } ztest_shared_opts_t; 161 162 static const ztest_shared_opts_t ztest_opts_defaults = { 163 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 164 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 165 .zo_alt_ztest = { '\0' }, 166 .zo_alt_libpath = { '\0' }, 167 .zo_vdevs = 5, 168 .zo_ashift = SPA_MINBLOCKSHIFT, 169 .zo_mirrors = 2, 170 .zo_raidz = 4, 171 .zo_raidz_parity = 1, 172 .zo_vdev_size = SPA_MINDEVSIZE, 173 .zo_datasets = 7, 174 .zo_threads = 23, 175 .zo_passtime = 60, /* 60 seconds */ 176 .zo_killrate = 70, /* 70% kill rate */ 177 .zo_verbose = 0, 178 .zo_init = 1, 179 .zo_time = 300, /* 5 minutes */ 180 .zo_maxloops = 50, /* max loops during spa_freeze() */ 181 .zo_metaslab_gang_bang = 32 << 10 182 }; 183 184 extern uint64_t metaslab_gang_bang; 185 extern uint64_t metaslab_df_alloc_threshold; 186 187 static ztest_shared_opts_t *ztest_shared_opts; 188 static ztest_shared_opts_t ztest_opts; 189 190 typedef struct ztest_shared_ds { 191 uint64_t zd_seq; 192 } ztest_shared_ds_t; 193 194 static ztest_shared_ds_t *ztest_shared_ds; 195 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 196 197 #define BT_MAGIC 0x123456789abcdefULL 198 #define MAXFAULTS() \ 199 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 200 201 enum ztest_io_type { 202 ZTEST_IO_WRITE_TAG, 203 ZTEST_IO_WRITE_PATTERN, 204 ZTEST_IO_WRITE_ZEROES, 205 ZTEST_IO_TRUNCATE, 206 ZTEST_IO_SETATTR, 207 ZTEST_IO_REWRITE, 208 ZTEST_IO_TYPES 209 }; 210 211 typedef struct ztest_block_tag { 212 uint64_t bt_magic; 213 uint64_t bt_objset; 214 uint64_t bt_object; 215 uint64_t bt_offset; 216 uint64_t bt_gen; 217 uint64_t bt_txg; 218 uint64_t bt_crtxg; 219 } ztest_block_tag_t; 220 221 typedef struct bufwad { 222 uint64_t bw_index; 223 uint64_t bw_txg; 224 uint64_t bw_data; 225 } bufwad_t; 226 227 /* 228 * XXX -- fix zfs range locks to be generic so we can use them here. 229 */ 230 typedef enum { 231 RL_READER, 232 RL_WRITER, 233 RL_APPEND 234 } rl_type_t; 235 236 typedef struct rll { 237 void *rll_writer; 238 int rll_readers; 239 mutex_t rll_lock; 240 cond_t rll_cv; 241 } rll_t; 242 243 typedef struct rl { 244 uint64_t rl_object; 245 uint64_t rl_offset; 246 uint64_t rl_size; 247 rll_t *rl_lock; 248 } rl_t; 249 250 #define ZTEST_RANGE_LOCKS 64 251 #define ZTEST_OBJECT_LOCKS 64 252 253 /* 254 * Object descriptor. Used as a template for object lookup/create/remove. 255 */ 256 typedef struct ztest_od { 257 uint64_t od_dir; 258 uint64_t od_object; 259 dmu_object_type_t od_type; 260 dmu_object_type_t od_crtype; 261 uint64_t od_blocksize; 262 uint64_t od_crblocksize; 263 uint64_t od_gen; 264 uint64_t od_crgen; 265 char od_name[MAXNAMELEN]; 266 } ztest_od_t; 267 268 /* 269 * Per-dataset state. 270 */ 271 typedef struct ztest_ds { 272 ztest_shared_ds_t *zd_shared; 273 objset_t *zd_os; 274 rwlock_t zd_zilog_lock; 275 zilog_t *zd_zilog; 276 ztest_od_t *zd_od; /* debugging aid */ 277 char zd_name[MAXNAMELEN]; 278 mutex_t zd_dirobj_lock; 279 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 280 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 281 } ztest_ds_t; 282 283 /* 284 * Per-iteration state. 285 */ 286 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 287 288 typedef struct ztest_info { 289 ztest_func_t *zi_func; /* test function */ 290 uint64_t zi_iters; /* iterations per execution */ 291 uint64_t *zi_interval; /* execute every <interval> seconds */ 292 } ztest_info_t; 293 294 typedef struct ztest_shared_callstate { 295 uint64_t zc_count; /* per-pass count */ 296 uint64_t zc_time; /* per-pass time */ 297 uint64_t zc_next; /* next time to call this function */ 298 } ztest_shared_callstate_t; 299 300 static ztest_shared_callstate_t *ztest_shared_callstate; 301 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 302 303 /* 304 * Note: these aren't static because we want dladdr() to work. 305 */ 306 ztest_func_t ztest_dmu_read_write; 307 ztest_func_t ztest_dmu_write_parallel; 308 ztest_func_t ztest_dmu_object_alloc_free; 309 ztest_func_t ztest_dmu_commit_callbacks; 310 ztest_func_t ztest_zap; 311 ztest_func_t ztest_zap_parallel; 312 ztest_func_t ztest_zil_commit; 313 ztest_func_t ztest_zil_remount; 314 ztest_func_t ztest_dmu_read_write_zcopy; 315 ztest_func_t ztest_dmu_objset_create_destroy; 316 ztest_func_t ztest_dmu_prealloc; 317 ztest_func_t ztest_fzap; 318 ztest_func_t ztest_dmu_snapshot_create_destroy; 319 ztest_func_t ztest_dsl_prop_get_set; 320 ztest_func_t ztest_spa_prop_get_set; 321 ztest_func_t ztest_spa_create_destroy; 322 ztest_func_t ztest_fault_inject; 323 ztest_func_t ztest_ddt_repair; 324 ztest_func_t ztest_dmu_snapshot_hold; 325 ztest_func_t ztest_spa_rename; 326 ztest_func_t ztest_scrub; 327 ztest_func_t ztest_dsl_dataset_promote_busy; 328 ztest_func_t ztest_vdev_attach_detach; 329 ztest_func_t ztest_vdev_LUN_growth; 330 ztest_func_t ztest_vdev_add_remove; 331 ztest_func_t ztest_vdev_aux_add_remove; 332 ztest_func_t ztest_split_pool; 333 ztest_func_t ztest_reguid; 334 ztest_func_t ztest_spa_upgrade; 335 336 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 337 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 338 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 339 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 340 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 341 342 ztest_info_t ztest_info[] = { 343 { ztest_dmu_read_write, 1, &zopt_always }, 344 { ztest_dmu_write_parallel, 10, &zopt_always }, 345 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 346 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 347 { ztest_zap, 30, &zopt_always }, 348 { ztest_zap_parallel, 100, &zopt_always }, 349 { ztest_split_pool, 1, &zopt_always }, 350 { ztest_zil_commit, 1, &zopt_incessant }, 351 { ztest_zil_remount, 1, &zopt_sometimes }, 352 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 353 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 354 { ztest_dsl_prop_get_set, 1, &zopt_often }, 355 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 356 #if 0 357 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 358 #endif 359 { ztest_fzap, 1, &zopt_sometimes }, 360 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 361 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 362 { ztest_fault_inject, 1, &zopt_sometimes }, 363 { ztest_ddt_repair, 1, &zopt_sometimes }, 364 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 365 { ztest_reguid, 1, &zopt_sometimes }, 366 { ztest_spa_rename, 1, &zopt_rarely }, 367 { ztest_scrub, 1, &zopt_rarely }, 368 { ztest_spa_upgrade, 1, &zopt_rarely }, 369 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 370 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 371 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 372 { ztest_vdev_add_remove, 1, 373 &ztest_opts.zo_vdevtime }, 374 { ztest_vdev_aux_add_remove, 1, 375 &ztest_opts.zo_vdevtime }, 376 }; 377 378 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 379 380 /* 381 * The following struct is used to hold a list of uncalled commit callbacks. 382 * The callbacks are ordered by txg number. 383 */ 384 typedef struct ztest_cb_list { 385 mutex_t zcl_callbacks_lock; 386 list_t zcl_callbacks; 387 } ztest_cb_list_t; 388 389 /* 390 * Stuff we need to share writably between parent and child. 391 */ 392 typedef struct ztest_shared { 393 boolean_t zs_do_init; 394 hrtime_t zs_proc_start; 395 hrtime_t zs_proc_stop; 396 hrtime_t zs_thread_start; 397 hrtime_t zs_thread_stop; 398 hrtime_t zs_thread_kill; 399 uint64_t zs_enospc_count; 400 uint64_t zs_vdev_next_leaf; 401 uint64_t zs_vdev_aux; 402 uint64_t zs_alloc; 403 uint64_t zs_space; 404 uint64_t zs_splits; 405 uint64_t zs_mirrors; 406 uint64_t zs_metaslab_sz; 407 uint64_t zs_metaslab_df_alloc_threshold; 408 uint64_t zs_guid; 409 } ztest_shared_t; 410 411 #define ID_PARALLEL -1ULL 412 413 static char ztest_dev_template[] = "%s/%s.%llua"; 414 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 415 ztest_shared_t *ztest_shared; 416 417 static spa_t *ztest_spa = NULL; 418 static ztest_ds_t *ztest_ds; 419 420 static mutex_t ztest_vdev_lock; 421 422 /* 423 * The ztest_name_lock protects the pool and dataset namespace used by 424 * the individual tests. To modify the namespace, consumers must grab 425 * this lock as writer. Grabbing the lock as reader will ensure that the 426 * namespace does not change while the lock is held. 427 */ 428 static rwlock_t ztest_name_lock; 429 430 static boolean_t ztest_dump_core = B_TRUE; 431 static boolean_t ztest_exiting; 432 433 /* Global commit callback list */ 434 static ztest_cb_list_t zcl; 435 436 enum ztest_object { 437 ZTEST_META_DNODE = 0, 438 ZTEST_DIROBJ, 439 ZTEST_OBJECTS 440 }; 441 442 static void usage(boolean_t) __NORETURN; 443 444 /* 445 * These libumem hooks provide a reasonable set of defaults for the allocator's 446 * debugging facilities. 447 */ 448 const char * 449 _umem_debug_init() 450 { 451 return ("default,verbose"); /* $UMEM_DEBUG setting */ 452 } 453 454 const char * 455 _umem_logging_init(void) 456 { 457 return ("fail,contents"); /* $UMEM_LOGGING setting */ 458 } 459 460 #define FATAL_MSG_SZ 1024 461 462 char *fatal_msg; 463 464 static void 465 fatal(int do_perror, char *message, ...) 466 { 467 va_list args; 468 int save_errno = errno; 469 char buf[FATAL_MSG_SZ]; 470 471 (void) fflush(stdout); 472 473 va_start(args, message); 474 (void) sprintf(buf, "ztest: "); 475 /* LINTED */ 476 (void) vsprintf(buf + strlen(buf), message, args); 477 va_end(args); 478 if (do_perror) { 479 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 480 ": %s", strerror(save_errno)); 481 } 482 (void) fprintf(stderr, "%s\n", buf); 483 fatal_msg = buf; /* to ease debugging */ 484 if (ztest_dump_core) 485 abort(); 486 exit(3); 487 } 488 489 static int 490 str2shift(const char *buf) 491 { 492 const char *ends = "BKMGTPEZ"; 493 int i; 494 495 if (buf[0] == '\0') 496 return (0); 497 for (i = 0; i < strlen(ends); i++) { 498 if (toupper(buf[0]) == ends[i]) 499 break; 500 } 501 if (i == strlen(ends)) { 502 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 503 buf); 504 usage(B_FALSE); 505 } 506 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 507 return (10*i); 508 } 509 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 510 usage(B_FALSE); 511 /* NOTREACHED */ 512 } 513 514 static uint64_t 515 nicenumtoull(const char *buf) 516 { 517 char *end; 518 uint64_t val; 519 520 val = strtoull(buf, &end, 0); 521 if (end == buf) { 522 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 523 usage(B_FALSE); 524 } else if (end[0] == '.') { 525 double fval = strtod(buf, &end); 526 fval *= pow(2, str2shift(end)); 527 if (fval > UINT64_MAX) { 528 (void) fprintf(stderr, "ztest: value too large: %s\n", 529 buf); 530 usage(B_FALSE); 531 } 532 val = (uint64_t)fval; 533 } else { 534 int shift = str2shift(end); 535 if (shift >= 64 || (val << shift) >> shift != val) { 536 (void) fprintf(stderr, "ztest: value too large: %s\n", 537 buf); 538 usage(B_FALSE); 539 } 540 val <<= shift; 541 } 542 return (val); 543 } 544 545 static void 546 usage(boolean_t requested) 547 { 548 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 549 550 char nice_vdev_size[10]; 551 char nice_gang_bang[10]; 552 FILE *fp = requested ? stdout : stderr; 553 554 nicenum(zo->zo_vdev_size, nice_vdev_size); 555 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 556 557 (void) fprintf(fp, "Usage: %s\n" 558 "\t[-v vdevs (default: %llu)]\n" 559 "\t[-s size_of_each_vdev (default: %s)]\n" 560 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 561 "\t[-m mirror_copies (default: %d)]\n" 562 "\t[-r raidz_disks (default: %d)]\n" 563 "\t[-R raidz_parity (default: %d)]\n" 564 "\t[-d datasets (default: %d)]\n" 565 "\t[-t threads (default: %d)]\n" 566 "\t[-g gang_block_threshold (default: %s)]\n" 567 "\t[-i init_count (default: %d)] initialize pool i times\n" 568 "\t[-k kill_percentage (default: %llu%%)]\n" 569 "\t[-p pool_name (default: %s)]\n" 570 "\t[-f dir (default: %s)] file directory for vdev files\n" 571 "\t[-V] verbose (use multiple times for ever more blather)\n" 572 "\t[-E] use existing pool instead of creating new one\n" 573 "\t[-T time (default: %llu sec)] total run time\n" 574 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 575 "\t[-P passtime (default: %llu sec)] time per pass\n" 576 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 577 "\t[-h] (print help)\n" 578 "", 579 zo->zo_pool, 580 (u_longlong_t)zo->zo_vdevs, /* -v */ 581 nice_vdev_size, /* -s */ 582 zo->zo_ashift, /* -a */ 583 zo->zo_mirrors, /* -m */ 584 zo->zo_raidz, /* -r */ 585 zo->zo_raidz_parity, /* -R */ 586 zo->zo_datasets, /* -d */ 587 zo->zo_threads, /* -t */ 588 nice_gang_bang, /* -g */ 589 zo->zo_init, /* -i */ 590 (u_longlong_t)zo->zo_killrate, /* -k */ 591 zo->zo_pool, /* -p */ 592 zo->zo_dir, /* -f */ 593 (u_longlong_t)zo->zo_time, /* -T */ 594 (u_longlong_t)zo->zo_maxloops, /* -F */ 595 (u_longlong_t)zo->zo_passtime); 596 exit(requested ? 0 : 1); 597 } 598 599 static void 600 process_options(int argc, char **argv) 601 { 602 char *path; 603 ztest_shared_opts_t *zo = &ztest_opts; 604 605 int opt; 606 uint64_t value; 607 char altdir[MAXNAMELEN] = { 0 }; 608 609 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 610 611 while ((opt = getopt(argc, argv, 612 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 613 value = 0; 614 switch (opt) { 615 case 'v': 616 case 's': 617 case 'a': 618 case 'm': 619 case 'r': 620 case 'R': 621 case 'd': 622 case 't': 623 case 'g': 624 case 'i': 625 case 'k': 626 case 'T': 627 case 'P': 628 case 'F': 629 value = nicenumtoull(optarg); 630 } 631 switch (opt) { 632 case 'v': 633 zo->zo_vdevs = value; 634 break; 635 case 's': 636 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 637 break; 638 case 'a': 639 zo->zo_ashift = value; 640 break; 641 case 'm': 642 zo->zo_mirrors = value; 643 break; 644 case 'r': 645 zo->zo_raidz = MAX(1, value); 646 break; 647 case 'R': 648 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 649 break; 650 case 'd': 651 zo->zo_datasets = MAX(1, value); 652 break; 653 case 't': 654 zo->zo_threads = MAX(1, value); 655 break; 656 case 'g': 657 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 658 value); 659 break; 660 case 'i': 661 zo->zo_init = value; 662 break; 663 case 'k': 664 zo->zo_killrate = value; 665 break; 666 case 'p': 667 (void) strlcpy(zo->zo_pool, optarg, 668 sizeof (zo->zo_pool)); 669 break; 670 case 'f': 671 path = realpath(optarg, NULL); 672 if (path == NULL) { 673 (void) fprintf(stderr, "error: %s: %s\n", 674 optarg, strerror(errno)); 675 usage(B_FALSE); 676 } else { 677 (void) strlcpy(zo->zo_dir, path, 678 sizeof (zo->zo_dir)); 679 } 680 break; 681 case 'V': 682 zo->zo_verbose++; 683 break; 684 case 'E': 685 zo->zo_init = 0; 686 break; 687 case 'T': 688 zo->zo_time = value; 689 break; 690 case 'P': 691 zo->zo_passtime = MAX(1, value); 692 break; 693 case 'F': 694 zo->zo_maxloops = MAX(1, value); 695 break; 696 case 'B': 697 (void) strlcpy(altdir, optarg, sizeof (altdir)); 698 break; 699 case 'h': 700 usage(B_TRUE); 701 break; 702 case '?': 703 default: 704 usage(B_FALSE); 705 break; 706 } 707 } 708 709 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 710 711 zo->zo_vdevtime = 712 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 713 UINT64_MAX >> 2); 714 715 if (strlen(altdir) > 0) { 716 char *cmd; 717 char *realaltdir; 718 char *bin; 719 char *ztest; 720 char *isa; 721 int isalen; 722 723 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 724 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 725 726 VERIFY(NULL != realpath(getexecname(), cmd)); 727 if (0 != access(altdir, F_OK)) { 728 ztest_dump_core = B_FALSE; 729 fatal(B_TRUE, "invalid alternate ztest path: %s", 730 altdir); 731 } 732 VERIFY(NULL != realpath(altdir, realaltdir)); 733 734 /* 735 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 736 * We want to extract <isa> to determine if we should use 737 * 32 or 64 bit binaries. 738 */ 739 bin = strstr(cmd, "/usr/bin/"); 740 ztest = strstr(bin, "/ztest"); 741 isa = bin + 9; 742 isalen = ztest - isa; 743 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 744 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 745 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 746 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 747 748 if (0 != access(zo->zo_alt_ztest, X_OK)) { 749 ztest_dump_core = B_FALSE; 750 fatal(B_TRUE, "invalid alternate ztest: %s", 751 zo->zo_alt_ztest); 752 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 753 ztest_dump_core = B_FALSE; 754 fatal(B_TRUE, "invalid alternate lib directory %s", 755 zo->zo_alt_libpath); 756 } 757 758 umem_free(cmd, MAXPATHLEN); 759 umem_free(realaltdir, MAXPATHLEN); 760 } 761 } 762 763 static void 764 ztest_kill(ztest_shared_t *zs) 765 { 766 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 767 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 768 (void) kill(getpid(), SIGKILL); 769 } 770 771 static uint64_t 772 ztest_random(uint64_t range) 773 { 774 uint64_t r; 775 776 ASSERT3S(ztest_fd_rand, >=, 0); 777 778 if (range == 0) 779 return (0); 780 781 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 782 fatal(1, "short read from /dev/urandom"); 783 784 return (r % range); 785 } 786 787 /* ARGSUSED */ 788 static void 789 ztest_record_enospc(const char *s) 790 { 791 ztest_shared->zs_enospc_count++; 792 } 793 794 static uint64_t 795 ztest_get_ashift(void) 796 { 797 if (ztest_opts.zo_ashift == 0) 798 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 799 return (ztest_opts.zo_ashift); 800 } 801 802 static nvlist_t * 803 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 804 { 805 char pathbuf[MAXPATHLEN]; 806 uint64_t vdev; 807 nvlist_t *file; 808 809 if (ashift == 0) 810 ashift = ztest_get_ashift(); 811 812 if (path == NULL) { 813 path = pathbuf; 814 815 if (aux != NULL) { 816 vdev = ztest_shared->zs_vdev_aux; 817 (void) snprintf(path, sizeof (pathbuf), 818 ztest_aux_template, ztest_opts.zo_dir, 819 pool == NULL ? ztest_opts.zo_pool : pool, 820 aux, vdev); 821 } else { 822 vdev = ztest_shared->zs_vdev_next_leaf++; 823 (void) snprintf(path, sizeof (pathbuf), 824 ztest_dev_template, ztest_opts.zo_dir, 825 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 826 } 827 } 828 829 if (size != 0) { 830 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 831 if (fd == -1) 832 fatal(1, "can't open %s", path); 833 if (ftruncate(fd, size) != 0) 834 fatal(1, "can't ftruncate %s", path); 835 (void) close(fd); 836 } 837 838 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 839 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 840 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 841 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 842 843 return (file); 844 } 845 846 static nvlist_t * 847 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 848 uint64_t ashift, int r) 849 { 850 nvlist_t *raidz, **child; 851 int c; 852 853 if (r < 2) 854 return (make_vdev_file(path, aux, pool, size, ashift)); 855 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 856 857 for (c = 0; c < r; c++) 858 child[c] = make_vdev_file(path, aux, pool, size, ashift); 859 860 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 861 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 862 VDEV_TYPE_RAIDZ) == 0); 863 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 864 ztest_opts.zo_raidz_parity) == 0); 865 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 866 child, r) == 0); 867 868 for (c = 0; c < r; c++) 869 nvlist_free(child[c]); 870 871 umem_free(child, r * sizeof (nvlist_t *)); 872 873 return (raidz); 874 } 875 876 static nvlist_t * 877 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 878 uint64_t ashift, int r, int m) 879 { 880 nvlist_t *mirror, **child; 881 int c; 882 883 if (m < 1) 884 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 885 886 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 887 888 for (c = 0; c < m; c++) 889 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 890 891 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 892 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 893 VDEV_TYPE_MIRROR) == 0); 894 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 895 child, m) == 0); 896 897 for (c = 0; c < m; c++) 898 nvlist_free(child[c]); 899 900 umem_free(child, m * sizeof (nvlist_t *)); 901 902 return (mirror); 903 } 904 905 static nvlist_t * 906 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 907 int log, int r, int m, int t) 908 { 909 nvlist_t *root, **child; 910 int c; 911 912 ASSERT(t > 0); 913 914 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 915 916 for (c = 0; c < t; c++) { 917 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 918 r, m); 919 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 920 log) == 0); 921 } 922 923 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 924 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 925 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 926 child, t) == 0); 927 928 for (c = 0; c < t; c++) 929 nvlist_free(child[c]); 930 931 umem_free(child, t * sizeof (nvlist_t *)); 932 933 return (root); 934 } 935 936 /* 937 * Find a random spa version. Returns back a random spa version in the 938 * range [initial_version, SPA_VERSION_FEATURES]. 939 */ 940 static uint64_t 941 ztest_random_spa_version(uint64_t initial_version) 942 { 943 uint64_t version = initial_version; 944 945 if (version <= SPA_VERSION_BEFORE_FEATURES) { 946 version = version + 947 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 948 } 949 950 if (version > SPA_VERSION_BEFORE_FEATURES) 951 version = SPA_VERSION_FEATURES; 952 953 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 954 return (version); 955 } 956 957 static int 958 ztest_random_blocksize(void) 959 { 960 return (1 << (SPA_MINBLOCKSHIFT + 961 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 962 } 963 964 static int 965 ztest_random_ibshift(void) 966 { 967 return (DN_MIN_INDBLKSHIFT + 968 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 969 } 970 971 static uint64_t 972 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 973 { 974 uint64_t top; 975 vdev_t *rvd = spa->spa_root_vdev; 976 vdev_t *tvd; 977 978 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 979 980 do { 981 top = ztest_random(rvd->vdev_children); 982 tvd = rvd->vdev_child[top]; 983 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 984 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 985 986 return (top); 987 } 988 989 static uint64_t 990 ztest_random_dsl_prop(zfs_prop_t prop) 991 { 992 uint64_t value; 993 994 do { 995 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 996 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 997 998 return (value); 999 } 1000 1001 static int 1002 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1003 boolean_t inherit) 1004 { 1005 const char *propname = zfs_prop_to_name(prop); 1006 const char *valname; 1007 char setpoint[MAXPATHLEN]; 1008 uint64_t curval; 1009 int error; 1010 1011 error = dsl_prop_set_int(osname, propname, 1012 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1013 1014 if (error == ENOSPC) { 1015 ztest_record_enospc(FTAG); 1016 return (error); 1017 } 1018 ASSERT0(error); 1019 1020 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1021 1022 if (ztest_opts.zo_verbose >= 6) { 1023 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1024 (void) printf("%s %s = %s at '%s'\n", 1025 osname, propname, valname, setpoint); 1026 } 1027 1028 return (error); 1029 } 1030 1031 static int 1032 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1033 { 1034 spa_t *spa = ztest_spa; 1035 nvlist_t *props = NULL; 1036 int error; 1037 1038 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1039 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1040 1041 error = spa_prop_set(spa, props); 1042 1043 nvlist_free(props); 1044 1045 if (error == ENOSPC) { 1046 ztest_record_enospc(FTAG); 1047 return (error); 1048 } 1049 ASSERT0(error); 1050 1051 return (error); 1052 } 1053 1054 static void 1055 ztest_rll_init(rll_t *rll) 1056 { 1057 rll->rll_writer = NULL; 1058 rll->rll_readers = 0; 1059 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1060 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1061 } 1062 1063 static void 1064 ztest_rll_destroy(rll_t *rll) 1065 { 1066 ASSERT(rll->rll_writer == NULL); 1067 ASSERT(rll->rll_readers == 0); 1068 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1069 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1070 } 1071 1072 static void 1073 ztest_rll_lock(rll_t *rll, rl_type_t type) 1074 { 1075 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1076 1077 if (type == RL_READER) { 1078 while (rll->rll_writer != NULL) 1079 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1080 rll->rll_readers++; 1081 } else { 1082 while (rll->rll_writer != NULL || rll->rll_readers) 1083 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1084 rll->rll_writer = curthread; 1085 } 1086 1087 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1088 } 1089 1090 static void 1091 ztest_rll_unlock(rll_t *rll) 1092 { 1093 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1094 1095 if (rll->rll_writer) { 1096 ASSERT(rll->rll_readers == 0); 1097 rll->rll_writer = NULL; 1098 } else { 1099 ASSERT(rll->rll_readers != 0); 1100 ASSERT(rll->rll_writer == NULL); 1101 rll->rll_readers--; 1102 } 1103 1104 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1105 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1106 1107 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1108 } 1109 1110 static void 1111 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1112 { 1113 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1114 1115 ztest_rll_lock(rll, type); 1116 } 1117 1118 static void 1119 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1120 { 1121 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1122 1123 ztest_rll_unlock(rll); 1124 } 1125 1126 static rl_t * 1127 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1128 uint64_t size, rl_type_t type) 1129 { 1130 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1131 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1132 rl_t *rl; 1133 1134 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1135 rl->rl_object = object; 1136 rl->rl_offset = offset; 1137 rl->rl_size = size; 1138 rl->rl_lock = rll; 1139 1140 ztest_rll_lock(rll, type); 1141 1142 return (rl); 1143 } 1144 1145 static void 1146 ztest_range_unlock(rl_t *rl) 1147 { 1148 rll_t *rll = rl->rl_lock; 1149 1150 ztest_rll_unlock(rll); 1151 1152 umem_free(rl, sizeof (*rl)); 1153 } 1154 1155 static void 1156 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1157 { 1158 zd->zd_os = os; 1159 zd->zd_zilog = dmu_objset_zil(os); 1160 zd->zd_shared = szd; 1161 dmu_objset_name(os, zd->zd_name); 1162 1163 if (zd->zd_shared != NULL) 1164 zd->zd_shared->zd_seq = 0; 1165 1166 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1167 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1168 1169 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1170 ztest_rll_init(&zd->zd_object_lock[l]); 1171 1172 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1173 ztest_rll_init(&zd->zd_range_lock[l]); 1174 } 1175 1176 static void 1177 ztest_zd_fini(ztest_ds_t *zd) 1178 { 1179 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1180 1181 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1182 ztest_rll_destroy(&zd->zd_object_lock[l]); 1183 1184 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1185 ztest_rll_destroy(&zd->zd_range_lock[l]); 1186 } 1187 1188 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1189 1190 static uint64_t 1191 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1192 { 1193 uint64_t txg; 1194 int error; 1195 1196 /* 1197 * Attempt to assign tx to some transaction group. 1198 */ 1199 error = dmu_tx_assign(tx, txg_how); 1200 if (error) { 1201 if (error == ERESTART) { 1202 ASSERT(txg_how == TXG_NOWAIT); 1203 dmu_tx_wait(tx); 1204 } else { 1205 ASSERT3U(error, ==, ENOSPC); 1206 ztest_record_enospc(tag); 1207 } 1208 dmu_tx_abort(tx); 1209 return (0); 1210 } 1211 txg = dmu_tx_get_txg(tx); 1212 ASSERT(txg != 0); 1213 return (txg); 1214 } 1215 1216 static void 1217 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1218 { 1219 uint64_t *ip = buf; 1220 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1221 1222 while (ip < ip_end) 1223 *ip++ = value; 1224 } 1225 1226 static boolean_t 1227 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1228 { 1229 uint64_t *ip = buf; 1230 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1231 uint64_t diff = 0; 1232 1233 while (ip < ip_end) 1234 diff |= (value - *ip++); 1235 1236 return (diff == 0); 1237 } 1238 1239 static void 1240 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1241 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1242 { 1243 bt->bt_magic = BT_MAGIC; 1244 bt->bt_objset = dmu_objset_id(os); 1245 bt->bt_object = object; 1246 bt->bt_offset = offset; 1247 bt->bt_gen = gen; 1248 bt->bt_txg = txg; 1249 bt->bt_crtxg = crtxg; 1250 } 1251 1252 static void 1253 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1254 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1255 { 1256 ASSERT(bt->bt_magic == BT_MAGIC); 1257 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1258 ASSERT(bt->bt_object == object); 1259 ASSERT(bt->bt_offset == offset); 1260 ASSERT(bt->bt_gen <= gen); 1261 ASSERT(bt->bt_txg <= txg); 1262 ASSERT(bt->bt_crtxg == crtxg); 1263 } 1264 1265 static ztest_block_tag_t * 1266 ztest_bt_bonus(dmu_buf_t *db) 1267 { 1268 dmu_object_info_t doi; 1269 ztest_block_tag_t *bt; 1270 1271 dmu_object_info_from_db(db, &doi); 1272 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1273 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1274 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1275 1276 return (bt); 1277 } 1278 1279 /* 1280 * ZIL logging ops 1281 */ 1282 1283 #define lrz_type lr_mode 1284 #define lrz_blocksize lr_uid 1285 #define lrz_ibshift lr_gid 1286 #define lrz_bonustype lr_rdev 1287 #define lrz_bonuslen lr_crtime[1] 1288 1289 static void 1290 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1291 { 1292 char *name = (void *)(lr + 1); /* name follows lr */ 1293 size_t namesize = strlen(name) + 1; 1294 itx_t *itx; 1295 1296 if (zil_replaying(zd->zd_zilog, tx)) 1297 return; 1298 1299 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1300 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1301 sizeof (*lr) + namesize - sizeof (lr_t)); 1302 1303 zil_itx_assign(zd->zd_zilog, itx, tx); 1304 } 1305 1306 static void 1307 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1308 { 1309 char *name = (void *)(lr + 1); /* name follows lr */ 1310 size_t namesize = strlen(name) + 1; 1311 itx_t *itx; 1312 1313 if (zil_replaying(zd->zd_zilog, tx)) 1314 return; 1315 1316 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1317 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1318 sizeof (*lr) + namesize - sizeof (lr_t)); 1319 1320 itx->itx_oid = object; 1321 zil_itx_assign(zd->zd_zilog, itx, tx); 1322 } 1323 1324 static void 1325 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1326 { 1327 itx_t *itx; 1328 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1329 1330 if (zil_replaying(zd->zd_zilog, tx)) 1331 return; 1332 1333 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1334 write_state = WR_INDIRECT; 1335 1336 itx = zil_itx_create(TX_WRITE, 1337 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1338 1339 if (write_state == WR_COPIED && 1340 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1341 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1342 zil_itx_destroy(itx); 1343 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1344 write_state = WR_NEED_COPY; 1345 } 1346 itx->itx_private = zd; 1347 itx->itx_wr_state = write_state; 1348 itx->itx_sync = (ztest_random(8) == 0); 1349 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1350 1351 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1352 sizeof (*lr) - sizeof (lr_t)); 1353 1354 zil_itx_assign(zd->zd_zilog, itx, tx); 1355 } 1356 1357 static void 1358 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1359 { 1360 itx_t *itx; 1361 1362 if (zil_replaying(zd->zd_zilog, tx)) 1363 return; 1364 1365 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1366 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1367 sizeof (*lr) - sizeof (lr_t)); 1368 1369 itx->itx_sync = B_FALSE; 1370 zil_itx_assign(zd->zd_zilog, itx, tx); 1371 } 1372 1373 static void 1374 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1375 { 1376 itx_t *itx; 1377 1378 if (zil_replaying(zd->zd_zilog, tx)) 1379 return; 1380 1381 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1382 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1383 sizeof (*lr) - sizeof (lr_t)); 1384 1385 itx->itx_sync = B_FALSE; 1386 zil_itx_assign(zd->zd_zilog, itx, tx); 1387 } 1388 1389 /* 1390 * ZIL replay ops 1391 */ 1392 static int 1393 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1394 { 1395 char *name = (void *)(lr + 1); /* name follows lr */ 1396 objset_t *os = zd->zd_os; 1397 ztest_block_tag_t *bbt; 1398 dmu_buf_t *db; 1399 dmu_tx_t *tx; 1400 uint64_t txg; 1401 int error = 0; 1402 1403 if (byteswap) 1404 byteswap_uint64_array(lr, sizeof (*lr)); 1405 1406 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1407 ASSERT(name[0] != '\0'); 1408 1409 tx = dmu_tx_create(os); 1410 1411 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1412 1413 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1414 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1415 } else { 1416 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1417 } 1418 1419 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1420 if (txg == 0) 1421 return (ENOSPC); 1422 1423 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1424 1425 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1426 if (lr->lr_foid == 0) { 1427 lr->lr_foid = zap_create(os, 1428 lr->lrz_type, lr->lrz_bonustype, 1429 lr->lrz_bonuslen, tx); 1430 } else { 1431 error = zap_create_claim(os, lr->lr_foid, 1432 lr->lrz_type, lr->lrz_bonustype, 1433 lr->lrz_bonuslen, tx); 1434 } 1435 } else { 1436 if (lr->lr_foid == 0) { 1437 lr->lr_foid = dmu_object_alloc(os, 1438 lr->lrz_type, 0, lr->lrz_bonustype, 1439 lr->lrz_bonuslen, tx); 1440 } else { 1441 error = dmu_object_claim(os, lr->lr_foid, 1442 lr->lrz_type, 0, lr->lrz_bonustype, 1443 lr->lrz_bonuslen, tx); 1444 } 1445 } 1446 1447 if (error) { 1448 ASSERT3U(error, ==, EEXIST); 1449 ASSERT(zd->zd_zilog->zl_replay); 1450 dmu_tx_commit(tx); 1451 return (error); 1452 } 1453 1454 ASSERT(lr->lr_foid != 0); 1455 1456 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1457 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1458 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1459 1460 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1461 bbt = ztest_bt_bonus(db); 1462 dmu_buf_will_dirty(db, tx); 1463 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1464 dmu_buf_rele(db, FTAG); 1465 1466 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1467 &lr->lr_foid, tx)); 1468 1469 (void) ztest_log_create(zd, tx, lr); 1470 1471 dmu_tx_commit(tx); 1472 1473 return (0); 1474 } 1475 1476 static int 1477 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1478 { 1479 char *name = (void *)(lr + 1); /* name follows lr */ 1480 objset_t *os = zd->zd_os; 1481 dmu_object_info_t doi; 1482 dmu_tx_t *tx; 1483 uint64_t object, txg; 1484 1485 if (byteswap) 1486 byteswap_uint64_array(lr, sizeof (*lr)); 1487 1488 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1489 ASSERT(name[0] != '\0'); 1490 1491 VERIFY3U(0, ==, 1492 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1493 ASSERT(object != 0); 1494 1495 ztest_object_lock(zd, object, RL_WRITER); 1496 1497 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1498 1499 tx = dmu_tx_create(os); 1500 1501 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1502 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1503 1504 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1505 if (txg == 0) { 1506 ztest_object_unlock(zd, object); 1507 return (ENOSPC); 1508 } 1509 1510 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1511 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1512 } else { 1513 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1514 } 1515 1516 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1517 1518 (void) ztest_log_remove(zd, tx, lr, object); 1519 1520 dmu_tx_commit(tx); 1521 1522 ztest_object_unlock(zd, object); 1523 1524 return (0); 1525 } 1526 1527 static int 1528 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1529 { 1530 objset_t *os = zd->zd_os; 1531 void *data = lr + 1; /* data follows lr */ 1532 uint64_t offset, length; 1533 ztest_block_tag_t *bt = data; 1534 ztest_block_tag_t *bbt; 1535 uint64_t gen, txg, lrtxg, crtxg; 1536 dmu_object_info_t doi; 1537 dmu_tx_t *tx; 1538 dmu_buf_t *db; 1539 arc_buf_t *abuf = NULL; 1540 rl_t *rl; 1541 1542 if (byteswap) 1543 byteswap_uint64_array(lr, sizeof (*lr)); 1544 1545 offset = lr->lr_offset; 1546 length = lr->lr_length; 1547 1548 /* If it's a dmu_sync() block, write the whole block */ 1549 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1550 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1551 if (length < blocksize) { 1552 offset -= offset % blocksize; 1553 length = blocksize; 1554 } 1555 } 1556 1557 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1558 byteswap_uint64_array(bt, sizeof (*bt)); 1559 1560 if (bt->bt_magic != BT_MAGIC) 1561 bt = NULL; 1562 1563 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1564 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1565 1566 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1567 1568 dmu_object_info_from_db(db, &doi); 1569 1570 bbt = ztest_bt_bonus(db); 1571 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1572 gen = bbt->bt_gen; 1573 crtxg = bbt->bt_crtxg; 1574 lrtxg = lr->lr_common.lrc_txg; 1575 1576 tx = dmu_tx_create(os); 1577 1578 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1579 1580 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1581 P2PHASE(offset, length) == 0) 1582 abuf = dmu_request_arcbuf(db, length); 1583 1584 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1585 if (txg == 0) { 1586 if (abuf != NULL) 1587 dmu_return_arcbuf(abuf); 1588 dmu_buf_rele(db, FTAG); 1589 ztest_range_unlock(rl); 1590 ztest_object_unlock(zd, lr->lr_foid); 1591 return (ENOSPC); 1592 } 1593 1594 if (bt != NULL) { 1595 /* 1596 * Usually, verify the old data before writing new data -- 1597 * but not always, because we also want to verify correct 1598 * behavior when the data was not recently read into cache. 1599 */ 1600 ASSERT(offset % doi.doi_data_block_size == 0); 1601 if (ztest_random(4) != 0) { 1602 int prefetch = ztest_random(2) ? 1603 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1604 ztest_block_tag_t rbt; 1605 1606 VERIFY(dmu_read(os, lr->lr_foid, offset, 1607 sizeof (rbt), &rbt, prefetch) == 0); 1608 if (rbt.bt_magic == BT_MAGIC) { 1609 ztest_bt_verify(&rbt, os, lr->lr_foid, 1610 offset, gen, txg, crtxg); 1611 } 1612 } 1613 1614 /* 1615 * Writes can appear to be newer than the bonus buffer because 1616 * the ztest_get_data() callback does a dmu_read() of the 1617 * open-context data, which may be different than the data 1618 * as it was when the write was generated. 1619 */ 1620 if (zd->zd_zilog->zl_replay) { 1621 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1622 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1623 bt->bt_crtxg); 1624 } 1625 1626 /* 1627 * Set the bt's gen/txg to the bonus buffer's gen/txg 1628 * so that all of the usual ASSERTs will work. 1629 */ 1630 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1631 } 1632 1633 if (abuf == NULL) { 1634 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1635 } else { 1636 bcopy(data, abuf->b_data, length); 1637 dmu_assign_arcbuf(db, offset, abuf, tx); 1638 } 1639 1640 (void) ztest_log_write(zd, tx, lr); 1641 1642 dmu_buf_rele(db, FTAG); 1643 1644 dmu_tx_commit(tx); 1645 1646 ztest_range_unlock(rl); 1647 ztest_object_unlock(zd, lr->lr_foid); 1648 1649 return (0); 1650 } 1651 1652 static int 1653 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1654 { 1655 objset_t *os = zd->zd_os; 1656 dmu_tx_t *tx; 1657 uint64_t txg; 1658 rl_t *rl; 1659 1660 if (byteswap) 1661 byteswap_uint64_array(lr, sizeof (*lr)); 1662 1663 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1664 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1665 RL_WRITER); 1666 1667 tx = dmu_tx_create(os); 1668 1669 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1670 1671 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1672 if (txg == 0) { 1673 ztest_range_unlock(rl); 1674 ztest_object_unlock(zd, lr->lr_foid); 1675 return (ENOSPC); 1676 } 1677 1678 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1679 lr->lr_length, tx) == 0); 1680 1681 (void) ztest_log_truncate(zd, tx, lr); 1682 1683 dmu_tx_commit(tx); 1684 1685 ztest_range_unlock(rl); 1686 ztest_object_unlock(zd, lr->lr_foid); 1687 1688 return (0); 1689 } 1690 1691 static int 1692 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1693 { 1694 objset_t *os = zd->zd_os; 1695 dmu_tx_t *tx; 1696 dmu_buf_t *db; 1697 ztest_block_tag_t *bbt; 1698 uint64_t txg, lrtxg, crtxg; 1699 1700 if (byteswap) 1701 byteswap_uint64_array(lr, sizeof (*lr)); 1702 1703 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1704 1705 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1706 1707 tx = dmu_tx_create(os); 1708 dmu_tx_hold_bonus(tx, lr->lr_foid); 1709 1710 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1711 if (txg == 0) { 1712 dmu_buf_rele(db, FTAG); 1713 ztest_object_unlock(zd, lr->lr_foid); 1714 return (ENOSPC); 1715 } 1716 1717 bbt = ztest_bt_bonus(db); 1718 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1719 crtxg = bbt->bt_crtxg; 1720 lrtxg = lr->lr_common.lrc_txg; 1721 1722 if (zd->zd_zilog->zl_replay) { 1723 ASSERT(lr->lr_size != 0); 1724 ASSERT(lr->lr_mode != 0); 1725 ASSERT(lrtxg != 0); 1726 } else { 1727 /* 1728 * Randomly change the size and increment the generation. 1729 */ 1730 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1731 sizeof (*bbt); 1732 lr->lr_mode = bbt->bt_gen + 1; 1733 ASSERT(lrtxg == 0); 1734 } 1735 1736 /* 1737 * Verify that the current bonus buffer is not newer than our txg. 1738 */ 1739 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1740 MAX(txg, lrtxg), crtxg); 1741 1742 dmu_buf_will_dirty(db, tx); 1743 1744 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1745 ASSERT3U(lr->lr_size, <=, db->db_size); 1746 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1747 bbt = ztest_bt_bonus(db); 1748 1749 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1750 1751 dmu_buf_rele(db, FTAG); 1752 1753 (void) ztest_log_setattr(zd, tx, lr); 1754 1755 dmu_tx_commit(tx); 1756 1757 ztest_object_unlock(zd, lr->lr_foid); 1758 1759 return (0); 1760 } 1761 1762 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1763 NULL, /* 0 no such transaction type */ 1764 ztest_replay_create, /* TX_CREATE */ 1765 NULL, /* TX_MKDIR */ 1766 NULL, /* TX_MKXATTR */ 1767 NULL, /* TX_SYMLINK */ 1768 ztest_replay_remove, /* TX_REMOVE */ 1769 NULL, /* TX_RMDIR */ 1770 NULL, /* TX_LINK */ 1771 NULL, /* TX_RENAME */ 1772 ztest_replay_write, /* TX_WRITE */ 1773 ztest_replay_truncate, /* TX_TRUNCATE */ 1774 ztest_replay_setattr, /* TX_SETATTR */ 1775 NULL, /* TX_ACL */ 1776 NULL, /* TX_CREATE_ACL */ 1777 NULL, /* TX_CREATE_ATTR */ 1778 NULL, /* TX_CREATE_ACL_ATTR */ 1779 NULL, /* TX_MKDIR_ACL */ 1780 NULL, /* TX_MKDIR_ATTR */ 1781 NULL, /* TX_MKDIR_ACL_ATTR */ 1782 NULL, /* TX_WRITE2 */ 1783 }; 1784 1785 /* 1786 * ZIL get_data callbacks 1787 */ 1788 1789 static void 1790 ztest_get_done(zgd_t *zgd, int error) 1791 { 1792 ztest_ds_t *zd = zgd->zgd_private; 1793 uint64_t object = zgd->zgd_rl->rl_object; 1794 1795 if (zgd->zgd_db) 1796 dmu_buf_rele(zgd->zgd_db, zgd); 1797 1798 ztest_range_unlock(zgd->zgd_rl); 1799 ztest_object_unlock(zd, object); 1800 1801 if (error == 0 && zgd->zgd_bp) 1802 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1803 1804 umem_free(zgd, sizeof (*zgd)); 1805 } 1806 1807 static int 1808 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1809 { 1810 ztest_ds_t *zd = arg; 1811 objset_t *os = zd->zd_os; 1812 uint64_t object = lr->lr_foid; 1813 uint64_t offset = lr->lr_offset; 1814 uint64_t size = lr->lr_length; 1815 blkptr_t *bp = &lr->lr_blkptr; 1816 uint64_t txg = lr->lr_common.lrc_txg; 1817 uint64_t crtxg; 1818 dmu_object_info_t doi; 1819 dmu_buf_t *db; 1820 zgd_t *zgd; 1821 int error; 1822 1823 ztest_object_lock(zd, object, RL_READER); 1824 error = dmu_bonus_hold(os, object, FTAG, &db); 1825 if (error) { 1826 ztest_object_unlock(zd, object); 1827 return (error); 1828 } 1829 1830 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1831 1832 if (crtxg == 0 || crtxg > txg) { 1833 dmu_buf_rele(db, FTAG); 1834 ztest_object_unlock(zd, object); 1835 return (ENOENT); 1836 } 1837 1838 dmu_object_info_from_db(db, &doi); 1839 dmu_buf_rele(db, FTAG); 1840 db = NULL; 1841 1842 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1843 zgd->zgd_zilog = zd->zd_zilog; 1844 zgd->zgd_private = zd; 1845 1846 if (buf != NULL) { /* immediate write */ 1847 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1848 RL_READER); 1849 1850 error = dmu_read(os, object, offset, size, buf, 1851 DMU_READ_NO_PREFETCH); 1852 ASSERT(error == 0); 1853 } else { 1854 size = doi.doi_data_block_size; 1855 if (ISP2(size)) { 1856 offset = P2ALIGN(offset, size); 1857 } else { 1858 ASSERT(offset < size); 1859 offset = 0; 1860 } 1861 1862 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1863 RL_READER); 1864 1865 error = dmu_buf_hold(os, object, offset, zgd, &db, 1866 DMU_READ_NO_PREFETCH); 1867 1868 if (error == 0) { 1869 blkptr_t *obp = dmu_buf_get_blkptr(db); 1870 if (obp) { 1871 ASSERT(BP_IS_HOLE(bp)); 1872 *bp = *obp; 1873 } 1874 1875 zgd->zgd_db = db; 1876 zgd->zgd_bp = bp; 1877 1878 ASSERT(db->db_offset == offset); 1879 ASSERT(db->db_size == size); 1880 1881 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1882 ztest_get_done, zgd); 1883 1884 if (error == 0) 1885 return (0); 1886 } 1887 } 1888 1889 ztest_get_done(zgd, error); 1890 1891 return (error); 1892 } 1893 1894 static void * 1895 ztest_lr_alloc(size_t lrsize, char *name) 1896 { 1897 char *lr; 1898 size_t namesize = name ? strlen(name) + 1 : 0; 1899 1900 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1901 1902 if (name) 1903 bcopy(name, lr + lrsize, namesize); 1904 1905 return (lr); 1906 } 1907 1908 void 1909 ztest_lr_free(void *lr, size_t lrsize, char *name) 1910 { 1911 size_t namesize = name ? strlen(name) + 1 : 0; 1912 1913 umem_free(lr, lrsize + namesize); 1914 } 1915 1916 /* 1917 * Lookup a bunch of objects. Returns the number of objects not found. 1918 */ 1919 static int 1920 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1921 { 1922 int missing = 0; 1923 int error; 1924 1925 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1926 1927 for (int i = 0; i < count; i++, od++) { 1928 od->od_object = 0; 1929 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1930 sizeof (uint64_t), 1, &od->od_object); 1931 if (error) { 1932 ASSERT(error == ENOENT); 1933 ASSERT(od->od_object == 0); 1934 missing++; 1935 } else { 1936 dmu_buf_t *db; 1937 ztest_block_tag_t *bbt; 1938 dmu_object_info_t doi; 1939 1940 ASSERT(od->od_object != 0); 1941 ASSERT(missing == 0); /* there should be no gaps */ 1942 1943 ztest_object_lock(zd, od->od_object, RL_READER); 1944 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1945 od->od_object, FTAG, &db)); 1946 dmu_object_info_from_db(db, &doi); 1947 bbt = ztest_bt_bonus(db); 1948 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1949 od->od_type = doi.doi_type; 1950 od->od_blocksize = doi.doi_data_block_size; 1951 od->od_gen = bbt->bt_gen; 1952 dmu_buf_rele(db, FTAG); 1953 ztest_object_unlock(zd, od->od_object); 1954 } 1955 } 1956 1957 return (missing); 1958 } 1959 1960 static int 1961 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1962 { 1963 int missing = 0; 1964 1965 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1966 1967 for (int i = 0; i < count; i++, od++) { 1968 if (missing) { 1969 od->od_object = 0; 1970 missing++; 1971 continue; 1972 } 1973 1974 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1975 1976 lr->lr_doid = od->od_dir; 1977 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1978 lr->lrz_type = od->od_crtype; 1979 lr->lrz_blocksize = od->od_crblocksize; 1980 lr->lrz_ibshift = ztest_random_ibshift(); 1981 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1982 lr->lrz_bonuslen = dmu_bonus_max(); 1983 lr->lr_gen = od->od_crgen; 1984 lr->lr_crtime[0] = time(NULL); 1985 1986 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1987 ASSERT(missing == 0); 1988 od->od_object = 0; 1989 missing++; 1990 } else { 1991 od->od_object = lr->lr_foid; 1992 od->od_type = od->od_crtype; 1993 od->od_blocksize = od->od_crblocksize; 1994 od->od_gen = od->od_crgen; 1995 ASSERT(od->od_object != 0); 1996 } 1997 1998 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1999 } 2000 2001 return (missing); 2002 } 2003 2004 static int 2005 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2006 { 2007 int missing = 0; 2008 int error; 2009 2010 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2011 2012 od += count - 1; 2013 2014 for (int i = count - 1; i >= 0; i--, od--) { 2015 if (missing) { 2016 missing++; 2017 continue; 2018 } 2019 2020 /* 2021 * No object was found. 2022 */ 2023 if (od->od_object == 0) 2024 continue; 2025 2026 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2027 2028 lr->lr_doid = od->od_dir; 2029 2030 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2031 ASSERT3U(error, ==, ENOSPC); 2032 missing++; 2033 } else { 2034 od->od_object = 0; 2035 } 2036 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2037 } 2038 2039 return (missing); 2040 } 2041 2042 static int 2043 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2044 void *data) 2045 { 2046 lr_write_t *lr; 2047 int error; 2048 2049 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2050 2051 lr->lr_foid = object; 2052 lr->lr_offset = offset; 2053 lr->lr_length = size; 2054 lr->lr_blkoff = 0; 2055 BP_ZERO(&lr->lr_blkptr); 2056 2057 bcopy(data, lr + 1, size); 2058 2059 error = ztest_replay_write(zd, lr, B_FALSE); 2060 2061 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2062 2063 return (error); 2064 } 2065 2066 static int 2067 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2068 { 2069 lr_truncate_t *lr; 2070 int error; 2071 2072 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2073 2074 lr->lr_foid = object; 2075 lr->lr_offset = offset; 2076 lr->lr_length = size; 2077 2078 error = ztest_replay_truncate(zd, lr, B_FALSE); 2079 2080 ztest_lr_free(lr, sizeof (*lr), NULL); 2081 2082 return (error); 2083 } 2084 2085 static int 2086 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2087 { 2088 lr_setattr_t *lr; 2089 int error; 2090 2091 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2092 2093 lr->lr_foid = object; 2094 lr->lr_size = 0; 2095 lr->lr_mode = 0; 2096 2097 error = ztest_replay_setattr(zd, lr, B_FALSE); 2098 2099 ztest_lr_free(lr, sizeof (*lr), NULL); 2100 2101 return (error); 2102 } 2103 2104 static void 2105 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2106 { 2107 objset_t *os = zd->zd_os; 2108 dmu_tx_t *tx; 2109 uint64_t txg; 2110 rl_t *rl; 2111 2112 txg_wait_synced(dmu_objset_pool(os), 0); 2113 2114 ztest_object_lock(zd, object, RL_READER); 2115 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2116 2117 tx = dmu_tx_create(os); 2118 2119 dmu_tx_hold_write(tx, object, offset, size); 2120 2121 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2122 2123 if (txg != 0) { 2124 dmu_prealloc(os, object, offset, size, tx); 2125 dmu_tx_commit(tx); 2126 txg_wait_synced(dmu_objset_pool(os), txg); 2127 } else { 2128 (void) dmu_free_long_range(os, object, offset, size); 2129 } 2130 2131 ztest_range_unlock(rl); 2132 ztest_object_unlock(zd, object); 2133 } 2134 2135 static void 2136 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2137 { 2138 int err; 2139 ztest_block_tag_t wbt; 2140 dmu_object_info_t doi; 2141 enum ztest_io_type io_type; 2142 uint64_t blocksize; 2143 void *data; 2144 2145 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2146 blocksize = doi.doi_data_block_size; 2147 data = umem_alloc(blocksize, UMEM_NOFAIL); 2148 2149 /* 2150 * Pick an i/o type at random, biased toward writing block tags. 2151 */ 2152 io_type = ztest_random(ZTEST_IO_TYPES); 2153 if (ztest_random(2) == 0) 2154 io_type = ZTEST_IO_WRITE_TAG; 2155 2156 (void) rw_rdlock(&zd->zd_zilog_lock); 2157 2158 switch (io_type) { 2159 2160 case ZTEST_IO_WRITE_TAG: 2161 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2162 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2163 break; 2164 2165 case ZTEST_IO_WRITE_PATTERN: 2166 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2167 if (ztest_random(2) == 0) { 2168 /* 2169 * Induce fletcher2 collisions to ensure that 2170 * zio_ddt_collision() detects and resolves them 2171 * when using fletcher2-verify for deduplication. 2172 */ 2173 ((uint64_t *)data)[0] ^= 1ULL << 63; 2174 ((uint64_t *)data)[4] ^= 1ULL << 63; 2175 } 2176 (void) ztest_write(zd, object, offset, blocksize, data); 2177 break; 2178 2179 case ZTEST_IO_WRITE_ZEROES: 2180 bzero(data, blocksize); 2181 (void) ztest_write(zd, object, offset, blocksize, data); 2182 break; 2183 2184 case ZTEST_IO_TRUNCATE: 2185 (void) ztest_truncate(zd, object, offset, blocksize); 2186 break; 2187 2188 case ZTEST_IO_SETATTR: 2189 (void) ztest_setattr(zd, object); 2190 break; 2191 2192 case ZTEST_IO_REWRITE: 2193 (void) rw_rdlock(&ztest_name_lock); 2194 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2195 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2196 B_FALSE); 2197 VERIFY(err == 0 || err == ENOSPC); 2198 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2199 ZFS_PROP_COMPRESSION, 2200 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2201 B_FALSE); 2202 VERIFY(err == 0 || err == ENOSPC); 2203 (void) rw_unlock(&ztest_name_lock); 2204 2205 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2206 DMU_READ_NO_PREFETCH)); 2207 2208 (void) ztest_write(zd, object, offset, blocksize, data); 2209 break; 2210 } 2211 2212 (void) rw_unlock(&zd->zd_zilog_lock); 2213 2214 umem_free(data, blocksize); 2215 } 2216 2217 /* 2218 * Initialize an object description template. 2219 */ 2220 static void 2221 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2222 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2223 { 2224 od->od_dir = ZTEST_DIROBJ; 2225 od->od_object = 0; 2226 2227 od->od_crtype = type; 2228 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2229 od->od_crgen = gen; 2230 2231 od->od_type = DMU_OT_NONE; 2232 od->od_blocksize = 0; 2233 od->od_gen = 0; 2234 2235 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2236 tag, (int64_t)id, index); 2237 } 2238 2239 /* 2240 * Lookup or create the objects for a test using the od template. 2241 * If the objects do not all exist, or if 'remove' is specified, 2242 * remove any existing objects and create new ones. Otherwise, 2243 * use the existing objects. 2244 */ 2245 static int 2246 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2247 { 2248 int count = size / sizeof (*od); 2249 int rv = 0; 2250 2251 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2252 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2253 (ztest_remove(zd, od, count) != 0 || 2254 ztest_create(zd, od, count) != 0)) 2255 rv = -1; 2256 zd->zd_od = od; 2257 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2258 2259 return (rv); 2260 } 2261 2262 /* ARGSUSED */ 2263 void 2264 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2265 { 2266 zilog_t *zilog = zd->zd_zilog; 2267 2268 (void) rw_rdlock(&zd->zd_zilog_lock); 2269 2270 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2271 2272 /* 2273 * Remember the committed values in zd, which is in parent/child 2274 * shared memory. If we die, the next iteration of ztest_run() 2275 * will verify that the log really does contain this record. 2276 */ 2277 mutex_enter(&zilog->zl_lock); 2278 ASSERT(zd->zd_shared != NULL); 2279 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2280 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2281 mutex_exit(&zilog->zl_lock); 2282 2283 (void) rw_unlock(&zd->zd_zilog_lock); 2284 } 2285 2286 /* 2287 * This function is designed to simulate the operations that occur during a 2288 * mount/unmount operation. We hold the dataset across these operations in an 2289 * attempt to expose any implicit assumptions about ZIL management. 2290 */ 2291 /* ARGSUSED */ 2292 void 2293 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2294 { 2295 objset_t *os = zd->zd_os; 2296 2297 /* 2298 * We grab the zd_dirobj_lock to ensure that no other thread is 2299 * updating the zil (i.e. adding in-memory log records) and the 2300 * zd_zilog_lock to block any I/O. 2301 */ 2302 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2303 (void) rw_wrlock(&zd->zd_zilog_lock); 2304 2305 /* zfsvfs_teardown() */ 2306 zil_close(zd->zd_zilog); 2307 2308 /* zfsvfs_setup() */ 2309 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2310 zil_replay(os, zd, ztest_replay_vector); 2311 2312 (void) rw_unlock(&zd->zd_zilog_lock); 2313 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2314 } 2315 2316 /* 2317 * Verify that we can't destroy an active pool, create an existing pool, 2318 * or create a pool with a bad vdev spec. 2319 */ 2320 /* ARGSUSED */ 2321 void 2322 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2323 { 2324 ztest_shared_opts_t *zo = &ztest_opts; 2325 spa_t *spa; 2326 nvlist_t *nvroot; 2327 2328 /* 2329 * Attempt to create using a bad file. 2330 */ 2331 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2332 VERIFY3U(ENOENT, ==, 2333 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2334 nvlist_free(nvroot); 2335 2336 /* 2337 * Attempt to create using a bad mirror. 2338 */ 2339 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2340 VERIFY3U(ENOENT, ==, 2341 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2342 nvlist_free(nvroot); 2343 2344 /* 2345 * Attempt to create an existing pool. It shouldn't matter 2346 * what's in the nvroot; we should fail with EEXIST. 2347 */ 2348 (void) rw_rdlock(&ztest_name_lock); 2349 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2350 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2351 nvlist_free(nvroot); 2352 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2353 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2354 spa_close(spa, FTAG); 2355 2356 (void) rw_unlock(&ztest_name_lock); 2357 } 2358 2359 /* ARGSUSED */ 2360 void 2361 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2362 { 2363 spa_t *spa; 2364 uint64_t initial_version = SPA_VERSION_INITIAL; 2365 uint64_t version, newversion; 2366 nvlist_t *nvroot, *props; 2367 char *name; 2368 2369 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2370 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2371 2372 /* 2373 * Clean up from previous runs. 2374 */ 2375 (void) spa_destroy(name); 2376 2377 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2378 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2379 2380 /* 2381 * If we're configuring a RAIDZ device then make sure that the 2382 * the initial version is capable of supporting that feature. 2383 */ 2384 switch (ztest_opts.zo_raidz_parity) { 2385 case 0: 2386 case 1: 2387 initial_version = SPA_VERSION_INITIAL; 2388 break; 2389 case 2: 2390 initial_version = SPA_VERSION_RAIDZ2; 2391 break; 2392 case 3: 2393 initial_version = SPA_VERSION_RAIDZ3; 2394 break; 2395 } 2396 2397 /* 2398 * Create a pool with a spa version that can be upgraded. Pick 2399 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2400 */ 2401 do { 2402 version = ztest_random_spa_version(initial_version); 2403 } while (version > SPA_VERSION_BEFORE_FEATURES); 2404 2405 props = fnvlist_alloc(); 2406 fnvlist_add_uint64(props, 2407 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2408 VERIFY0(spa_create(name, nvroot, props, NULL)); 2409 fnvlist_free(nvroot); 2410 fnvlist_free(props); 2411 2412 VERIFY0(spa_open(name, &spa, FTAG)); 2413 VERIFY3U(spa_version(spa), ==, version); 2414 newversion = ztest_random_spa_version(version + 1); 2415 2416 if (ztest_opts.zo_verbose >= 4) { 2417 (void) printf("upgrading spa version from %llu to %llu\n", 2418 (u_longlong_t)version, (u_longlong_t)newversion); 2419 } 2420 2421 spa_upgrade(spa, newversion); 2422 VERIFY3U(spa_version(spa), >, version); 2423 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2424 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2425 spa_close(spa, FTAG); 2426 2427 strfree(name); 2428 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2429 } 2430 2431 static vdev_t * 2432 vdev_lookup_by_path(vdev_t *vd, const char *path) 2433 { 2434 vdev_t *mvd; 2435 2436 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2437 return (vd); 2438 2439 for (int c = 0; c < vd->vdev_children; c++) 2440 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2441 NULL) 2442 return (mvd); 2443 2444 return (NULL); 2445 } 2446 2447 /* 2448 * Find the first available hole which can be used as a top-level. 2449 */ 2450 int 2451 find_vdev_hole(spa_t *spa) 2452 { 2453 vdev_t *rvd = spa->spa_root_vdev; 2454 int c; 2455 2456 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2457 2458 for (c = 0; c < rvd->vdev_children; c++) { 2459 vdev_t *cvd = rvd->vdev_child[c]; 2460 2461 if (cvd->vdev_ishole) 2462 break; 2463 } 2464 return (c); 2465 } 2466 2467 /* 2468 * Verify that vdev_add() works as expected. 2469 */ 2470 /* ARGSUSED */ 2471 void 2472 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2473 { 2474 ztest_shared_t *zs = ztest_shared; 2475 spa_t *spa = ztest_spa; 2476 uint64_t leaves; 2477 uint64_t guid; 2478 nvlist_t *nvroot; 2479 int error; 2480 2481 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2482 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2483 2484 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2485 2486 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2487 2488 /* 2489 * If we have slogs then remove them 1/4 of the time. 2490 */ 2491 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2492 /* 2493 * Grab the guid from the head of the log class rotor. 2494 */ 2495 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2496 2497 spa_config_exit(spa, SCL_VDEV, FTAG); 2498 2499 /* 2500 * We have to grab the zs_name_lock as writer to 2501 * prevent a race between removing a slog (dmu_objset_find) 2502 * and destroying a dataset. Removing the slog will 2503 * grab a reference on the dataset which may cause 2504 * dmu_objset_destroy() to fail with EBUSY thus 2505 * leaving the dataset in an inconsistent state. 2506 */ 2507 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2508 error = spa_vdev_remove(spa, guid, B_FALSE); 2509 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2510 2511 if (error && error != EEXIST) 2512 fatal(0, "spa_vdev_remove() = %d", error); 2513 } else { 2514 spa_config_exit(spa, SCL_VDEV, FTAG); 2515 2516 /* 2517 * Make 1/4 of the devices be log devices. 2518 */ 2519 nvroot = make_vdev_root(NULL, NULL, NULL, 2520 ztest_opts.zo_vdev_size, 0, 2521 ztest_random(4) == 0, ztest_opts.zo_raidz, 2522 zs->zs_mirrors, 1); 2523 2524 error = spa_vdev_add(spa, nvroot); 2525 nvlist_free(nvroot); 2526 2527 if (error == ENOSPC) 2528 ztest_record_enospc("spa_vdev_add"); 2529 else if (error != 0) 2530 fatal(0, "spa_vdev_add() = %d", error); 2531 } 2532 2533 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2534 } 2535 2536 /* 2537 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2538 */ 2539 /* ARGSUSED */ 2540 void 2541 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2542 { 2543 ztest_shared_t *zs = ztest_shared; 2544 spa_t *spa = ztest_spa; 2545 vdev_t *rvd = spa->spa_root_vdev; 2546 spa_aux_vdev_t *sav; 2547 char *aux; 2548 uint64_t guid = 0; 2549 int error; 2550 2551 if (ztest_random(2) == 0) { 2552 sav = &spa->spa_spares; 2553 aux = ZPOOL_CONFIG_SPARES; 2554 } else { 2555 sav = &spa->spa_l2cache; 2556 aux = ZPOOL_CONFIG_L2CACHE; 2557 } 2558 2559 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2560 2561 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2562 2563 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2564 /* 2565 * Pick a random device to remove. 2566 */ 2567 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2568 } else { 2569 /* 2570 * Find an unused device we can add. 2571 */ 2572 zs->zs_vdev_aux = 0; 2573 for (;;) { 2574 char path[MAXPATHLEN]; 2575 int c; 2576 (void) snprintf(path, sizeof (path), ztest_aux_template, 2577 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2578 zs->zs_vdev_aux); 2579 for (c = 0; c < sav->sav_count; c++) 2580 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2581 path) == 0) 2582 break; 2583 if (c == sav->sav_count && 2584 vdev_lookup_by_path(rvd, path) == NULL) 2585 break; 2586 zs->zs_vdev_aux++; 2587 } 2588 } 2589 2590 spa_config_exit(spa, SCL_VDEV, FTAG); 2591 2592 if (guid == 0) { 2593 /* 2594 * Add a new device. 2595 */ 2596 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2597 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2598 error = spa_vdev_add(spa, nvroot); 2599 if (error != 0) 2600 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2601 nvlist_free(nvroot); 2602 } else { 2603 /* 2604 * Remove an existing device. Sometimes, dirty its 2605 * vdev state first to make sure we handle removal 2606 * of devices that have pending state changes. 2607 */ 2608 if (ztest_random(2) == 0) 2609 (void) vdev_online(spa, guid, 0, NULL); 2610 2611 error = spa_vdev_remove(spa, guid, B_FALSE); 2612 if (error != 0 && error != EBUSY) 2613 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2614 } 2615 2616 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2617 } 2618 2619 /* 2620 * split a pool if it has mirror tlvdevs 2621 */ 2622 /* ARGSUSED */ 2623 void 2624 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2625 { 2626 ztest_shared_t *zs = ztest_shared; 2627 spa_t *spa = ztest_spa; 2628 vdev_t *rvd = spa->spa_root_vdev; 2629 nvlist_t *tree, **child, *config, *split, **schild; 2630 uint_t c, children, schildren = 0, lastlogid = 0; 2631 int error = 0; 2632 2633 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2634 2635 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2636 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2637 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2638 return; 2639 } 2640 2641 /* clean up the old pool, if any */ 2642 (void) spa_destroy("splitp"); 2643 2644 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2645 2646 /* generate a config from the existing config */ 2647 mutex_enter(&spa->spa_props_lock); 2648 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2649 &tree) == 0); 2650 mutex_exit(&spa->spa_props_lock); 2651 2652 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2653 &children) == 0); 2654 2655 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2656 for (c = 0; c < children; c++) { 2657 vdev_t *tvd = rvd->vdev_child[c]; 2658 nvlist_t **mchild; 2659 uint_t mchildren; 2660 2661 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2662 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2663 0) == 0); 2664 VERIFY(nvlist_add_string(schild[schildren], 2665 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2666 VERIFY(nvlist_add_uint64(schild[schildren], 2667 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2668 if (lastlogid == 0) 2669 lastlogid = schildren; 2670 ++schildren; 2671 continue; 2672 } 2673 lastlogid = 0; 2674 VERIFY(nvlist_lookup_nvlist_array(child[c], 2675 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2676 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2677 } 2678 2679 /* OK, create a config that can be used to split */ 2680 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2681 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2682 VDEV_TYPE_ROOT) == 0); 2683 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2684 lastlogid != 0 ? lastlogid : schildren) == 0); 2685 2686 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2687 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2688 2689 for (c = 0; c < schildren; c++) 2690 nvlist_free(schild[c]); 2691 free(schild); 2692 nvlist_free(split); 2693 2694 spa_config_exit(spa, SCL_VDEV, FTAG); 2695 2696 (void) rw_wrlock(&ztest_name_lock); 2697 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2698 (void) rw_unlock(&ztest_name_lock); 2699 2700 nvlist_free(config); 2701 2702 if (error == 0) { 2703 (void) printf("successful split - results:\n"); 2704 mutex_enter(&spa_namespace_lock); 2705 show_pool_stats(spa); 2706 show_pool_stats(spa_lookup("splitp")); 2707 mutex_exit(&spa_namespace_lock); 2708 ++zs->zs_splits; 2709 --zs->zs_mirrors; 2710 } 2711 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2712 2713 } 2714 2715 /* 2716 * Verify that we can attach and detach devices. 2717 */ 2718 /* ARGSUSED */ 2719 void 2720 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2721 { 2722 ztest_shared_t *zs = ztest_shared; 2723 spa_t *spa = ztest_spa; 2724 spa_aux_vdev_t *sav = &spa->spa_spares; 2725 vdev_t *rvd = spa->spa_root_vdev; 2726 vdev_t *oldvd, *newvd, *pvd; 2727 nvlist_t *root; 2728 uint64_t leaves; 2729 uint64_t leaf, top; 2730 uint64_t ashift = ztest_get_ashift(); 2731 uint64_t oldguid, pguid; 2732 size_t oldsize, newsize; 2733 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2734 int replacing; 2735 int oldvd_has_siblings = B_FALSE; 2736 int newvd_is_spare = B_FALSE; 2737 int oldvd_is_log; 2738 int error, expected_error; 2739 2740 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2741 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2742 2743 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2744 2745 /* 2746 * Decide whether to do an attach or a replace. 2747 */ 2748 replacing = ztest_random(2); 2749 2750 /* 2751 * Pick a random top-level vdev. 2752 */ 2753 top = ztest_random_vdev_top(spa, B_TRUE); 2754 2755 /* 2756 * Pick a random leaf within it. 2757 */ 2758 leaf = ztest_random(leaves); 2759 2760 /* 2761 * Locate this vdev. 2762 */ 2763 oldvd = rvd->vdev_child[top]; 2764 if (zs->zs_mirrors >= 1) { 2765 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2766 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2767 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2768 } 2769 if (ztest_opts.zo_raidz > 1) { 2770 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2771 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2772 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2773 } 2774 2775 /* 2776 * If we're already doing an attach or replace, oldvd may be a 2777 * mirror vdev -- in which case, pick a random child. 2778 */ 2779 while (oldvd->vdev_children != 0) { 2780 oldvd_has_siblings = B_TRUE; 2781 ASSERT(oldvd->vdev_children >= 2); 2782 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2783 } 2784 2785 oldguid = oldvd->vdev_guid; 2786 oldsize = vdev_get_min_asize(oldvd); 2787 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2788 (void) strcpy(oldpath, oldvd->vdev_path); 2789 pvd = oldvd->vdev_parent; 2790 pguid = pvd->vdev_guid; 2791 2792 /* 2793 * If oldvd has siblings, then half of the time, detach it. 2794 */ 2795 if (oldvd_has_siblings && ztest_random(2) == 0) { 2796 spa_config_exit(spa, SCL_VDEV, FTAG); 2797 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2798 if (error != 0 && error != ENODEV && error != EBUSY && 2799 error != ENOTSUP) 2800 fatal(0, "detach (%s) returned %d", oldpath, error); 2801 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2802 return; 2803 } 2804 2805 /* 2806 * For the new vdev, choose with equal probability between the two 2807 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2808 */ 2809 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2810 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2811 newvd_is_spare = B_TRUE; 2812 (void) strcpy(newpath, newvd->vdev_path); 2813 } else { 2814 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2815 ztest_opts.zo_dir, ztest_opts.zo_pool, 2816 top * leaves + leaf); 2817 if (ztest_random(2) == 0) 2818 newpath[strlen(newpath) - 1] = 'b'; 2819 newvd = vdev_lookup_by_path(rvd, newpath); 2820 } 2821 2822 if (newvd) { 2823 newsize = vdev_get_min_asize(newvd); 2824 } else { 2825 /* 2826 * Make newsize a little bigger or smaller than oldsize. 2827 * If it's smaller, the attach should fail. 2828 * If it's larger, and we're doing a replace, 2829 * we should get dynamic LUN growth when we're done. 2830 */ 2831 newsize = 10 * oldsize / (9 + ztest_random(3)); 2832 } 2833 2834 /* 2835 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2836 * unless it's a replace; in that case any non-replacing parent is OK. 2837 * 2838 * If newvd is already part of the pool, it should fail with EBUSY. 2839 * 2840 * If newvd is too small, it should fail with EOVERFLOW. 2841 */ 2842 if (pvd->vdev_ops != &vdev_mirror_ops && 2843 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2844 pvd->vdev_ops == &vdev_replacing_ops || 2845 pvd->vdev_ops == &vdev_spare_ops)) 2846 expected_error = ENOTSUP; 2847 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2848 expected_error = ENOTSUP; 2849 else if (newvd == oldvd) 2850 expected_error = replacing ? 0 : EBUSY; 2851 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2852 expected_error = EBUSY; 2853 else if (newsize < oldsize) 2854 expected_error = EOVERFLOW; 2855 else if (ashift > oldvd->vdev_top->vdev_ashift) 2856 expected_error = EDOM; 2857 else 2858 expected_error = 0; 2859 2860 spa_config_exit(spa, SCL_VDEV, FTAG); 2861 2862 /* 2863 * Build the nvlist describing newpath. 2864 */ 2865 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2866 ashift, 0, 0, 0, 1); 2867 2868 error = spa_vdev_attach(spa, oldguid, root, replacing); 2869 2870 nvlist_free(root); 2871 2872 /* 2873 * If our parent was the replacing vdev, but the replace completed, 2874 * then instead of failing with ENOTSUP we may either succeed, 2875 * fail with ENODEV, or fail with EOVERFLOW. 2876 */ 2877 if (expected_error == ENOTSUP && 2878 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2879 expected_error = error; 2880 2881 /* 2882 * If someone grew the LUN, the replacement may be too small. 2883 */ 2884 if (error == EOVERFLOW || error == EBUSY) 2885 expected_error = error; 2886 2887 /* XXX workaround 6690467 */ 2888 if (error != expected_error && expected_error != EBUSY) { 2889 fatal(0, "attach (%s %llu, %s %llu, %d) " 2890 "returned %d, expected %d", 2891 oldpath, (longlong_t)oldsize, newpath, 2892 (longlong_t)newsize, replacing, error, expected_error); 2893 } 2894 2895 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2896 } 2897 2898 /* 2899 * Callback function which expands the physical size of the vdev. 2900 */ 2901 vdev_t * 2902 grow_vdev(vdev_t *vd, void *arg) 2903 { 2904 spa_t *spa = vd->vdev_spa; 2905 size_t *newsize = arg; 2906 size_t fsize; 2907 int fd; 2908 2909 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2910 ASSERT(vd->vdev_ops->vdev_op_leaf); 2911 2912 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2913 return (vd); 2914 2915 fsize = lseek(fd, 0, SEEK_END); 2916 (void) ftruncate(fd, *newsize); 2917 2918 if (ztest_opts.zo_verbose >= 6) { 2919 (void) printf("%s grew from %lu to %lu bytes\n", 2920 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2921 } 2922 (void) close(fd); 2923 return (NULL); 2924 } 2925 2926 /* 2927 * Callback function which expands a given vdev by calling vdev_online(). 2928 */ 2929 /* ARGSUSED */ 2930 vdev_t * 2931 online_vdev(vdev_t *vd, void *arg) 2932 { 2933 spa_t *spa = vd->vdev_spa; 2934 vdev_t *tvd = vd->vdev_top; 2935 uint64_t guid = vd->vdev_guid; 2936 uint64_t generation = spa->spa_config_generation + 1; 2937 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2938 int error; 2939 2940 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2941 ASSERT(vd->vdev_ops->vdev_op_leaf); 2942 2943 /* Calling vdev_online will initialize the new metaslabs */ 2944 spa_config_exit(spa, SCL_STATE, spa); 2945 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2946 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2947 2948 /* 2949 * If vdev_online returned an error or the underlying vdev_open 2950 * failed then we abort the expand. The only way to know that 2951 * vdev_open fails is by checking the returned newstate. 2952 */ 2953 if (error || newstate != VDEV_STATE_HEALTHY) { 2954 if (ztest_opts.zo_verbose >= 5) { 2955 (void) printf("Unable to expand vdev, state %llu, " 2956 "error %d\n", (u_longlong_t)newstate, error); 2957 } 2958 return (vd); 2959 } 2960 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2961 2962 /* 2963 * Since we dropped the lock we need to ensure that we're 2964 * still talking to the original vdev. It's possible this 2965 * vdev may have been detached/replaced while we were 2966 * trying to online it. 2967 */ 2968 if (generation != spa->spa_config_generation) { 2969 if (ztest_opts.zo_verbose >= 5) { 2970 (void) printf("vdev configuration has changed, " 2971 "guid %llu, state %llu, expected gen %llu, " 2972 "got gen %llu\n", 2973 (u_longlong_t)guid, 2974 (u_longlong_t)tvd->vdev_state, 2975 (u_longlong_t)generation, 2976 (u_longlong_t)spa->spa_config_generation); 2977 } 2978 return (vd); 2979 } 2980 return (NULL); 2981 } 2982 2983 /* 2984 * Traverse the vdev tree calling the supplied function. 2985 * We continue to walk the tree until we either have walked all 2986 * children or we receive a non-NULL return from the callback. 2987 * If a NULL callback is passed, then we just return back the first 2988 * leaf vdev we encounter. 2989 */ 2990 vdev_t * 2991 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2992 { 2993 if (vd->vdev_ops->vdev_op_leaf) { 2994 if (func == NULL) 2995 return (vd); 2996 else 2997 return (func(vd, arg)); 2998 } 2999 3000 for (uint_t c = 0; c < vd->vdev_children; c++) { 3001 vdev_t *cvd = vd->vdev_child[c]; 3002 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3003 return (cvd); 3004 } 3005 return (NULL); 3006 } 3007 3008 /* 3009 * Verify that dynamic LUN growth works as expected. 3010 */ 3011 /* ARGSUSED */ 3012 void 3013 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3014 { 3015 spa_t *spa = ztest_spa; 3016 vdev_t *vd, *tvd; 3017 metaslab_class_t *mc; 3018 metaslab_group_t *mg; 3019 size_t psize, newsize; 3020 uint64_t top; 3021 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3022 3023 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3024 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3025 3026 top = ztest_random_vdev_top(spa, B_TRUE); 3027 3028 tvd = spa->spa_root_vdev->vdev_child[top]; 3029 mg = tvd->vdev_mg; 3030 mc = mg->mg_class; 3031 old_ms_count = tvd->vdev_ms_count; 3032 old_class_space = metaslab_class_get_space(mc); 3033 3034 /* 3035 * Determine the size of the first leaf vdev associated with 3036 * our top-level device. 3037 */ 3038 vd = vdev_walk_tree(tvd, NULL, NULL); 3039 ASSERT3P(vd, !=, NULL); 3040 ASSERT(vd->vdev_ops->vdev_op_leaf); 3041 3042 psize = vd->vdev_psize; 3043 3044 /* 3045 * We only try to expand the vdev if it's healthy, less than 4x its 3046 * original size, and it has a valid psize. 3047 */ 3048 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3049 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3050 spa_config_exit(spa, SCL_STATE, spa); 3051 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3052 return; 3053 } 3054 ASSERT(psize > 0); 3055 newsize = psize + psize / 8; 3056 ASSERT3U(newsize, >, psize); 3057 3058 if (ztest_opts.zo_verbose >= 6) { 3059 (void) printf("Expanding LUN %s from %lu to %lu\n", 3060 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3061 } 3062 3063 /* 3064 * Growing the vdev is a two step process: 3065 * 1). expand the physical size (i.e. relabel) 3066 * 2). online the vdev to create the new metaslabs 3067 */ 3068 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3069 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3070 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3071 if (ztest_opts.zo_verbose >= 5) { 3072 (void) printf("Could not expand LUN because " 3073 "the vdev configuration changed.\n"); 3074 } 3075 spa_config_exit(spa, SCL_STATE, spa); 3076 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3077 return; 3078 } 3079 3080 spa_config_exit(spa, SCL_STATE, spa); 3081 3082 /* 3083 * Expanding the LUN will update the config asynchronously, 3084 * thus we must wait for the async thread to complete any 3085 * pending tasks before proceeding. 3086 */ 3087 for (;;) { 3088 boolean_t done; 3089 mutex_enter(&spa->spa_async_lock); 3090 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3091 mutex_exit(&spa->spa_async_lock); 3092 if (done) 3093 break; 3094 txg_wait_synced(spa_get_dsl(spa), 0); 3095 (void) poll(NULL, 0, 100); 3096 } 3097 3098 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3099 3100 tvd = spa->spa_root_vdev->vdev_child[top]; 3101 new_ms_count = tvd->vdev_ms_count; 3102 new_class_space = metaslab_class_get_space(mc); 3103 3104 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3105 if (ztest_opts.zo_verbose >= 5) { 3106 (void) printf("Could not verify LUN expansion due to " 3107 "intervening vdev offline or remove.\n"); 3108 } 3109 spa_config_exit(spa, SCL_STATE, spa); 3110 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3111 return; 3112 } 3113 3114 /* 3115 * Make sure we were able to grow the vdev. 3116 */ 3117 if (new_ms_count <= old_ms_count) 3118 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3119 old_ms_count, new_ms_count); 3120 3121 /* 3122 * Make sure we were able to grow the pool. 3123 */ 3124 if (new_class_space <= old_class_space) 3125 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3126 old_class_space, new_class_space); 3127 3128 if (ztest_opts.zo_verbose >= 5) { 3129 char oldnumbuf[6], newnumbuf[6]; 3130 3131 nicenum(old_class_space, oldnumbuf); 3132 nicenum(new_class_space, newnumbuf); 3133 (void) printf("%s grew from %s to %s\n", 3134 spa->spa_name, oldnumbuf, newnumbuf); 3135 } 3136 3137 spa_config_exit(spa, SCL_STATE, spa); 3138 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3139 } 3140 3141 /* 3142 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3143 */ 3144 /* ARGSUSED */ 3145 static void 3146 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3147 { 3148 /* 3149 * Create the objects common to all ztest datasets. 3150 */ 3151 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3152 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3153 } 3154 3155 static int 3156 ztest_dataset_create(char *dsname) 3157 { 3158 uint64_t zilset = ztest_random(100); 3159 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3160 ztest_objset_create_cb, NULL); 3161 3162 if (err || zilset < 80) 3163 return (err); 3164 3165 if (ztest_opts.zo_verbose >= 6) 3166 (void) printf("Setting dataset %s to sync always\n", dsname); 3167 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3168 ZFS_SYNC_ALWAYS, B_FALSE)); 3169 } 3170 3171 /* ARGSUSED */ 3172 static int 3173 ztest_objset_destroy_cb(const char *name, void *arg) 3174 { 3175 objset_t *os; 3176 dmu_object_info_t doi; 3177 int error; 3178 3179 /* 3180 * Verify that the dataset contains a directory object. 3181 */ 3182 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3183 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3184 if (error != ENOENT) { 3185 /* We could have crashed in the middle of destroying it */ 3186 ASSERT0(error); 3187 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3188 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3189 } 3190 dmu_objset_disown(os, FTAG); 3191 3192 /* 3193 * Destroy the dataset. 3194 */ 3195 if (strchr(name, '@') != NULL) { 3196 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3197 } else { 3198 VERIFY0(dsl_destroy_head(name)); 3199 } 3200 return (0); 3201 } 3202 3203 static boolean_t 3204 ztest_snapshot_create(char *osname, uint64_t id) 3205 { 3206 char snapname[MAXNAMELEN]; 3207 int error; 3208 3209 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3210 3211 error = dmu_objset_snapshot_one(osname, snapname); 3212 if (error == ENOSPC) { 3213 ztest_record_enospc(FTAG); 3214 return (B_FALSE); 3215 } 3216 if (error != 0 && error != EEXIST) { 3217 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3218 snapname, error); 3219 } 3220 return (B_TRUE); 3221 } 3222 3223 static boolean_t 3224 ztest_snapshot_destroy(char *osname, uint64_t id) 3225 { 3226 char snapname[MAXNAMELEN]; 3227 int error; 3228 3229 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3230 (u_longlong_t)id); 3231 3232 error = dsl_destroy_snapshot(snapname, B_FALSE); 3233 if (error != 0 && error != ENOENT) 3234 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3235 return (B_TRUE); 3236 } 3237 3238 /* ARGSUSED */ 3239 void 3240 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3241 { 3242 ztest_ds_t zdtmp; 3243 int iters; 3244 int error; 3245 objset_t *os, *os2; 3246 char name[MAXNAMELEN]; 3247 zilog_t *zilog; 3248 3249 (void) rw_rdlock(&ztest_name_lock); 3250 3251 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3252 ztest_opts.zo_pool, (u_longlong_t)id); 3253 3254 /* 3255 * If this dataset exists from a previous run, process its replay log 3256 * half of the time. If we don't replay it, then dmu_objset_destroy() 3257 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3258 */ 3259 if (ztest_random(2) == 0 && 3260 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3261 ztest_zd_init(&zdtmp, NULL, os); 3262 zil_replay(os, &zdtmp, ztest_replay_vector); 3263 ztest_zd_fini(&zdtmp); 3264 dmu_objset_disown(os, FTAG); 3265 } 3266 3267 /* 3268 * There may be an old instance of the dataset we're about to 3269 * create lying around from a previous run. If so, destroy it 3270 * and all of its snapshots. 3271 */ 3272 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3273 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3274 3275 /* 3276 * Verify that the destroyed dataset is no longer in the namespace. 3277 */ 3278 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3279 FTAG, &os)); 3280 3281 /* 3282 * Verify that we can create a new dataset. 3283 */ 3284 error = ztest_dataset_create(name); 3285 if (error) { 3286 if (error == ENOSPC) { 3287 ztest_record_enospc(FTAG); 3288 (void) rw_unlock(&ztest_name_lock); 3289 return; 3290 } 3291 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3292 } 3293 3294 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3295 3296 ztest_zd_init(&zdtmp, NULL, os); 3297 3298 /* 3299 * Open the intent log for it. 3300 */ 3301 zilog = zil_open(os, ztest_get_data); 3302 3303 /* 3304 * Put some objects in there, do a little I/O to them, 3305 * and randomly take a couple of snapshots along the way. 3306 */ 3307 iters = ztest_random(5); 3308 for (int i = 0; i < iters; i++) { 3309 ztest_dmu_object_alloc_free(&zdtmp, id); 3310 if (ztest_random(iters) == 0) 3311 (void) ztest_snapshot_create(name, i); 3312 } 3313 3314 /* 3315 * Verify that we cannot create an existing dataset. 3316 */ 3317 VERIFY3U(EEXIST, ==, 3318 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3319 3320 /* 3321 * Verify that we can hold an objset that is also owned. 3322 */ 3323 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3324 dmu_objset_rele(os2, FTAG); 3325 3326 /* 3327 * Verify that we cannot own an objset that is already owned. 3328 */ 3329 VERIFY3U(EBUSY, ==, 3330 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3331 3332 zil_close(zilog); 3333 dmu_objset_disown(os, FTAG); 3334 ztest_zd_fini(&zdtmp); 3335 3336 (void) rw_unlock(&ztest_name_lock); 3337 } 3338 3339 /* 3340 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3341 */ 3342 void 3343 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3344 { 3345 (void) rw_rdlock(&ztest_name_lock); 3346 (void) ztest_snapshot_destroy(zd->zd_name, id); 3347 (void) ztest_snapshot_create(zd->zd_name, id); 3348 (void) rw_unlock(&ztest_name_lock); 3349 } 3350 3351 /* 3352 * Cleanup non-standard snapshots and clones. 3353 */ 3354 void 3355 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3356 { 3357 char snap1name[MAXNAMELEN]; 3358 char clone1name[MAXNAMELEN]; 3359 char snap2name[MAXNAMELEN]; 3360 char clone2name[MAXNAMELEN]; 3361 char snap3name[MAXNAMELEN]; 3362 int error; 3363 3364 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3365 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3366 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3367 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3368 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3369 3370 error = dsl_destroy_head(clone2name); 3371 if (error && error != ENOENT) 3372 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3373 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3374 if (error && error != ENOENT) 3375 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3376 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3377 if (error && error != ENOENT) 3378 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3379 error = dsl_destroy_head(clone1name); 3380 if (error && error != ENOENT) 3381 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3382 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3383 if (error && error != ENOENT) 3384 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3385 } 3386 3387 /* 3388 * Verify dsl_dataset_promote handles EBUSY 3389 */ 3390 void 3391 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3392 { 3393 objset_t *os; 3394 char snap1name[MAXNAMELEN]; 3395 char clone1name[MAXNAMELEN]; 3396 char snap2name[MAXNAMELEN]; 3397 char clone2name[MAXNAMELEN]; 3398 char snap3name[MAXNAMELEN]; 3399 char *osname = zd->zd_name; 3400 int error; 3401 3402 (void) rw_rdlock(&ztest_name_lock); 3403 3404 ztest_dsl_dataset_cleanup(osname, id); 3405 3406 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3407 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3408 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3409 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3410 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3411 3412 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3413 if (error && error != EEXIST) { 3414 if (error == ENOSPC) { 3415 ztest_record_enospc(FTAG); 3416 goto out; 3417 } 3418 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3419 } 3420 3421 error = dmu_objset_clone(clone1name, snap1name); 3422 if (error) { 3423 if (error == ENOSPC) { 3424 ztest_record_enospc(FTAG); 3425 goto out; 3426 } 3427 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3428 } 3429 3430 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3431 if (error && error != EEXIST) { 3432 if (error == ENOSPC) { 3433 ztest_record_enospc(FTAG); 3434 goto out; 3435 } 3436 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3437 } 3438 3439 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3440 if (error && error != EEXIST) { 3441 if (error == ENOSPC) { 3442 ztest_record_enospc(FTAG); 3443 goto out; 3444 } 3445 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3446 } 3447 3448 error = dmu_objset_clone(clone2name, snap3name); 3449 if (error) { 3450 if (error == ENOSPC) { 3451 ztest_record_enospc(FTAG); 3452 goto out; 3453 } 3454 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3455 } 3456 3457 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3458 if (error) 3459 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3460 error = dsl_dataset_promote(clone2name, NULL); 3461 if (error != EBUSY) 3462 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3463 error); 3464 dmu_objset_disown(os, FTAG); 3465 3466 out: 3467 ztest_dsl_dataset_cleanup(osname, id); 3468 3469 (void) rw_unlock(&ztest_name_lock); 3470 } 3471 3472 /* 3473 * Verify that dmu_object_{alloc,free} work as expected. 3474 */ 3475 void 3476 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3477 { 3478 ztest_od_t od[4]; 3479 int batchsize = sizeof (od) / sizeof (od[0]); 3480 3481 for (int b = 0; b < batchsize; b++) 3482 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3483 3484 /* 3485 * Destroy the previous batch of objects, create a new batch, 3486 * and do some I/O on the new objects. 3487 */ 3488 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3489 return; 3490 3491 while (ztest_random(4 * batchsize) != 0) 3492 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3493 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3494 } 3495 3496 /* 3497 * Verify that dmu_{read,write} work as expected. 3498 */ 3499 void 3500 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3501 { 3502 objset_t *os = zd->zd_os; 3503 ztest_od_t od[2]; 3504 dmu_tx_t *tx; 3505 int i, freeit, error; 3506 uint64_t n, s, txg; 3507 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3508 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3509 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3510 uint64_t regions = 997; 3511 uint64_t stride = 123456789ULL; 3512 uint64_t width = 40; 3513 int free_percent = 5; 3514 3515 /* 3516 * This test uses two objects, packobj and bigobj, that are always 3517 * updated together (i.e. in the same tx) so that their contents are 3518 * in sync and can be compared. Their contents relate to each other 3519 * in a simple way: packobj is a dense array of 'bufwad' structures, 3520 * while bigobj is a sparse array of the same bufwads. Specifically, 3521 * for any index n, there are three bufwads that should be identical: 3522 * 3523 * packobj, at offset n * sizeof (bufwad_t) 3524 * bigobj, at the head of the nth chunk 3525 * bigobj, at the tail of the nth chunk 3526 * 3527 * The chunk size is arbitrary. It doesn't have to be a power of two, 3528 * and it doesn't have any relation to the object blocksize. 3529 * The only requirement is that it can hold at least two bufwads. 3530 * 3531 * Normally, we write the bufwad to each of these locations. 3532 * However, free_percent of the time we instead write zeroes to 3533 * packobj and perform a dmu_free_range() on bigobj. By comparing 3534 * bigobj to packobj, we can verify that the DMU is correctly 3535 * tracking which parts of an object are allocated and free, 3536 * and that the contents of the allocated blocks are correct. 3537 */ 3538 3539 /* 3540 * Read the directory info. If it's the first time, set things up. 3541 */ 3542 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3543 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3544 3545 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3546 return; 3547 3548 bigobj = od[0].od_object; 3549 packobj = od[1].od_object; 3550 chunksize = od[0].od_gen; 3551 ASSERT(chunksize == od[1].od_gen); 3552 3553 /* 3554 * Prefetch a random chunk of the big object. 3555 * Our aim here is to get some async reads in flight 3556 * for blocks that we may free below; the DMU should 3557 * handle this race correctly. 3558 */ 3559 n = ztest_random(regions) * stride + ztest_random(width); 3560 s = 1 + ztest_random(2 * width - 1); 3561 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3562 3563 /* 3564 * Pick a random index and compute the offsets into packobj and bigobj. 3565 */ 3566 n = ztest_random(regions) * stride + ztest_random(width); 3567 s = 1 + ztest_random(width - 1); 3568 3569 packoff = n * sizeof (bufwad_t); 3570 packsize = s * sizeof (bufwad_t); 3571 3572 bigoff = n * chunksize; 3573 bigsize = s * chunksize; 3574 3575 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3576 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3577 3578 /* 3579 * free_percent of the time, free a range of bigobj rather than 3580 * overwriting it. 3581 */ 3582 freeit = (ztest_random(100) < free_percent); 3583 3584 /* 3585 * Read the current contents of our objects. 3586 */ 3587 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3588 DMU_READ_PREFETCH); 3589 ASSERT0(error); 3590 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3591 DMU_READ_PREFETCH); 3592 ASSERT0(error); 3593 3594 /* 3595 * Get a tx for the mods to both packobj and bigobj. 3596 */ 3597 tx = dmu_tx_create(os); 3598 3599 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3600 3601 if (freeit) 3602 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3603 else 3604 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3605 3606 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3607 if (txg == 0) { 3608 umem_free(packbuf, packsize); 3609 umem_free(bigbuf, bigsize); 3610 return; 3611 } 3612 3613 dmu_object_set_checksum(os, bigobj, 3614 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3615 3616 dmu_object_set_compress(os, bigobj, 3617 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3618 3619 /* 3620 * For each index from n to n + s, verify that the existing bufwad 3621 * in packobj matches the bufwads at the head and tail of the 3622 * corresponding chunk in bigobj. Then update all three bufwads 3623 * with the new values we want to write out. 3624 */ 3625 for (i = 0; i < s; i++) { 3626 /* LINTED */ 3627 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3628 /* LINTED */ 3629 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3630 /* LINTED */ 3631 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3632 3633 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3634 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3635 3636 if (pack->bw_txg > txg) 3637 fatal(0, "future leak: got %llx, open txg is %llx", 3638 pack->bw_txg, txg); 3639 3640 if (pack->bw_data != 0 && pack->bw_index != n + i) 3641 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3642 pack->bw_index, n, i); 3643 3644 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3645 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3646 3647 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3648 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3649 3650 if (freeit) { 3651 bzero(pack, sizeof (bufwad_t)); 3652 } else { 3653 pack->bw_index = n + i; 3654 pack->bw_txg = txg; 3655 pack->bw_data = 1 + ztest_random(-2ULL); 3656 } 3657 *bigH = *pack; 3658 *bigT = *pack; 3659 } 3660 3661 /* 3662 * We've verified all the old bufwads, and made new ones. 3663 * Now write them out. 3664 */ 3665 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3666 3667 if (freeit) { 3668 if (ztest_opts.zo_verbose >= 7) { 3669 (void) printf("freeing offset %llx size %llx" 3670 " txg %llx\n", 3671 (u_longlong_t)bigoff, 3672 (u_longlong_t)bigsize, 3673 (u_longlong_t)txg); 3674 } 3675 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3676 } else { 3677 if (ztest_opts.zo_verbose >= 7) { 3678 (void) printf("writing offset %llx size %llx" 3679 " txg %llx\n", 3680 (u_longlong_t)bigoff, 3681 (u_longlong_t)bigsize, 3682 (u_longlong_t)txg); 3683 } 3684 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3685 } 3686 3687 dmu_tx_commit(tx); 3688 3689 /* 3690 * Sanity check the stuff we just wrote. 3691 */ 3692 { 3693 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3694 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3695 3696 VERIFY(0 == dmu_read(os, packobj, packoff, 3697 packsize, packcheck, DMU_READ_PREFETCH)); 3698 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3699 bigsize, bigcheck, DMU_READ_PREFETCH)); 3700 3701 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3702 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3703 3704 umem_free(packcheck, packsize); 3705 umem_free(bigcheck, bigsize); 3706 } 3707 3708 umem_free(packbuf, packsize); 3709 umem_free(bigbuf, bigsize); 3710 } 3711 3712 void 3713 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3714 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3715 { 3716 uint64_t i; 3717 bufwad_t *pack; 3718 bufwad_t *bigH; 3719 bufwad_t *bigT; 3720 3721 /* 3722 * For each index from n to n + s, verify that the existing bufwad 3723 * in packobj matches the bufwads at the head and tail of the 3724 * corresponding chunk in bigobj. Then update all three bufwads 3725 * with the new values we want to write out. 3726 */ 3727 for (i = 0; i < s; i++) { 3728 /* LINTED */ 3729 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3730 /* LINTED */ 3731 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3732 /* LINTED */ 3733 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3734 3735 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3736 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3737 3738 if (pack->bw_txg > txg) 3739 fatal(0, "future leak: got %llx, open txg is %llx", 3740 pack->bw_txg, txg); 3741 3742 if (pack->bw_data != 0 && pack->bw_index != n + i) 3743 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3744 pack->bw_index, n, i); 3745 3746 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3747 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3748 3749 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3750 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3751 3752 pack->bw_index = n + i; 3753 pack->bw_txg = txg; 3754 pack->bw_data = 1 + ztest_random(-2ULL); 3755 3756 *bigH = *pack; 3757 *bigT = *pack; 3758 } 3759 } 3760 3761 void 3762 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3763 { 3764 objset_t *os = zd->zd_os; 3765 ztest_od_t od[2]; 3766 dmu_tx_t *tx; 3767 uint64_t i; 3768 int error; 3769 uint64_t n, s, txg; 3770 bufwad_t *packbuf, *bigbuf; 3771 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3772 uint64_t blocksize = ztest_random_blocksize(); 3773 uint64_t chunksize = blocksize; 3774 uint64_t regions = 997; 3775 uint64_t stride = 123456789ULL; 3776 uint64_t width = 9; 3777 dmu_buf_t *bonus_db; 3778 arc_buf_t **bigbuf_arcbufs; 3779 dmu_object_info_t doi; 3780 3781 /* 3782 * This test uses two objects, packobj and bigobj, that are always 3783 * updated together (i.e. in the same tx) so that their contents are 3784 * in sync and can be compared. Their contents relate to each other 3785 * in a simple way: packobj is a dense array of 'bufwad' structures, 3786 * while bigobj is a sparse array of the same bufwads. Specifically, 3787 * for any index n, there are three bufwads that should be identical: 3788 * 3789 * packobj, at offset n * sizeof (bufwad_t) 3790 * bigobj, at the head of the nth chunk 3791 * bigobj, at the tail of the nth chunk 3792 * 3793 * The chunk size is set equal to bigobj block size so that 3794 * dmu_assign_arcbuf() can be tested for object updates. 3795 */ 3796 3797 /* 3798 * Read the directory info. If it's the first time, set things up. 3799 */ 3800 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3801 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3802 3803 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3804 return; 3805 3806 bigobj = od[0].od_object; 3807 packobj = od[1].od_object; 3808 blocksize = od[0].od_blocksize; 3809 chunksize = blocksize; 3810 ASSERT(chunksize == od[1].od_gen); 3811 3812 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3813 VERIFY(ISP2(doi.doi_data_block_size)); 3814 VERIFY(chunksize == doi.doi_data_block_size); 3815 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3816 3817 /* 3818 * Pick a random index and compute the offsets into packobj and bigobj. 3819 */ 3820 n = ztest_random(regions) * stride + ztest_random(width); 3821 s = 1 + ztest_random(width - 1); 3822 3823 packoff = n * sizeof (bufwad_t); 3824 packsize = s * sizeof (bufwad_t); 3825 3826 bigoff = n * chunksize; 3827 bigsize = s * chunksize; 3828 3829 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3830 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3831 3832 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3833 3834 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3835 3836 /* 3837 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3838 * Iteration 1 test zcopy to already referenced dbufs. 3839 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3840 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3841 * Iteration 4 test zcopy when dbuf is no longer dirty. 3842 * Iteration 5 test zcopy when it can't be done. 3843 * Iteration 6 one more zcopy write. 3844 */ 3845 for (i = 0; i < 7; i++) { 3846 uint64_t j; 3847 uint64_t off; 3848 3849 /* 3850 * In iteration 5 (i == 5) use arcbufs 3851 * that don't match bigobj blksz to test 3852 * dmu_assign_arcbuf() when it can't directly 3853 * assign an arcbuf to a dbuf. 3854 */ 3855 for (j = 0; j < s; j++) { 3856 if (i != 5) { 3857 bigbuf_arcbufs[j] = 3858 dmu_request_arcbuf(bonus_db, chunksize); 3859 } else { 3860 bigbuf_arcbufs[2 * j] = 3861 dmu_request_arcbuf(bonus_db, chunksize / 2); 3862 bigbuf_arcbufs[2 * j + 1] = 3863 dmu_request_arcbuf(bonus_db, chunksize / 2); 3864 } 3865 } 3866 3867 /* 3868 * Get a tx for the mods to both packobj and bigobj. 3869 */ 3870 tx = dmu_tx_create(os); 3871 3872 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3873 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3874 3875 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3876 if (txg == 0) { 3877 umem_free(packbuf, packsize); 3878 umem_free(bigbuf, bigsize); 3879 for (j = 0; j < s; j++) { 3880 if (i != 5) { 3881 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3882 } else { 3883 dmu_return_arcbuf( 3884 bigbuf_arcbufs[2 * j]); 3885 dmu_return_arcbuf( 3886 bigbuf_arcbufs[2 * j + 1]); 3887 } 3888 } 3889 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3890 dmu_buf_rele(bonus_db, FTAG); 3891 return; 3892 } 3893 3894 /* 3895 * 50% of the time don't read objects in the 1st iteration to 3896 * test dmu_assign_arcbuf() for the case when there're no 3897 * existing dbufs for the specified offsets. 3898 */ 3899 if (i != 0 || ztest_random(2) != 0) { 3900 error = dmu_read(os, packobj, packoff, 3901 packsize, packbuf, DMU_READ_PREFETCH); 3902 ASSERT0(error); 3903 error = dmu_read(os, bigobj, bigoff, bigsize, 3904 bigbuf, DMU_READ_PREFETCH); 3905 ASSERT0(error); 3906 } 3907 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3908 n, chunksize, txg); 3909 3910 /* 3911 * We've verified all the old bufwads, and made new ones. 3912 * Now write them out. 3913 */ 3914 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3915 if (ztest_opts.zo_verbose >= 7) { 3916 (void) printf("writing offset %llx size %llx" 3917 " txg %llx\n", 3918 (u_longlong_t)bigoff, 3919 (u_longlong_t)bigsize, 3920 (u_longlong_t)txg); 3921 } 3922 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3923 dmu_buf_t *dbt; 3924 if (i != 5) { 3925 bcopy((caddr_t)bigbuf + (off - bigoff), 3926 bigbuf_arcbufs[j]->b_data, chunksize); 3927 } else { 3928 bcopy((caddr_t)bigbuf + (off - bigoff), 3929 bigbuf_arcbufs[2 * j]->b_data, 3930 chunksize / 2); 3931 bcopy((caddr_t)bigbuf + (off - bigoff) + 3932 chunksize / 2, 3933 bigbuf_arcbufs[2 * j + 1]->b_data, 3934 chunksize / 2); 3935 } 3936 3937 if (i == 1) { 3938 VERIFY(dmu_buf_hold(os, bigobj, off, 3939 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3940 } 3941 if (i != 5) { 3942 dmu_assign_arcbuf(bonus_db, off, 3943 bigbuf_arcbufs[j], tx); 3944 } else { 3945 dmu_assign_arcbuf(bonus_db, off, 3946 bigbuf_arcbufs[2 * j], tx); 3947 dmu_assign_arcbuf(bonus_db, 3948 off + chunksize / 2, 3949 bigbuf_arcbufs[2 * j + 1], tx); 3950 } 3951 if (i == 1) { 3952 dmu_buf_rele(dbt, FTAG); 3953 } 3954 } 3955 dmu_tx_commit(tx); 3956 3957 /* 3958 * Sanity check the stuff we just wrote. 3959 */ 3960 { 3961 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3962 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3963 3964 VERIFY(0 == dmu_read(os, packobj, packoff, 3965 packsize, packcheck, DMU_READ_PREFETCH)); 3966 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3967 bigsize, bigcheck, DMU_READ_PREFETCH)); 3968 3969 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3970 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3971 3972 umem_free(packcheck, packsize); 3973 umem_free(bigcheck, bigsize); 3974 } 3975 if (i == 2) { 3976 txg_wait_open(dmu_objset_pool(os), 0); 3977 } else if (i == 3) { 3978 txg_wait_synced(dmu_objset_pool(os), 0); 3979 } 3980 } 3981 3982 dmu_buf_rele(bonus_db, FTAG); 3983 umem_free(packbuf, packsize); 3984 umem_free(bigbuf, bigsize); 3985 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3986 } 3987 3988 /* ARGSUSED */ 3989 void 3990 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3991 { 3992 ztest_od_t od[1]; 3993 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3994 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3995 3996 /* 3997 * Have multiple threads write to large offsets in an object 3998 * to verify that parallel writes to an object -- even to the 3999 * same blocks within the object -- doesn't cause any trouble. 4000 */ 4001 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4002 4003 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4004 return; 4005 4006 while (ztest_random(10) != 0) 4007 ztest_io(zd, od[0].od_object, offset); 4008 } 4009 4010 void 4011 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4012 { 4013 ztest_od_t od[1]; 4014 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4015 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4016 uint64_t count = ztest_random(20) + 1; 4017 uint64_t blocksize = ztest_random_blocksize(); 4018 void *data; 4019 4020 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4021 4022 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4023 return; 4024 4025 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4026 return; 4027 4028 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4029 4030 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4031 4032 while (ztest_random(count) != 0) { 4033 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4034 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4035 data) != 0) 4036 break; 4037 while (ztest_random(4) != 0) 4038 ztest_io(zd, od[0].od_object, randoff); 4039 } 4040 4041 umem_free(data, blocksize); 4042 } 4043 4044 /* 4045 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4046 */ 4047 #define ZTEST_ZAP_MIN_INTS 1 4048 #define ZTEST_ZAP_MAX_INTS 4 4049 #define ZTEST_ZAP_MAX_PROPS 1000 4050 4051 void 4052 ztest_zap(ztest_ds_t *zd, uint64_t id) 4053 { 4054 objset_t *os = zd->zd_os; 4055 ztest_od_t od[1]; 4056 uint64_t object; 4057 uint64_t txg, last_txg; 4058 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4059 uint64_t zl_ints, zl_intsize, prop; 4060 int i, ints; 4061 dmu_tx_t *tx; 4062 char propname[100], txgname[100]; 4063 int error; 4064 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4065 4066 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4067 4068 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4069 return; 4070 4071 object = od[0].od_object; 4072 4073 /* 4074 * Generate a known hash collision, and verify that 4075 * we can lookup and remove both entries. 4076 */ 4077 tx = dmu_tx_create(os); 4078 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4079 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4080 if (txg == 0) 4081 return; 4082 for (i = 0; i < 2; i++) { 4083 value[i] = i; 4084 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4085 1, &value[i], tx)); 4086 } 4087 for (i = 0; i < 2; i++) { 4088 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4089 sizeof (uint64_t), 1, &value[i], tx)); 4090 VERIFY3U(0, ==, 4091 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4092 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4093 ASSERT3U(zl_ints, ==, 1); 4094 } 4095 for (i = 0; i < 2; i++) { 4096 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4097 } 4098 dmu_tx_commit(tx); 4099 4100 /* 4101 * Generate a buch of random entries. 4102 */ 4103 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4104 4105 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4106 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4107 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4108 bzero(value, sizeof (value)); 4109 last_txg = 0; 4110 4111 /* 4112 * If these zap entries already exist, validate their contents. 4113 */ 4114 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4115 if (error == 0) { 4116 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4117 ASSERT3U(zl_ints, ==, 1); 4118 4119 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4120 zl_ints, &last_txg) == 0); 4121 4122 VERIFY(zap_length(os, object, propname, &zl_intsize, 4123 &zl_ints) == 0); 4124 4125 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4126 ASSERT3U(zl_ints, ==, ints); 4127 4128 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4129 zl_ints, value) == 0); 4130 4131 for (i = 0; i < ints; i++) { 4132 ASSERT3U(value[i], ==, last_txg + object + i); 4133 } 4134 } else { 4135 ASSERT3U(error, ==, ENOENT); 4136 } 4137 4138 /* 4139 * Atomically update two entries in our zap object. 4140 * The first is named txg_%llu, and contains the txg 4141 * in which the property was last updated. The second 4142 * is named prop_%llu, and the nth element of its value 4143 * should be txg + object + n. 4144 */ 4145 tx = dmu_tx_create(os); 4146 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4147 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4148 if (txg == 0) 4149 return; 4150 4151 if (last_txg > txg) 4152 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4153 4154 for (i = 0; i < ints; i++) 4155 value[i] = txg + object + i; 4156 4157 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4158 1, &txg, tx)); 4159 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4160 ints, value, tx)); 4161 4162 dmu_tx_commit(tx); 4163 4164 /* 4165 * Remove a random pair of entries. 4166 */ 4167 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4168 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4169 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4170 4171 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4172 4173 if (error == ENOENT) 4174 return; 4175 4176 ASSERT0(error); 4177 4178 tx = dmu_tx_create(os); 4179 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4180 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4181 if (txg == 0) 4182 return; 4183 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4184 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4185 dmu_tx_commit(tx); 4186 } 4187 4188 /* 4189 * Testcase to test the upgrading of a microzap to fatzap. 4190 */ 4191 void 4192 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4193 { 4194 objset_t *os = zd->zd_os; 4195 ztest_od_t od[1]; 4196 uint64_t object, txg; 4197 4198 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4199 4200 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4201 return; 4202 4203 object = od[0].od_object; 4204 4205 /* 4206 * Add entries to this ZAP and make sure it spills over 4207 * and gets upgraded to a fatzap. Also, since we are adding 4208 * 2050 entries we should see ptrtbl growth and leaf-block split. 4209 */ 4210 for (int i = 0; i < 2050; i++) { 4211 char name[MAXNAMELEN]; 4212 uint64_t value = i; 4213 dmu_tx_t *tx; 4214 int error; 4215 4216 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4217 id, value); 4218 4219 tx = dmu_tx_create(os); 4220 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4221 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4222 if (txg == 0) 4223 return; 4224 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4225 &value, tx); 4226 ASSERT(error == 0 || error == EEXIST); 4227 dmu_tx_commit(tx); 4228 } 4229 } 4230 4231 /* ARGSUSED */ 4232 void 4233 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4234 { 4235 objset_t *os = zd->zd_os; 4236 ztest_od_t od[1]; 4237 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4238 dmu_tx_t *tx; 4239 int i, namelen, error; 4240 int micro = ztest_random(2); 4241 char name[20], string_value[20]; 4242 void *data; 4243 4244 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4245 4246 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4247 return; 4248 4249 object = od[0].od_object; 4250 4251 /* 4252 * Generate a random name of the form 'xxx.....' where each 4253 * x is a random printable character and the dots are dots. 4254 * There are 94 such characters, and the name length goes from 4255 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4256 */ 4257 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4258 4259 for (i = 0; i < 3; i++) 4260 name[i] = '!' + ztest_random('~' - '!' + 1); 4261 for (; i < namelen - 1; i++) 4262 name[i] = '.'; 4263 name[i] = '\0'; 4264 4265 if ((namelen & 1) || micro) { 4266 wsize = sizeof (txg); 4267 wc = 1; 4268 data = &txg; 4269 } else { 4270 wsize = 1; 4271 wc = namelen; 4272 data = string_value; 4273 } 4274 4275 count = -1ULL; 4276 VERIFY0(zap_count(os, object, &count)); 4277 ASSERT(count != -1ULL); 4278 4279 /* 4280 * Select an operation: length, lookup, add, update, remove. 4281 */ 4282 i = ztest_random(5); 4283 4284 if (i >= 2) { 4285 tx = dmu_tx_create(os); 4286 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4287 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4288 if (txg == 0) 4289 return; 4290 bcopy(name, string_value, namelen); 4291 } else { 4292 tx = NULL; 4293 txg = 0; 4294 bzero(string_value, namelen); 4295 } 4296 4297 switch (i) { 4298 4299 case 0: 4300 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4301 if (error == 0) { 4302 ASSERT3U(wsize, ==, zl_wsize); 4303 ASSERT3U(wc, ==, zl_wc); 4304 } else { 4305 ASSERT3U(error, ==, ENOENT); 4306 } 4307 break; 4308 4309 case 1: 4310 error = zap_lookup(os, object, name, wsize, wc, data); 4311 if (error == 0) { 4312 if (data == string_value && 4313 bcmp(name, data, namelen) != 0) 4314 fatal(0, "name '%s' != val '%s' len %d", 4315 name, data, namelen); 4316 } else { 4317 ASSERT3U(error, ==, ENOENT); 4318 } 4319 break; 4320 4321 case 2: 4322 error = zap_add(os, object, name, wsize, wc, data, tx); 4323 ASSERT(error == 0 || error == EEXIST); 4324 break; 4325 4326 case 3: 4327 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4328 break; 4329 4330 case 4: 4331 error = zap_remove(os, object, name, tx); 4332 ASSERT(error == 0 || error == ENOENT); 4333 break; 4334 } 4335 4336 if (tx != NULL) 4337 dmu_tx_commit(tx); 4338 } 4339 4340 /* 4341 * Commit callback data. 4342 */ 4343 typedef struct ztest_cb_data { 4344 list_node_t zcd_node; 4345 uint64_t zcd_txg; 4346 int zcd_expected_err; 4347 boolean_t zcd_added; 4348 boolean_t zcd_called; 4349 spa_t *zcd_spa; 4350 } ztest_cb_data_t; 4351 4352 /* This is the actual commit callback function */ 4353 static void 4354 ztest_commit_callback(void *arg, int error) 4355 { 4356 ztest_cb_data_t *data = arg; 4357 uint64_t synced_txg; 4358 4359 VERIFY(data != NULL); 4360 VERIFY3S(data->zcd_expected_err, ==, error); 4361 VERIFY(!data->zcd_called); 4362 4363 synced_txg = spa_last_synced_txg(data->zcd_spa); 4364 if (data->zcd_txg > synced_txg) 4365 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4366 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4367 synced_txg); 4368 4369 data->zcd_called = B_TRUE; 4370 4371 if (error == ECANCELED) { 4372 ASSERT0(data->zcd_txg); 4373 ASSERT(!data->zcd_added); 4374 4375 /* 4376 * The private callback data should be destroyed here, but 4377 * since we are going to check the zcd_called field after 4378 * dmu_tx_abort(), we will destroy it there. 4379 */ 4380 return; 4381 } 4382 4383 /* Was this callback added to the global callback list? */ 4384 if (!data->zcd_added) 4385 goto out; 4386 4387 ASSERT3U(data->zcd_txg, !=, 0); 4388 4389 /* Remove our callback from the list */ 4390 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4391 list_remove(&zcl.zcl_callbacks, data); 4392 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4393 4394 out: 4395 umem_free(data, sizeof (ztest_cb_data_t)); 4396 } 4397 4398 /* Allocate and initialize callback data structure */ 4399 static ztest_cb_data_t * 4400 ztest_create_cb_data(objset_t *os, uint64_t txg) 4401 { 4402 ztest_cb_data_t *cb_data; 4403 4404 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4405 4406 cb_data->zcd_txg = txg; 4407 cb_data->zcd_spa = dmu_objset_spa(os); 4408 4409 return (cb_data); 4410 } 4411 4412 /* 4413 * If a number of txgs equal to this threshold have been created after a commit 4414 * callback has been registered but not called, then we assume there is an 4415 * implementation bug. 4416 */ 4417 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4418 4419 /* 4420 * Commit callback test. 4421 */ 4422 void 4423 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4424 { 4425 objset_t *os = zd->zd_os; 4426 ztest_od_t od[1]; 4427 dmu_tx_t *tx; 4428 ztest_cb_data_t *cb_data[3], *tmp_cb; 4429 uint64_t old_txg, txg; 4430 int i, error; 4431 4432 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4433 4434 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4435 return; 4436 4437 tx = dmu_tx_create(os); 4438 4439 cb_data[0] = ztest_create_cb_data(os, 0); 4440 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4441 4442 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4443 4444 /* Every once in a while, abort the transaction on purpose */ 4445 if (ztest_random(100) == 0) 4446 error = -1; 4447 4448 if (!error) 4449 error = dmu_tx_assign(tx, TXG_NOWAIT); 4450 4451 txg = error ? 0 : dmu_tx_get_txg(tx); 4452 4453 cb_data[0]->zcd_txg = txg; 4454 cb_data[1] = ztest_create_cb_data(os, txg); 4455 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4456 4457 if (error) { 4458 /* 4459 * It's not a strict requirement to call the registered 4460 * callbacks from inside dmu_tx_abort(), but that's what 4461 * it's supposed to happen in the current implementation 4462 * so we will check for that. 4463 */ 4464 for (i = 0; i < 2; i++) { 4465 cb_data[i]->zcd_expected_err = ECANCELED; 4466 VERIFY(!cb_data[i]->zcd_called); 4467 } 4468 4469 dmu_tx_abort(tx); 4470 4471 for (i = 0; i < 2; i++) { 4472 VERIFY(cb_data[i]->zcd_called); 4473 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4474 } 4475 4476 return; 4477 } 4478 4479 cb_data[2] = ztest_create_cb_data(os, txg); 4480 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4481 4482 /* 4483 * Read existing data to make sure there isn't a future leak. 4484 */ 4485 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4486 &old_txg, DMU_READ_PREFETCH)); 4487 4488 if (old_txg > txg) 4489 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4490 old_txg, txg); 4491 4492 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4493 4494 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4495 4496 /* 4497 * Since commit callbacks don't have any ordering requirement and since 4498 * it is theoretically possible for a commit callback to be called 4499 * after an arbitrary amount of time has elapsed since its txg has been 4500 * synced, it is difficult to reliably determine whether a commit 4501 * callback hasn't been called due to high load or due to a flawed 4502 * implementation. 4503 * 4504 * In practice, we will assume that if after a certain number of txgs a 4505 * commit callback hasn't been called, then most likely there's an 4506 * implementation bug.. 4507 */ 4508 tmp_cb = list_head(&zcl.zcl_callbacks); 4509 if (tmp_cb != NULL && 4510 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4511 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4512 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4513 } 4514 4515 /* 4516 * Let's find the place to insert our callbacks. 4517 * 4518 * Even though the list is ordered by txg, it is possible for the 4519 * insertion point to not be the end because our txg may already be 4520 * quiescing at this point and other callbacks in the open txg 4521 * (from other objsets) may have sneaked in. 4522 */ 4523 tmp_cb = list_tail(&zcl.zcl_callbacks); 4524 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4525 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4526 4527 /* Add the 3 callbacks to the list */ 4528 for (i = 0; i < 3; i++) { 4529 if (tmp_cb == NULL) 4530 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4531 else 4532 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4533 cb_data[i]); 4534 4535 cb_data[i]->zcd_added = B_TRUE; 4536 VERIFY(!cb_data[i]->zcd_called); 4537 4538 tmp_cb = cb_data[i]; 4539 } 4540 4541 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4542 4543 dmu_tx_commit(tx); 4544 } 4545 4546 /* ARGSUSED */ 4547 void 4548 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4549 { 4550 zfs_prop_t proplist[] = { 4551 ZFS_PROP_CHECKSUM, 4552 ZFS_PROP_COMPRESSION, 4553 ZFS_PROP_COPIES, 4554 ZFS_PROP_DEDUP 4555 }; 4556 4557 (void) rw_rdlock(&ztest_name_lock); 4558 4559 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4560 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4561 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4562 4563 (void) rw_unlock(&ztest_name_lock); 4564 } 4565 4566 /* ARGSUSED */ 4567 void 4568 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4569 { 4570 nvlist_t *props = NULL; 4571 4572 (void) rw_rdlock(&ztest_name_lock); 4573 4574 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4575 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4576 4577 VERIFY0(spa_prop_get(ztest_spa, &props)); 4578 4579 if (ztest_opts.zo_verbose >= 6) 4580 dump_nvlist(props, 4); 4581 4582 nvlist_free(props); 4583 4584 (void) rw_unlock(&ztest_name_lock); 4585 } 4586 4587 static int 4588 user_release_one(const char *snapname, const char *holdname) 4589 { 4590 nvlist_t *snaps, *holds; 4591 int error; 4592 4593 snaps = fnvlist_alloc(); 4594 holds = fnvlist_alloc(); 4595 fnvlist_add_boolean(holds, holdname); 4596 fnvlist_add_nvlist(snaps, snapname, holds); 4597 fnvlist_free(holds); 4598 error = dsl_dataset_user_release(snaps, NULL); 4599 fnvlist_free(snaps); 4600 return (error); 4601 } 4602 4603 /* 4604 * Test snapshot hold/release and deferred destroy. 4605 */ 4606 void 4607 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4608 { 4609 int error; 4610 objset_t *os = zd->zd_os; 4611 objset_t *origin; 4612 char snapname[100]; 4613 char fullname[100]; 4614 char clonename[100]; 4615 char tag[100]; 4616 char osname[MAXNAMELEN]; 4617 nvlist_t *holds; 4618 4619 (void) rw_rdlock(&ztest_name_lock); 4620 4621 dmu_objset_name(os, osname); 4622 4623 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4624 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4625 (void) snprintf(clonename, sizeof (clonename), 4626 "%s/ch1_%llu", osname, id); 4627 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4628 4629 /* 4630 * Clean up from any previous run. 4631 */ 4632 error = dsl_destroy_head(clonename); 4633 if (error != ENOENT) 4634 ASSERT0(error); 4635 error = user_release_one(fullname, tag); 4636 if (error != ESRCH && error != ENOENT) 4637 ASSERT0(error); 4638 error = dsl_destroy_snapshot(fullname, B_FALSE); 4639 if (error != ENOENT) 4640 ASSERT0(error); 4641 4642 /* 4643 * Create snapshot, clone it, mark snap for deferred destroy, 4644 * destroy clone, verify snap was also destroyed. 4645 */ 4646 error = dmu_objset_snapshot_one(osname, snapname); 4647 if (error) { 4648 if (error == ENOSPC) { 4649 ztest_record_enospc("dmu_objset_snapshot"); 4650 goto out; 4651 } 4652 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4653 } 4654 4655 error = dmu_objset_clone(clonename, fullname); 4656 if (error) { 4657 if (error == ENOSPC) { 4658 ztest_record_enospc("dmu_objset_clone"); 4659 goto out; 4660 } 4661 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4662 } 4663 4664 error = dsl_destroy_snapshot(fullname, B_TRUE); 4665 if (error) { 4666 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4667 fullname, error); 4668 } 4669 4670 error = dsl_destroy_head(clonename); 4671 if (error) 4672 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4673 4674 error = dmu_objset_hold(fullname, FTAG, &origin); 4675 if (error != ENOENT) 4676 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4677 4678 /* 4679 * Create snapshot, add temporary hold, verify that we can't 4680 * destroy a held snapshot, mark for deferred destroy, 4681 * release hold, verify snapshot was destroyed. 4682 */ 4683 error = dmu_objset_snapshot_one(osname, snapname); 4684 if (error) { 4685 if (error == ENOSPC) { 4686 ztest_record_enospc("dmu_objset_snapshot"); 4687 goto out; 4688 } 4689 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4690 } 4691 4692 holds = fnvlist_alloc(); 4693 fnvlist_add_string(holds, fullname, tag); 4694 error = dsl_dataset_user_hold(holds, 0, NULL); 4695 fnvlist_free(holds); 4696 4697 if (error) 4698 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4699 4700 error = dsl_destroy_snapshot(fullname, B_FALSE); 4701 if (error != EBUSY) { 4702 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4703 fullname, error); 4704 } 4705 4706 error = dsl_destroy_snapshot(fullname, B_TRUE); 4707 if (error) { 4708 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4709 fullname, error); 4710 } 4711 4712 error = user_release_one(fullname, tag); 4713 if (error) 4714 fatal(0, "user_release_one(%s)", fullname, tag); 4715 4716 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4717 4718 out: 4719 (void) rw_unlock(&ztest_name_lock); 4720 } 4721 4722 /* 4723 * Inject random faults into the on-disk data. 4724 */ 4725 /* ARGSUSED */ 4726 void 4727 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4728 { 4729 ztest_shared_t *zs = ztest_shared; 4730 spa_t *spa = ztest_spa; 4731 int fd; 4732 uint64_t offset; 4733 uint64_t leaves; 4734 uint64_t bad = 0x1990c0ffeedecade; 4735 uint64_t top, leaf; 4736 char path0[MAXPATHLEN]; 4737 char pathrand[MAXPATHLEN]; 4738 size_t fsize; 4739 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4740 int iters = 1000; 4741 int maxfaults; 4742 int mirror_save; 4743 vdev_t *vd0 = NULL; 4744 uint64_t guid0 = 0; 4745 boolean_t islog = B_FALSE; 4746 4747 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4748 maxfaults = MAXFAULTS(); 4749 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4750 mirror_save = zs->zs_mirrors; 4751 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4752 4753 ASSERT(leaves >= 1); 4754 4755 /* 4756 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4757 */ 4758 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4759 4760 if (ztest_random(2) == 0) { 4761 /* 4762 * Inject errors on a normal data device or slog device. 4763 */ 4764 top = ztest_random_vdev_top(spa, B_TRUE); 4765 leaf = ztest_random(leaves) + zs->zs_splits; 4766 4767 /* 4768 * Generate paths to the first leaf in this top-level vdev, 4769 * and to the random leaf we selected. We'll induce transient 4770 * write failures and random online/offline activity on leaf 0, 4771 * and we'll write random garbage to the randomly chosen leaf. 4772 */ 4773 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4774 ztest_opts.zo_dir, ztest_opts.zo_pool, 4775 top * leaves + zs->zs_splits); 4776 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4777 ztest_opts.zo_dir, ztest_opts.zo_pool, 4778 top * leaves + leaf); 4779 4780 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4781 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4782 islog = B_TRUE; 4783 4784 if (vd0 != NULL && maxfaults != 1) { 4785 /* 4786 * Make vd0 explicitly claim to be unreadable, 4787 * or unwriteable, or reach behind its back 4788 * and close the underlying fd. We can do this if 4789 * maxfaults == 0 because we'll fail and reexecute, 4790 * and we can do it if maxfaults >= 2 because we'll 4791 * have enough redundancy. If maxfaults == 1, the 4792 * combination of this with injection of random data 4793 * corruption below exceeds the pool's fault tolerance. 4794 */ 4795 vdev_file_t *vf = vd0->vdev_tsd; 4796 4797 if (vf != NULL && ztest_random(3) == 0) { 4798 (void) close(vf->vf_vnode->v_fd); 4799 vf->vf_vnode->v_fd = -1; 4800 } else if (ztest_random(2) == 0) { 4801 vd0->vdev_cant_read = B_TRUE; 4802 } else { 4803 vd0->vdev_cant_write = B_TRUE; 4804 } 4805 guid0 = vd0->vdev_guid; 4806 } 4807 } else { 4808 /* 4809 * Inject errors on an l2cache device. 4810 */ 4811 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4812 4813 if (sav->sav_count == 0) { 4814 spa_config_exit(spa, SCL_STATE, FTAG); 4815 return; 4816 } 4817 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4818 guid0 = vd0->vdev_guid; 4819 (void) strcpy(path0, vd0->vdev_path); 4820 (void) strcpy(pathrand, vd0->vdev_path); 4821 4822 leaf = 0; 4823 leaves = 1; 4824 maxfaults = INT_MAX; /* no limit on cache devices */ 4825 } 4826 4827 spa_config_exit(spa, SCL_STATE, FTAG); 4828 4829 /* 4830 * If we can tolerate two or more faults, or we're dealing 4831 * with a slog, randomly online/offline vd0. 4832 */ 4833 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4834 if (ztest_random(10) < 6) { 4835 int flags = (ztest_random(2) == 0 ? 4836 ZFS_OFFLINE_TEMPORARY : 0); 4837 4838 /* 4839 * We have to grab the zs_name_lock as writer to 4840 * prevent a race between offlining a slog and 4841 * destroying a dataset. Offlining the slog will 4842 * grab a reference on the dataset which may cause 4843 * dmu_objset_destroy() to fail with EBUSY thus 4844 * leaving the dataset in an inconsistent state. 4845 */ 4846 if (islog) 4847 (void) rw_wrlock(&ztest_name_lock); 4848 4849 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4850 4851 if (islog) 4852 (void) rw_unlock(&ztest_name_lock); 4853 } else { 4854 /* 4855 * Ideally we would like to be able to randomly 4856 * call vdev_[on|off]line without holding locks 4857 * to force unpredictable failures but the side 4858 * effects of vdev_[on|off]line prevent us from 4859 * doing so. We grab the ztest_vdev_lock here to 4860 * prevent a race between injection testing and 4861 * aux_vdev removal. 4862 */ 4863 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4864 (void) vdev_online(spa, guid0, 0, NULL); 4865 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4866 } 4867 } 4868 4869 if (maxfaults == 0) 4870 return; 4871 4872 /* 4873 * We have at least single-fault tolerance, so inject data corruption. 4874 */ 4875 fd = open(pathrand, O_RDWR); 4876 4877 if (fd == -1) /* we hit a gap in the device namespace */ 4878 return; 4879 4880 fsize = lseek(fd, 0, SEEK_END); 4881 4882 while (--iters != 0) { 4883 offset = ztest_random(fsize / (leaves << bshift)) * 4884 (leaves << bshift) + (leaf << bshift) + 4885 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4886 4887 if (offset >= fsize) 4888 continue; 4889 4890 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4891 if (mirror_save != zs->zs_mirrors) { 4892 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4893 (void) close(fd); 4894 return; 4895 } 4896 4897 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4898 fatal(1, "can't inject bad word at 0x%llx in %s", 4899 offset, pathrand); 4900 4901 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4902 4903 if (ztest_opts.zo_verbose >= 7) 4904 (void) printf("injected bad word into %s," 4905 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4906 } 4907 4908 (void) close(fd); 4909 } 4910 4911 /* 4912 * Verify that DDT repair works as expected. 4913 */ 4914 void 4915 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4916 { 4917 ztest_shared_t *zs = ztest_shared; 4918 spa_t *spa = ztest_spa; 4919 objset_t *os = zd->zd_os; 4920 ztest_od_t od[1]; 4921 uint64_t object, blocksize, txg, pattern, psize; 4922 enum zio_checksum checksum = spa_dedup_checksum(spa); 4923 dmu_buf_t *db; 4924 dmu_tx_t *tx; 4925 void *buf; 4926 blkptr_t blk; 4927 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4928 4929 blocksize = ztest_random_blocksize(); 4930 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4931 4932 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4933 4934 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4935 return; 4936 4937 /* 4938 * Take the name lock as writer to prevent anyone else from changing 4939 * the pool and dataset properies we need to maintain during this test. 4940 */ 4941 (void) rw_wrlock(&ztest_name_lock); 4942 4943 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4944 B_FALSE) != 0 || 4945 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4946 B_FALSE) != 0) { 4947 (void) rw_unlock(&ztest_name_lock); 4948 return; 4949 } 4950 4951 object = od[0].od_object; 4952 blocksize = od[0].od_blocksize; 4953 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4954 4955 ASSERT(object != 0); 4956 4957 tx = dmu_tx_create(os); 4958 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4959 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4960 if (txg == 0) { 4961 (void) rw_unlock(&ztest_name_lock); 4962 return; 4963 } 4964 4965 /* 4966 * Write all the copies of our block. 4967 */ 4968 for (int i = 0; i < copies; i++) { 4969 uint64_t offset = i * blocksize; 4970 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 4971 DMU_READ_NO_PREFETCH); 4972 if (error != 0) { 4973 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 4974 os, (long long)object, (long long) offset, error); 4975 } 4976 ASSERT(db->db_offset == offset); 4977 ASSERT(db->db_size == blocksize); 4978 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4979 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4980 dmu_buf_will_fill(db, tx); 4981 ztest_pattern_set(db->db_data, db->db_size, pattern); 4982 dmu_buf_rele(db, FTAG); 4983 } 4984 4985 dmu_tx_commit(tx); 4986 txg_wait_synced(spa_get_dsl(spa), txg); 4987 4988 /* 4989 * Find out what block we got. 4990 */ 4991 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 4992 DMU_READ_NO_PREFETCH)); 4993 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4994 dmu_buf_rele(db, FTAG); 4995 4996 /* 4997 * Damage the block. Dedup-ditto will save us when we read it later. 4998 */ 4999 psize = BP_GET_PSIZE(&blk); 5000 buf = zio_buf_alloc(psize); 5001 ztest_pattern_set(buf, psize, ~pattern); 5002 5003 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5004 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5005 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5006 5007 zio_buf_free(buf, psize); 5008 5009 (void) rw_unlock(&ztest_name_lock); 5010 } 5011 5012 /* 5013 * Scrub the pool. 5014 */ 5015 /* ARGSUSED */ 5016 void 5017 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5018 { 5019 spa_t *spa = ztest_spa; 5020 5021 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5022 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5023 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5024 } 5025 5026 /* 5027 * Change the guid for the pool. 5028 */ 5029 /* ARGSUSED */ 5030 void 5031 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5032 { 5033 spa_t *spa = ztest_spa; 5034 uint64_t orig, load; 5035 int error; 5036 5037 orig = spa_guid(spa); 5038 load = spa_load_guid(spa); 5039 5040 (void) rw_wrlock(&ztest_name_lock); 5041 error = spa_change_guid(spa); 5042 (void) rw_unlock(&ztest_name_lock); 5043 5044 if (error != 0) 5045 return; 5046 5047 if (ztest_opts.zo_verbose >= 4) { 5048 (void) printf("Changed guid old %llu -> %llu\n", 5049 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5050 } 5051 5052 VERIFY3U(orig, !=, spa_guid(spa)); 5053 VERIFY3U(load, ==, spa_load_guid(spa)); 5054 } 5055 5056 /* 5057 * Rename the pool to a different name and then rename it back. 5058 */ 5059 /* ARGSUSED */ 5060 void 5061 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5062 { 5063 char *oldname, *newname; 5064 spa_t *spa; 5065 5066 (void) rw_wrlock(&ztest_name_lock); 5067 5068 oldname = ztest_opts.zo_pool; 5069 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5070 (void) strcpy(newname, oldname); 5071 (void) strcat(newname, "_tmp"); 5072 5073 /* 5074 * Do the rename 5075 */ 5076 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5077 5078 /* 5079 * Try to open it under the old name, which shouldn't exist 5080 */ 5081 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5082 5083 /* 5084 * Open it under the new name and make sure it's still the same spa_t. 5085 */ 5086 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5087 5088 ASSERT(spa == ztest_spa); 5089 spa_close(spa, FTAG); 5090 5091 /* 5092 * Rename it back to the original 5093 */ 5094 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5095 5096 /* 5097 * Make sure it can still be opened 5098 */ 5099 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5100 5101 ASSERT(spa == ztest_spa); 5102 spa_close(spa, FTAG); 5103 5104 umem_free(newname, strlen(newname) + 1); 5105 5106 (void) rw_unlock(&ztest_name_lock); 5107 } 5108 5109 /* 5110 * Verify pool integrity by running zdb. 5111 */ 5112 static void 5113 ztest_run_zdb(char *pool) 5114 { 5115 int status; 5116 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5117 char zbuf[1024]; 5118 char *bin; 5119 char *ztest; 5120 char *isa; 5121 int isalen; 5122 FILE *fp; 5123 5124 (void) realpath(getexecname(), zdb); 5125 5126 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5127 bin = strstr(zdb, "/usr/bin/"); 5128 ztest = strstr(bin, "/ztest"); 5129 isa = bin + 8; 5130 isalen = ztest - isa; 5131 isa = strdup(isa); 5132 /* LINTED */ 5133 (void) sprintf(bin, 5134 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 5135 isalen, 5136 isa, 5137 ztest_opts.zo_verbose >= 3 ? "s" : "", 5138 ztest_opts.zo_verbose >= 4 ? "v" : "", 5139 spa_config_path, 5140 pool); 5141 free(isa); 5142 5143 if (ztest_opts.zo_verbose >= 5) 5144 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5145 5146 fp = popen(zdb, "r"); 5147 5148 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5149 if (ztest_opts.zo_verbose >= 3) 5150 (void) printf("%s", zbuf); 5151 5152 status = pclose(fp); 5153 5154 if (status == 0) 5155 return; 5156 5157 ztest_dump_core = 0; 5158 if (WIFEXITED(status)) 5159 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5160 else 5161 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5162 } 5163 5164 static void 5165 ztest_walk_pool_directory(char *header) 5166 { 5167 spa_t *spa = NULL; 5168 5169 if (ztest_opts.zo_verbose >= 6) 5170 (void) printf("%s\n", header); 5171 5172 mutex_enter(&spa_namespace_lock); 5173 while ((spa = spa_next(spa)) != NULL) 5174 if (ztest_opts.zo_verbose >= 6) 5175 (void) printf("\t%s\n", spa_name(spa)); 5176 mutex_exit(&spa_namespace_lock); 5177 } 5178 5179 static void 5180 ztest_spa_import_export(char *oldname, char *newname) 5181 { 5182 nvlist_t *config, *newconfig; 5183 uint64_t pool_guid; 5184 spa_t *spa; 5185 int error; 5186 5187 if (ztest_opts.zo_verbose >= 4) { 5188 (void) printf("import/export: old = %s, new = %s\n", 5189 oldname, newname); 5190 } 5191 5192 /* 5193 * Clean up from previous runs. 5194 */ 5195 (void) spa_destroy(newname); 5196 5197 /* 5198 * Get the pool's configuration and guid. 5199 */ 5200 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5201 5202 /* 5203 * Kick off a scrub to tickle scrub/export races. 5204 */ 5205 if (ztest_random(2) == 0) 5206 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5207 5208 pool_guid = spa_guid(spa); 5209 spa_close(spa, FTAG); 5210 5211 ztest_walk_pool_directory("pools before export"); 5212 5213 /* 5214 * Export it. 5215 */ 5216 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5217 5218 ztest_walk_pool_directory("pools after export"); 5219 5220 /* 5221 * Try to import it. 5222 */ 5223 newconfig = spa_tryimport(config); 5224 ASSERT(newconfig != NULL); 5225 nvlist_free(newconfig); 5226 5227 /* 5228 * Import it under the new name. 5229 */ 5230 error = spa_import(newname, config, NULL, 0); 5231 if (error != 0) { 5232 dump_nvlist(config, 0); 5233 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5234 oldname, newname, error); 5235 } 5236 5237 ztest_walk_pool_directory("pools after import"); 5238 5239 /* 5240 * Try to import it again -- should fail with EEXIST. 5241 */ 5242 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5243 5244 /* 5245 * Try to import it under a different name -- should fail with EEXIST. 5246 */ 5247 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5248 5249 /* 5250 * Verify that the pool is no longer visible under the old name. 5251 */ 5252 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5253 5254 /* 5255 * Verify that we can open and close the pool using the new name. 5256 */ 5257 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5258 ASSERT(pool_guid == spa_guid(spa)); 5259 spa_close(spa, FTAG); 5260 5261 nvlist_free(config); 5262 } 5263 5264 static void 5265 ztest_resume(spa_t *spa) 5266 { 5267 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5268 (void) printf("resuming from suspended state\n"); 5269 spa_vdev_state_enter(spa, SCL_NONE); 5270 vdev_clear(spa, NULL); 5271 (void) spa_vdev_state_exit(spa, NULL, 0); 5272 (void) zio_resume(spa); 5273 } 5274 5275 static void * 5276 ztest_resume_thread(void *arg) 5277 { 5278 spa_t *spa = arg; 5279 5280 while (!ztest_exiting) { 5281 if (spa_suspended(spa)) 5282 ztest_resume(spa); 5283 (void) poll(NULL, 0, 100); 5284 } 5285 return (NULL); 5286 } 5287 5288 static void * 5289 ztest_deadman_thread(void *arg) 5290 { 5291 ztest_shared_t *zs = arg; 5292 int grace = 300; 5293 hrtime_t delta; 5294 5295 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 5296 5297 (void) poll(NULL, 0, (int)(1000 * delta)); 5298 5299 fatal(0, "failed to complete within %d seconds of deadline", grace); 5300 5301 return (NULL); 5302 } 5303 5304 static void 5305 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5306 { 5307 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5308 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5309 hrtime_t functime = gethrtime(); 5310 5311 for (int i = 0; i < zi->zi_iters; i++) 5312 zi->zi_func(zd, id); 5313 5314 functime = gethrtime() - functime; 5315 5316 atomic_add_64(&zc->zc_count, 1); 5317 atomic_add_64(&zc->zc_time, functime); 5318 5319 if (ztest_opts.zo_verbose >= 4) { 5320 Dl_info dli; 5321 (void) dladdr((void *)zi->zi_func, &dli); 5322 (void) printf("%6.2f sec in %s\n", 5323 (double)functime / NANOSEC, dli.dli_sname); 5324 } 5325 } 5326 5327 static void * 5328 ztest_thread(void *arg) 5329 { 5330 int rand; 5331 uint64_t id = (uintptr_t)arg; 5332 ztest_shared_t *zs = ztest_shared; 5333 uint64_t call_next; 5334 hrtime_t now; 5335 ztest_info_t *zi; 5336 ztest_shared_callstate_t *zc; 5337 5338 while ((now = gethrtime()) < zs->zs_thread_stop) { 5339 /* 5340 * See if it's time to force a crash. 5341 */ 5342 if (now > zs->zs_thread_kill) 5343 ztest_kill(zs); 5344 5345 /* 5346 * If we're getting ENOSPC with some regularity, stop. 5347 */ 5348 if (zs->zs_enospc_count > 10) 5349 break; 5350 5351 /* 5352 * Pick a random function to execute. 5353 */ 5354 rand = ztest_random(ZTEST_FUNCS); 5355 zi = &ztest_info[rand]; 5356 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5357 call_next = zc->zc_next; 5358 5359 if (now >= call_next && 5360 atomic_cas_64(&zc->zc_next, call_next, call_next + 5361 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5362 ztest_execute(rand, zi, id); 5363 } 5364 } 5365 5366 return (NULL); 5367 } 5368 5369 static void 5370 ztest_dataset_name(char *dsname, char *pool, int d) 5371 { 5372 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5373 } 5374 5375 static void 5376 ztest_dataset_destroy(int d) 5377 { 5378 char name[MAXNAMELEN]; 5379 5380 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5381 5382 if (ztest_opts.zo_verbose >= 3) 5383 (void) printf("Destroying %s to free up space\n", name); 5384 5385 /* 5386 * Cleanup any non-standard clones and snapshots. In general, 5387 * ztest thread t operates on dataset (t % zopt_datasets), 5388 * so there may be more than one thing to clean up. 5389 */ 5390 for (int t = d; t < ztest_opts.zo_threads; 5391 t += ztest_opts.zo_datasets) { 5392 ztest_dsl_dataset_cleanup(name, t); 5393 } 5394 5395 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5396 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5397 } 5398 5399 static void 5400 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5401 { 5402 uint64_t usedobjs, dirobjs, scratch; 5403 5404 /* 5405 * ZTEST_DIROBJ is the object directory for the entire dataset. 5406 * Therefore, the number of objects in use should equal the 5407 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5408 * If not, we have an object leak. 5409 * 5410 * Note that we can only check this in ztest_dataset_open(), 5411 * when the open-context and syncing-context values agree. 5412 * That's because zap_count() returns the open-context value, 5413 * while dmu_objset_space() returns the rootbp fill count. 5414 */ 5415 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5416 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5417 ASSERT3U(dirobjs + 1, ==, usedobjs); 5418 } 5419 5420 static int 5421 ztest_dataset_open(int d) 5422 { 5423 ztest_ds_t *zd = &ztest_ds[d]; 5424 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5425 objset_t *os; 5426 zilog_t *zilog; 5427 char name[MAXNAMELEN]; 5428 int error; 5429 5430 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5431 5432 (void) rw_rdlock(&ztest_name_lock); 5433 5434 error = ztest_dataset_create(name); 5435 if (error == ENOSPC) { 5436 (void) rw_unlock(&ztest_name_lock); 5437 ztest_record_enospc(FTAG); 5438 return (error); 5439 } 5440 ASSERT(error == 0 || error == EEXIST); 5441 5442 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5443 (void) rw_unlock(&ztest_name_lock); 5444 5445 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5446 5447 zilog = zd->zd_zilog; 5448 5449 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5450 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5451 fatal(0, "missing log records: claimed %llu < committed %llu", 5452 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5453 5454 ztest_dataset_dirobj_verify(zd); 5455 5456 zil_replay(os, zd, ztest_replay_vector); 5457 5458 ztest_dataset_dirobj_verify(zd); 5459 5460 if (ztest_opts.zo_verbose >= 6) 5461 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5462 zd->zd_name, 5463 (u_longlong_t)zilog->zl_parse_blk_count, 5464 (u_longlong_t)zilog->zl_parse_lr_count, 5465 (u_longlong_t)zilog->zl_replaying_seq); 5466 5467 zilog = zil_open(os, ztest_get_data); 5468 5469 if (zilog->zl_replaying_seq != 0 && 5470 zilog->zl_replaying_seq < committed_seq) 5471 fatal(0, "missing log records: replayed %llu < committed %llu", 5472 zilog->zl_replaying_seq, committed_seq); 5473 5474 return (0); 5475 } 5476 5477 static void 5478 ztest_dataset_close(int d) 5479 { 5480 ztest_ds_t *zd = &ztest_ds[d]; 5481 5482 zil_close(zd->zd_zilog); 5483 dmu_objset_disown(zd->zd_os, zd); 5484 5485 ztest_zd_fini(zd); 5486 } 5487 5488 /* 5489 * Kick off threads to run tests on all datasets in parallel. 5490 */ 5491 static void 5492 ztest_run(ztest_shared_t *zs) 5493 { 5494 thread_t *tid; 5495 spa_t *spa; 5496 objset_t *os; 5497 thread_t resume_tid; 5498 int error; 5499 5500 ztest_exiting = B_FALSE; 5501 5502 /* 5503 * Initialize parent/child shared state. 5504 */ 5505 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5506 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5507 5508 zs->zs_thread_start = gethrtime(); 5509 zs->zs_thread_stop = 5510 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5511 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5512 zs->zs_thread_kill = zs->zs_thread_stop; 5513 if (ztest_random(100) < ztest_opts.zo_killrate) { 5514 zs->zs_thread_kill -= 5515 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5516 } 5517 5518 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5519 5520 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5521 offsetof(ztest_cb_data_t, zcd_node)); 5522 5523 /* 5524 * Open our pool. 5525 */ 5526 kernel_init(FREAD | FWRITE); 5527 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5528 spa->spa_debug = B_TRUE; 5529 ztest_spa = spa; 5530 5531 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5532 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5533 zs->zs_guid = dmu_objset_fsid_guid(os); 5534 dmu_objset_disown(os, FTAG); 5535 5536 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5537 5538 /* 5539 * We don't expect the pool to suspend unless maxfaults == 0, 5540 * in which case ztest_fault_inject() temporarily takes away 5541 * the only valid replica. 5542 */ 5543 if (MAXFAULTS() == 0) 5544 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5545 else 5546 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5547 5548 /* 5549 * Create a thread to periodically resume suspended I/O. 5550 */ 5551 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5552 &resume_tid) == 0); 5553 5554 /* 5555 * Create a deadman thread to abort() if we hang. 5556 */ 5557 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5558 NULL) == 0); 5559 5560 /* 5561 * Verify that we can safely inquire about about any object, 5562 * whether it's allocated or not. To make it interesting, 5563 * we probe a 5-wide window around each power of two. 5564 * This hits all edge cases, including zero and the max. 5565 */ 5566 for (int t = 0; t < 64; t++) { 5567 for (int d = -5; d <= 5; d++) { 5568 error = dmu_object_info(spa->spa_meta_objset, 5569 (1ULL << t) + d, NULL); 5570 ASSERT(error == 0 || error == ENOENT || 5571 error == EINVAL); 5572 } 5573 } 5574 5575 /* 5576 * If we got any ENOSPC errors on the previous run, destroy something. 5577 */ 5578 if (zs->zs_enospc_count != 0) { 5579 int d = ztest_random(ztest_opts.zo_datasets); 5580 ztest_dataset_destroy(d); 5581 } 5582 zs->zs_enospc_count = 0; 5583 5584 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5585 UMEM_NOFAIL); 5586 5587 if (ztest_opts.zo_verbose >= 4) 5588 (void) printf("starting main threads...\n"); 5589 5590 /* 5591 * Kick off all the tests that run in parallel. 5592 */ 5593 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5594 if (t < ztest_opts.zo_datasets && 5595 ztest_dataset_open(t) != 0) 5596 return; 5597 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5598 THR_BOUND, &tid[t]) == 0); 5599 } 5600 5601 /* 5602 * Wait for all of the tests to complete. We go in reverse order 5603 * so we don't close datasets while threads are still using them. 5604 */ 5605 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5606 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5607 if (t < ztest_opts.zo_datasets) 5608 ztest_dataset_close(t); 5609 } 5610 5611 txg_wait_synced(spa_get_dsl(spa), 0); 5612 5613 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5614 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5615 5616 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5617 5618 /* Kill the resume thread */ 5619 ztest_exiting = B_TRUE; 5620 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5621 ztest_resume(spa); 5622 5623 /* 5624 * Right before closing the pool, kick off a bunch of async I/O; 5625 * spa_close() should wait for it to complete. 5626 */ 5627 for (uint64_t object = 1; object < 50; object++) 5628 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5629 5630 spa_close(spa, FTAG); 5631 5632 /* 5633 * Verify that we can loop over all pools. 5634 */ 5635 mutex_enter(&spa_namespace_lock); 5636 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5637 if (ztest_opts.zo_verbose > 3) 5638 (void) printf("spa_next: found %s\n", spa_name(spa)); 5639 mutex_exit(&spa_namespace_lock); 5640 5641 /* 5642 * Verify that we can export the pool and reimport it under a 5643 * different name. 5644 */ 5645 if (ztest_random(2) == 0) { 5646 char name[MAXNAMELEN]; 5647 (void) snprintf(name, MAXNAMELEN, "%s_import", 5648 ztest_opts.zo_pool); 5649 ztest_spa_import_export(ztest_opts.zo_pool, name); 5650 ztest_spa_import_export(name, ztest_opts.zo_pool); 5651 } 5652 5653 kernel_fini(); 5654 5655 list_destroy(&zcl.zcl_callbacks); 5656 5657 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5658 5659 (void) rwlock_destroy(&ztest_name_lock); 5660 (void) _mutex_destroy(&ztest_vdev_lock); 5661 } 5662 5663 static void 5664 ztest_freeze(void) 5665 { 5666 ztest_ds_t *zd = &ztest_ds[0]; 5667 spa_t *spa; 5668 int numloops = 0; 5669 5670 if (ztest_opts.zo_verbose >= 3) 5671 (void) printf("testing spa_freeze()...\n"); 5672 5673 kernel_init(FREAD | FWRITE); 5674 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5675 VERIFY3U(0, ==, ztest_dataset_open(0)); 5676 spa->spa_debug = B_TRUE; 5677 ztest_spa = spa; 5678 5679 /* 5680 * Force the first log block to be transactionally allocated. 5681 * We have to do this before we freeze the pool -- otherwise 5682 * the log chain won't be anchored. 5683 */ 5684 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5685 ztest_dmu_object_alloc_free(zd, 0); 5686 zil_commit(zd->zd_zilog, 0); 5687 } 5688 5689 txg_wait_synced(spa_get_dsl(spa), 0); 5690 5691 /* 5692 * Freeze the pool. This stops spa_sync() from doing anything, 5693 * so that the only way to record changes from now on is the ZIL. 5694 */ 5695 spa_freeze(spa); 5696 5697 /* 5698 * Run tests that generate log records but don't alter the pool config 5699 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5700 * We do a txg_wait_synced() after each iteration to force the txg 5701 * to increase well beyond the last synced value in the uberblock. 5702 * The ZIL should be OK with that. 5703 */ 5704 while (ztest_random(10) != 0 && 5705 numloops++ < ztest_opts.zo_maxloops) { 5706 ztest_dmu_write_parallel(zd, 0); 5707 ztest_dmu_object_alloc_free(zd, 0); 5708 txg_wait_synced(spa_get_dsl(spa), 0); 5709 } 5710 5711 /* 5712 * Commit all of the changes we just generated. 5713 */ 5714 zil_commit(zd->zd_zilog, 0); 5715 txg_wait_synced(spa_get_dsl(spa), 0); 5716 5717 /* 5718 * Close our dataset and close the pool. 5719 */ 5720 ztest_dataset_close(0); 5721 spa_close(spa, FTAG); 5722 kernel_fini(); 5723 5724 /* 5725 * Open and close the pool and dataset to induce log replay. 5726 */ 5727 kernel_init(FREAD | FWRITE); 5728 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5729 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5730 VERIFY3U(0, ==, ztest_dataset_open(0)); 5731 ztest_dataset_close(0); 5732 5733 spa->spa_debug = B_TRUE; 5734 ztest_spa = spa; 5735 txg_wait_synced(spa_get_dsl(spa), 0); 5736 ztest_reguid(NULL, 0); 5737 5738 spa_close(spa, FTAG); 5739 kernel_fini(); 5740 } 5741 5742 void 5743 print_time(hrtime_t t, char *timebuf) 5744 { 5745 hrtime_t s = t / NANOSEC; 5746 hrtime_t m = s / 60; 5747 hrtime_t h = m / 60; 5748 hrtime_t d = h / 24; 5749 5750 s -= m * 60; 5751 m -= h * 60; 5752 h -= d * 24; 5753 5754 timebuf[0] = '\0'; 5755 5756 if (d) 5757 (void) sprintf(timebuf, 5758 "%llud%02lluh%02llum%02llus", d, h, m, s); 5759 else if (h) 5760 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5761 else if (m) 5762 (void) sprintf(timebuf, "%llum%02llus", m, s); 5763 else 5764 (void) sprintf(timebuf, "%llus", s); 5765 } 5766 5767 static nvlist_t * 5768 make_random_props() 5769 { 5770 nvlist_t *props; 5771 5772 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5773 if (ztest_random(2) == 0) 5774 return (props); 5775 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5776 5777 return (props); 5778 } 5779 5780 /* 5781 * Create a storage pool with the given name and initial vdev size. 5782 * Then test spa_freeze() functionality. 5783 */ 5784 static void 5785 ztest_init(ztest_shared_t *zs) 5786 { 5787 spa_t *spa; 5788 nvlist_t *nvroot, *props; 5789 5790 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5791 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5792 5793 kernel_init(FREAD | FWRITE); 5794 5795 /* 5796 * Create the storage pool. 5797 */ 5798 (void) spa_destroy(ztest_opts.zo_pool); 5799 ztest_shared->zs_vdev_next_leaf = 0; 5800 zs->zs_splits = 0; 5801 zs->zs_mirrors = ztest_opts.zo_mirrors; 5802 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5803 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5804 props = make_random_props(); 5805 for (int i = 0; i < SPA_FEATURES; i++) { 5806 char buf[1024]; 5807 (void) snprintf(buf, sizeof (buf), "feature@%s", 5808 spa_feature_table[i].fi_uname); 5809 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5810 } 5811 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5812 nvlist_free(nvroot); 5813 5814 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5815 zs->zs_metaslab_sz = 5816 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5817 5818 spa_close(spa, FTAG); 5819 5820 kernel_fini(); 5821 5822 ztest_run_zdb(ztest_opts.zo_pool); 5823 5824 ztest_freeze(); 5825 5826 ztest_run_zdb(ztest_opts.zo_pool); 5827 5828 (void) rwlock_destroy(&ztest_name_lock); 5829 (void) _mutex_destroy(&ztest_vdev_lock); 5830 } 5831 5832 static void 5833 setup_data_fd(void) 5834 { 5835 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5836 5837 ztest_fd_data = mkstemp(ztest_name_data); 5838 ASSERT3S(ztest_fd_data, >=, 0); 5839 (void) unlink(ztest_name_data); 5840 } 5841 5842 5843 static int 5844 shared_data_size(ztest_shared_hdr_t *hdr) 5845 { 5846 int size; 5847 5848 size = hdr->zh_hdr_size; 5849 size += hdr->zh_opts_size; 5850 size += hdr->zh_size; 5851 size += hdr->zh_stats_size * hdr->zh_stats_count; 5852 size += hdr->zh_ds_size * hdr->zh_ds_count; 5853 5854 return (size); 5855 } 5856 5857 static void 5858 setup_hdr(void) 5859 { 5860 int size; 5861 ztest_shared_hdr_t *hdr; 5862 5863 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5864 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5865 ASSERT(hdr != MAP_FAILED); 5866 5867 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5868 5869 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5870 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5871 hdr->zh_size = sizeof (ztest_shared_t); 5872 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5873 hdr->zh_stats_count = ZTEST_FUNCS; 5874 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5875 hdr->zh_ds_count = ztest_opts.zo_datasets; 5876 5877 size = shared_data_size(hdr); 5878 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5879 5880 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5881 } 5882 5883 static void 5884 setup_data(void) 5885 { 5886 int size, offset; 5887 ztest_shared_hdr_t *hdr; 5888 uint8_t *buf; 5889 5890 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5891 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5892 ASSERT(hdr != MAP_FAILED); 5893 5894 size = shared_data_size(hdr); 5895 5896 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5897 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5898 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5899 ASSERT(hdr != MAP_FAILED); 5900 buf = (uint8_t *)hdr; 5901 5902 offset = hdr->zh_hdr_size; 5903 ztest_shared_opts = (void *)&buf[offset]; 5904 offset += hdr->zh_opts_size; 5905 ztest_shared = (void *)&buf[offset]; 5906 offset += hdr->zh_size; 5907 ztest_shared_callstate = (void *)&buf[offset]; 5908 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5909 ztest_shared_ds = (void *)&buf[offset]; 5910 } 5911 5912 static boolean_t 5913 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5914 { 5915 pid_t pid; 5916 int status; 5917 char *cmdbuf = NULL; 5918 5919 pid = fork(); 5920 5921 if (cmd == NULL) { 5922 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5923 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5924 cmd = cmdbuf; 5925 } 5926 5927 if (pid == -1) 5928 fatal(1, "fork failed"); 5929 5930 if (pid == 0) { /* child */ 5931 char *emptyargv[2] = { cmd, NULL }; 5932 char fd_data_str[12]; 5933 5934 struct rlimit rl = { 1024, 1024 }; 5935 (void) setrlimit(RLIMIT_NOFILE, &rl); 5936 5937 (void) close(ztest_fd_rand); 5938 VERIFY3U(11, >=, 5939 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 5940 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 5941 5942 (void) enable_extended_FILE_stdio(-1, -1); 5943 if (libpath != NULL) 5944 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5945 (void) execv(cmd, emptyargv); 5946 ztest_dump_core = B_FALSE; 5947 fatal(B_TRUE, "exec failed: %s", cmd); 5948 } 5949 5950 if (cmdbuf != NULL) { 5951 umem_free(cmdbuf, MAXPATHLEN); 5952 cmd = NULL; 5953 } 5954 5955 while (waitpid(pid, &status, 0) != pid) 5956 continue; 5957 if (statusp != NULL) 5958 *statusp = status; 5959 5960 if (WIFEXITED(status)) { 5961 if (WEXITSTATUS(status) != 0) { 5962 (void) fprintf(stderr, "child exited with code %d\n", 5963 WEXITSTATUS(status)); 5964 exit(2); 5965 } 5966 return (B_FALSE); 5967 } else if (WIFSIGNALED(status)) { 5968 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 5969 (void) fprintf(stderr, "child died with signal %d\n", 5970 WTERMSIG(status)); 5971 exit(3); 5972 } 5973 return (B_TRUE); 5974 } else { 5975 (void) fprintf(stderr, "something strange happened to child\n"); 5976 exit(4); 5977 /* NOTREACHED */ 5978 } 5979 } 5980 5981 static void 5982 ztest_run_init(void) 5983 { 5984 ztest_shared_t *zs = ztest_shared; 5985 5986 ASSERT(ztest_opts.zo_init != 0); 5987 5988 /* 5989 * Blow away any existing copy of zpool.cache 5990 */ 5991 (void) remove(spa_config_path); 5992 5993 /* 5994 * Create and initialize our storage pool. 5995 */ 5996 for (int i = 1; i <= ztest_opts.zo_init; i++) { 5997 bzero(zs, sizeof (ztest_shared_t)); 5998 if (ztest_opts.zo_verbose >= 3 && 5999 ztest_opts.zo_init != 1) { 6000 (void) printf("ztest_init(), pass %d\n", i); 6001 } 6002 ztest_init(zs); 6003 } 6004 } 6005 6006 int 6007 main(int argc, char **argv) 6008 { 6009 int kills = 0; 6010 int iters = 0; 6011 int older = 0; 6012 int newer = 0; 6013 ztest_shared_t *zs; 6014 ztest_info_t *zi; 6015 ztest_shared_callstate_t *zc; 6016 char timebuf[100]; 6017 char numbuf[6]; 6018 spa_t *spa; 6019 char *cmd; 6020 boolean_t hasalt; 6021 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6022 6023 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6024 6025 dprintf_setup(&argc, argv); 6026 6027 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6028 ASSERT3S(ztest_fd_rand, >=, 0); 6029 6030 if (!fd_data_str) { 6031 process_options(argc, argv); 6032 6033 setup_data_fd(); 6034 setup_hdr(); 6035 setup_data(); 6036 bcopy(&ztest_opts, ztest_shared_opts, 6037 sizeof (*ztest_shared_opts)); 6038 } else { 6039 ztest_fd_data = atoi(fd_data_str); 6040 setup_data(); 6041 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6042 } 6043 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6044 6045 /* Override location of zpool.cache */ 6046 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6047 ztest_opts.zo_dir), !=, -1); 6048 6049 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6050 UMEM_NOFAIL); 6051 zs = ztest_shared; 6052 6053 if (fd_data_str) { 6054 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6055 metaslab_df_alloc_threshold = 6056 zs->zs_metaslab_df_alloc_threshold; 6057 6058 if (zs->zs_do_init) 6059 ztest_run_init(); 6060 else 6061 ztest_run(zs); 6062 exit(0); 6063 } 6064 6065 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6066 6067 if (ztest_opts.zo_verbose >= 1) { 6068 (void) printf("%llu vdevs, %d datasets, %d threads," 6069 " %llu seconds...\n", 6070 (u_longlong_t)ztest_opts.zo_vdevs, 6071 ztest_opts.zo_datasets, 6072 ztest_opts.zo_threads, 6073 (u_longlong_t)ztest_opts.zo_time); 6074 } 6075 6076 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6077 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6078 6079 zs->zs_do_init = B_TRUE; 6080 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6081 if (ztest_opts.zo_verbose >= 1) { 6082 (void) printf("Executing older ztest for " 6083 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6084 } 6085 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6086 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6087 } else { 6088 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6089 } 6090 zs->zs_do_init = B_FALSE; 6091 6092 zs->zs_proc_start = gethrtime(); 6093 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6094 6095 for (int f = 0; f < ZTEST_FUNCS; f++) { 6096 zi = &ztest_info[f]; 6097 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6098 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6099 zc->zc_next = UINT64_MAX; 6100 else 6101 zc->zc_next = zs->zs_proc_start + 6102 ztest_random(2 * zi->zi_interval[0] + 1); 6103 } 6104 6105 /* 6106 * Run the tests in a loop. These tests include fault injection 6107 * to verify that self-healing data works, and forced crashes 6108 * to verify that we never lose on-disk consistency. 6109 */ 6110 while (gethrtime() < zs->zs_proc_stop) { 6111 int status; 6112 boolean_t killed; 6113 6114 /* 6115 * Initialize the workload counters for each function. 6116 */ 6117 for (int f = 0; f < ZTEST_FUNCS; f++) { 6118 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6119 zc->zc_count = 0; 6120 zc->zc_time = 0; 6121 } 6122 6123 /* Set the allocation switch size */ 6124 zs->zs_metaslab_df_alloc_threshold = 6125 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6126 6127 if (!hasalt || ztest_random(2) == 0) { 6128 if (hasalt && ztest_opts.zo_verbose >= 1) { 6129 (void) printf("Executing newer ztest: %s\n", 6130 cmd); 6131 } 6132 newer++; 6133 killed = exec_child(cmd, NULL, B_TRUE, &status); 6134 } else { 6135 if (hasalt && ztest_opts.zo_verbose >= 1) { 6136 (void) printf("Executing older ztest: %s\n", 6137 ztest_opts.zo_alt_ztest); 6138 } 6139 older++; 6140 killed = exec_child(ztest_opts.zo_alt_ztest, 6141 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6142 } 6143 6144 if (killed) 6145 kills++; 6146 iters++; 6147 6148 if (ztest_opts.zo_verbose >= 1) { 6149 hrtime_t now = gethrtime(); 6150 6151 now = MIN(now, zs->zs_proc_stop); 6152 print_time(zs->zs_proc_stop - now, timebuf); 6153 nicenum(zs->zs_space, numbuf); 6154 6155 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6156 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6157 iters, 6158 WIFEXITED(status) ? "Complete" : "SIGKILL", 6159 (u_longlong_t)zs->zs_enospc_count, 6160 100.0 * zs->zs_alloc / zs->zs_space, 6161 numbuf, 6162 100.0 * (now - zs->zs_proc_start) / 6163 (ztest_opts.zo_time * NANOSEC), timebuf); 6164 } 6165 6166 if (ztest_opts.zo_verbose >= 2) { 6167 (void) printf("\nWorkload summary:\n\n"); 6168 (void) printf("%7s %9s %s\n", 6169 "Calls", "Time", "Function"); 6170 (void) printf("%7s %9s %s\n", 6171 "-----", "----", "--------"); 6172 for (int f = 0; f < ZTEST_FUNCS; f++) { 6173 Dl_info dli; 6174 6175 zi = &ztest_info[f]; 6176 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6177 print_time(zc->zc_time, timebuf); 6178 (void) dladdr((void *)zi->zi_func, &dli); 6179 (void) printf("%7llu %9s %s\n", 6180 (u_longlong_t)zc->zc_count, timebuf, 6181 dli.dli_sname); 6182 } 6183 (void) printf("\n"); 6184 } 6185 6186 /* 6187 * It's possible that we killed a child during a rename test, 6188 * in which case we'll have a 'ztest_tmp' pool lying around 6189 * instead of 'ztest'. Do a blind rename in case this happened. 6190 */ 6191 kernel_init(FREAD); 6192 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6193 spa_close(spa, FTAG); 6194 } else { 6195 char tmpname[MAXNAMELEN]; 6196 kernel_fini(); 6197 kernel_init(FREAD | FWRITE); 6198 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6199 ztest_opts.zo_pool); 6200 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6201 } 6202 kernel_fini(); 6203 6204 ztest_run_zdb(ztest_opts.zo_pool); 6205 } 6206 6207 if (ztest_opts.zo_verbose >= 1) { 6208 if (hasalt) { 6209 (void) printf("%d runs of older ztest: %s\n", older, 6210 ztest_opts.zo_alt_ztest); 6211 (void) printf("%d runs of newer ztest: %s\n", newer, 6212 cmd); 6213 } 6214 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6215 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6216 } 6217 6218 umem_free(cmd, MAXNAMELEN); 6219 6220 return (0); 6221 } 6222