1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatibility 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime_ms; 188 extern int metaslab_preload_limit; 189 190 static ztest_shared_opts_t *ztest_shared_opts; 191 static ztest_shared_opts_t ztest_opts; 192 193 typedef struct ztest_shared_ds { 194 uint64_t zd_seq; 195 } ztest_shared_ds_t; 196 197 static ztest_shared_ds_t *ztest_shared_ds; 198 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 199 200 #define BT_MAGIC 0x123456789abcdefULL 201 #define MAXFAULTS() \ 202 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 203 204 enum ztest_io_type { 205 ZTEST_IO_WRITE_TAG, 206 ZTEST_IO_WRITE_PATTERN, 207 ZTEST_IO_WRITE_ZEROES, 208 ZTEST_IO_TRUNCATE, 209 ZTEST_IO_SETATTR, 210 ZTEST_IO_REWRITE, 211 ZTEST_IO_TYPES 212 }; 213 214 typedef struct ztest_block_tag { 215 uint64_t bt_magic; 216 uint64_t bt_objset; 217 uint64_t bt_object; 218 uint64_t bt_offset; 219 uint64_t bt_gen; 220 uint64_t bt_txg; 221 uint64_t bt_crtxg; 222 } ztest_block_tag_t; 223 224 typedef struct bufwad { 225 uint64_t bw_index; 226 uint64_t bw_txg; 227 uint64_t bw_data; 228 } bufwad_t; 229 230 /* 231 * XXX -- fix zfs range locks to be generic so we can use them here. 232 */ 233 typedef enum { 234 RL_READER, 235 RL_WRITER, 236 RL_APPEND 237 } rl_type_t; 238 239 typedef struct rll { 240 void *rll_writer; 241 int rll_readers; 242 mutex_t rll_lock; 243 cond_t rll_cv; 244 } rll_t; 245 246 typedef struct rl { 247 uint64_t rl_object; 248 uint64_t rl_offset; 249 uint64_t rl_size; 250 rll_t *rl_lock; 251 } rl_t; 252 253 #define ZTEST_RANGE_LOCKS 64 254 #define ZTEST_OBJECT_LOCKS 64 255 256 /* 257 * Object descriptor. Used as a template for object lookup/create/remove. 258 */ 259 typedef struct ztest_od { 260 uint64_t od_dir; 261 uint64_t od_object; 262 dmu_object_type_t od_type; 263 dmu_object_type_t od_crtype; 264 uint64_t od_blocksize; 265 uint64_t od_crblocksize; 266 uint64_t od_gen; 267 uint64_t od_crgen; 268 char od_name[MAXNAMELEN]; 269 } ztest_od_t; 270 271 /* 272 * Per-dataset state. 273 */ 274 typedef struct ztest_ds { 275 ztest_shared_ds_t *zd_shared; 276 objset_t *zd_os; 277 rwlock_t zd_zilog_lock; 278 zilog_t *zd_zilog; 279 ztest_od_t *zd_od; /* debugging aid */ 280 char zd_name[MAXNAMELEN]; 281 mutex_t zd_dirobj_lock; 282 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 283 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 284 } ztest_ds_t; 285 286 /* 287 * Per-iteration state. 288 */ 289 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 290 291 typedef struct ztest_info { 292 ztest_func_t *zi_func; /* test function */ 293 uint64_t zi_iters; /* iterations per execution */ 294 uint64_t *zi_interval; /* execute every <interval> seconds */ 295 } ztest_info_t; 296 297 typedef struct ztest_shared_callstate { 298 uint64_t zc_count; /* per-pass count */ 299 uint64_t zc_time; /* per-pass time */ 300 uint64_t zc_next; /* next time to call this function */ 301 } ztest_shared_callstate_t; 302 303 static ztest_shared_callstate_t *ztest_shared_callstate; 304 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 305 306 /* 307 * Note: these aren't static because we want dladdr() to work. 308 */ 309 ztest_func_t ztest_dmu_read_write; 310 ztest_func_t ztest_dmu_write_parallel; 311 ztest_func_t ztest_dmu_object_alloc_free; 312 ztest_func_t ztest_dmu_commit_callbacks; 313 ztest_func_t ztest_zap; 314 ztest_func_t ztest_zap_parallel; 315 ztest_func_t ztest_zil_commit; 316 ztest_func_t ztest_zil_remount; 317 ztest_func_t ztest_dmu_read_write_zcopy; 318 ztest_func_t ztest_dmu_objset_create_destroy; 319 ztest_func_t ztest_dmu_prealloc; 320 ztest_func_t ztest_fzap; 321 ztest_func_t ztest_dmu_snapshot_create_destroy; 322 ztest_func_t ztest_dsl_prop_get_set; 323 ztest_func_t ztest_spa_prop_get_set; 324 ztest_func_t ztest_spa_create_destroy; 325 ztest_func_t ztest_fault_inject; 326 ztest_func_t ztest_ddt_repair; 327 ztest_func_t ztest_dmu_snapshot_hold; 328 ztest_func_t ztest_spa_rename; 329 ztest_func_t ztest_scrub; 330 ztest_func_t ztest_dsl_dataset_promote_busy; 331 ztest_func_t ztest_vdev_attach_detach; 332 ztest_func_t ztest_vdev_LUN_growth; 333 ztest_func_t ztest_vdev_add_remove; 334 ztest_func_t ztest_vdev_aux_add_remove; 335 ztest_func_t ztest_split_pool; 336 ztest_func_t ztest_reguid; 337 ztest_func_t ztest_spa_upgrade; 338 339 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 340 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 341 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 342 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 343 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 344 345 ztest_info_t ztest_info[] = { 346 { ztest_dmu_read_write, 1, &zopt_always }, 347 { ztest_dmu_write_parallel, 10, &zopt_always }, 348 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 349 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 350 { ztest_zap, 30, &zopt_always }, 351 { ztest_zap_parallel, 100, &zopt_always }, 352 { ztest_split_pool, 1, &zopt_always }, 353 { ztest_zil_commit, 1, &zopt_incessant }, 354 { ztest_zil_remount, 1, &zopt_sometimes }, 355 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 356 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 357 { ztest_dsl_prop_get_set, 1, &zopt_often }, 358 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 359 #if 0 360 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 361 #endif 362 { ztest_fzap, 1, &zopt_sometimes }, 363 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 364 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 365 { ztest_fault_inject, 1, &zopt_sometimes }, 366 { ztest_ddt_repair, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 368 { ztest_reguid, 1, &zopt_rarely }, 369 { ztest_spa_rename, 1, &zopt_rarely }, 370 { ztest_scrub, 1, &zopt_rarely }, 371 { ztest_spa_upgrade, 1, &zopt_rarely }, 372 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 373 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 374 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 375 { ztest_vdev_add_remove, 1, 376 &ztest_opts.zo_vdevtime }, 377 { ztest_vdev_aux_add_remove, 1, 378 &ztest_opts.zo_vdevtime }, 379 }; 380 381 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 382 383 /* 384 * The following struct is used to hold a list of uncalled commit callbacks. 385 * The callbacks are ordered by txg number. 386 */ 387 typedef struct ztest_cb_list { 388 mutex_t zcl_callbacks_lock; 389 list_t zcl_callbacks; 390 } ztest_cb_list_t; 391 392 /* 393 * Stuff we need to share writably between parent and child. 394 */ 395 typedef struct ztest_shared { 396 boolean_t zs_do_init; 397 hrtime_t zs_proc_start; 398 hrtime_t zs_proc_stop; 399 hrtime_t zs_thread_start; 400 hrtime_t zs_thread_stop; 401 hrtime_t zs_thread_kill; 402 uint64_t zs_enospc_count; 403 uint64_t zs_vdev_next_leaf; 404 uint64_t zs_vdev_aux; 405 uint64_t zs_alloc; 406 uint64_t zs_space; 407 uint64_t zs_splits; 408 uint64_t zs_mirrors; 409 uint64_t zs_metaslab_sz; 410 uint64_t zs_metaslab_df_alloc_threshold; 411 uint64_t zs_guid; 412 } ztest_shared_t; 413 414 #define ID_PARALLEL -1ULL 415 416 static char ztest_dev_template[] = "%s/%s.%llua"; 417 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 418 ztest_shared_t *ztest_shared; 419 420 static spa_t *ztest_spa = NULL; 421 static ztest_ds_t *ztest_ds; 422 423 static mutex_t ztest_vdev_lock; 424 425 /* 426 * The ztest_name_lock protects the pool and dataset namespace used by 427 * the individual tests. To modify the namespace, consumers must grab 428 * this lock as writer. Grabbing the lock as reader will ensure that the 429 * namespace does not change while the lock is held. 430 */ 431 static rwlock_t ztest_name_lock; 432 433 static boolean_t ztest_dump_core = B_TRUE; 434 static boolean_t ztest_exiting; 435 436 /* Global commit callback list */ 437 static ztest_cb_list_t zcl; 438 439 enum ztest_object { 440 ZTEST_META_DNODE = 0, 441 ZTEST_DIROBJ, 442 ZTEST_OBJECTS 443 }; 444 445 static void usage(boolean_t) __NORETURN; 446 447 /* 448 * These libumem hooks provide a reasonable set of defaults for the allocator's 449 * debugging facilities. 450 */ 451 const char * 452 _umem_debug_init() 453 { 454 return ("default,verbose"); /* $UMEM_DEBUG setting */ 455 } 456 457 const char * 458 _umem_logging_init(void) 459 { 460 return ("fail,contents"); /* $UMEM_LOGGING setting */ 461 } 462 463 #define FATAL_MSG_SZ 1024 464 465 char *fatal_msg; 466 467 static void 468 fatal(int do_perror, char *message, ...) 469 { 470 va_list args; 471 int save_errno = errno; 472 char buf[FATAL_MSG_SZ]; 473 474 (void) fflush(stdout); 475 476 va_start(args, message); 477 (void) sprintf(buf, "ztest: "); 478 /* LINTED */ 479 (void) vsprintf(buf + strlen(buf), message, args); 480 va_end(args); 481 if (do_perror) { 482 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 483 ": %s", strerror(save_errno)); 484 } 485 (void) fprintf(stderr, "%s\n", buf); 486 fatal_msg = buf; /* to ease debugging */ 487 if (ztest_dump_core) 488 abort(); 489 exit(3); 490 } 491 492 static int 493 str2shift(const char *buf) 494 { 495 const char *ends = "BKMGTPEZ"; 496 int i; 497 498 if (buf[0] == '\0') 499 return (0); 500 for (i = 0; i < strlen(ends); i++) { 501 if (toupper(buf[0]) == ends[i]) 502 break; 503 } 504 if (i == strlen(ends)) { 505 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 506 buf); 507 usage(B_FALSE); 508 } 509 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 510 return (10*i); 511 } 512 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 513 usage(B_FALSE); 514 /* NOTREACHED */ 515 } 516 517 static uint64_t 518 nicenumtoull(const char *buf) 519 { 520 char *end; 521 uint64_t val; 522 523 val = strtoull(buf, &end, 0); 524 if (end == buf) { 525 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 526 usage(B_FALSE); 527 } else if (end[0] == '.') { 528 double fval = strtod(buf, &end); 529 fval *= pow(2, str2shift(end)); 530 if (fval > UINT64_MAX) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val = (uint64_t)fval; 536 } else { 537 int shift = str2shift(end); 538 if (shift >= 64 || (val << shift) >> shift != val) { 539 (void) fprintf(stderr, "ztest: value too large: %s\n", 540 buf); 541 usage(B_FALSE); 542 } 543 val <<= shift; 544 } 545 return (val); 546 } 547 548 static void 549 usage(boolean_t requested) 550 { 551 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 552 553 char nice_vdev_size[10]; 554 char nice_gang_bang[10]; 555 FILE *fp = requested ? stdout : stderr; 556 557 nicenum(zo->zo_vdev_size, nice_vdev_size); 558 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 559 560 (void) fprintf(fp, "Usage: %s\n" 561 "\t[-v vdevs (default: %llu)]\n" 562 "\t[-s size_of_each_vdev (default: %s)]\n" 563 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 564 "\t[-m mirror_copies (default: %d)]\n" 565 "\t[-r raidz_disks (default: %d)]\n" 566 "\t[-R raidz_parity (default: %d)]\n" 567 "\t[-d datasets (default: %d)]\n" 568 "\t[-t threads (default: %d)]\n" 569 "\t[-g gang_block_threshold (default: %s)]\n" 570 "\t[-i init_count (default: %d)] initialize pool i times\n" 571 "\t[-k kill_percentage (default: %llu%%)]\n" 572 "\t[-p pool_name (default: %s)]\n" 573 "\t[-f dir (default: %s)] file directory for vdev files\n" 574 "\t[-V] verbose (use multiple times for ever more blather)\n" 575 "\t[-E] use existing pool instead of creating new one\n" 576 "\t[-T time (default: %llu sec)] total run time\n" 577 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 578 "\t[-P passtime (default: %llu sec)] time per pass\n" 579 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 580 "\t[-h] (print help)\n" 581 "", 582 zo->zo_pool, 583 (u_longlong_t)zo->zo_vdevs, /* -v */ 584 nice_vdev_size, /* -s */ 585 zo->zo_ashift, /* -a */ 586 zo->zo_mirrors, /* -m */ 587 zo->zo_raidz, /* -r */ 588 zo->zo_raidz_parity, /* -R */ 589 zo->zo_datasets, /* -d */ 590 zo->zo_threads, /* -t */ 591 nice_gang_bang, /* -g */ 592 zo->zo_init, /* -i */ 593 (u_longlong_t)zo->zo_killrate, /* -k */ 594 zo->zo_pool, /* -p */ 595 zo->zo_dir, /* -f */ 596 (u_longlong_t)zo->zo_time, /* -T */ 597 (u_longlong_t)zo->zo_maxloops, /* -F */ 598 (u_longlong_t)zo->zo_passtime); 599 exit(requested ? 0 : 1); 600 } 601 602 static void 603 process_options(int argc, char **argv) 604 { 605 char *path; 606 ztest_shared_opts_t *zo = &ztest_opts; 607 608 int opt; 609 uint64_t value; 610 char altdir[MAXNAMELEN] = { 0 }; 611 612 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 613 614 while ((opt = getopt(argc, argv, 615 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 616 value = 0; 617 switch (opt) { 618 case 'v': 619 case 's': 620 case 'a': 621 case 'm': 622 case 'r': 623 case 'R': 624 case 'd': 625 case 't': 626 case 'g': 627 case 'i': 628 case 'k': 629 case 'T': 630 case 'P': 631 case 'F': 632 value = nicenumtoull(optarg); 633 } 634 switch (opt) { 635 case 'v': 636 zo->zo_vdevs = value; 637 break; 638 case 's': 639 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 640 break; 641 case 'a': 642 zo->zo_ashift = value; 643 break; 644 case 'm': 645 zo->zo_mirrors = value; 646 break; 647 case 'r': 648 zo->zo_raidz = MAX(1, value); 649 break; 650 case 'R': 651 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 652 break; 653 case 'd': 654 zo->zo_datasets = MAX(1, value); 655 break; 656 case 't': 657 zo->zo_threads = MAX(1, value); 658 break; 659 case 'g': 660 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 661 value); 662 break; 663 case 'i': 664 zo->zo_init = value; 665 break; 666 case 'k': 667 zo->zo_killrate = value; 668 break; 669 case 'p': 670 (void) strlcpy(zo->zo_pool, optarg, 671 sizeof (zo->zo_pool)); 672 break; 673 case 'f': 674 path = realpath(optarg, NULL); 675 if (path == NULL) { 676 (void) fprintf(stderr, "error: %s: %s\n", 677 optarg, strerror(errno)); 678 usage(B_FALSE); 679 } else { 680 (void) strlcpy(zo->zo_dir, path, 681 sizeof (zo->zo_dir)); 682 } 683 break; 684 case 'V': 685 zo->zo_verbose++; 686 break; 687 case 'E': 688 zo->zo_init = 0; 689 break; 690 case 'T': 691 zo->zo_time = value; 692 break; 693 case 'P': 694 zo->zo_passtime = MAX(1, value); 695 break; 696 case 'F': 697 zo->zo_maxloops = MAX(1, value); 698 break; 699 case 'B': 700 (void) strlcpy(altdir, optarg, sizeof (altdir)); 701 break; 702 case 'h': 703 usage(B_TRUE); 704 break; 705 case '?': 706 default: 707 usage(B_FALSE); 708 break; 709 } 710 } 711 712 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 713 714 zo->zo_vdevtime = 715 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 716 UINT64_MAX >> 2); 717 718 if (strlen(altdir) > 0) { 719 char *cmd; 720 char *realaltdir; 721 char *bin; 722 char *ztest; 723 char *isa; 724 int isalen; 725 726 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 729 VERIFY(NULL != realpath(getexecname(), cmd)); 730 if (0 != access(altdir, F_OK)) { 731 ztest_dump_core = B_FALSE; 732 fatal(B_TRUE, "invalid alternate ztest path: %s", 733 altdir); 734 } 735 VERIFY(NULL != realpath(altdir, realaltdir)); 736 737 /* 738 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 739 * We want to extract <isa> to determine if we should use 740 * 32 or 64 bit binaries. 741 */ 742 bin = strstr(cmd, "/usr/bin/"); 743 ztest = strstr(bin, "/ztest"); 744 isa = bin + 9; 745 isalen = ztest - isa; 746 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 747 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 748 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 749 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 750 751 if (0 != access(zo->zo_alt_ztest, X_OK)) { 752 ztest_dump_core = B_FALSE; 753 fatal(B_TRUE, "invalid alternate ztest: %s", 754 zo->zo_alt_ztest); 755 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 756 ztest_dump_core = B_FALSE; 757 fatal(B_TRUE, "invalid alternate lib directory %s", 758 zo->zo_alt_libpath); 759 } 760 761 umem_free(cmd, MAXPATHLEN); 762 umem_free(realaltdir, MAXPATHLEN); 763 } 764 } 765 766 static void 767 ztest_kill(ztest_shared_t *zs) 768 { 769 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 770 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 771 772 /* 773 * Before we kill off ztest, make sure that the config is updated. 774 * See comment above spa_config_sync(). 775 */ 776 mutex_enter(&spa_namespace_lock); 777 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 778 mutex_exit(&spa_namespace_lock); 779 780 zfs_dbgmsg_print(FTAG); 781 (void) kill(getpid(), SIGKILL); 782 } 783 784 static uint64_t 785 ztest_random(uint64_t range) 786 { 787 uint64_t r; 788 789 ASSERT3S(ztest_fd_rand, >=, 0); 790 791 if (range == 0) 792 return (0); 793 794 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 795 fatal(1, "short read from /dev/urandom"); 796 797 return (r % range); 798 } 799 800 /* ARGSUSED */ 801 static void 802 ztest_record_enospc(const char *s) 803 { 804 ztest_shared->zs_enospc_count++; 805 } 806 807 static uint64_t 808 ztest_get_ashift(void) 809 { 810 if (ztest_opts.zo_ashift == 0) 811 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 812 return (ztest_opts.zo_ashift); 813 } 814 815 static nvlist_t * 816 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 817 { 818 char pathbuf[MAXPATHLEN]; 819 uint64_t vdev; 820 nvlist_t *file; 821 822 if (ashift == 0) 823 ashift = ztest_get_ashift(); 824 825 if (path == NULL) { 826 path = pathbuf; 827 828 if (aux != NULL) { 829 vdev = ztest_shared->zs_vdev_aux; 830 (void) snprintf(path, sizeof (pathbuf), 831 ztest_aux_template, ztest_opts.zo_dir, 832 pool == NULL ? ztest_opts.zo_pool : pool, 833 aux, vdev); 834 } else { 835 vdev = ztest_shared->zs_vdev_next_leaf++; 836 (void) snprintf(path, sizeof (pathbuf), 837 ztest_dev_template, ztest_opts.zo_dir, 838 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 839 } 840 } 841 842 if (size != 0) { 843 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 844 if (fd == -1) 845 fatal(1, "can't open %s", path); 846 if (ftruncate(fd, size) != 0) 847 fatal(1, "can't ftruncate %s", path); 848 (void) close(fd); 849 } 850 851 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 852 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 854 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 855 856 return (file); 857 } 858 859 static nvlist_t * 860 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 861 uint64_t ashift, int r) 862 { 863 nvlist_t *raidz, **child; 864 int c; 865 866 if (r < 2) 867 return (make_vdev_file(path, aux, pool, size, ashift)); 868 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 869 870 for (c = 0; c < r; c++) 871 child[c] = make_vdev_file(path, aux, pool, size, ashift); 872 873 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 874 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 875 VDEV_TYPE_RAIDZ) == 0); 876 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 877 ztest_opts.zo_raidz_parity) == 0); 878 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 879 child, r) == 0); 880 881 for (c = 0; c < r; c++) 882 nvlist_free(child[c]); 883 884 umem_free(child, r * sizeof (nvlist_t *)); 885 886 return (raidz); 887 } 888 889 static nvlist_t * 890 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 891 uint64_t ashift, int r, int m) 892 { 893 nvlist_t *mirror, **child; 894 int c; 895 896 if (m < 1) 897 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 898 899 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 900 901 for (c = 0; c < m; c++) 902 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 903 904 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 905 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 906 VDEV_TYPE_MIRROR) == 0); 907 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 908 child, m) == 0); 909 910 for (c = 0; c < m; c++) 911 nvlist_free(child[c]); 912 913 umem_free(child, m * sizeof (nvlist_t *)); 914 915 return (mirror); 916 } 917 918 static nvlist_t * 919 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 920 int log, int r, int m, int t) 921 { 922 nvlist_t *root, **child; 923 int c; 924 925 ASSERT(t > 0); 926 927 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 928 929 for (c = 0; c < t; c++) { 930 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 931 r, m); 932 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 933 log) == 0); 934 } 935 936 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 937 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 938 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 939 child, t) == 0); 940 941 for (c = 0; c < t; c++) 942 nvlist_free(child[c]); 943 944 umem_free(child, t * sizeof (nvlist_t *)); 945 946 return (root); 947 } 948 949 /* 950 * Find a random spa version. Returns back a random spa version in the 951 * range [initial_version, SPA_VERSION_FEATURES]. 952 */ 953 static uint64_t 954 ztest_random_spa_version(uint64_t initial_version) 955 { 956 uint64_t version = initial_version; 957 958 if (version <= SPA_VERSION_BEFORE_FEATURES) { 959 version = version + 960 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 961 } 962 963 if (version > SPA_VERSION_BEFORE_FEATURES) 964 version = SPA_VERSION_FEATURES; 965 966 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 967 return (version); 968 } 969 970 static int 971 ztest_random_blocksize(void) 972 { 973 return (1 << (SPA_MINBLOCKSHIFT + 974 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 975 } 976 977 static int 978 ztest_random_ibshift(void) 979 { 980 return (DN_MIN_INDBLKSHIFT + 981 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 982 } 983 984 static uint64_t 985 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 986 { 987 uint64_t top; 988 vdev_t *rvd = spa->spa_root_vdev; 989 vdev_t *tvd; 990 991 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 992 993 do { 994 top = ztest_random(rvd->vdev_children); 995 tvd = rvd->vdev_child[top]; 996 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 997 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 998 999 return (top); 1000 } 1001 1002 static uint64_t 1003 ztest_random_dsl_prop(zfs_prop_t prop) 1004 { 1005 uint64_t value; 1006 1007 do { 1008 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1009 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1010 1011 return (value); 1012 } 1013 1014 static int 1015 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1016 boolean_t inherit) 1017 { 1018 const char *propname = zfs_prop_to_name(prop); 1019 const char *valname; 1020 char setpoint[MAXPATHLEN]; 1021 uint64_t curval; 1022 int error; 1023 1024 error = dsl_prop_set_int(osname, propname, 1025 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1026 1027 if (error == ENOSPC) { 1028 ztest_record_enospc(FTAG); 1029 return (error); 1030 } 1031 ASSERT0(error); 1032 1033 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1034 1035 if (ztest_opts.zo_verbose >= 6) { 1036 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1037 (void) printf("%s %s = %s at '%s'\n", 1038 osname, propname, valname, setpoint); 1039 } 1040 1041 return (error); 1042 } 1043 1044 static int 1045 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1046 { 1047 spa_t *spa = ztest_spa; 1048 nvlist_t *props = NULL; 1049 int error; 1050 1051 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1052 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1053 1054 error = spa_prop_set(spa, props); 1055 1056 nvlist_free(props); 1057 1058 if (error == ENOSPC) { 1059 ztest_record_enospc(FTAG); 1060 return (error); 1061 } 1062 ASSERT0(error); 1063 1064 return (error); 1065 } 1066 1067 static void 1068 ztest_rll_init(rll_t *rll) 1069 { 1070 rll->rll_writer = NULL; 1071 rll->rll_readers = 0; 1072 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1073 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1074 } 1075 1076 static void 1077 ztest_rll_destroy(rll_t *rll) 1078 { 1079 ASSERT(rll->rll_writer == NULL); 1080 ASSERT(rll->rll_readers == 0); 1081 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1082 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1083 } 1084 1085 static void 1086 ztest_rll_lock(rll_t *rll, rl_type_t type) 1087 { 1088 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1089 1090 if (type == RL_READER) { 1091 while (rll->rll_writer != NULL) 1092 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1093 rll->rll_readers++; 1094 } else { 1095 while (rll->rll_writer != NULL || rll->rll_readers) 1096 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1097 rll->rll_writer = curthread; 1098 } 1099 1100 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1101 } 1102 1103 static void 1104 ztest_rll_unlock(rll_t *rll) 1105 { 1106 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1107 1108 if (rll->rll_writer) { 1109 ASSERT(rll->rll_readers == 0); 1110 rll->rll_writer = NULL; 1111 } else { 1112 ASSERT(rll->rll_readers != 0); 1113 ASSERT(rll->rll_writer == NULL); 1114 rll->rll_readers--; 1115 } 1116 1117 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1118 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1119 1120 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1121 } 1122 1123 static void 1124 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1125 { 1126 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1127 1128 ztest_rll_lock(rll, type); 1129 } 1130 1131 static void 1132 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1133 { 1134 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1135 1136 ztest_rll_unlock(rll); 1137 } 1138 1139 static rl_t * 1140 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1141 uint64_t size, rl_type_t type) 1142 { 1143 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1144 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1145 rl_t *rl; 1146 1147 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1148 rl->rl_object = object; 1149 rl->rl_offset = offset; 1150 rl->rl_size = size; 1151 rl->rl_lock = rll; 1152 1153 ztest_rll_lock(rll, type); 1154 1155 return (rl); 1156 } 1157 1158 static void 1159 ztest_range_unlock(rl_t *rl) 1160 { 1161 rll_t *rll = rl->rl_lock; 1162 1163 ztest_rll_unlock(rll); 1164 1165 umem_free(rl, sizeof (*rl)); 1166 } 1167 1168 static void 1169 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1170 { 1171 zd->zd_os = os; 1172 zd->zd_zilog = dmu_objset_zil(os); 1173 zd->zd_shared = szd; 1174 dmu_objset_name(os, zd->zd_name); 1175 1176 if (zd->zd_shared != NULL) 1177 zd->zd_shared->zd_seq = 0; 1178 1179 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1180 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1181 1182 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1183 ztest_rll_init(&zd->zd_object_lock[l]); 1184 1185 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1186 ztest_rll_init(&zd->zd_range_lock[l]); 1187 } 1188 1189 static void 1190 ztest_zd_fini(ztest_ds_t *zd) 1191 { 1192 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1193 1194 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1195 ztest_rll_destroy(&zd->zd_object_lock[l]); 1196 1197 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1198 ztest_rll_destroy(&zd->zd_range_lock[l]); 1199 } 1200 1201 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1202 1203 static uint64_t 1204 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1205 { 1206 uint64_t txg; 1207 int error; 1208 1209 /* 1210 * Attempt to assign tx to some transaction group. 1211 */ 1212 error = dmu_tx_assign(tx, txg_how); 1213 if (error) { 1214 if (error == ERESTART) { 1215 ASSERT(txg_how == TXG_NOWAIT); 1216 dmu_tx_wait(tx); 1217 } else { 1218 ASSERT3U(error, ==, ENOSPC); 1219 ztest_record_enospc(tag); 1220 } 1221 dmu_tx_abort(tx); 1222 return (0); 1223 } 1224 txg = dmu_tx_get_txg(tx); 1225 ASSERT(txg != 0); 1226 return (txg); 1227 } 1228 1229 static void 1230 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1231 { 1232 uint64_t *ip = buf; 1233 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1234 1235 while (ip < ip_end) 1236 *ip++ = value; 1237 } 1238 1239 static boolean_t 1240 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1241 { 1242 uint64_t *ip = buf; 1243 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1244 uint64_t diff = 0; 1245 1246 while (ip < ip_end) 1247 diff |= (value - *ip++); 1248 1249 return (diff == 0); 1250 } 1251 1252 static void 1253 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1254 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1255 { 1256 bt->bt_magic = BT_MAGIC; 1257 bt->bt_objset = dmu_objset_id(os); 1258 bt->bt_object = object; 1259 bt->bt_offset = offset; 1260 bt->bt_gen = gen; 1261 bt->bt_txg = txg; 1262 bt->bt_crtxg = crtxg; 1263 } 1264 1265 static void 1266 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1267 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1268 { 1269 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1270 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1271 ASSERT3U(bt->bt_object, ==, object); 1272 ASSERT3U(bt->bt_offset, ==, offset); 1273 ASSERT3U(bt->bt_gen, <=, gen); 1274 ASSERT3U(bt->bt_txg, <=, txg); 1275 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1276 } 1277 1278 static ztest_block_tag_t * 1279 ztest_bt_bonus(dmu_buf_t *db) 1280 { 1281 dmu_object_info_t doi; 1282 ztest_block_tag_t *bt; 1283 1284 dmu_object_info_from_db(db, &doi); 1285 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1286 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1287 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1288 1289 return (bt); 1290 } 1291 1292 /* 1293 * ZIL logging ops 1294 */ 1295 1296 #define lrz_type lr_mode 1297 #define lrz_blocksize lr_uid 1298 #define lrz_ibshift lr_gid 1299 #define lrz_bonustype lr_rdev 1300 #define lrz_bonuslen lr_crtime[1] 1301 1302 static void 1303 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1304 { 1305 char *name = (void *)(lr + 1); /* name follows lr */ 1306 size_t namesize = strlen(name) + 1; 1307 itx_t *itx; 1308 1309 if (zil_replaying(zd->zd_zilog, tx)) 1310 return; 1311 1312 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1313 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1314 sizeof (*lr) + namesize - sizeof (lr_t)); 1315 1316 zil_itx_assign(zd->zd_zilog, itx, tx); 1317 } 1318 1319 static void 1320 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1321 { 1322 char *name = (void *)(lr + 1); /* name follows lr */ 1323 size_t namesize = strlen(name) + 1; 1324 itx_t *itx; 1325 1326 if (zil_replaying(zd->zd_zilog, tx)) 1327 return; 1328 1329 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1330 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1331 sizeof (*lr) + namesize - sizeof (lr_t)); 1332 1333 itx->itx_oid = object; 1334 zil_itx_assign(zd->zd_zilog, itx, tx); 1335 } 1336 1337 static void 1338 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1339 { 1340 itx_t *itx; 1341 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1342 1343 if (zil_replaying(zd->zd_zilog, tx)) 1344 return; 1345 1346 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1347 write_state = WR_INDIRECT; 1348 1349 itx = zil_itx_create(TX_WRITE, 1350 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1351 1352 if (write_state == WR_COPIED && 1353 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1354 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1355 zil_itx_destroy(itx); 1356 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1357 write_state = WR_NEED_COPY; 1358 } 1359 itx->itx_private = zd; 1360 itx->itx_wr_state = write_state; 1361 itx->itx_sync = (ztest_random(8) == 0); 1362 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1363 1364 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1365 sizeof (*lr) - sizeof (lr_t)); 1366 1367 zil_itx_assign(zd->zd_zilog, itx, tx); 1368 } 1369 1370 static void 1371 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1372 { 1373 itx_t *itx; 1374 1375 if (zil_replaying(zd->zd_zilog, tx)) 1376 return; 1377 1378 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1379 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1380 sizeof (*lr) - sizeof (lr_t)); 1381 1382 itx->itx_sync = B_FALSE; 1383 zil_itx_assign(zd->zd_zilog, itx, tx); 1384 } 1385 1386 static void 1387 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1388 { 1389 itx_t *itx; 1390 1391 if (zil_replaying(zd->zd_zilog, tx)) 1392 return; 1393 1394 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1395 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1396 sizeof (*lr) - sizeof (lr_t)); 1397 1398 itx->itx_sync = B_FALSE; 1399 zil_itx_assign(zd->zd_zilog, itx, tx); 1400 } 1401 1402 /* 1403 * ZIL replay ops 1404 */ 1405 static int 1406 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1407 { 1408 char *name = (void *)(lr + 1); /* name follows lr */ 1409 objset_t *os = zd->zd_os; 1410 ztest_block_tag_t *bbt; 1411 dmu_buf_t *db; 1412 dmu_tx_t *tx; 1413 uint64_t txg; 1414 int error = 0; 1415 1416 if (byteswap) 1417 byteswap_uint64_array(lr, sizeof (*lr)); 1418 1419 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1420 ASSERT(name[0] != '\0'); 1421 1422 tx = dmu_tx_create(os); 1423 1424 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1425 1426 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1427 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1428 } else { 1429 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1430 } 1431 1432 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1433 if (txg == 0) 1434 return (ENOSPC); 1435 1436 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1437 1438 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1439 if (lr->lr_foid == 0) { 1440 lr->lr_foid = zap_create(os, 1441 lr->lrz_type, lr->lrz_bonustype, 1442 lr->lrz_bonuslen, tx); 1443 } else { 1444 error = zap_create_claim(os, lr->lr_foid, 1445 lr->lrz_type, lr->lrz_bonustype, 1446 lr->lrz_bonuslen, tx); 1447 } 1448 } else { 1449 if (lr->lr_foid == 0) { 1450 lr->lr_foid = dmu_object_alloc(os, 1451 lr->lrz_type, 0, lr->lrz_bonustype, 1452 lr->lrz_bonuslen, tx); 1453 } else { 1454 error = dmu_object_claim(os, lr->lr_foid, 1455 lr->lrz_type, 0, lr->lrz_bonustype, 1456 lr->lrz_bonuslen, tx); 1457 } 1458 } 1459 1460 if (error) { 1461 ASSERT3U(error, ==, EEXIST); 1462 ASSERT(zd->zd_zilog->zl_replay); 1463 dmu_tx_commit(tx); 1464 return (error); 1465 } 1466 1467 ASSERT(lr->lr_foid != 0); 1468 1469 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1470 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1471 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1472 1473 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1474 bbt = ztest_bt_bonus(db); 1475 dmu_buf_will_dirty(db, tx); 1476 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1477 dmu_buf_rele(db, FTAG); 1478 1479 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1480 &lr->lr_foid, tx)); 1481 1482 (void) ztest_log_create(zd, tx, lr); 1483 1484 dmu_tx_commit(tx); 1485 1486 return (0); 1487 } 1488 1489 static int 1490 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1491 { 1492 char *name = (void *)(lr + 1); /* name follows lr */ 1493 objset_t *os = zd->zd_os; 1494 dmu_object_info_t doi; 1495 dmu_tx_t *tx; 1496 uint64_t object, txg; 1497 1498 if (byteswap) 1499 byteswap_uint64_array(lr, sizeof (*lr)); 1500 1501 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1502 ASSERT(name[0] != '\0'); 1503 1504 VERIFY3U(0, ==, 1505 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1506 ASSERT(object != 0); 1507 1508 ztest_object_lock(zd, object, RL_WRITER); 1509 1510 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1511 1512 tx = dmu_tx_create(os); 1513 1514 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1515 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1516 1517 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1518 if (txg == 0) { 1519 ztest_object_unlock(zd, object); 1520 return (ENOSPC); 1521 } 1522 1523 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1524 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1525 } else { 1526 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1527 } 1528 1529 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1530 1531 (void) ztest_log_remove(zd, tx, lr, object); 1532 1533 dmu_tx_commit(tx); 1534 1535 ztest_object_unlock(zd, object); 1536 1537 return (0); 1538 } 1539 1540 static int 1541 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1542 { 1543 objset_t *os = zd->zd_os; 1544 void *data = lr + 1; /* data follows lr */ 1545 uint64_t offset, length; 1546 ztest_block_tag_t *bt = data; 1547 ztest_block_tag_t *bbt; 1548 uint64_t gen, txg, lrtxg, crtxg; 1549 dmu_object_info_t doi; 1550 dmu_tx_t *tx; 1551 dmu_buf_t *db; 1552 arc_buf_t *abuf = NULL; 1553 rl_t *rl; 1554 1555 if (byteswap) 1556 byteswap_uint64_array(lr, sizeof (*lr)); 1557 1558 offset = lr->lr_offset; 1559 length = lr->lr_length; 1560 1561 /* If it's a dmu_sync() block, write the whole block */ 1562 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1563 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1564 if (length < blocksize) { 1565 offset -= offset % blocksize; 1566 length = blocksize; 1567 } 1568 } 1569 1570 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1571 byteswap_uint64_array(bt, sizeof (*bt)); 1572 1573 if (bt->bt_magic != BT_MAGIC) 1574 bt = NULL; 1575 1576 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1577 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1578 1579 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1580 1581 dmu_object_info_from_db(db, &doi); 1582 1583 bbt = ztest_bt_bonus(db); 1584 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1585 gen = bbt->bt_gen; 1586 crtxg = bbt->bt_crtxg; 1587 lrtxg = lr->lr_common.lrc_txg; 1588 1589 tx = dmu_tx_create(os); 1590 1591 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1592 1593 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1594 P2PHASE(offset, length) == 0) 1595 abuf = dmu_request_arcbuf(db, length); 1596 1597 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1598 if (txg == 0) { 1599 if (abuf != NULL) 1600 dmu_return_arcbuf(abuf); 1601 dmu_buf_rele(db, FTAG); 1602 ztest_range_unlock(rl); 1603 ztest_object_unlock(zd, lr->lr_foid); 1604 return (ENOSPC); 1605 } 1606 1607 if (bt != NULL) { 1608 /* 1609 * Usually, verify the old data before writing new data -- 1610 * but not always, because we also want to verify correct 1611 * behavior when the data was not recently read into cache. 1612 */ 1613 ASSERT(offset % doi.doi_data_block_size == 0); 1614 if (ztest_random(4) != 0) { 1615 int prefetch = ztest_random(2) ? 1616 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1617 ztest_block_tag_t rbt; 1618 1619 VERIFY(dmu_read(os, lr->lr_foid, offset, 1620 sizeof (rbt), &rbt, prefetch) == 0); 1621 if (rbt.bt_magic == BT_MAGIC) { 1622 ztest_bt_verify(&rbt, os, lr->lr_foid, 1623 offset, gen, txg, crtxg); 1624 } 1625 } 1626 1627 /* 1628 * Writes can appear to be newer than the bonus buffer because 1629 * the ztest_get_data() callback does a dmu_read() of the 1630 * open-context data, which may be different than the data 1631 * as it was when the write was generated. 1632 */ 1633 if (zd->zd_zilog->zl_replay) { 1634 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1635 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1636 bt->bt_crtxg); 1637 } 1638 1639 /* 1640 * Set the bt's gen/txg to the bonus buffer's gen/txg 1641 * so that all of the usual ASSERTs will work. 1642 */ 1643 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1644 } 1645 1646 if (abuf == NULL) { 1647 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1648 } else { 1649 bcopy(data, abuf->b_data, length); 1650 dmu_assign_arcbuf(db, offset, abuf, tx); 1651 } 1652 1653 (void) ztest_log_write(zd, tx, lr); 1654 1655 dmu_buf_rele(db, FTAG); 1656 1657 dmu_tx_commit(tx); 1658 1659 ztest_range_unlock(rl); 1660 ztest_object_unlock(zd, lr->lr_foid); 1661 1662 return (0); 1663 } 1664 1665 static int 1666 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1667 { 1668 objset_t *os = zd->zd_os; 1669 dmu_tx_t *tx; 1670 uint64_t txg; 1671 rl_t *rl; 1672 1673 if (byteswap) 1674 byteswap_uint64_array(lr, sizeof (*lr)); 1675 1676 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1677 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1678 RL_WRITER); 1679 1680 tx = dmu_tx_create(os); 1681 1682 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1683 1684 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1685 if (txg == 0) { 1686 ztest_range_unlock(rl); 1687 ztest_object_unlock(zd, lr->lr_foid); 1688 return (ENOSPC); 1689 } 1690 1691 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1692 lr->lr_length, tx) == 0); 1693 1694 (void) ztest_log_truncate(zd, tx, lr); 1695 1696 dmu_tx_commit(tx); 1697 1698 ztest_range_unlock(rl); 1699 ztest_object_unlock(zd, lr->lr_foid); 1700 1701 return (0); 1702 } 1703 1704 static int 1705 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1706 { 1707 objset_t *os = zd->zd_os; 1708 dmu_tx_t *tx; 1709 dmu_buf_t *db; 1710 ztest_block_tag_t *bbt; 1711 uint64_t txg, lrtxg, crtxg; 1712 1713 if (byteswap) 1714 byteswap_uint64_array(lr, sizeof (*lr)); 1715 1716 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1717 1718 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1719 1720 tx = dmu_tx_create(os); 1721 dmu_tx_hold_bonus(tx, lr->lr_foid); 1722 1723 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1724 if (txg == 0) { 1725 dmu_buf_rele(db, FTAG); 1726 ztest_object_unlock(zd, lr->lr_foid); 1727 return (ENOSPC); 1728 } 1729 1730 bbt = ztest_bt_bonus(db); 1731 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1732 crtxg = bbt->bt_crtxg; 1733 lrtxg = lr->lr_common.lrc_txg; 1734 1735 if (zd->zd_zilog->zl_replay) { 1736 ASSERT(lr->lr_size != 0); 1737 ASSERT(lr->lr_mode != 0); 1738 ASSERT(lrtxg != 0); 1739 } else { 1740 /* 1741 * Randomly change the size and increment the generation. 1742 */ 1743 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1744 sizeof (*bbt); 1745 lr->lr_mode = bbt->bt_gen + 1; 1746 ASSERT(lrtxg == 0); 1747 } 1748 1749 /* 1750 * Verify that the current bonus buffer is not newer than our txg. 1751 */ 1752 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1753 MAX(txg, lrtxg), crtxg); 1754 1755 dmu_buf_will_dirty(db, tx); 1756 1757 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1758 ASSERT3U(lr->lr_size, <=, db->db_size); 1759 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1760 bbt = ztest_bt_bonus(db); 1761 1762 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1763 1764 dmu_buf_rele(db, FTAG); 1765 1766 (void) ztest_log_setattr(zd, tx, lr); 1767 1768 dmu_tx_commit(tx); 1769 1770 ztest_object_unlock(zd, lr->lr_foid); 1771 1772 return (0); 1773 } 1774 1775 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1776 NULL, /* 0 no such transaction type */ 1777 ztest_replay_create, /* TX_CREATE */ 1778 NULL, /* TX_MKDIR */ 1779 NULL, /* TX_MKXATTR */ 1780 NULL, /* TX_SYMLINK */ 1781 ztest_replay_remove, /* TX_REMOVE */ 1782 NULL, /* TX_RMDIR */ 1783 NULL, /* TX_LINK */ 1784 NULL, /* TX_RENAME */ 1785 ztest_replay_write, /* TX_WRITE */ 1786 ztest_replay_truncate, /* TX_TRUNCATE */ 1787 ztest_replay_setattr, /* TX_SETATTR */ 1788 NULL, /* TX_ACL */ 1789 NULL, /* TX_CREATE_ACL */ 1790 NULL, /* TX_CREATE_ATTR */ 1791 NULL, /* TX_CREATE_ACL_ATTR */ 1792 NULL, /* TX_MKDIR_ACL */ 1793 NULL, /* TX_MKDIR_ATTR */ 1794 NULL, /* TX_MKDIR_ACL_ATTR */ 1795 NULL, /* TX_WRITE2 */ 1796 }; 1797 1798 /* 1799 * ZIL get_data callbacks 1800 */ 1801 1802 static void 1803 ztest_get_done(zgd_t *zgd, int error) 1804 { 1805 ztest_ds_t *zd = zgd->zgd_private; 1806 uint64_t object = zgd->zgd_rl->rl_object; 1807 1808 if (zgd->zgd_db) 1809 dmu_buf_rele(zgd->zgd_db, zgd); 1810 1811 ztest_range_unlock(zgd->zgd_rl); 1812 ztest_object_unlock(zd, object); 1813 1814 if (error == 0 && zgd->zgd_bp) 1815 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1816 1817 umem_free(zgd, sizeof (*zgd)); 1818 } 1819 1820 static int 1821 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1822 { 1823 ztest_ds_t *zd = arg; 1824 objset_t *os = zd->zd_os; 1825 uint64_t object = lr->lr_foid; 1826 uint64_t offset = lr->lr_offset; 1827 uint64_t size = lr->lr_length; 1828 blkptr_t *bp = &lr->lr_blkptr; 1829 uint64_t txg = lr->lr_common.lrc_txg; 1830 uint64_t crtxg; 1831 dmu_object_info_t doi; 1832 dmu_buf_t *db; 1833 zgd_t *zgd; 1834 int error; 1835 1836 ztest_object_lock(zd, object, RL_READER); 1837 error = dmu_bonus_hold(os, object, FTAG, &db); 1838 if (error) { 1839 ztest_object_unlock(zd, object); 1840 return (error); 1841 } 1842 1843 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1844 1845 if (crtxg == 0 || crtxg > txg) { 1846 dmu_buf_rele(db, FTAG); 1847 ztest_object_unlock(zd, object); 1848 return (ENOENT); 1849 } 1850 1851 dmu_object_info_from_db(db, &doi); 1852 dmu_buf_rele(db, FTAG); 1853 db = NULL; 1854 1855 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1856 zgd->zgd_zilog = zd->zd_zilog; 1857 zgd->zgd_private = zd; 1858 1859 if (buf != NULL) { /* immediate write */ 1860 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1861 RL_READER); 1862 1863 error = dmu_read(os, object, offset, size, buf, 1864 DMU_READ_NO_PREFETCH); 1865 ASSERT(error == 0); 1866 } else { 1867 size = doi.doi_data_block_size; 1868 if (ISP2(size)) { 1869 offset = P2ALIGN(offset, size); 1870 } else { 1871 ASSERT(offset < size); 1872 offset = 0; 1873 } 1874 1875 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1876 RL_READER); 1877 1878 error = dmu_buf_hold(os, object, offset, zgd, &db, 1879 DMU_READ_NO_PREFETCH); 1880 1881 if (error == 0) { 1882 blkptr_t *obp = dmu_buf_get_blkptr(db); 1883 if (obp) { 1884 ASSERT(BP_IS_HOLE(bp)); 1885 *bp = *obp; 1886 } 1887 1888 zgd->zgd_db = db; 1889 zgd->zgd_bp = bp; 1890 1891 ASSERT(db->db_offset == offset); 1892 ASSERT(db->db_size == size); 1893 1894 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1895 ztest_get_done, zgd); 1896 1897 if (error == 0) 1898 return (0); 1899 } 1900 } 1901 1902 ztest_get_done(zgd, error); 1903 1904 return (error); 1905 } 1906 1907 static void * 1908 ztest_lr_alloc(size_t lrsize, char *name) 1909 { 1910 char *lr; 1911 size_t namesize = name ? strlen(name) + 1 : 0; 1912 1913 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1914 1915 if (name) 1916 bcopy(name, lr + lrsize, namesize); 1917 1918 return (lr); 1919 } 1920 1921 void 1922 ztest_lr_free(void *lr, size_t lrsize, char *name) 1923 { 1924 size_t namesize = name ? strlen(name) + 1 : 0; 1925 1926 umem_free(lr, lrsize + namesize); 1927 } 1928 1929 /* 1930 * Lookup a bunch of objects. Returns the number of objects not found. 1931 */ 1932 static int 1933 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1934 { 1935 int missing = 0; 1936 int error; 1937 1938 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1939 1940 for (int i = 0; i < count; i++, od++) { 1941 od->od_object = 0; 1942 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1943 sizeof (uint64_t), 1, &od->od_object); 1944 if (error) { 1945 ASSERT(error == ENOENT); 1946 ASSERT(od->od_object == 0); 1947 missing++; 1948 } else { 1949 dmu_buf_t *db; 1950 ztest_block_tag_t *bbt; 1951 dmu_object_info_t doi; 1952 1953 ASSERT(od->od_object != 0); 1954 ASSERT(missing == 0); /* there should be no gaps */ 1955 1956 ztest_object_lock(zd, od->od_object, RL_READER); 1957 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1958 od->od_object, FTAG, &db)); 1959 dmu_object_info_from_db(db, &doi); 1960 bbt = ztest_bt_bonus(db); 1961 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1962 od->od_type = doi.doi_type; 1963 od->od_blocksize = doi.doi_data_block_size; 1964 od->od_gen = bbt->bt_gen; 1965 dmu_buf_rele(db, FTAG); 1966 ztest_object_unlock(zd, od->od_object); 1967 } 1968 } 1969 1970 return (missing); 1971 } 1972 1973 static int 1974 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1975 { 1976 int missing = 0; 1977 1978 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1979 1980 for (int i = 0; i < count; i++, od++) { 1981 if (missing) { 1982 od->od_object = 0; 1983 missing++; 1984 continue; 1985 } 1986 1987 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1988 1989 lr->lr_doid = od->od_dir; 1990 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1991 lr->lrz_type = od->od_crtype; 1992 lr->lrz_blocksize = od->od_crblocksize; 1993 lr->lrz_ibshift = ztest_random_ibshift(); 1994 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1995 lr->lrz_bonuslen = dmu_bonus_max(); 1996 lr->lr_gen = od->od_crgen; 1997 lr->lr_crtime[0] = time(NULL); 1998 1999 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2000 ASSERT(missing == 0); 2001 od->od_object = 0; 2002 missing++; 2003 } else { 2004 od->od_object = lr->lr_foid; 2005 od->od_type = od->od_crtype; 2006 od->od_blocksize = od->od_crblocksize; 2007 od->od_gen = od->od_crgen; 2008 ASSERT(od->od_object != 0); 2009 } 2010 2011 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2012 } 2013 2014 return (missing); 2015 } 2016 2017 static int 2018 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2019 { 2020 int missing = 0; 2021 int error; 2022 2023 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2024 2025 od += count - 1; 2026 2027 for (int i = count - 1; i >= 0; i--, od--) { 2028 if (missing) { 2029 missing++; 2030 continue; 2031 } 2032 2033 /* 2034 * No object was found. 2035 */ 2036 if (od->od_object == 0) 2037 continue; 2038 2039 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2040 2041 lr->lr_doid = od->od_dir; 2042 2043 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2044 ASSERT3U(error, ==, ENOSPC); 2045 missing++; 2046 } else { 2047 od->od_object = 0; 2048 } 2049 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2050 } 2051 2052 return (missing); 2053 } 2054 2055 static int 2056 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2057 void *data) 2058 { 2059 lr_write_t *lr; 2060 int error; 2061 2062 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2063 2064 lr->lr_foid = object; 2065 lr->lr_offset = offset; 2066 lr->lr_length = size; 2067 lr->lr_blkoff = 0; 2068 BP_ZERO(&lr->lr_blkptr); 2069 2070 bcopy(data, lr + 1, size); 2071 2072 error = ztest_replay_write(zd, lr, B_FALSE); 2073 2074 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2075 2076 return (error); 2077 } 2078 2079 static int 2080 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2081 { 2082 lr_truncate_t *lr; 2083 int error; 2084 2085 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2086 2087 lr->lr_foid = object; 2088 lr->lr_offset = offset; 2089 lr->lr_length = size; 2090 2091 error = ztest_replay_truncate(zd, lr, B_FALSE); 2092 2093 ztest_lr_free(lr, sizeof (*lr), NULL); 2094 2095 return (error); 2096 } 2097 2098 static int 2099 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2100 { 2101 lr_setattr_t *lr; 2102 int error; 2103 2104 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2105 2106 lr->lr_foid = object; 2107 lr->lr_size = 0; 2108 lr->lr_mode = 0; 2109 2110 error = ztest_replay_setattr(zd, lr, B_FALSE); 2111 2112 ztest_lr_free(lr, sizeof (*lr), NULL); 2113 2114 return (error); 2115 } 2116 2117 static void 2118 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2119 { 2120 objset_t *os = zd->zd_os; 2121 dmu_tx_t *tx; 2122 uint64_t txg; 2123 rl_t *rl; 2124 2125 txg_wait_synced(dmu_objset_pool(os), 0); 2126 2127 ztest_object_lock(zd, object, RL_READER); 2128 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2129 2130 tx = dmu_tx_create(os); 2131 2132 dmu_tx_hold_write(tx, object, offset, size); 2133 2134 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2135 2136 if (txg != 0) { 2137 dmu_prealloc(os, object, offset, size, tx); 2138 dmu_tx_commit(tx); 2139 txg_wait_synced(dmu_objset_pool(os), txg); 2140 } else { 2141 (void) dmu_free_long_range(os, object, offset, size); 2142 } 2143 2144 ztest_range_unlock(rl); 2145 ztest_object_unlock(zd, object); 2146 } 2147 2148 static void 2149 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2150 { 2151 int err; 2152 ztest_block_tag_t wbt; 2153 dmu_object_info_t doi; 2154 enum ztest_io_type io_type; 2155 uint64_t blocksize; 2156 void *data; 2157 2158 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2159 blocksize = doi.doi_data_block_size; 2160 data = umem_alloc(blocksize, UMEM_NOFAIL); 2161 2162 /* 2163 * Pick an i/o type at random, biased toward writing block tags. 2164 */ 2165 io_type = ztest_random(ZTEST_IO_TYPES); 2166 if (ztest_random(2) == 0) 2167 io_type = ZTEST_IO_WRITE_TAG; 2168 2169 (void) rw_rdlock(&zd->zd_zilog_lock); 2170 2171 switch (io_type) { 2172 2173 case ZTEST_IO_WRITE_TAG: 2174 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2175 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2176 break; 2177 2178 case ZTEST_IO_WRITE_PATTERN: 2179 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2180 if (ztest_random(2) == 0) { 2181 /* 2182 * Induce fletcher2 collisions to ensure that 2183 * zio_ddt_collision() detects and resolves them 2184 * when using fletcher2-verify for deduplication. 2185 */ 2186 ((uint64_t *)data)[0] ^= 1ULL << 63; 2187 ((uint64_t *)data)[4] ^= 1ULL << 63; 2188 } 2189 (void) ztest_write(zd, object, offset, blocksize, data); 2190 break; 2191 2192 case ZTEST_IO_WRITE_ZEROES: 2193 bzero(data, blocksize); 2194 (void) ztest_write(zd, object, offset, blocksize, data); 2195 break; 2196 2197 case ZTEST_IO_TRUNCATE: 2198 (void) ztest_truncate(zd, object, offset, blocksize); 2199 break; 2200 2201 case ZTEST_IO_SETATTR: 2202 (void) ztest_setattr(zd, object); 2203 break; 2204 2205 case ZTEST_IO_REWRITE: 2206 (void) rw_rdlock(&ztest_name_lock); 2207 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2208 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2209 B_FALSE); 2210 VERIFY(err == 0 || err == ENOSPC); 2211 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2212 ZFS_PROP_COMPRESSION, 2213 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2214 B_FALSE); 2215 VERIFY(err == 0 || err == ENOSPC); 2216 (void) rw_unlock(&ztest_name_lock); 2217 2218 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2219 DMU_READ_NO_PREFETCH)); 2220 2221 (void) ztest_write(zd, object, offset, blocksize, data); 2222 break; 2223 } 2224 2225 (void) rw_unlock(&zd->zd_zilog_lock); 2226 2227 umem_free(data, blocksize); 2228 } 2229 2230 /* 2231 * Initialize an object description template. 2232 */ 2233 static void 2234 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2235 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2236 { 2237 od->od_dir = ZTEST_DIROBJ; 2238 od->od_object = 0; 2239 2240 od->od_crtype = type; 2241 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2242 od->od_crgen = gen; 2243 2244 od->od_type = DMU_OT_NONE; 2245 od->od_blocksize = 0; 2246 od->od_gen = 0; 2247 2248 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2249 tag, (int64_t)id, index); 2250 } 2251 2252 /* 2253 * Lookup or create the objects for a test using the od template. 2254 * If the objects do not all exist, or if 'remove' is specified, 2255 * remove any existing objects and create new ones. Otherwise, 2256 * use the existing objects. 2257 */ 2258 static int 2259 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2260 { 2261 int count = size / sizeof (*od); 2262 int rv = 0; 2263 2264 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2265 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2266 (ztest_remove(zd, od, count) != 0 || 2267 ztest_create(zd, od, count) != 0)) 2268 rv = -1; 2269 zd->zd_od = od; 2270 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2271 2272 return (rv); 2273 } 2274 2275 /* ARGSUSED */ 2276 void 2277 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2278 { 2279 zilog_t *zilog = zd->zd_zilog; 2280 2281 (void) rw_rdlock(&zd->zd_zilog_lock); 2282 2283 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2284 2285 /* 2286 * Remember the committed values in zd, which is in parent/child 2287 * shared memory. If we die, the next iteration of ztest_run() 2288 * will verify that the log really does contain this record. 2289 */ 2290 mutex_enter(&zilog->zl_lock); 2291 ASSERT(zd->zd_shared != NULL); 2292 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2293 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2294 mutex_exit(&zilog->zl_lock); 2295 2296 (void) rw_unlock(&zd->zd_zilog_lock); 2297 } 2298 2299 /* 2300 * This function is designed to simulate the operations that occur during a 2301 * mount/unmount operation. We hold the dataset across these operations in an 2302 * attempt to expose any implicit assumptions about ZIL management. 2303 */ 2304 /* ARGSUSED */ 2305 void 2306 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2307 { 2308 objset_t *os = zd->zd_os; 2309 2310 /* 2311 * We grab the zd_dirobj_lock to ensure that no other thread is 2312 * updating the zil (i.e. adding in-memory log records) and the 2313 * zd_zilog_lock to block any I/O. 2314 */ 2315 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2316 (void) rw_wrlock(&zd->zd_zilog_lock); 2317 2318 /* zfsvfs_teardown() */ 2319 zil_close(zd->zd_zilog); 2320 2321 /* zfsvfs_setup() */ 2322 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2323 zil_replay(os, zd, ztest_replay_vector); 2324 2325 (void) rw_unlock(&zd->zd_zilog_lock); 2326 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2327 } 2328 2329 /* 2330 * Verify that we can't destroy an active pool, create an existing pool, 2331 * or create a pool with a bad vdev spec. 2332 */ 2333 /* ARGSUSED */ 2334 void 2335 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2336 { 2337 ztest_shared_opts_t *zo = &ztest_opts; 2338 spa_t *spa; 2339 nvlist_t *nvroot; 2340 2341 /* 2342 * Attempt to create using a bad file. 2343 */ 2344 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2345 VERIFY3U(ENOENT, ==, 2346 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2347 nvlist_free(nvroot); 2348 2349 /* 2350 * Attempt to create using a bad mirror. 2351 */ 2352 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2353 VERIFY3U(ENOENT, ==, 2354 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2355 nvlist_free(nvroot); 2356 2357 /* 2358 * Attempt to create an existing pool. It shouldn't matter 2359 * what's in the nvroot; we should fail with EEXIST. 2360 */ 2361 (void) rw_rdlock(&ztest_name_lock); 2362 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2363 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2364 nvlist_free(nvroot); 2365 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2366 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2367 spa_close(spa, FTAG); 2368 2369 (void) rw_unlock(&ztest_name_lock); 2370 } 2371 2372 /* ARGSUSED */ 2373 void 2374 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2375 { 2376 spa_t *spa; 2377 uint64_t initial_version = SPA_VERSION_INITIAL; 2378 uint64_t version, newversion; 2379 nvlist_t *nvroot, *props; 2380 char *name; 2381 2382 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2383 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2384 2385 /* 2386 * Clean up from previous runs. 2387 */ 2388 (void) spa_destroy(name); 2389 2390 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2391 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2392 2393 /* 2394 * If we're configuring a RAIDZ device then make sure that the 2395 * the initial version is capable of supporting that feature. 2396 */ 2397 switch (ztest_opts.zo_raidz_parity) { 2398 case 0: 2399 case 1: 2400 initial_version = SPA_VERSION_INITIAL; 2401 break; 2402 case 2: 2403 initial_version = SPA_VERSION_RAIDZ2; 2404 break; 2405 case 3: 2406 initial_version = SPA_VERSION_RAIDZ3; 2407 break; 2408 } 2409 2410 /* 2411 * Create a pool with a spa version that can be upgraded. Pick 2412 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2413 */ 2414 do { 2415 version = ztest_random_spa_version(initial_version); 2416 } while (version > SPA_VERSION_BEFORE_FEATURES); 2417 2418 props = fnvlist_alloc(); 2419 fnvlist_add_uint64(props, 2420 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2421 VERIFY0(spa_create(name, nvroot, props, NULL)); 2422 fnvlist_free(nvroot); 2423 fnvlist_free(props); 2424 2425 VERIFY0(spa_open(name, &spa, FTAG)); 2426 VERIFY3U(spa_version(spa), ==, version); 2427 newversion = ztest_random_spa_version(version + 1); 2428 2429 if (ztest_opts.zo_verbose >= 4) { 2430 (void) printf("upgrading spa version from %llu to %llu\n", 2431 (u_longlong_t)version, (u_longlong_t)newversion); 2432 } 2433 2434 spa_upgrade(spa, newversion); 2435 VERIFY3U(spa_version(spa), >, version); 2436 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2437 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2438 spa_close(spa, FTAG); 2439 2440 strfree(name); 2441 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2442 } 2443 2444 static vdev_t * 2445 vdev_lookup_by_path(vdev_t *vd, const char *path) 2446 { 2447 vdev_t *mvd; 2448 2449 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2450 return (vd); 2451 2452 for (int c = 0; c < vd->vdev_children; c++) 2453 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2454 NULL) 2455 return (mvd); 2456 2457 return (NULL); 2458 } 2459 2460 /* 2461 * Find the first available hole which can be used as a top-level. 2462 */ 2463 int 2464 find_vdev_hole(spa_t *spa) 2465 { 2466 vdev_t *rvd = spa->spa_root_vdev; 2467 int c; 2468 2469 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2470 2471 for (c = 0; c < rvd->vdev_children; c++) { 2472 vdev_t *cvd = rvd->vdev_child[c]; 2473 2474 if (cvd->vdev_ishole) 2475 break; 2476 } 2477 return (c); 2478 } 2479 2480 /* 2481 * Verify that vdev_add() works as expected. 2482 */ 2483 /* ARGSUSED */ 2484 void 2485 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2486 { 2487 ztest_shared_t *zs = ztest_shared; 2488 spa_t *spa = ztest_spa; 2489 uint64_t leaves; 2490 uint64_t guid; 2491 nvlist_t *nvroot; 2492 int error; 2493 2494 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2495 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2496 2497 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2498 2499 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2500 2501 /* 2502 * If we have slogs then remove them 1/4 of the time. 2503 */ 2504 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2505 /* 2506 * Grab the guid from the head of the log class rotor. 2507 */ 2508 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2509 2510 spa_config_exit(spa, SCL_VDEV, FTAG); 2511 2512 /* 2513 * We have to grab the zs_name_lock as writer to 2514 * prevent a race between removing a slog (dmu_objset_find) 2515 * and destroying a dataset. Removing the slog will 2516 * grab a reference on the dataset which may cause 2517 * dmu_objset_destroy() to fail with EBUSY thus 2518 * leaving the dataset in an inconsistent state. 2519 */ 2520 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2521 error = spa_vdev_remove(spa, guid, B_FALSE); 2522 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2523 2524 if (error && error != EEXIST) 2525 fatal(0, "spa_vdev_remove() = %d", error); 2526 } else { 2527 spa_config_exit(spa, SCL_VDEV, FTAG); 2528 2529 /* 2530 * Make 1/4 of the devices be log devices. 2531 */ 2532 nvroot = make_vdev_root(NULL, NULL, NULL, 2533 ztest_opts.zo_vdev_size, 0, 2534 ztest_random(4) == 0, ztest_opts.zo_raidz, 2535 zs->zs_mirrors, 1); 2536 2537 error = spa_vdev_add(spa, nvroot); 2538 nvlist_free(nvroot); 2539 2540 if (error == ENOSPC) 2541 ztest_record_enospc("spa_vdev_add"); 2542 else if (error != 0) 2543 fatal(0, "spa_vdev_add() = %d", error); 2544 } 2545 2546 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2547 } 2548 2549 /* 2550 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2551 */ 2552 /* ARGSUSED */ 2553 void 2554 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2555 { 2556 ztest_shared_t *zs = ztest_shared; 2557 spa_t *spa = ztest_spa; 2558 vdev_t *rvd = spa->spa_root_vdev; 2559 spa_aux_vdev_t *sav; 2560 char *aux; 2561 uint64_t guid = 0; 2562 int error; 2563 2564 if (ztest_random(2) == 0) { 2565 sav = &spa->spa_spares; 2566 aux = ZPOOL_CONFIG_SPARES; 2567 } else { 2568 sav = &spa->spa_l2cache; 2569 aux = ZPOOL_CONFIG_L2CACHE; 2570 } 2571 2572 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2573 2574 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2575 2576 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2577 /* 2578 * Pick a random device to remove. 2579 */ 2580 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2581 } else { 2582 /* 2583 * Find an unused device we can add. 2584 */ 2585 zs->zs_vdev_aux = 0; 2586 for (;;) { 2587 char path[MAXPATHLEN]; 2588 int c; 2589 (void) snprintf(path, sizeof (path), ztest_aux_template, 2590 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2591 zs->zs_vdev_aux); 2592 for (c = 0; c < sav->sav_count; c++) 2593 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2594 path) == 0) 2595 break; 2596 if (c == sav->sav_count && 2597 vdev_lookup_by_path(rvd, path) == NULL) 2598 break; 2599 zs->zs_vdev_aux++; 2600 } 2601 } 2602 2603 spa_config_exit(spa, SCL_VDEV, FTAG); 2604 2605 if (guid == 0) { 2606 /* 2607 * Add a new device. 2608 */ 2609 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2610 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2611 error = spa_vdev_add(spa, nvroot); 2612 if (error != 0) 2613 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2614 nvlist_free(nvroot); 2615 } else { 2616 /* 2617 * Remove an existing device. Sometimes, dirty its 2618 * vdev state first to make sure we handle removal 2619 * of devices that have pending state changes. 2620 */ 2621 if (ztest_random(2) == 0) 2622 (void) vdev_online(spa, guid, 0, NULL); 2623 2624 error = spa_vdev_remove(spa, guid, B_FALSE); 2625 if (error != 0 && error != EBUSY) 2626 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2627 } 2628 2629 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2630 } 2631 2632 /* 2633 * split a pool if it has mirror tlvdevs 2634 */ 2635 /* ARGSUSED */ 2636 void 2637 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2638 { 2639 ztest_shared_t *zs = ztest_shared; 2640 spa_t *spa = ztest_spa; 2641 vdev_t *rvd = spa->spa_root_vdev; 2642 nvlist_t *tree, **child, *config, *split, **schild; 2643 uint_t c, children, schildren = 0, lastlogid = 0; 2644 int error = 0; 2645 2646 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2647 2648 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2649 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2650 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2651 return; 2652 } 2653 2654 /* clean up the old pool, if any */ 2655 (void) spa_destroy("splitp"); 2656 2657 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2658 2659 /* generate a config from the existing config */ 2660 mutex_enter(&spa->spa_props_lock); 2661 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2662 &tree) == 0); 2663 mutex_exit(&spa->spa_props_lock); 2664 2665 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2666 &children) == 0); 2667 2668 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2669 for (c = 0; c < children; c++) { 2670 vdev_t *tvd = rvd->vdev_child[c]; 2671 nvlist_t **mchild; 2672 uint_t mchildren; 2673 2674 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2675 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2676 0) == 0); 2677 VERIFY(nvlist_add_string(schild[schildren], 2678 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2679 VERIFY(nvlist_add_uint64(schild[schildren], 2680 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2681 if (lastlogid == 0) 2682 lastlogid = schildren; 2683 ++schildren; 2684 continue; 2685 } 2686 lastlogid = 0; 2687 VERIFY(nvlist_lookup_nvlist_array(child[c], 2688 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2689 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2690 } 2691 2692 /* OK, create a config that can be used to split */ 2693 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2694 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2695 VDEV_TYPE_ROOT) == 0); 2696 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2697 lastlogid != 0 ? lastlogid : schildren) == 0); 2698 2699 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2700 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2701 2702 for (c = 0; c < schildren; c++) 2703 nvlist_free(schild[c]); 2704 free(schild); 2705 nvlist_free(split); 2706 2707 spa_config_exit(spa, SCL_VDEV, FTAG); 2708 2709 (void) rw_wrlock(&ztest_name_lock); 2710 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2711 (void) rw_unlock(&ztest_name_lock); 2712 2713 nvlist_free(config); 2714 2715 if (error == 0) { 2716 (void) printf("successful split - results:\n"); 2717 mutex_enter(&spa_namespace_lock); 2718 show_pool_stats(spa); 2719 show_pool_stats(spa_lookup("splitp")); 2720 mutex_exit(&spa_namespace_lock); 2721 ++zs->zs_splits; 2722 --zs->zs_mirrors; 2723 } 2724 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2725 2726 } 2727 2728 /* 2729 * Verify that we can attach and detach devices. 2730 */ 2731 /* ARGSUSED */ 2732 void 2733 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2734 { 2735 ztest_shared_t *zs = ztest_shared; 2736 spa_t *spa = ztest_spa; 2737 spa_aux_vdev_t *sav = &spa->spa_spares; 2738 vdev_t *rvd = spa->spa_root_vdev; 2739 vdev_t *oldvd, *newvd, *pvd; 2740 nvlist_t *root; 2741 uint64_t leaves; 2742 uint64_t leaf, top; 2743 uint64_t ashift = ztest_get_ashift(); 2744 uint64_t oldguid, pguid; 2745 uint64_t oldsize, newsize; 2746 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2747 int replacing; 2748 int oldvd_has_siblings = B_FALSE; 2749 int newvd_is_spare = B_FALSE; 2750 int oldvd_is_log; 2751 int error, expected_error; 2752 2753 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2754 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2755 2756 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2757 2758 /* 2759 * Decide whether to do an attach or a replace. 2760 */ 2761 replacing = ztest_random(2); 2762 2763 /* 2764 * Pick a random top-level vdev. 2765 */ 2766 top = ztest_random_vdev_top(spa, B_TRUE); 2767 2768 /* 2769 * Pick a random leaf within it. 2770 */ 2771 leaf = ztest_random(leaves); 2772 2773 /* 2774 * Locate this vdev. 2775 */ 2776 oldvd = rvd->vdev_child[top]; 2777 if (zs->zs_mirrors >= 1) { 2778 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2779 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2780 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2781 } 2782 if (ztest_opts.zo_raidz > 1) { 2783 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2784 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2785 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2786 } 2787 2788 /* 2789 * If we're already doing an attach or replace, oldvd may be a 2790 * mirror vdev -- in which case, pick a random child. 2791 */ 2792 while (oldvd->vdev_children != 0) { 2793 oldvd_has_siblings = B_TRUE; 2794 ASSERT(oldvd->vdev_children >= 2); 2795 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2796 } 2797 2798 oldguid = oldvd->vdev_guid; 2799 oldsize = vdev_get_min_asize(oldvd); 2800 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2801 (void) strcpy(oldpath, oldvd->vdev_path); 2802 pvd = oldvd->vdev_parent; 2803 pguid = pvd->vdev_guid; 2804 2805 /* 2806 * If oldvd has siblings, then half of the time, detach it. 2807 */ 2808 if (oldvd_has_siblings && ztest_random(2) == 0) { 2809 spa_config_exit(spa, SCL_VDEV, FTAG); 2810 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2811 if (error != 0 && error != ENODEV && error != EBUSY && 2812 error != ENOTSUP) 2813 fatal(0, "detach (%s) returned %d", oldpath, error); 2814 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2815 return; 2816 } 2817 2818 /* 2819 * For the new vdev, choose with equal probability between the two 2820 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2821 */ 2822 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2823 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2824 newvd_is_spare = B_TRUE; 2825 (void) strcpy(newpath, newvd->vdev_path); 2826 } else { 2827 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2828 ztest_opts.zo_dir, ztest_opts.zo_pool, 2829 top * leaves + leaf); 2830 if (ztest_random(2) == 0) 2831 newpath[strlen(newpath) - 1] = 'b'; 2832 newvd = vdev_lookup_by_path(rvd, newpath); 2833 } 2834 2835 if (newvd) { 2836 newsize = vdev_get_min_asize(newvd); 2837 } else { 2838 /* 2839 * Make newsize a little bigger or smaller than oldsize. 2840 * If it's smaller, the attach should fail. 2841 * If it's larger, and we're doing a replace, 2842 * we should get dynamic LUN growth when we're done. 2843 */ 2844 newsize = 10 * oldsize / (9 + ztest_random(3)); 2845 } 2846 2847 /* 2848 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2849 * unless it's a replace; in that case any non-replacing parent is OK. 2850 * 2851 * If newvd is already part of the pool, it should fail with EBUSY. 2852 * 2853 * If newvd is too small, it should fail with EOVERFLOW. 2854 */ 2855 if (pvd->vdev_ops != &vdev_mirror_ops && 2856 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2857 pvd->vdev_ops == &vdev_replacing_ops || 2858 pvd->vdev_ops == &vdev_spare_ops)) 2859 expected_error = ENOTSUP; 2860 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2861 expected_error = ENOTSUP; 2862 else if (newvd == oldvd) 2863 expected_error = replacing ? 0 : EBUSY; 2864 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2865 expected_error = EBUSY; 2866 else if (newsize < oldsize) 2867 expected_error = EOVERFLOW; 2868 else if (ashift > oldvd->vdev_top->vdev_ashift) 2869 expected_error = EDOM; 2870 else 2871 expected_error = 0; 2872 2873 spa_config_exit(spa, SCL_VDEV, FTAG); 2874 2875 /* 2876 * Build the nvlist describing newpath. 2877 */ 2878 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2879 ashift, 0, 0, 0, 1); 2880 2881 error = spa_vdev_attach(spa, oldguid, root, replacing); 2882 2883 nvlist_free(root); 2884 2885 /* 2886 * If our parent was the replacing vdev, but the replace completed, 2887 * then instead of failing with ENOTSUP we may either succeed, 2888 * fail with ENODEV, or fail with EOVERFLOW. 2889 */ 2890 if (expected_error == ENOTSUP && 2891 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2892 expected_error = error; 2893 2894 /* 2895 * If someone grew the LUN, the replacement may be too small. 2896 */ 2897 if (error == EOVERFLOW || error == EBUSY) 2898 expected_error = error; 2899 2900 /* XXX workaround 6690467 */ 2901 if (error != expected_error && expected_error != EBUSY) { 2902 fatal(0, "attach (%s %llu, %s %llu, %d) " 2903 "returned %d, expected %d", 2904 oldpath, oldsize, newpath, 2905 newsize, replacing, error, expected_error); 2906 } 2907 2908 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2909 } 2910 2911 /* 2912 * Callback function which expands the physical size of the vdev. 2913 */ 2914 vdev_t * 2915 grow_vdev(vdev_t *vd, void *arg) 2916 { 2917 spa_t *spa = vd->vdev_spa; 2918 size_t *newsize = arg; 2919 size_t fsize; 2920 int fd; 2921 2922 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2923 ASSERT(vd->vdev_ops->vdev_op_leaf); 2924 2925 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2926 return (vd); 2927 2928 fsize = lseek(fd, 0, SEEK_END); 2929 (void) ftruncate(fd, *newsize); 2930 2931 if (ztest_opts.zo_verbose >= 6) { 2932 (void) printf("%s grew from %lu to %lu bytes\n", 2933 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2934 } 2935 (void) close(fd); 2936 return (NULL); 2937 } 2938 2939 /* 2940 * Callback function which expands a given vdev by calling vdev_online(). 2941 */ 2942 /* ARGSUSED */ 2943 vdev_t * 2944 online_vdev(vdev_t *vd, void *arg) 2945 { 2946 spa_t *spa = vd->vdev_spa; 2947 vdev_t *tvd = vd->vdev_top; 2948 uint64_t guid = vd->vdev_guid; 2949 uint64_t generation = spa->spa_config_generation + 1; 2950 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2951 int error; 2952 2953 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2954 ASSERT(vd->vdev_ops->vdev_op_leaf); 2955 2956 /* Calling vdev_online will initialize the new metaslabs */ 2957 spa_config_exit(spa, SCL_STATE, spa); 2958 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2959 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2960 2961 /* 2962 * If vdev_online returned an error or the underlying vdev_open 2963 * failed then we abort the expand. The only way to know that 2964 * vdev_open fails is by checking the returned newstate. 2965 */ 2966 if (error || newstate != VDEV_STATE_HEALTHY) { 2967 if (ztest_opts.zo_verbose >= 5) { 2968 (void) printf("Unable to expand vdev, state %llu, " 2969 "error %d\n", (u_longlong_t)newstate, error); 2970 } 2971 return (vd); 2972 } 2973 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2974 2975 /* 2976 * Since we dropped the lock we need to ensure that we're 2977 * still talking to the original vdev. It's possible this 2978 * vdev may have been detached/replaced while we were 2979 * trying to online it. 2980 */ 2981 if (generation != spa->spa_config_generation) { 2982 if (ztest_opts.zo_verbose >= 5) { 2983 (void) printf("vdev configuration has changed, " 2984 "guid %llu, state %llu, expected gen %llu, " 2985 "got gen %llu\n", 2986 (u_longlong_t)guid, 2987 (u_longlong_t)tvd->vdev_state, 2988 (u_longlong_t)generation, 2989 (u_longlong_t)spa->spa_config_generation); 2990 } 2991 return (vd); 2992 } 2993 return (NULL); 2994 } 2995 2996 /* 2997 * Traverse the vdev tree calling the supplied function. 2998 * We continue to walk the tree until we either have walked all 2999 * children or we receive a non-NULL return from the callback. 3000 * If a NULL callback is passed, then we just return back the first 3001 * leaf vdev we encounter. 3002 */ 3003 vdev_t * 3004 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3005 { 3006 if (vd->vdev_ops->vdev_op_leaf) { 3007 if (func == NULL) 3008 return (vd); 3009 else 3010 return (func(vd, arg)); 3011 } 3012 3013 for (uint_t c = 0; c < vd->vdev_children; c++) { 3014 vdev_t *cvd = vd->vdev_child[c]; 3015 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3016 return (cvd); 3017 } 3018 return (NULL); 3019 } 3020 3021 /* 3022 * Verify that dynamic LUN growth works as expected. 3023 */ 3024 /* ARGSUSED */ 3025 void 3026 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3027 { 3028 spa_t *spa = ztest_spa; 3029 vdev_t *vd, *tvd; 3030 metaslab_class_t *mc; 3031 metaslab_group_t *mg; 3032 size_t psize, newsize; 3033 uint64_t top; 3034 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3035 3036 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3037 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3038 3039 top = ztest_random_vdev_top(spa, B_TRUE); 3040 3041 tvd = spa->spa_root_vdev->vdev_child[top]; 3042 mg = tvd->vdev_mg; 3043 mc = mg->mg_class; 3044 old_ms_count = tvd->vdev_ms_count; 3045 old_class_space = metaslab_class_get_space(mc); 3046 3047 /* 3048 * Determine the size of the first leaf vdev associated with 3049 * our top-level device. 3050 */ 3051 vd = vdev_walk_tree(tvd, NULL, NULL); 3052 ASSERT3P(vd, !=, NULL); 3053 ASSERT(vd->vdev_ops->vdev_op_leaf); 3054 3055 psize = vd->vdev_psize; 3056 3057 /* 3058 * We only try to expand the vdev if it's healthy, less than 4x its 3059 * original size, and it has a valid psize. 3060 */ 3061 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3062 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3063 spa_config_exit(spa, SCL_STATE, spa); 3064 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3065 return; 3066 } 3067 ASSERT(psize > 0); 3068 newsize = psize + psize / 8; 3069 ASSERT3U(newsize, >, psize); 3070 3071 if (ztest_opts.zo_verbose >= 6) { 3072 (void) printf("Expanding LUN %s from %lu to %lu\n", 3073 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3074 } 3075 3076 /* 3077 * Growing the vdev is a two step process: 3078 * 1). expand the physical size (i.e. relabel) 3079 * 2). online the vdev to create the new metaslabs 3080 */ 3081 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3082 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3083 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3084 if (ztest_opts.zo_verbose >= 5) { 3085 (void) printf("Could not expand LUN because " 3086 "the vdev configuration changed.\n"); 3087 } 3088 spa_config_exit(spa, SCL_STATE, spa); 3089 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3090 return; 3091 } 3092 3093 spa_config_exit(spa, SCL_STATE, spa); 3094 3095 /* 3096 * Expanding the LUN will update the config asynchronously, 3097 * thus we must wait for the async thread to complete any 3098 * pending tasks before proceeding. 3099 */ 3100 for (;;) { 3101 boolean_t done; 3102 mutex_enter(&spa->spa_async_lock); 3103 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3104 mutex_exit(&spa->spa_async_lock); 3105 if (done) 3106 break; 3107 txg_wait_synced(spa_get_dsl(spa), 0); 3108 (void) poll(NULL, 0, 100); 3109 } 3110 3111 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3112 3113 tvd = spa->spa_root_vdev->vdev_child[top]; 3114 new_ms_count = tvd->vdev_ms_count; 3115 new_class_space = metaslab_class_get_space(mc); 3116 3117 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3118 if (ztest_opts.zo_verbose >= 5) { 3119 (void) printf("Could not verify LUN expansion due to " 3120 "intervening vdev offline or remove.\n"); 3121 } 3122 spa_config_exit(spa, SCL_STATE, spa); 3123 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3124 return; 3125 } 3126 3127 /* 3128 * Make sure we were able to grow the vdev. 3129 */ 3130 if (new_ms_count <= old_ms_count) 3131 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3132 old_ms_count, new_ms_count); 3133 3134 /* 3135 * Make sure we were able to grow the pool. 3136 */ 3137 if (new_class_space <= old_class_space) 3138 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3139 old_class_space, new_class_space); 3140 3141 if (ztest_opts.zo_verbose >= 5) { 3142 char oldnumbuf[6], newnumbuf[6]; 3143 3144 nicenum(old_class_space, oldnumbuf); 3145 nicenum(new_class_space, newnumbuf); 3146 (void) printf("%s grew from %s to %s\n", 3147 spa->spa_name, oldnumbuf, newnumbuf); 3148 } 3149 3150 spa_config_exit(spa, SCL_STATE, spa); 3151 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3152 } 3153 3154 /* 3155 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3156 */ 3157 /* ARGSUSED */ 3158 static void 3159 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3160 { 3161 /* 3162 * Create the objects common to all ztest datasets. 3163 */ 3164 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3165 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3166 } 3167 3168 static int 3169 ztest_dataset_create(char *dsname) 3170 { 3171 uint64_t zilset = ztest_random(100); 3172 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3173 ztest_objset_create_cb, NULL); 3174 3175 if (err || zilset < 80) 3176 return (err); 3177 3178 if (ztest_opts.zo_verbose >= 6) 3179 (void) printf("Setting dataset %s to sync always\n", dsname); 3180 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3181 ZFS_SYNC_ALWAYS, B_FALSE)); 3182 } 3183 3184 /* ARGSUSED */ 3185 static int 3186 ztest_objset_destroy_cb(const char *name, void *arg) 3187 { 3188 objset_t *os; 3189 dmu_object_info_t doi; 3190 int error; 3191 3192 /* 3193 * Verify that the dataset contains a directory object. 3194 */ 3195 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3196 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3197 if (error != ENOENT) { 3198 /* We could have crashed in the middle of destroying it */ 3199 ASSERT0(error); 3200 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3201 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3202 } 3203 dmu_objset_disown(os, FTAG); 3204 3205 /* 3206 * Destroy the dataset. 3207 */ 3208 if (strchr(name, '@') != NULL) { 3209 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3210 } else { 3211 VERIFY0(dsl_destroy_head(name)); 3212 } 3213 return (0); 3214 } 3215 3216 static boolean_t 3217 ztest_snapshot_create(char *osname, uint64_t id) 3218 { 3219 char snapname[MAXNAMELEN]; 3220 int error; 3221 3222 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3223 3224 error = dmu_objset_snapshot_one(osname, snapname); 3225 if (error == ENOSPC) { 3226 ztest_record_enospc(FTAG); 3227 return (B_FALSE); 3228 } 3229 if (error != 0 && error != EEXIST) { 3230 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3231 snapname, error); 3232 } 3233 return (B_TRUE); 3234 } 3235 3236 static boolean_t 3237 ztest_snapshot_destroy(char *osname, uint64_t id) 3238 { 3239 char snapname[MAXNAMELEN]; 3240 int error; 3241 3242 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3243 (u_longlong_t)id); 3244 3245 error = dsl_destroy_snapshot(snapname, B_FALSE); 3246 if (error != 0 && error != ENOENT) 3247 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3248 return (B_TRUE); 3249 } 3250 3251 /* ARGSUSED */ 3252 void 3253 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3254 { 3255 ztest_ds_t zdtmp; 3256 int iters; 3257 int error; 3258 objset_t *os, *os2; 3259 char name[MAXNAMELEN]; 3260 zilog_t *zilog; 3261 3262 (void) rw_rdlock(&ztest_name_lock); 3263 3264 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3265 ztest_opts.zo_pool, (u_longlong_t)id); 3266 3267 /* 3268 * If this dataset exists from a previous run, process its replay log 3269 * half of the time. If we don't replay it, then dmu_objset_destroy() 3270 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3271 */ 3272 if (ztest_random(2) == 0 && 3273 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3274 ztest_zd_init(&zdtmp, NULL, os); 3275 zil_replay(os, &zdtmp, ztest_replay_vector); 3276 ztest_zd_fini(&zdtmp); 3277 dmu_objset_disown(os, FTAG); 3278 } 3279 3280 /* 3281 * There may be an old instance of the dataset we're about to 3282 * create lying around from a previous run. If so, destroy it 3283 * and all of its snapshots. 3284 */ 3285 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3286 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3287 3288 /* 3289 * Verify that the destroyed dataset is no longer in the namespace. 3290 */ 3291 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3292 FTAG, &os)); 3293 3294 /* 3295 * Verify that we can create a new dataset. 3296 */ 3297 error = ztest_dataset_create(name); 3298 if (error) { 3299 if (error == ENOSPC) { 3300 ztest_record_enospc(FTAG); 3301 (void) rw_unlock(&ztest_name_lock); 3302 return; 3303 } 3304 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3305 } 3306 3307 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3308 3309 ztest_zd_init(&zdtmp, NULL, os); 3310 3311 /* 3312 * Open the intent log for it. 3313 */ 3314 zilog = zil_open(os, ztest_get_data); 3315 3316 /* 3317 * Put some objects in there, do a little I/O to them, 3318 * and randomly take a couple of snapshots along the way. 3319 */ 3320 iters = ztest_random(5); 3321 for (int i = 0; i < iters; i++) { 3322 ztest_dmu_object_alloc_free(&zdtmp, id); 3323 if (ztest_random(iters) == 0) 3324 (void) ztest_snapshot_create(name, i); 3325 } 3326 3327 /* 3328 * Verify that we cannot create an existing dataset. 3329 */ 3330 VERIFY3U(EEXIST, ==, 3331 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3332 3333 /* 3334 * Verify that we can hold an objset that is also owned. 3335 */ 3336 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3337 dmu_objset_rele(os2, FTAG); 3338 3339 /* 3340 * Verify that we cannot own an objset that is already owned. 3341 */ 3342 VERIFY3U(EBUSY, ==, 3343 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3344 3345 zil_close(zilog); 3346 dmu_objset_disown(os, FTAG); 3347 ztest_zd_fini(&zdtmp); 3348 3349 (void) rw_unlock(&ztest_name_lock); 3350 } 3351 3352 /* 3353 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3354 */ 3355 void 3356 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3357 { 3358 (void) rw_rdlock(&ztest_name_lock); 3359 (void) ztest_snapshot_destroy(zd->zd_name, id); 3360 (void) ztest_snapshot_create(zd->zd_name, id); 3361 (void) rw_unlock(&ztest_name_lock); 3362 } 3363 3364 /* 3365 * Cleanup non-standard snapshots and clones. 3366 */ 3367 void 3368 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3369 { 3370 char snap1name[MAXNAMELEN]; 3371 char clone1name[MAXNAMELEN]; 3372 char snap2name[MAXNAMELEN]; 3373 char clone2name[MAXNAMELEN]; 3374 char snap3name[MAXNAMELEN]; 3375 int error; 3376 3377 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3378 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3379 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3380 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3381 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3382 3383 error = dsl_destroy_head(clone2name); 3384 if (error && error != ENOENT) 3385 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3386 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3387 if (error && error != ENOENT) 3388 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3389 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3390 if (error && error != ENOENT) 3391 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3392 error = dsl_destroy_head(clone1name); 3393 if (error && error != ENOENT) 3394 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3395 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3396 if (error && error != ENOENT) 3397 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3398 } 3399 3400 /* 3401 * Verify dsl_dataset_promote handles EBUSY 3402 */ 3403 void 3404 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3405 { 3406 objset_t *os; 3407 char snap1name[MAXNAMELEN]; 3408 char clone1name[MAXNAMELEN]; 3409 char snap2name[MAXNAMELEN]; 3410 char clone2name[MAXNAMELEN]; 3411 char snap3name[MAXNAMELEN]; 3412 char *osname = zd->zd_name; 3413 int error; 3414 3415 (void) rw_rdlock(&ztest_name_lock); 3416 3417 ztest_dsl_dataset_cleanup(osname, id); 3418 3419 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3420 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3421 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3422 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3423 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3424 3425 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3426 if (error && error != EEXIST) { 3427 if (error == ENOSPC) { 3428 ztest_record_enospc(FTAG); 3429 goto out; 3430 } 3431 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3432 } 3433 3434 error = dmu_objset_clone(clone1name, snap1name); 3435 if (error) { 3436 if (error == ENOSPC) { 3437 ztest_record_enospc(FTAG); 3438 goto out; 3439 } 3440 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3441 } 3442 3443 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3444 if (error && error != EEXIST) { 3445 if (error == ENOSPC) { 3446 ztest_record_enospc(FTAG); 3447 goto out; 3448 } 3449 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3450 } 3451 3452 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3453 if (error && error != EEXIST) { 3454 if (error == ENOSPC) { 3455 ztest_record_enospc(FTAG); 3456 goto out; 3457 } 3458 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3459 } 3460 3461 error = dmu_objset_clone(clone2name, snap3name); 3462 if (error) { 3463 if (error == ENOSPC) { 3464 ztest_record_enospc(FTAG); 3465 goto out; 3466 } 3467 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3468 } 3469 3470 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3471 if (error) 3472 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3473 error = dsl_dataset_promote(clone2name, NULL); 3474 if (error == ENOSPC) { 3475 dmu_objset_disown(os, FTAG); 3476 ztest_record_enospc(FTAG); 3477 goto out; 3478 } 3479 if (error != EBUSY) 3480 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3481 error); 3482 dmu_objset_disown(os, FTAG); 3483 3484 out: 3485 ztest_dsl_dataset_cleanup(osname, id); 3486 3487 (void) rw_unlock(&ztest_name_lock); 3488 } 3489 3490 /* 3491 * Verify that dmu_object_{alloc,free} work as expected. 3492 */ 3493 void 3494 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3495 { 3496 ztest_od_t od[4]; 3497 int batchsize = sizeof (od) / sizeof (od[0]); 3498 3499 for (int b = 0; b < batchsize; b++) 3500 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3501 3502 /* 3503 * Destroy the previous batch of objects, create a new batch, 3504 * and do some I/O on the new objects. 3505 */ 3506 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3507 return; 3508 3509 while (ztest_random(4 * batchsize) != 0) 3510 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3511 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3512 } 3513 3514 /* 3515 * Verify that dmu_{read,write} work as expected. 3516 */ 3517 void 3518 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3519 { 3520 objset_t *os = zd->zd_os; 3521 ztest_od_t od[2]; 3522 dmu_tx_t *tx; 3523 int i, freeit, error; 3524 uint64_t n, s, txg; 3525 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3526 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3527 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3528 uint64_t regions = 997; 3529 uint64_t stride = 123456789ULL; 3530 uint64_t width = 40; 3531 int free_percent = 5; 3532 3533 /* 3534 * This test uses two objects, packobj and bigobj, that are always 3535 * updated together (i.e. in the same tx) so that their contents are 3536 * in sync and can be compared. Their contents relate to each other 3537 * in a simple way: packobj is a dense array of 'bufwad' structures, 3538 * while bigobj is a sparse array of the same bufwads. Specifically, 3539 * for any index n, there are three bufwads that should be identical: 3540 * 3541 * packobj, at offset n * sizeof (bufwad_t) 3542 * bigobj, at the head of the nth chunk 3543 * bigobj, at the tail of the nth chunk 3544 * 3545 * The chunk size is arbitrary. It doesn't have to be a power of two, 3546 * and it doesn't have any relation to the object blocksize. 3547 * The only requirement is that it can hold at least two bufwads. 3548 * 3549 * Normally, we write the bufwad to each of these locations. 3550 * However, free_percent of the time we instead write zeroes to 3551 * packobj and perform a dmu_free_range() on bigobj. By comparing 3552 * bigobj to packobj, we can verify that the DMU is correctly 3553 * tracking which parts of an object are allocated and free, 3554 * and that the contents of the allocated blocks are correct. 3555 */ 3556 3557 /* 3558 * Read the directory info. If it's the first time, set things up. 3559 */ 3560 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3561 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3562 3563 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3564 return; 3565 3566 bigobj = od[0].od_object; 3567 packobj = od[1].od_object; 3568 chunksize = od[0].od_gen; 3569 ASSERT(chunksize == od[1].od_gen); 3570 3571 /* 3572 * Prefetch a random chunk of the big object. 3573 * Our aim here is to get some async reads in flight 3574 * for blocks that we may free below; the DMU should 3575 * handle this race correctly. 3576 */ 3577 n = ztest_random(regions) * stride + ztest_random(width); 3578 s = 1 + ztest_random(2 * width - 1); 3579 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3580 3581 /* 3582 * Pick a random index and compute the offsets into packobj and bigobj. 3583 */ 3584 n = ztest_random(regions) * stride + ztest_random(width); 3585 s = 1 + ztest_random(width - 1); 3586 3587 packoff = n * sizeof (bufwad_t); 3588 packsize = s * sizeof (bufwad_t); 3589 3590 bigoff = n * chunksize; 3591 bigsize = s * chunksize; 3592 3593 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3594 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3595 3596 /* 3597 * free_percent of the time, free a range of bigobj rather than 3598 * overwriting it. 3599 */ 3600 freeit = (ztest_random(100) < free_percent); 3601 3602 /* 3603 * Read the current contents of our objects. 3604 */ 3605 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3606 DMU_READ_PREFETCH); 3607 ASSERT0(error); 3608 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3609 DMU_READ_PREFETCH); 3610 ASSERT0(error); 3611 3612 /* 3613 * Get a tx for the mods to both packobj and bigobj. 3614 */ 3615 tx = dmu_tx_create(os); 3616 3617 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3618 3619 if (freeit) 3620 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3621 else 3622 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3623 3624 /* This accounts for setting the checksum/compression. */ 3625 dmu_tx_hold_bonus(tx, bigobj); 3626 3627 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3628 if (txg == 0) { 3629 umem_free(packbuf, packsize); 3630 umem_free(bigbuf, bigsize); 3631 return; 3632 } 3633 3634 enum zio_checksum cksum; 3635 do { 3636 cksum = (enum zio_checksum) 3637 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3638 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3639 dmu_object_set_checksum(os, bigobj, cksum, tx); 3640 3641 enum zio_compress comp; 3642 do { 3643 comp = (enum zio_compress) 3644 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3645 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3646 dmu_object_set_compress(os, bigobj, comp, tx); 3647 3648 /* 3649 * For each index from n to n + s, verify that the existing bufwad 3650 * in packobj matches the bufwads at the head and tail of the 3651 * corresponding chunk in bigobj. Then update all three bufwads 3652 * with the new values we want to write out. 3653 */ 3654 for (i = 0; i < s; i++) { 3655 /* LINTED */ 3656 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3657 /* LINTED */ 3658 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3659 /* LINTED */ 3660 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3661 3662 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3663 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3664 3665 if (pack->bw_txg > txg) 3666 fatal(0, "future leak: got %llx, open txg is %llx", 3667 pack->bw_txg, txg); 3668 3669 if (pack->bw_data != 0 && pack->bw_index != n + i) 3670 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3671 pack->bw_index, n, i); 3672 3673 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3674 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3675 3676 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3677 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3678 3679 if (freeit) { 3680 bzero(pack, sizeof (bufwad_t)); 3681 } else { 3682 pack->bw_index = n + i; 3683 pack->bw_txg = txg; 3684 pack->bw_data = 1 + ztest_random(-2ULL); 3685 } 3686 *bigH = *pack; 3687 *bigT = *pack; 3688 } 3689 3690 /* 3691 * We've verified all the old bufwads, and made new ones. 3692 * Now write them out. 3693 */ 3694 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3695 3696 if (freeit) { 3697 if (ztest_opts.zo_verbose >= 7) { 3698 (void) printf("freeing offset %llx size %llx" 3699 " txg %llx\n", 3700 (u_longlong_t)bigoff, 3701 (u_longlong_t)bigsize, 3702 (u_longlong_t)txg); 3703 } 3704 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3705 } else { 3706 if (ztest_opts.zo_verbose >= 7) { 3707 (void) printf("writing offset %llx size %llx" 3708 " txg %llx\n", 3709 (u_longlong_t)bigoff, 3710 (u_longlong_t)bigsize, 3711 (u_longlong_t)txg); 3712 } 3713 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3714 } 3715 3716 dmu_tx_commit(tx); 3717 3718 /* 3719 * Sanity check the stuff we just wrote. 3720 */ 3721 { 3722 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3723 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3724 3725 VERIFY(0 == dmu_read(os, packobj, packoff, 3726 packsize, packcheck, DMU_READ_PREFETCH)); 3727 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3728 bigsize, bigcheck, DMU_READ_PREFETCH)); 3729 3730 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3731 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3732 3733 umem_free(packcheck, packsize); 3734 umem_free(bigcheck, bigsize); 3735 } 3736 3737 umem_free(packbuf, packsize); 3738 umem_free(bigbuf, bigsize); 3739 } 3740 3741 void 3742 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3743 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3744 { 3745 uint64_t i; 3746 bufwad_t *pack; 3747 bufwad_t *bigH; 3748 bufwad_t *bigT; 3749 3750 /* 3751 * For each index from n to n + s, verify that the existing bufwad 3752 * in packobj matches the bufwads at the head and tail of the 3753 * corresponding chunk in bigobj. Then update all three bufwads 3754 * with the new values we want to write out. 3755 */ 3756 for (i = 0; i < s; i++) { 3757 /* LINTED */ 3758 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3759 /* LINTED */ 3760 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3761 /* LINTED */ 3762 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3763 3764 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3765 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3766 3767 if (pack->bw_txg > txg) 3768 fatal(0, "future leak: got %llx, open txg is %llx", 3769 pack->bw_txg, txg); 3770 3771 if (pack->bw_data != 0 && pack->bw_index != n + i) 3772 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3773 pack->bw_index, n, i); 3774 3775 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3776 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3777 3778 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3779 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3780 3781 pack->bw_index = n + i; 3782 pack->bw_txg = txg; 3783 pack->bw_data = 1 + ztest_random(-2ULL); 3784 3785 *bigH = *pack; 3786 *bigT = *pack; 3787 } 3788 } 3789 3790 void 3791 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3792 { 3793 objset_t *os = zd->zd_os; 3794 ztest_od_t od[2]; 3795 dmu_tx_t *tx; 3796 uint64_t i; 3797 int error; 3798 uint64_t n, s, txg; 3799 bufwad_t *packbuf, *bigbuf; 3800 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3801 uint64_t blocksize = ztest_random_blocksize(); 3802 uint64_t chunksize = blocksize; 3803 uint64_t regions = 997; 3804 uint64_t stride = 123456789ULL; 3805 uint64_t width = 9; 3806 dmu_buf_t *bonus_db; 3807 arc_buf_t **bigbuf_arcbufs; 3808 dmu_object_info_t doi; 3809 3810 /* 3811 * This test uses two objects, packobj and bigobj, that are always 3812 * updated together (i.e. in the same tx) so that their contents are 3813 * in sync and can be compared. Their contents relate to each other 3814 * in a simple way: packobj is a dense array of 'bufwad' structures, 3815 * while bigobj is a sparse array of the same bufwads. Specifically, 3816 * for any index n, there are three bufwads that should be identical: 3817 * 3818 * packobj, at offset n * sizeof (bufwad_t) 3819 * bigobj, at the head of the nth chunk 3820 * bigobj, at the tail of the nth chunk 3821 * 3822 * The chunk size is set equal to bigobj block size so that 3823 * dmu_assign_arcbuf() can be tested for object updates. 3824 */ 3825 3826 /* 3827 * Read the directory info. If it's the first time, set things up. 3828 */ 3829 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3830 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3831 3832 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3833 return; 3834 3835 bigobj = od[0].od_object; 3836 packobj = od[1].od_object; 3837 blocksize = od[0].od_blocksize; 3838 chunksize = blocksize; 3839 ASSERT(chunksize == od[1].od_gen); 3840 3841 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3842 VERIFY(ISP2(doi.doi_data_block_size)); 3843 VERIFY(chunksize == doi.doi_data_block_size); 3844 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3845 3846 /* 3847 * Pick a random index and compute the offsets into packobj and bigobj. 3848 */ 3849 n = ztest_random(regions) * stride + ztest_random(width); 3850 s = 1 + ztest_random(width - 1); 3851 3852 packoff = n * sizeof (bufwad_t); 3853 packsize = s * sizeof (bufwad_t); 3854 3855 bigoff = n * chunksize; 3856 bigsize = s * chunksize; 3857 3858 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3859 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3860 3861 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3862 3863 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3864 3865 /* 3866 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3867 * Iteration 1 test zcopy to already referenced dbufs. 3868 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3869 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3870 * Iteration 4 test zcopy when dbuf is no longer dirty. 3871 * Iteration 5 test zcopy when it can't be done. 3872 * Iteration 6 one more zcopy write. 3873 */ 3874 for (i = 0; i < 7; i++) { 3875 uint64_t j; 3876 uint64_t off; 3877 3878 /* 3879 * In iteration 5 (i == 5) use arcbufs 3880 * that don't match bigobj blksz to test 3881 * dmu_assign_arcbuf() when it can't directly 3882 * assign an arcbuf to a dbuf. 3883 */ 3884 for (j = 0; j < s; j++) { 3885 if (i != 5) { 3886 bigbuf_arcbufs[j] = 3887 dmu_request_arcbuf(bonus_db, chunksize); 3888 } else { 3889 bigbuf_arcbufs[2 * j] = 3890 dmu_request_arcbuf(bonus_db, chunksize / 2); 3891 bigbuf_arcbufs[2 * j + 1] = 3892 dmu_request_arcbuf(bonus_db, chunksize / 2); 3893 } 3894 } 3895 3896 /* 3897 * Get a tx for the mods to both packobj and bigobj. 3898 */ 3899 tx = dmu_tx_create(os); 3900 3901 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3902 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3903 3904 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3905 if (txg == 0) { 3906 umem_free(packbuf, packsize); 3907 umem_free(bigbuf, bigsize); 3908 for (j = 0; j < s; j++) { 3909 if (i != 5) { 3910 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3911 } else { 3912 dmu_return_arcbuf( 3913 bigbuf_arcbufs[2 * j]); 3914 dmu_return_arcbuf( 3915 bigbuf_arcbufs[2 * j + 1]); 3916 } 3917 } 3918 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3919 dmu_buf_rele(bonus_db, FTAG); 3920 return; 3921 } 3922 3923 /* 3924 * 50% of the time don't read objects in the 1st iteration to 3925 * test dmu_assign_arcbuf() for the case when there're no 3926 * existing dbufs for the specified offsets. 3927 */ 3928 if (i != 0 || ztest_random(2) != 0) { 3929 error = dmu_read(os, packobj, packoff, 3930 packsize, packbuf, DMU_READ_PREFETCH); 3931 ASSERT0(error); 3932 error = dmu_read(os, bigobj, bigoff, bigsize, 3933 bigbuf, DMU_READ_PREFETCH); 3934 ASSERT0(error); 3935 } 3936 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3937 n, chunksize, txg); 3938 3939 /* 3940 * We've verified all the old bufwads, and made new ones. 3941 * Now write them out. 3942 */ 3943 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3944 if (ztest_opts.zo_verbose >= 7) { 3945 (void) printf("writing offset %llx size %llx" 3946 " txg %llx\n", 3947 (u_longlong_t)bigoff, 3948 (u_longlong_t)bigsize, 3949 (u_longlong_t)txg); 3950 } 3951 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3952 dmu_buf_t *dbt; 3953 if (i != 5) { 3954 bcopy((caddr_t)bigbuf + (off - bigoff), 3955 bigbuf_arcbufs[j]->b_data, chunksize); 3956 } else { 3957 bcopy((caddr_t)bigbuf + (off - bigoff), 3958 bigbuf_arcbufs[2 * j]->b_data, 3959 chunksize / 2); 3960 bcopy((caddr_t)bigbuf + (off - bigoff) + 3961 chunksize / 2, 3962 bigbuf_arcbufs[2 * j + 1]->b_data, 3963 chunksize / 2); 3964 } 3965 3966 if (i == 1) { 3967 VERIFY(dmu_buf_hold(os, bigobj, off, 3968 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3969 } 3970 if (i != 5) { 3971 dmu_assign_arcbuf(bonus_db, off, 3972 bigbuf_arcbufs[j], tx); 3973 } else { 3974 dmu_assign_arcbuf(bonus_db, off, 3975 bigbuf_arcbufs[2 * j], tx); 3976 dmu_assign_arcbuf(bonus_db, 3977 off + chunksize / 2, 3978 bigbuf_arcbufs[2 * j + 1], tx); 3979 } 3980 if (i == 1) { 3981 dmu_buf_rele(dbt, FTAG); 3982 } 3983 } 3984 dmu_tx_commit(tx); 3985 3986 /* 3987 * Sanity check the stuff we just wrote. 3988 */ 3989 { 3990 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3991 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3992 3993 VERIFY(0 == dmu_read(os, packobj, packoff, 3994 packsize, packcheck, DMU_READ_PREFETCH)); 3995 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3996 bigsize, bigcheck, DMU_READ_PREFETCH)); 3997 3998 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3999 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4000 4001 umem_free(packcheck, packsize); 4002 umem_free(bigcheck, bigsize); 4003 } 4004 if (i == 2) { 4005 txg_wait_open(dmu_objset_pool(os), 0); 4006 } else if (i == 3) { 4007 txg_wait_synced(dmu_objset_pool(os), 0); 4008 } 4009 } 4010 4011 dmu_buf_rele(bonus_db, FTAG); 4012 umem_free(packbuf, packsize); 4013 umem_free(bigbuf, bigsize); 4014 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4015 } 4016 4017 /* ARGSUSED */ 4018 void 4019 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4020 { 4021 ztest_od_t od[1]; 4022 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4023 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4024 4025 /* 4026 * Have multiple threads write to large offsets in an object 4027 * to verify that parallel writes to an object -- even to the 4028 * same blocks within the object -- doesn't cause any trouble. 4029 */ 4030 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4031 4032 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4033 return; 4034 4035 while (ztest_random(10) != 0) 4036 ztest_io(zd, od[0].od_object, offset); 4037 } 4038 4039 void 4040 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4041 { 4042 ztest_od_t od[1]; 4043 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4044 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4045 uint64_t count = ztest_random(20) + 1; 4046 uint64_t blocksize = ztest_random_blocksize(); 4047 void *data; 4048 4049 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4050 4051 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4052 return; 4053 4054 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4055 return; 4056 4057 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4058 4059 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4060 4061 while (ztest_random(count) != 0) { 4062 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4063 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4064 data) != 0) 4065 break; 4066 while (ztest_random(4) != 0) 4067 ztest_io(zd, od[0].od_object, randoff); 4068 } 4069 4070 umem_free(data, blocksize); 4071 } 4072 4073 /* 4074 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4075 */ 4076 #define ZTEST_ZAP_MIN_INTS 1 4077 #define ZTEST_ZAP_MAX_INTS 4 4078 #define ZTEST_ZAP_MAX_PROPS 1000 4079 4080 void 4081 ztest_zap(ztest_ds_t *zd, uint64_t id) 4082 { 4083 objset_t *os = zd->zd_os; 4084 ztest_od_t od[1]; 4085 uint64_t object; 4086 uint64_t txg, last_txg; 4087 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4088 uint64_t zl_ints, zl_intsize, prop; 4089 int i, ints; 4090 dmu_tx_t *tx; 4091 char propname[100], txgname[100]; 4092 int error; 4093 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4094 4095 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4096 4097 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4098 return; 4099 4100 object = od[0].od_object; 4101 4102 /* 4103 * Generate a known hash collision, and verify that 4104 * we can lookup and remove both entries. 4105 */ 4106 tx = dmu_tx_create(os); 4107 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4108 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4109 if (txg == 0) 4110 return; 4111 for (i = 0; i < 2; i++) { 4112 value[i] = i; 4113 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4114 1, &value[i], tx)); 4115 } 4116 for (i = 0; i < 2; i++) { 4117 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4118 sizeof (uint64_t), 1, &value[i], tx)); 4119 VERIFY3U(0, ==, 4120 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4121 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4122 ASSERT3U(zl_ints, ==, 1); 4123 } 4124 for (i = 0; i < 2; i++) { 4125 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4126 } 4127 dmu_tx_commit(tx); 4128 4129 /* 4130 * Generate a buch of random entries. 4131 */ 4132 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4133 4134 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4135 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4136 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4137 bzero(value, sizeof (value)); 4138 last_txg = 0; 4139 4140 /* 4141 * If these zap entries already exist, validate their contents. 4142 */ 4143 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4144 if (error == 0) { 4145 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4146 ASSERT3U(zl_ints, ==, 1); 4147 4148 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4149 zl_ints, &last_txg) == 0); 4150 4151 VERIFY(zap_length(os, object, propname, &zl_intsize, 4152 &zl_ints) == 0); 4153 4154 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4155 ASSERT3U(zl_ints, ==, ints); 4156 4157 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4158 zl_ints, value) == 0); 4159 4160 for (i = 0; i < ints; i++) { 4161 ASSERT3U(value[i], ==, last_txg + object + i); 4162 } 4163 } else { 4164 ASSERT3U(error, ==, ENOENT); 4165 } 4166 4167 /* 4168 * Atomically update two entries in our zap object. 4169 * The first is named txg_%llu, and contains the txg 4170 * in which the property was last updated. The second 4171 * is named prop_%llu, and the nth element of its value 4172 * should be txg + object + n. 4173 */ 4174 tx = dmu_tx_create(os); 4175 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4176 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4177 if (txg == 0) 4178 return; 4179 4180 if (last_txg > txg) 4181 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4182 4183 for (i = 0; i < ints; i++) 4184 value[i] = txg + object + i; 4185 4186 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4187 1, &txg, tx)); 4188 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4189 ints, value, tx)); 4190 4191 dmu_tx_commit(tx); 4192 4193 /* 4194 * Remove a random pair of entries. 4195 */ 4196 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4197 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4198 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4199 4200 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4201 4202 if (error == ENOENT) 4203 return; 4204 4205 ASSERT0(error); 4206 4207 tx = dmu_tx_create(os); 4208 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4209 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4210 if (txg == 0) 4211 return; 4212 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4213 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4214 dmu_tx_commit(tx); 4215 } 4216 4217 /* 4218 * Testcase to test the upgrading of a microzap to fatzap. 4219 */ 4220 void 4221 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4222 { 4223 objset_t *os = zd->zd_os; 4224 ztest_od_t od[1]; 4225 uint64_t object, txg; 4226 4227 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4228 4229 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4230 return; 4231 4232 object = od[0].od_object; 4233 4234 /* 4235 * Add entries to this ZAP and make sure it spills over 4236 * and gets upgraded to a fatzap. Also, since we are adding 4237 * 2050 entries we should see ptrtbl growth and leaf-block split. 4238 */ 4239 for (int i = 0; i < 2050; i++) { 4240 char name[MAXNAMELEN]; 4241 uint64_t value = i; 4242 dmu_tx_t *tx; 4243 int error; 4244 4245 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4246 id, value); 4247 4248 tx = dmu_tx_create(os); 4249 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4250 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4251 if (txg == 0) 4252 return; 4253 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4254 &value, tx); 4255 ASSERT(error == 0 || error == EEXIST); 4256 dmu_tx_commit(tx); 4257 } 4258 } 4259 4260 /* ARGSUSED */ 4261 void 4262 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4263 { 4264 objset_t *os = zd->zd_os; 4265 ztest_od_t od[1]; 4266 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4267 dmu_tx_t *tx; 4268 int i, namelen, error; 4269 int micro = ztest_random(2); 4270 char name[20], string_value[20]; 4271 void *data; 4272 4273 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4274 4275 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4276 return; 4277 4278 object = od[0].od_object; 4279 4280 /* 4281 * Generate a random name of the form 'xxx.....' where each 4282 * x is a random printable character and the dots are dots. 4283 * There are 94 such characters, and the name length goes from 4284 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4285 */ 4286 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4287 4288 for (i = 0; i < 3; i++) 4289 name[i] = '!' + ztest_random('~' - '!' + 1); 4290 for (; i < namelen - 1; i++) 4291 name[i] = '.'; 4292 name[i] = '\0'; 4293 4294 if ((namelen & 1) || micro) { 4295 wsize = sizeof (txg); 4296 wc = 1; 4297 data = &txg; 4298 } else { 4299 wsize = 1; 4300 wc = namelen; 4301 data = string_value; 4302 } 4303 4304 count = -1ULL; 4305 VERIFY0(zap_count(os, object, &count)); 4306 ASSERT(count != -1ULL); 4307 4308 /* 4309 * Select an operation: length, lookup, add, update, remove. 4310 */ 4311 i = ztest_random(5); 4312 4313 if (i >= 2) { 4314 tx = dmu_tx_create(os); 4315 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4316 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4317 if (txg == 0) 4318 return; 4319 bcopy(name, string_value, namelen); 4320 } else { 4321 tx = NULL; 4322 txg = 0; 4323 bzero(string_value, namelen); 4324 } 4325 4326 switch (i) { 4327 4328 case 0: 4329 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4330 if (error == 0) { 4331 ASSERT3U(wsize, ==, zl_wsize); 4332 ASSERT3U(wc, ==, zl_wc); 4333 } else { 4334 ASSERT3U(error, ==, ENOENT); 4335 } 4336 break; 4337 4338 case 1: 4339 error = zap_lookup(os, object, name, wsize, wc, data); 4340 if (error == 0) { 4341 if (data == string_value && 4342 bcmp(name, data, namelen) != 0) 4343 fatal(0, "name '%s' != val '%s' len %d", 4344 name, data, namelen); 4345 } else { 4346 ASSERT3U(error, ==, ENOENT); 4347 } 4348 break; 4349 4350 case 2: 4351 error = zap_add(os, object, name, wsize, wc, data, tx); 4352 ASSERT(error == 0 || error == EEXIST); 4353 break; 4354 4355 case 3: 4356 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4357 break; 4358 4359 case 4: 4360 error = zap_remove(os, object, name, tx); 4361 ASSERT(error == 0 || error == ENOENT); 4362 break; 4363 } 4364 4365 if (tx != NULL) 4366 dmu_tx_commit(tx); 4367 } 4368 4369 /* 4370 * Commit callback data. 4371 */ 4372 typedef struct ztest_cb_data { 4373 list_node_t zcd_node; 4374 uint64_t zcd_txg; 4375 int zcd_expected_err; 4376 boolean_t zcd_added; 4377 boolean_t zcd_called; 4378 spa_t *zcd_spa; 4379 } ztest_cb_data_t; 4380 4381 /* This is the actual commit callback function */ 4382 static void 4383 ztest_commit_callback(void *arg, int error) 4384 { 4385 ztest_cb_data_t *data = arg; 4386 uint64_t synced_txg; 4387 4388 VERIFY(data != NULL); 4389 VERIFY3S(data->zcd_expected_err, ==, error); 4390 VERIFY(!data->zcd_called); 4391 4392 synced_txg = spa_last_synced_txg(data->zcd_spa); 4393 if (data->zcd_txg > synced_txg) 4394 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4395 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4396 synced_txg); 4397 4398 data->zcd_called = B_TRUE; 4399 4400 if (error == ECANCELED) { 4401 ASSERT0(data->zcd_txg); 4402 ASSERT(!data->zcd_added); 4403 4404 /* 4405 * The private callback data should be destroyed here, but 4406 * since we are going to check the zcd_called field after 4407 * dmu_tx_abort(), we will destroy it there. 4408 */ 4409 return; 4410 } 4411 4412 /* Was this callback added to the global callback list? */ 4413 if (!data->zcd_added) 4414 goto out; 4415 4416 ASSERT3U(data->zcd_txg, !=, 0); 4417 4418 /* Remove our callback from the list */ 4419 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4420 list_remove(&zcl.zcl_callbacks, data); 4421 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4422 4423 out: 4424 umem_free(data, sizeof (ztest_cb_data_t)); 4425 } 4426 4427 /* Allocate and initialize callback data structure */ 4428 static ztest_cb_data_t * 4429 ztest_create_cb_data(objset_t *os, uint64_t txg) 4430 { 4431 ztest_cb_data_t *cb_data; 4432 4433 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4434 4435 cb_data->zcd_txg = txg; 4436 cb_data->zcd_spa = dmu_objset_spa(os); 4437 4438 return (cb_data); 4439 } 4440 4441 /* 4442 * If a number of txgs equal to this threshold have been created after a commit 4443 * callback has been registered but not called, then we assume there is an 4444 * implementation bug. 4445 */ 4446 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4447 4448 /* 4449 * Commit callback test. 4450 */ 4451 void 4452 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4453 { 4454 objset_t *os = zd->zd_os; 4455 ztest_od_t od[1]; 4456 dmu_tx_t *tx; 4457 ztest_cb_data_t *cb_data[3], *tmp_cb; 4458 uint64_t old_txg, txg; 4459 int i, error; 4460 4461 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4462 4463 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4464 return; 4465 4466 tx = dmu_tx_create(os); 4467 4468 cb_data[0] = ztest_create_cb_data(os, 0); 4469 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4470 4471 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4472 4473 /* Every once in a while, abort the transaction on purpose */ 4474 if (ztest_random(100) == 0) 4475 error = -1; 4476 4477 if (!error) 4478 error = dmu_tx_assign(tx, TXG_NOWAIT); 4479 4480 txg = error ? 0 : dmu_tx_get_txg(tx); 4481 4482 cb_data[0]->zcd_txg = txg; 4483 cb_data[1] = ztest_create_cb_data(os, txg); 4484 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4485 4486 if (error) { 4487 /* 4488 * It's not a strict requirement to call the registered 4489 * callbacks from inside dmu_tx_abort(), but that's what 4490 * it's supposed to happen in the current implementation 4491 * so we will check for that. 4492 */ 4493 for (i = 0; i < 2; i++) { 4494 cb_data[i]->zcd_expected_err = ECANCELED; 4495 VERIFY(!cb_data[i]->zcd_called); 4496 } 4497 4498 dmu_tx_abort(tx); 4499 4500 for (i = 0; i < 2; i++) { 4501 VERIFY(cb_data[i]->zcd_called); 4502 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4503 } 4504 4505 return; 4506 } 4507 4508 cb_data[2] = ztest_create_cb_data(os, txg); 4509 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4510 4511 /* 4512 * Read existing data to make sure there isn't a future leak. 4513 */ 4514 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4515 &old_txg, DMU_READ_PREFETCH)); 4516 4517 if (old_txg > txg) 4518 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4519 old_txg, txg); 4520 4521 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4522 4523 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4524 4525 /* 4526 * Since commit callbacks don't have any ordering requirement and since 4527 * it is theoretically possible for a commit callback to be called 4528 * after an arbitrary amount of time has elapsed since its txg has been 4529 * synced, it is difficult to reliably determine whether a commit 4530 * callback hasn't been called due to high load or due to a flawed 4531 * implementation. 4532 * 4533 * In practice, we will assume that if after a certain number of txgs a 4534 * commit callback hasn't been called, then most likely there's an 4535 * implementation bug.. 4536 */ 4537 tmp_cb = list_head(&zcl.zcl_callbacks); 4538 if (tmp_cb != NULL && 4539 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4540 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4541 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4542 } 4543 4544 /* 4545 * Let's find the place to insert our callbacks. 4546 * 4547 * Even though the list is ordered by txg, it is possible for the 4548 * insertion point to not be the end because our txg may already be 4549 * quiescing at this point and other callbacks in the open txg 4550 * (from other objsets) may have sneaked in. 4551 */ 4552 tmp_cb = list_tail(&zcl.zcl_callbacks); 4553 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4554 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4555 4556 /* Add the 3 callbacks to the list */ 4557 for (i = 0; i < 3; i++) { 4558 if (tmp_cb == NULL) 4559 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4560 else 4561 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4562 cb_data[i]); 4563 4564 cb_data[i]->zcd_added = B_TRUE; 4565 VERIFY(!cb_data[i]->zcd_called); 4566 4567 tmp_cb = cb_data[i]; 4568 } 4569 4570 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4571 4572 dmu_tx_commit(tx); 4573 } 4574 4575 /* ARGSUSED */ 4576 void 4577 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4578 { 4579 zfs_prop_t proplist[] = { 4580 ZFS_PROP_CHECKSUM, 4581 ZFS_PROP_COMPRESSION, 4582 ZFS_PROP_COPIES, 4583 ZFS_PROP_DEDUP 4584 }; 4585 4586 (void) rw_rdlock(&ztest_name_lock); 4587 4588 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4589 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4590 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4591 4592 (void) rw_unlock(&ztest_name_lock); 4593 } 4594 4595 /* ARGSUSED */ 4596 void 4597 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4598 { 4599 nvlist_t *props = NULL; 4600 4601 (void) rw_rdlock(&ztest_name_lock); 4602 4603 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4604 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4605 4606 VERIFY0(spa_prop_get(ztest_spa, &props)); 4607 4608 if (ztest_opts.zo_verbose >= 6) 4609 dump_nvlist(props, 4); 4610 4611 nvlist_free(props); 4612 4613 (void) rw_unlock(&ztest_name_lock); 4614 } 4615 4616 static int 4617 user_release_one(const char *snapname, const char *holdname) 4618 { 4619 nvlist_t *snaps, *holds; 4620 int error; 4621 4622 snaps = fnvlist_alloc(); 4623 holds = fnvlist_alloc(); 4624 fnvlist_add_boolean(holds, holdname); 4625 fnvlist_add_nvlist(snaps, snapname, holds); 4626 fnvlist_free(holds); 4627 error = dsl_dataset_user_release(snaps, NULL); 4628 fnvlist_free(snaps); 4629 return (error); 4630 } 4631 4632 /* 4633 * Test snapshot hold/release and deferred destroy. 4634 */ 4635 void 4636 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4637 { 4638 int error; 4639 objset_t *os = zd->zd_os; 4640 objset_t *origin; 4641 char snapname[100]; 4642 char fullname[100]; 4643 char clonename[100]; 4644 char tag[100]; 4645 char osname[MAXNAMELEN]; 4646 nvlist_t *holds; 4647 4648 (void) rw_rdlock(&ztest_name_lock); 4649 4650 dmu_objset_name(os, osname); 4651 4652 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4653 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4654 (void) snprintf(clonename, sizeof (clonename), 4655 "%s/ch1_%llu", osname, id); 4656 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4657 4658 /* 4659 * Clean up from any previous run. 4660 */ 4661 error = dsl_destroy_head(clonename); 4662 if (error != ENOENT) 4663 ASSERT0(error); 4664 error = user_release_one(fullname, tag); 4665 if (error != ESRCH && error != ENOENT) 4666 ASSERT0(error); 4667 error = dsl_destroy_snapshot(fullname, B_FALSE); 4668 if (error != ENOENT) 4669 ASSERT0(error); 4670 4671 /* 4672 * Create snapshot, clone it, mark snap for deferred destroy, 4673 * destroy clone, verify snap was also destroyed. 4674 */ 4675 error = dmu_objset_snapshot_one(osname, snapname); 4676 if (error) { 4677 if (error == ENOSPC) { 4678 ztest_record_enospc("dmu_objset_snapshot"); 4679 goto out; 4680 } 4681 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4682 } 4683 4684 error = dmu_objset_clone(clonename, fullname); 4685 if (error) { 4686 if (error == ENOSPC) { 4687 ztest_record_enospc("dmu_objset_clone"); 4688 goto out; 4689 } 4690 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4691 } 4692 4693 error = dsl_destroy_snapshot(fullname, B_TRUE); 4694 if (error) { 4695 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4696 fullname, error); 4697 } 4698 4699 error = dsl_destroy_head(clonename); 4700 if (error) 4701 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4702 4703 error = dmu_objset_hold(fullname, FTAG, &origin); 4704 if (error != ENOENT) 4705 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4706 4707 /* 4708 * Create snapshot, add temporary hold, verify that we can't 4709 * destroy a held snapshot, mark for deferred destroy, 4710 * release hold, verify snapshot was destroyed. 4711 */ 4712 error = dmu_objset_snapshot_one(osname, snapname); 4713 if (error) { 4714 if (error == ENOSPC) { 4715 ztest_record_enospc("dmu_objset_snapshot"); 4716 goto out; 4717 } 4718 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4719 } 4720 4721 holds = fnvlist_alloc(); 4722 fnvlist_add_string(holds, fullname, tag); 4723 error = dsl_dataset_user_hold(holds, 0, NULL); 4724 fnvlist_free(holds); 4725 4726 if (error == ENOSPC) { 4727 ztest_record_enospc("dsl_dataset_user_hold"); 4728 goto out; 4729 } else if (error) { 4730 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4731 fullname, tag, error); 4732 } 4733 4734 error = dsl_destroy_snapshot(fullname, B_FALSE); 4735 if (error != EBUSY) { 4736 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4737 fullname, error); 4738 } 4739 4740 error = dsl_destroy_snapshot(fullname, B_TRUE); 4741 if (error) { 4742 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4743 fullname, error); 4744 } 4745 4746 error = user_release_one(fullname, tag); 4747 if (error) 4748 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4749 4750 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4751 4752 out: 4753 (void) rw_unlock(&ztest_name_lock); 4754 } 4755 4756 /* 4757 * Inject random faults into the on-disk data. 4758 */ 4759 /* ARGSUSED */ 4760 void 4761 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4762 { 4763 ztest_shared_t *zs = ztest_shared; 4764 spa_t *spa = ztest_spa; 4765 int fd; 4766 uint64_t offset; 4767 uint64_t leaves; 4768 uint64_t bad = 0x1990c0ffeedecade; 4769 uint64_t top, leaf; 4770 char path0[MAXPATHLEN]; 4771 char pathrand[MAXPATHLEN]; 4772 size_t fsize; 4773 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4774 int iters = 1000; 4775 int maxfaults; 4776 int mirror_save; 4777 vdev_t *vd0 = NULL; 4778 uint64_t guid0 = 0; 4779 boolean_t islog = B_FALSE; 4780 4781 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4782 maxfaults = MAXFAULTS(); 4783 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4784 mirror_save = zs->zs_mirrors; 4785 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4786 4787 ASSERT(leaves >= 1); 4788 4789 /* 4790 * Grab the name lock as reader. There are some operations 4791 * which don't like to have their vdevs changed while 4792 * they are in progress (i.e. spa_change_guid). Those 4793 * operations will have grabbed the name lock as writer. 4794 */ 4795 (void) rw_rdlock(&ztest_name_lock); 4796 4797 /* 4798 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4799 */ 4800 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4801 4802 if (ztest_random(2) == 0) { 4803 /* 4804 * Inject errors on a normal data device or slog device. 4805 */ 4806 top = ztest_random_vdev_top(spa, B_TRUE); 4807 leaf = ztest_random(leaves) + zs->zs_splits; 4808 4809 /* 4810 * Generate paths to the first leaf in this top-level vdev, 4811 * and to the random leaf we selected. We'll induce transient 4812 * write failures and random online/offline activity on leaf 0, 4813 * and we'll write random garbage to the randomly chosen leaf. 4814 */ 4815 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4816 ztest_opts.zo_dir, ztest_opts.zo_pool, 4817 top * leaves + zs->zs_splits); 4818 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4819 ztest_opts.zo_dir, ztest_opts.zo_pool, 4820 top * leaves + leaf); 4821 4822 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4823 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4824 islog = B_TRUE; 4825 4826 /* 4827 * If the top-level vdev needs to be resilvered 4828 * then we only allow faults on the device that is 4829 * resilvering. 4830 */ 4831 if (vd0 != NULL && maxfaults != 1 && 4832 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4833 vd0->vdev_resilver_txg != 0)) { 4834 /* 4835 * Make vd0 explicitly claim to be unreadable, 4836 * or unwriteable, or reach behind its back 4837 * and close the underlying fd. We can do this if 4838 * maxfaults == 0 because we'll fail and reexecute, 4839 * and we can do it if maxfaults >= 2 because we'll 4840 * have enough redundancy. If maxfaults == 1, the 4841 * combination of this with injection of random data 4842 * corruption below exceeds the pool's fault tolerance. 4843 */ 4844 vdev_file_t *vf = vd0->vdev_tsd; 4845 4846 if (vf != NULL && ztest_random(3) == 0) { 4847 (void) close(vf->vf_vnode->v_fd); 4848 vf->vf_vnode->v_fd = -1; 4849 } else if (ztest_random(2) == 0) { 4850 vd0->vdev_cant_read = B_TRUE; 4851 } else { 4852 vd0->vdev_cant_write = B_TRUE; 4853 } 4854 guid0 = vd0->vdev_guid; 4855 } 4856 } else { 4857 /* 4858 * Inject errors on an l2cache device. 4859 */ 4860 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4861 4862 if (sav->sav_count == 0) { 4863 spa_config_exit(spa, SCL_STATE, FTAG); 4864 (void) rw_unlock(&ztest_name_lock); 4865 return; 4866 } 4867 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4868 guid0 = vd0->vdev_guid; 4869 (void) strcpy(path0, vd0->vdev_path); 4870 (void) strcpy(pathrand, vd0->vdev_path); 4871 4872 leaf = 0; 4873 leaves = 1; 4874 maxfaults = INT_MAX; /* no limit on cache devices */ 4875 } 4876 4877 spa_config_exit(spa, SCL_STATE, FTAG); 4878 (void) rw_unlock(&ztest_name_lock); 4879 4880 /* 4881 * If we can tolerate two or more faults, or we're dealing 4882 * with a slog, randomly online/offline vd0. 4883 */ 4884 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4885 if (ztest_random(10) < 6) { 4886 int flags = (ztest_random(2) == 0 ? 4887 ZFS_OFFLINE_TEMPORARY : 0); 4888 4889 /* 4890 * We have to grab the zs_name_lock as writer to 4891 * prevent a race between offlining a slog and 4892 * destroying a dataset. Offlining the slog will 4893 * grab a reference on the dataset which may cause 4894 * dmu_objset_destroy() to fail with EBUSY thus 4895 * leaving the dataset in an inconsistent state. 4896 */ 4897 if (islog) 4898 (void) rw_wrlock(&ztest_name_lock); 4899 4900 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4901 4902 if (islog) 4903 (void) rw_unlock(&ztest_name_lock); 4904 } else { 4905 /* 4906 * Ideally we would like to be able to randomly 4907 * call vdev_[on|off]line without holding locks 4908 * to force unpredictable failures but the side 4909 * effects of vdev_[on|off]line prevent us from 4910 * doing so. We grab the ztest_vdev_lock here to 4911 * prevent a race between injection testing and 4912 * aux_vdev removal. 4913 */ 4914 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4915 (void) vdev_online(spa, guid0, 0, NULL); 4916 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4917 } 4918 } 4919 4920 if (maxfaults == 0) 4921 return; 4922 4923 /* 4924 * We have at least single-fault tolerance, so inject data corruption. 4925 */ 4926 fd = open(pathrand, O_RDWR); 4927 4928 if (fd == -1) /* we hit a gap in the device namespace */ 4929 return; 4930 4931 fsize = lseek(fd, 0, SEEK_END); 4932 4933 while (--iters != 0) { 4934 offset = ztest_random(fsize / (leaves << bshift)) * 4935 (leaves << bshift) + (leaf << bshift) + 4936 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4937 4938 if (offset >= fsize) 4939 continue; 4940 4941 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4942 if (mirror_save != zs->zs_mirrors) { 4943 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4944 (void) close(fd); 4945 return; 4946 } 4947 4948 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4949 fatal(1, "can't inject bad word at 0x%llx in %s", 4950 offset, pathrand); 4951 4952 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4953 4954 if (ztest_opts.zo_verbose >= 7) 4955 (void) printf("injected bad word into %s," 4956 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4957 } 4958 4959 (void) close(fd); 4960 } 4961 4962 /* 4963 * Verify that DDT repair works as expected. 4964 */ 4965 void 4966 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4967 { 4968 ztest_shared_t *zs = ztest_shared; 4969 spa_t *spa = ztest_spa; 4970 objset_t *os = zd->zd_os; 4971 ztest_od_t od[1]; 4972 uint64_t object, blocksize, txg, pattern, psize; 4973 enum zio_checksum checksum = spa_dedup_checksum(spa); 4974 dmu_buf_t *db; 4975 dmu_tx_t *tx; 4976 void *buf; 4977 blkptr_t blk; 4978 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4979 4980 blocksize = ztest_random_blocksize(); 4981 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4982 4983 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4984 4985 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4986 return; 4987 4988 /* 4989 * Take the name lock as writer to prevent anyone else from changing 4990 * the pool and dataset properies we need to maintain during this test. 4991 */ 4992 (void) rw_wrlock(&ztest_name_lock); 4993 4994 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4995 B_FALSE) != 0 || 4996 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4997 B_FALSE) != 0) { 4998 (void) rw_unlock(&ztest_name_lock); 4999 return; 5000 } 5001 5002 object = od[0].od_object; 5003 blocksize = od[0].od_blocksize; 5004 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5005 5006 ASSERT(object != 0); 5007 5008 tx = dmu_tx_create(os); 5009 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5010 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5011 if (txg == 0) { 5012 (void) rw_unlock(&ztest_name_lock); 5013 return; 5014 } 5015 5016 /* 5017 * Write all the copies of our block. 5018 */ 5019 for (int i = 0; i < copies; i++) { 5020 uint64_t offset = i * blocksize; 5021 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5022 DMU_READ_NO_PREFETCH); 5023 if (error != 0) { 5024 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5025 os, (long long)object, (long long) offset, error); 5026 } 5027 ASSERT(db->db_offset == offset); 5028 ASSERT(db->db_size == blocksize); 5029 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5030 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5031 dmu_buf_will_fill(db, tx); 5032 ztest_pattern_set(db->db_data, db->db_size, pattern); 5033 dmu_buf_rele(db, FTAG); 5034 } 5035 5036 dmu_tx_commit(tx); 5037 txg_wait_synced(spa_get_dsl(spa), txg); 5038 5039 /* 5040 * Find out what block we got. 5041 */ 5042 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5043 DMU_READ_NO_PREFETCH)); 5044 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5045 dmu_buf_rele(db, FTAG); 5046 5047 /* 5048 * Damage the block. Dedup-ditto will save us when we read it later. 5049 */ 5050 psize = BP_GET_PSIZE(&blk); 5051 buf = zio_buf_alloc(psize); 5052 ztest_pattern_set(buf, psize, ~pattern); 5053 5054 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5055 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5056 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5057 5058 zio_buf_free(buf, psize); 5059 5060 (void) rw_unlock(&ztest_name_lock); 5061 } 5062 5063 /* 5064 * Scrub the pool. 5065 */ 5066 /* ARGSUSED */ 5067 void 5068 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5069 { 5070 spa_t *spa = ztest_spa; 5071 5072 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5073 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5074 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5075 } 5076 5077 /* 5078 * Change the guid for the pool. 5079 */ 5080 /* ARGSUSED */ 5081 void 5082 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5083 { 5084 spa_t *spa = ztest_spa; 5085 uint64_t orig, load; 5086 int error; 5087 5088 orig = spa_guid(spa); 5089 load = spa_load_guid(spa); 5090 5091 (void) rw_wrlock(&ztest_name_lock); 5092 error = spa_change_guid(spa); 5093 (void) rw_unlock(&ztest_name_lock); 5094 5095 if (error != 0) 5096 return; 5097 5098 if (ztest_opts.zo_verbose >= 4) { 5099 (void) printf("Changed guid old %llu -> %llu\n", 5100 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5101 } 5102 5103 VERIFY3U(orig, !=, spa_guid(spa)); 5104 VERIFY3U(load, ==, spa_load_guid(spa)); 5105 } 5106 5107 /* 5108 * Rename the pool to a different name and then rename it back. 5109 */ 5110 /* ARGSUSED */ 5111 void 5112 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5113 { 5114 char *oldname, *newname; 5115 spa_t *spa; 5116 5117 (void) rw_wrlock(&ztest_name_lock); 5118 5119 oldname = ztest_opts.zo_pool; 5120 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5121 (void) strcpy(newname, oldname); 5122 (void) strcat(newname, "_tmp"); 5123 5124 /* 5125 * Do the rename 5126 */ 5127 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5128 5129 /* 5130 * Try to open it under the old name, which shouldn't exist 5131 */ 5132 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5133 5134 /* 5135 * Open it under the new name and make sure it's still the same spa_t. 5136 */ 5137 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5138 5139 ASSERT(spa == ztest_spa); 5140 spa_close(spa, FTAG); 5141 5142 /* 5143 * Rename it back to the original 5144 */ 5145 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5146 5147 /* 5148 * Make sure it can still be opened 5149 */ 5150 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5151 5152 ASSERT(spa == ztest_spa); 5153 spa_close(spa, FTAG); 5154 5155 umem_free(newname, strlen(newname) + 1); 5156 5157 (void) rw_unlock(&ztest_name_lock); 5158 } 5159 5160 /* 5161 * Verify pool integrity by running zdb. 5162 */ 5163 static void 5164 ztest_run_zdb(char *pool) 5165 { 5166 int status; 5167 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5168 char zbuf[1024]; 5169 char *bin; 5170 char *ztest; 5171 char *isa; 5172 int isalen; 5173 FILE *fp; 5174 5175 (void) realpath(getexecname(), zdb); 5176 5177 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5178 bin = strstr(zdb, "/usr/bin/"); 5179 ztest = strstr(bin, "/ztest"); 5180 isa = bin + 8; 5181 isalen = ztest - isa; 5182 isa = strdup(isa); 5183 /* LINTED */ 5184 (void) sprintf(bin, 5185 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5186 isalen, 5187 isa, 5188 ztest_opts.zo_verbose >= 3 ? "s" : "", 5189 ztest_opts.zo_verbose >= 4 ? "v" : "", 5190 spa_config_path, 5191 pool); 5192 free(isa); 5193 5194 if (ztest_opts.zo_verbose >= 5) 5195 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5196 5197 fp = popen(zdb, "r"); 5198 5199 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5200 if (ztest_opts.zo_verbose >= 3) 5201 (void) printf("%s", zbuf); 5202 5203 status = pclose(fp); 5204 5205 if (status == 0) 5206 return; 5207 5208 ztest_dump_core = 0; 5209 if (WIFEXITED(status)) 5210 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5211 else 5212 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5213 } 5214 5215 static void 5216 ztest_walk_pool_directory(char *header) 5217 { 5218 spa_t *spa = NULL; 5219 5220 if (ztest_opts.zo_verbose >= 6) 5221 (void) printf("%s\n", header); 5222 5223 mutex_enter(&spa_namespace_lock); 5224 while ((spa = spa_next(spa)) != NULL) 5225 if (ztest_opts.zo_verbose >= 6) 5226 (void) printf("\t%s\n", spa_name(spa)); 5227 mutex_exit(&spa_namespace_lock); 5228 } 5229 5230 static void 5231 ztest_spa_import_export(char *oldname, char *newname) 5232 { 5233 nvlist_t *config, *newconfig; 5234 uint64_t pool_guid; 5235 spa_t *spa; 5236 int error; 5237 5238 if (ztest_opts.zo_verbose >= 4) { 5239 (void) printf("import/export: old = %s, new = %s\n", 5240 oldname, newname); 5241 } 5242 5243 /* 5244 * Clean up from previous runs. 5245 */ 5246 (void) spa_destroy(newname); 5247 5248 /* 5249 * Get the pool's configuration and guid. 5250 */ 5251 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5252 5253 /* 5254 * Kick off a scrub to tickle scrub/export races. 5255 */ 5256 if (ztest_random(2) == 0) 5257 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5258 5259 pool_guid = spa_guid(spa); 5260 spa_close(spa, FTAG); 5261 5262 ztest_walk_pool_directory("pools before export"); 5263 5264 /* 5265 * Export it. 5266 */ 5267 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5268 5269 ztest_walk_pool_directory("pools after export"); 5270 5271 /* 5272 * Try to import it. 5273 */ 5274 newconfig = spa_tryimport(config); 5275 ASSERT(newconfig != NULL); 5276 nvlist_free(newconfig); 5277 5278 /* 5279 * Import it under the new name. 5280 */ 5281 error = spa_import(newname, config, NULL, 0); 5282 if (error != 0) { 5283 dump_nvlist(config, 0); 5284 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5285 oldname, newname, error); 5286 } 5287 5288 ztest_walk_pool_directory("pools after import"); 5289 5290 /* 5291 * Try to import it again -- should fail with EEXIST. 5292 */ 5293 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5294 5295 /* 5296 * Try to import it under a different name -- should fail with EEXIST. 5297 */ 5298 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5299 5300 /* 5301 * Verify that the pool is no longer visible under the old name. 5302 */ 5303 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5304 5305 /* 5306 * Verify that we can open and close the pool using the new name. 5307 */ 5308 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5309 ASSERT(pool_guid == spa_guid(spa)); 5310 spa_close(spa, FTAG); 5311 5312 nvlist_free(config); 5313 } 5314 5315 static void 5316 ztest_resume(spa_t *spa) 5317 { 5318 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5319 (void) printf("resuming from suspended state\n"); 5320 spa_vdev_state_enter(spa, SCL_NONE); 5321 vdev_clear(spa, NULL); 5322 (void) spa_vdev_state_exit(spa, NULL, 0); 5323 (void) zio_resume(spa); 5324 } 5325 5326 static void * 5327 ztest_resume_thread(void *arg) 5328 { 5329 spa_t *spa = arg; 5330 5331 while (!ztest_exiting) { 5332 if (spa_suspended(spa)) 5333 ztest_resume(spa); 5334 (void) poll(NULL, 0, 100); 5335 } 5336 return (NULL); 5337 } 5338 5339 static void * 5340 ztest_deadman_thread(void *arg) 5341 { 5342 ztest_shared_t *zs = arg; 5343 spa_t *spa = ztest_spa; 5344 hrtime_t delta, total = 0; 5345 5346 for (;;) { 5347 delta = zs->zs_thread_stop - zs->zs_thread_start + 5348 MSEC2NSEC(zfs_deadman_synctime_ms); 5349 5350 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5351 5352 /* 5353 * If the pool is suspended then fail immediately. Otherwise, 5354 * check to see if the pool is making any progress. If 5355 * vdev_deadman() discovers that there hasn't been any recent 5356 * I/Os then it will end up aborting the tests. 5357 */ 5358 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5359 fatal(0, "aborting test after %llu seconds because " 5360 "pool has transitioned to a suspended state.", 5361 zfs_deadman_synctime_ms / 1000); 5362 return (NULL); 5363 } 5364 vdev_deadman(spa->spa_root_vdev); 5365 5366 total += zfs_deadman_synctime_ms/1000; 5367 (void) printf("ztest has been running for %lld seconds\n", 5368 total); 5369 } 5370 } 5371 5372 static void 5373 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5374 { 5375 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5376 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5377 hrtime_t functime = gethrtime(); 5378 5379 for (int i = 0; i < zi->zi_iters; i++) 5380 zi->zi_func(zd, id); 5381 5382 functime = gethrtime() - functime; 5383 5384 atomic_add_64(&zc->zc_count, 1); 5385 atomic_add_64(&zc->zc_time, functime); 5386 5387 if (ztest_opts.zo_verbose >= 4) { 5388 Dl_info dli; 5389 (void) dladdr((void *)zi->zi_func, &dli); 5390 (void) printf("%6.2f sec in %s\n", 5391 (double)functime / NANOSEC, dli.dli_sname); 5392 } 5393 } 5394 5395 static void * 5396 ztest_thread(void *arg) 5397 { 5398 int rand; 5399 uint64_t id = (uintptr_t)arg; 5400 ztest_shared_t *zs = ztest_shared; 5401 uint64_t call_next; 5402 hrtime_t now; 5403 ztest_info_t *zi; 5404 ztest_shared_callstate_t *zc; 5405 5406 while ((now = gethrtime()) < zs->zs_thread_stop) { 5407 /* 5408 * See if it's time to force a crash. 5409 */ 5410 if (now > zs->zs_thread_kill) 5411 ztest_kill(zs); 5412 5413 /* 5414 * If we're getting ENOSPC with some regularity, stop. 5415 */ 5416 if (zs->zs_enospc_count > 10) 5417 break; 5418 5419 /* 5420 * Pick a random function to execute. 5421 */ 5422 rand = ztest_random(ZTEST_FUNCS); 5423 zi = &ztest_info[rand]; 5424 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5425 call_next = zc->zc_next; 5426 5427 if (now >= call_next && 5428 atomic_cas_64(&zc->zc_next, call_next, call_next + 5429 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5430 ztest_execute(rand, zi, id); 5431 } 5432 } 5433 5434 return (NULL); 5435 } 5436 5437 static void 5438 ztest_dataset_name(char *dsname, char *pool, int d) 5439 { 5440 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5441 } 5442 5443 static void 5444 ztest_dataset_destroy(int d) 5445 { 5446 char name[MAXNAMELEN]; 5447 5448 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5449 5450 if (ztest_opts.zo_verbose >= 3) 5451 (void) printf("Destroying %s to free up space\n", name); 5452 5453 /* 5454 * Cleanup any non-standard clones and snapshots. In general, 5455 * ztest thread t operates on dataset (t % zopt_datasets), 5456 * so there may be more than one thing to clean up. 5457 */ 5458 for (int t = d; t < ztest_opts.zo_threads; 5459 t += ztest_opts.zo_datasets) { 5460 ztest_dsl_dataset_cleanup(name, t); 5461 } 5462 5463 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5464 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5465 } 5466 5467 static void 5468 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5469 { 5470 uint64_t usedobjs, dirobjs, scratch; 5471 5472 /* 5473 * ZTEST_DIROBJ is the object directory for the entire dataset. 5474 * Therefore, the number of objects in use should equal the 5475 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5476 * If not, we have an object leak. 5477 * 5478 * Note that we can only check this in ztest_dataset_open(), 5479 * when the open-context and syncing-context values agree. 5480 * That's because zap_count() returns the open-context value, 5481 * while dmu_objset_space() returns the rootbp fill count. 5482 */ 5483 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5484 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5485 ASSERT3U(dirobjs + 1, ==, usedobjs); 5486 } 5487 5488 static int 5489 ztest_dataset_open(int d) 5490 { 5491 ztest_ds_t *zd = &ztest_ds[d]; 5492 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5493 objset_t *os; 5494 zilog_t *zilog; 5495 char name[MAXNAMELEN]; 5496 int error; 5497 5498 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5499 5500 (void) rw_rdlock(&ztest_name_lock); 5501 5502 error = ztest_dataset_create(name); 5503 if (error == ENOSPC) { 5504 (void) rw_unlock(&ztest_name_lock); 5505 ztest_record_enospc(FTAG); 5506 return (error); 5507 } 5508 ASSERT(error == 0 || error == EEXIST); 5509 5510 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5511 (void) rw_unlock(&ztest_name_lock); 5512 5513 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5514 5515 zilog = zd->zd_zilog; 5516 5517 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5518 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5519 fatal(0, "missing log records: claimed %llu < committed %llu", 5520 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5521 5522 ztest_dataset_dirobj_verify(zd); 5523 5524 zil_replay(os, zd, ztest_replay_vector); 5525 5526 ztest_dataset_dirobj_verify(zd); 5527 5528 if (ztest_opts.zo_verbose >= 6) 5529 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5530 zd->zd_name, 5531 (u_longlong_t)zilog->zl_parse_blk_count, 5532 (u_longlong_t)zilog->zl_parse_lr_count, 5533 (u_longlong_t)zilog->zl_replaying_seq); 5534 5535 zilog = zil_open(os, ztest_get_data); 5536 5537 if (zilog->zl_replaying_seq != 0 && 5538 zilog->zl_replaying_seq < committed_seq) 5539 fatal(0, "missing log records: replayed %llu < committed %llu", 5540 zilog->zl_replaying_seq, committed_seq); 5541 5542 return (0); 5543 } 5544 5545 static void 5546 ztest_dataset_close(int d) 5547 { 5548 ztest_ds_t *zd = &ztest_ds[d]; 5549 5550 zil_close(zd->zd_zilog); 5551 dmu_objset_disown(zd->zd_os, zd); 5552 5553 ztest_zd_fini(zd); 5554 } 5555 5556 /* 5557 * Kick off threads to run tests on all datasets in parallel. 5558 */ 5559 static void 5560 ztest_run(ztest_shared_t *zs) 5561 { 5562 thread_t *tid; 5563 spa_t *spa; 5564 objset_t *os; 5565 thread_t resume_tid; 5566 int error; 5567 5568 ztest_exiting = B_FALSE; 5569 5570 /* 5571 * Initialize parent/child shared state. 5572 */ 5573 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5574 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5575 5576 zs->zs_thread_start = gethrtime(); 5577 zs->zs_thread_stop = 5578 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5579 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5580 zs->zs_thread_kill = zs->zs_thread_stop; 5581 if (ztest_random(100) < ztest_opts.zo_killrate) { 5582 zs->zs_thread_kill -= 5583 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5584 } 5585 5586 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5587 5588 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5589 offsetof(ztest_cb_data_t, zcd_node)); 5590 5591 /* 5592 * Open our pool. 5593 */ 5594 kernel_init(FREAD | FWRITE); 5595 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5596 spa->spa_debug = B_TRUE; 5597 metaslab_preload_limit = ztest_random(20) + 1; 5598 ztest_spa = spa; 5599 5600 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5601 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5602 zs->zs_guid = dmu_objset_fsid_guid(os); 5603 dmu_objset_disown(os, FTAG); 5604 5605 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5606 5607 /* 5608 * We don't expect the pool to suspend unless maxfaults == 0, 5609 * in which case ztest_fault_inject() temporarily takes away 5610 * the only valid replica. 5611 */ 5612 if (MAXFAULTS() == 0) 5613 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5614 else 5615 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5616 5617 /* 5618 * Create a thread to periodically resume suspended I/O. 5619 */ 5620 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5621 &resume_tid) == 0); 5622 5623 /* 5624 * Create a deadman thread to abort() if we hang. 5625 */ 5626 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5627 NULL) == 0); 5628 5629 /* 5630 * Verify that we can safely inquire about about any object, 5631 * whether it's allocated or not. To make it interesting, 5632 * we probe a 5-wide window around each power of two. 5633 * This hits all edge cases, including zero and the max. 5634 */ 5635 for (int t = 0; t < 64; t++) { 5636 for (int d = -5; d <= 5; d++) { 5637 error = dmu_object_info(spa->spa_meta_objset, 5638 (1ULL << t) + d, NULL); 5639 ASSERT(error == 0 || error == ENOENT || 5640 error == EINVAL); 5641 } 5642 } 5643 5644 /* 5645 * If we got any ENOSPC errors on the previous run, destroy something. 5646 */ 5647 if (zs->zs_enospc_count != 0) { 5648 int d = ztest_random(ztest_opts.zo_datasets); 5649 ztest_dataset_destroy(d); 5650 } 5651 zs->zs_enospc_count = 0; 5652 5653 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5654 UMEM_NOFAIL); 5655 5656 if (ztest_opts.zo_verbose >= 4) 5657 (void) printf("starting main threads...\n"); 5658 5659 /* 5660 * Kick off all the tests that run in parallel. 5661 */ 5662 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5663 if (t < ztest_opts.zo_datasets && 5664 ztest_dataset_open(t) != 0) 5665 return; 5666 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5667 THR_BOUND, &tid[t]) == 0); 5668 } 5669 5670 /* 5671 * Wait for all of the tests to complete. We go in reverse order 5672 * so we don't close datasets while threads are still using them. 5673 */ 5674 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5675 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5676 if (t < ztest_opts.zo_datasets) 5677 ztest_dataset_close(t); 5678 } 5679 5680 txg_wait_synced(spa_get_dsl(spa), 0); 5681 5682 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5683 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5684 zfs_dbgmsg_print(FTAG); 5685 5686 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5687 5688 /* Kill the resume thread */ 5689 ztest_exiting = B_TRUE; 5690 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5691 ztest_resume(spa); 5692 5693 /* 5694 * Right before closing the pool, kick off a bunch of async I/O; 5695 * spa_close() should wait for it to complete. 5696 */ 5697 for (uint64_t object = 1; object < 50; object++) 5698 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5699 5700 spa_close(spa, FTAG); 5701 5702 /* 5703 * Verify that we can loop over all pools. 5704 */ 5705 mutex_enter(&spa_namespace_lock); 5706 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5707 if (ztest_opts.zo_verbose > 3) 5708 (void) printf("spa_next: found %s\n", spa_name(spa)); 5709 mutex_exit(&spa_namespace_lock); 5710 5711 /* 5712 * Verify that we can export the pool and reimport it under a 5713 * different name. 5714 */ 5715 if (ztest_random(2) == 0) { 5716 char name[MAXNAMELEN]; 5717 (void) snprintf(name, MAXNAMELEN, "%s_import", 5718 ztest_opts.zo_pool); 5719 ztest_spa_import_export(ztest_opts.zo_pool, name); 5720 ztest_spa_import_export(name, ztest_opts.zo_pool); 5721 } 5722 5723 kernel_fini(); 5724 5725 list_destroy(&zcl.zcl_callbacks); 5726 5727 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5728 5729 (void) rwlock_destroy(&ztest_name_lock); 5730 (void) _mutex_destroy(&ztest_vdev_lock); 5731 } 5732 5733 static void 5734 ztest_freeze(void) 5735 { 5736 ztest_ds_t *zd = &ztest_ds[0]; 5737 spa_t *spa; 5738 int numloops = 0; 5739 5740 if (ztest_opts.zo_verbose >= 3) 5741 (void) printf("testing spa_freeze()...\n"); 5742 5743 kernel_init(FREAD | FWRITE); 5744 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5745 VERIFY3U(0, ==, ztest_dataset_open(0)); 5746 spa->spa_debug = B_TRUE; 5747 ztest_spa = spa; 5748 5749 /* 5750 * Force the first log block to be transactionally allocated. 5751 * We have to do this before we freeze the pool -- otherwise 5752 * the log chain won't be anchored. 5753 */ 5754 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5755 ztest_dmu_object_alloc_free(zd, 0); 5756 zil_commit(zd->zd_zilog, 0); 5757 } 5758 5759 txg_wait_synced(spa_get_dsl(spa), 0); 5760 5761 /* 5762 * Freeze the pool. This stops spa_sync() from doing anything, 5763 * so that the only way to record changes from now on is the ZIL. 5764 */ 5765 spa_freeze(spa); 5766 5767 /* 5768 * Run tests that generate log records but don't alter the pool config 5769 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5770 * We do a txg_wait_synced() after each iteration to force the txg 5771 * to increase well beyond the last synced value in the uberblock. 5772 * The ZIL should be OK with that. 5773 */ 5774 while (ztest_random(10) != 0 && 5775 numloops++ < ztest_opts.zo_maxloops) { 5776 ztest_dmu_write_parallel(zd, 0); 5777 ztest_dmu_object_alloc_free(zd, 0); 5778 txg_wait_synced(spa_get_dsl(spa), 0); 5779 } 5780 5781 /* 5782 * Commit all of the changes we just generated. 5783 */ 5784 zil_commit(zd->zd_zilog, 0); 5785 txg_wait_synced(spa_get_dsl(spa), 0); 5786 5787 /* 5788 * Close our dataset and close the pool. 5789 */ 5790 ztest_dataset_close(0); 5791 spa_close(spa, FTAG); 5792 kernel_fini(); 5793 5794 /* 5795 * Open and close the pool and dataset to induce log replay. 5796 */ 5797 kernel_init(FREAD | FWRITE); 5798 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5799 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5800 VERIFY3U(0, ==, ztest_dataset_open(0)); 5801 ztest_dataset_close(0); 5802 5803 spa->spa_debug = B_TRUE; 5804 ztest_spa = spa; 5805 txg_wait_synced(spa_get_dsl(spa), 0); 5806 ztest_reguid(NULL, 0); 5807 5808 spa_close(spa, FTAG); 5809 kernel_fini(); 5810 } 5811 5812 void 5813 print_time(hrtime_t t, char *timebuf) 5814 { 5815 hrtime_t s = t / NANOSEC; 5816 hrtime_t m = s / 60; 5817 hrtime_t h = m / 60; 5818 hrtime_t d = h / 24; 5819 5820 s -= m * 60; 5821 m -= h * 60; 5822 h -= d * 24; 5823 5824 timebuf[0] = '\0'; 5825 5826 if (d) 5827 (void) sprintf(timebuf, 5828 "%llud%02lluh%02llum%02llus", d, h, m, s); 5829 else if (h) 5830 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5831 else if (m) 5832 (void) sprintf(timebuf, "%llum%02llus", m, s); 5833 else 5834 (void) sprintf(timebuf, "%llus", s); 5835 } 5836 5837 static nvlist_t * 5838 make_random_props() 5839 { 5840 nvlist_t *props; 5841 5842 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5843 if (ztest_random(2) == 0) 5844 return (props); 5845 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5846 5847 return (props); 5848 } 5849 5850 /* 5851 * Create a storage pool with the given name and initial vdev size. 5852 * Then test spa_freeze() functionality. 5853 */ 5854 static void 5855 ztest_init(ztest_shared_t *zs) 5856 { 5857 spa_t *spa; 5858 nvlist_t *nvroot, *props; 5859 5860 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5861 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5862 5863 kernel_init(FREAD | FWRITE); 5864 5865 /* 5866 * Create the storage pool. 5867 */ 5868 (void) spa_destroy(ztest_opts.zo_pool); 5869 ztest_shared->zs_vdev_next_leaf = 0; 5870 zs->zs_splits = 0; 5871 zs->zs_mirrors = ztest_opts.zo_mirrors; 5872 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5873 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5874 props = make_random_props(); 5875 for (int i = 0; i < SPA_FEATURES; i++) { 5876 char buf[1024]; 5877 (void) snprintf(buf, sizeof (buf), "feature@%s", 5878 spa_feature_table[i].fi_uname); 5879 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5880 } 5881 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5882 nvlist_free(nvroot); 5883 5884 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5885 zs->zs_metaslab_sz = 5886 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5887 5888 spa_close(spa, FTAG); 5889 5890 kernel_fini(); 5891 5892 ztest_run_zdb(ztest_opts.zo_pool); 5893 5894 ztest_freeze(); 5895 5896 ztest_run_zdb(ztest_opts.zo_pool); 5897 5898 (void) rwlock_destroy(&ztest_name_lock); 5899 (void) _mutex_destroy(&ztest_vdev_lock); 5900 } 5901 5902 static void 5903 setup_data_fd(void) 5904 { 5905 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5906 5907 ztest_fd_data = mkstemp(ztest_name_data); 5908 ASSERT3S(ztest_fd_data, >=, 0); 5909 (void) unlink(ztest_name_data); 5910 } 5911 5912 5913 static int 5914 shared_data_size(ztest_shared_hdr_t *hdr) 5915 { 5916 int size; 5917 5918 size = hdr->zh_hdr_size; 5919 size += hdr->zh_opts_size; 5920 size += hdr->zh_size; 5921 size += hdr->zh_stats_size * hdr->zh_stats_count; 5922 size += hdr->zh_ds_size * hdr->zh_ds_count; 5923 5924 return (size); 5925 } 5926 5927 static void 5928 setup_hdr(void) 5929 { 5930 int size; 5931 ztest_shared_hdr_t *hdr; 5932 5933 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5934 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5935 ASSERT(hdr != MAP_FAILED); 5936 5937 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5938 5939 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5940 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5941 hdr->zh_size = sizeof (ztest_shared_t); 5942 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5943 hdr->zh_stats_count = ZTEST_FUNCS; 5944 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5945 hdr->zh_ds_count = ztest_opts.zo_datasets; 5946 5947 size = shared_data_size(hdr); 5948 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5949 5950 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5951 } 5952 5953 static void 5954 setup_data(void) 5955 { 5956 int size, offset; 5957 ztest_shared_hdr_t *hdr; 5958 uint8_t *buf; 5959 5960 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5961 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5962 ASSERT(hdr != MAP_FAILED); 5963 5964 size = shared_data_size(hdr); 5965 5966 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5967 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5968 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5969 ASSERT(hdr != MAP_FAILED); 5970 buf = (uint8_t *)hdr; 5971 5972 offset = hdr->zh_hdr_size; 5973 ztest_shared_opts = (void *)&buf[offset]; 5974 offset += hdr->zh_opts_size; 5975 ztest_shared = (void *)&buf[offset]; 5976 offset += hdr->zh_size; 5977 ztest_shared_callstate = (void *)&buf[offset]; 5978 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5979 ztest_shared_ds = (void *)&buf[offset]; 5980 } 5981 5982 static boolean_t 5983 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5984 { 5985 pid_t pid; 5986 int status; 5987 char *cmdbuf = NULL; 5988 5989 pid = fork(); 5990 5991 if (cmd == NULL) { 5992 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5993 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5994 cmd = cmdbuf; 5995 } 5996 5997 if (pid == -1) 5998 fatal(1, "fork failed"); 5999 6000 if (pid == 0) { /* child */ 6001 char *emptyargv[2] = { cmd, NULL }; 6002 char fd_data_str[12]; 6003 6004 struct rlimit rl = { 1024, 1024 }; 6005 (void) setrlimit(RLIMIT_NOFILE, &rl); 6006 6007 (void) close(ztest_fd_rand); 6008 VERIFY3U(11, >=, 6009 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6010 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6011 6012 (void) enable_extended_FILE_stdio(-1, -1); 6013 if (libpath != NULL) 6014 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6015 (void) execv(cmd, emptyargv); 6016 ztest_dump_core = B_FALSE; 6017 fatal(B_TRUE, "exec failed: %s", cmd); 6018 } 6019 6020 if (cmdbuf != NULL) { 6021 umem_free(cmdbuf, MAXPATHLEN); 6022 cmd = NULL; 6023 } 6024 6025 while (waitpid(pid, &status, 0) != pid) 6026 continue; 6027 if (statusp != NULL) 6028 *statusp = status; 6029 6030 if (WIFEXITED(status)) { 6031 if (WEXITSTATUS(status) != 0) { 6032 (void) fprintf(stderr, "child exited with code %d\n", 6033 WEXITSTATUS(status)); 6034 exit(2); 6035 } 6036 return (B_FALSE); 6037 } else if (WIFSIGNALED(status)) { 6038 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6039 (void) fprintf(stderr, "child died with signal %d\n", 6040 WTERMSIG(status)); 6041 exit(3); 6042 } 6043 return (B_TRUE); 6044 } else { 6045 (void) fprintf(stderr, "something strange happened to child\n"); 6046 exit(4); 6047 /* NOTREACHED */ 6048 } 6049 } 6050 6051 static void 6052 ztest_run_init(void) 6053 { 6054 ztest_shared_t *zs = ztest_shared; 6055 6056 ASSERT(ztest_opts.zo_init != 0); 6057 6058 /* 6059 * Blow away any existing copy of zpool.cache 6060 */ 6061 (void) remove(spa_config_path); 6062 6063 /* 6064 * Create and initialize our storage pool. 6065 */ 6066 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6067 bzero(zs, sizeof (ztest_shared_t)); 6068 if (ztest_opts.zo_verbose >= 3 && 6069 ztest_opts.zo_init != 1) { 6070 (void) printf("ztest_init(), pass %d\n", i); 6071 } 6072 ztest_init(zs); 6073 } 6074 } 6075 6076 int 6077 main(int argc, char **argv) 6078 { 6079 int kills = 0; 6080 int iters = 0; 6081 int older = 0; 6082 int newer = 0; 6083 ztest_shared_t *zs; 6084 ztest_info_t *zi; 6085 ztest_shared_callstate_t *zc; 6086 char timebuf[100]; 6087 char numbuf[6]; 6088 spa_t *spa; 6089 char *cmd; 6090 boolean_t hasalt; 6091 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6092 6093 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6094 6095 dprintf_setup(&argc, argv); 6096 zfs_deadman_synctime_ms = 300000; 6097 6098 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6099 ASSERT3S(ztest_fd_rand, >=, 0); 6100 6101 if (!fd_data_str) { 6102 process_options(argc, argv); 6103 6104 setup_data_fd(); 6105 setup_hdr(); 6106 setup_data(); 6107 bcopy(&ztest_opts, ztest_shared_opts, 6108 sizeof (*ztest_shared_opts)); 6109 } else { 6110 ztest_fd_data = atoi(fd_data_str); 6111 setup_data(); 6112 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6113 } 6114 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6115 6116 /* Override location of zpool.cache */ 6117 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6118 ztest_opts.zo_dir), !=, -1); 6119 6120 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6121 UMEM_NOFAIL); 6122 zs = ztest_shared; 6123 6124 if (fd_data_str) { 6125 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6126 metaslab_df_alloc_threshold = 6127 zs->zs_metaslab_df_alloc_threshold; 6128 6129 if (zs->zs_do_init) 6130 ztest_run_init(); 6131 else 6132 ztest_run(zs); 6133 exit(0); 6134 } 6135 6136 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6137 6138 if (ztest_opts.zo_verbose >= 1) { 6139 (void) printf("%llu vdevs, %d datasets, %d threads," 6140 " %llu seconds...\n", 6141 (u_longlong_t)ztest_opts.zo_vdevs, 6142 ztest_opts.zo_datasets, 6143 ztest_opts.zo_threads, 6144 (u_longlong_t)ztest_opts.zo_time); 6145 } 6146 6147 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6148 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6149 6150 zs->zs_do_init = B_TRUE; 6151 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6152 if (ztest_opts.zo_verbose >= 1) { 6153 (void) printf("Executing older ztest for " 6154 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6155 } 6156 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6157 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6158 } else { 6159 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6160 } 6161 zs->zs_do_init = B_FALSE; 6162 6163 zs->zs_proc_start = gethrtime(); 6164 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6165 6166 for (int f = 0; f < ZTEST_FUNCS; f++) { 6167 zi = &ztest_info[f]; 6168 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6169 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6170 zc->zc_next = UINT64_MAX; 6171 else 6172 zc->zc_next = zs->zs_proc_start + 6173 ztest_random(2 * zi->zi_interval[0] + 1); 6174 } 6175 6176 /* 6177 * Run the tests in a loop. These tests include fault injection 6178 * to verify that self-healing data works, and forced crashes 6179 * to verify that we never lose on-disk consistency. 6180 */ 6181 while (gethrtime() < zs->zs_proc_stop) { 6182 int status; 6183 boolean_t killed; 6184 6185 /* 6186 * Initialize the workload counters for each function. 6187 */ 6188 for (int f = 0; f < ZTEST_FUNCS; f++) { 6189 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6190 zc->zc_count = 0; 6191 zc->zc_time = 0; 6192 } 6193 6194 /* Set the allocation switch size */ 6195 zs->zs_metaslab_df_alloc_threshold = 6196 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6197 6198 if (!hasalt || ztest_random(2) == 0) { 6199 if (hasalt && ztest_opts.zo_verbose >= 1) { 6200 (void) printf("Executing newer ztest: %s\n", 6201 cmd); 6202 } 6203 newer++; 6204 killed = exec_child(cmd, NULL, B_TRUE, &status); 6205 } else { 6206 if (hasalt && ztest_opts.zo_verbose >= 1) { 6207 (void) printf("Executing older ztest: %s\n", 6208 ztest_opts.zo_alt_ztest); 6209 } 6210 older++; 6211 killed = exec_child(ztest_opts.zo_alt_ztest, 6212 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6213 } 6214 6215 if (killed) 6216 kills++; 6217 iters++; 6218 6219 if (ztest_opts.zo_verbose >= 1) { 6220 hrtime_t now = gethrtime(); 6221 6222 now = MIN(now, zs->zs_proc_stop); 6223 print_time(zs->zs_proc_stop - now, timebuf); 6224 nicenum(zs->zs_space, numbuf); 6225 6226 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6227 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6228 iters, 6229 WIFEXITED(status) ? "Complete" : "SIGKILL", 6230 (u_longlong_t)zs->zs_enospc_count, 6231 100.0 * zs->zs_alloc / zs->zs_space, 6232 numbuf, 6233 100.0 * (now - zs->zs_proc_start) / 6234 (ztest_opts.zo_time * NANOSEC), timebuf); 6235 } 6236 6237 if (ztest_opts.zo_verbose >= 2) { 6238 (void) printf("\nWorkload summary:\n\n"); 6239 (void) printf("%7s %9s %s\n", 6240 "Calls", "Time", "Function"); 6241 (void) printf("%7s %9s %s\n", 6242 "-----", "----", "--------"); 6243 for (int f = 0; f < ZTEST_FUNCS; f++) { 6244 Dl_info dli; 6245 6246 zi = &ztest_info[f]; 6247 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6248 print_time(zc->zc_time, timebuf); 6249 (void) dladdr((void *)zi->zi_func, &dli); 6250 (void) printf("%7llu %9s %s\n", 6251 (u_longlong_t)zc->zc_count, timebuf, 6252 dli.dli_sname); 6253 } 6254 (void) printf("\n"); 6255 } 6256 6257 /* 6258 * It's possible that we killed a child during a rename test, 6259 * in which case we'll have a 'ztest_tmp' pool lying around 6260 * instead of 'ztest'. Do a blind rename in case this happened. 6261 */ 6262 kernel_init(FREAD); 6263 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6264 spa_close(spa, FTAG); 6265 } else { 6266 char tmpname[MAXNAMELEN]; 6267 kernel_fini(); 6268 kernel_init(FREAD | FWRITE); 6269 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6270 ztest_opts.zo_pool); 6271 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6272 } 6273 kernel_fini(); 6274 6275 ztest_run_zdb(ztest_opts.zo_pool); 6276 } 6277 6278 if (ztest_opts.zo_verbose >= 1) { 6279 if (hasalt) { 6280 (void) printf("%d runs of older ztest: %s\n", older, 6281 ztest_opts.zo_alt_ztest); 6282 (void) printf("%d runs of newer ztest: %s\n", newer, 6283 cmd); 6284 } 6285 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6286 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6287 } 6288 6289 umem_free(cmd, MAXNAMELEN); 6290 6291 return (0); 6292 } 6293