1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/metaslab_impl.h> 96 #include <sys/dsl_prop.h> 97 #include <sys/dsl_dataset.h> 98 #include <sys/refcount.h> 99 #include <stdio.h> 100 #include <stdio_ext.h> 101 #include <stdlib.h> 102 #include <unistd.h> 103 #include <signal.h> 104 #include <umem.h> 105 #include <dlfcn.h> 106 #include <ctype.h> 107 #include <math.h> 108 #include <sys/fs/zfs.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 static int zopt_maxfaults; 129 130 typedef struct ztest_block_tag { 131 uint64_t bt_objset; 132 uint64_t bt_object; 133 uint64_t bt_offset; 134 uint64_t bt_txg; 135 uint64_t bt_thread; 136 uint64_t bt_seq; 137 } ztest_block_tag_t; 138 139 typedef struct ztest_args { 140 char za_pool[MAXNAMELEN]; 141 spa_t *za_spa; 142 objset_t *za_os; 143 zilog_t *za_zilog; 144 thread_t za_thread; 145 uint64_t za_instance; 146 uint64_t za_random; 147 uint64_t za_diroff; 148 uint64_t za_diroff_shared; 149 uint64_t za_zil_seq; 150 hrtime_t za_start; 151 hrtime_t za_stop; 152 hrtime_t za_kill; 153 /* 154 * Thread-local variables can go here to aid debugging. 155 */ 156 ztest_block_tag_t za_rbt; 157 ztest_block_tag_t za_wbt; 158 dmu_object_info_t za_doi; 159 dmu_buf_t *za_dbuf; 160 } ztest_args_t; 161 162 typedef void ztest_func_t(ztest_args_t *); 163 164 /* 165 * Note: these aren't static because we want dladdr() to work. 166 */ 167 ztest_func_t ztest_dmu_read_write; 168 ztest_func_t ztest_dmu_read_write_zcopy; 169 ztest_func_t ztest_dmu_write_parallel; 170 ztest_func_t ztest_dmu_object_alloc_free; 171 ztest_func_t ztest_dmu_commit_callbacks; 172 ztest_func_t ztest_zap; 173 ztest_func_t ztest_fzap; 174 ztest_func_t ztest_zap_parallel; 175 ztest_func_t ztest_traverse; 176 ztest_func_t ztest_dsl_prop_get_set; 177 ztest_func_t ztest_dmu_objset_create_destroy; 178 ztest_func_t ztest_dmu_snapshot_create_destroy; 179 ztest_func_t ztest_dsl_dataset_promote_busy; 180 ztest_func_t ztest_spa_create_destroy; 181 ztest_func_t ztest_fault_inject; 182 ztest_func_t ztest_spa_rename; 183 ztest_func_t ztest_vdev_attach_detach; 184 ztest_func_t ztest_vdev_LUN_growth; 185 ztest_func_t ztest_vdev_add_remove; 186 ztest_func_t ztest_vdev_aux_add_remove; 187 ztest_func_t ztest_scrub; 188 ztest_func_t ztest_dmu_snapshot_hold; 189 190 typedef struct ztest_info { 191 ztest_func_t *zi_func; /* test function */ 192 uint64_t zi_iters; /* iterations per execution */ 193 uint64_t *zi_interval; /* execute every <interval> seconds */ 194 uint64_t zi_calls; /* per-pass count */ 195 uint64_t zi_call_time; /* per-pass time */ 196 uint64_t zi_call_total; /* cumulative total */ 197 uint64_t zi_call_target; /* target cumulative total */ 198 } ztest_info_t; 199 200 uint64_t zopt_always = 0; /* all the time */ 201 uint64_t zopt_often = 1; /* every second */ 202 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 203 uint64_t zopt_rarely = 60; /* every 60 seconds */ 204 205 ztest_info_t ztest_info[] = { 206 { ztest_dmu_read_write, 1, &zopt_always }, 207 { ztest_dmu_write_parallel, 30, &zopt_always }, 208 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 209 { ztest_dmu_commit_callbacks, 10, &zopt_always }, 210 { ztest_zap, 30, &zopt_always }, 211 { ztest_fzap, 30, &zopt_always }, 212 { ztest_zap_parallel, 100, &zopt_always }, 213 { ztest_dmu_read_write_zcopy, 1, &zopt_sometimes }, 214 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 215 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 216 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 217 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 218 { ztest_fault_inject, 1, &zopt_sometimes }, 219 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 220 { ztest_spa_rename, 1, &zopt_rarely }, 221 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 222 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 223 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 224 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 225 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 226 { ztest_scrub, 1, &zopt_vdevtime }, 227 }; 228 229 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 230 231 #define ZTEST_SYNC_LOCKS 16 232 233 /* 234 * The following struct is used to hold a list of uncalled commit callbacks. 235 * 236 * The callbacks are ordered by txg number. 237 */ 238 typedef struct ztest_cb_list { 239 mutex_t zcl_callbacks_lock; 240 list_t zcl_callbacks; 241 } ztest_cb_list_t; 242 243 /* 244 * Stuff we need to share writably between parent and child. 245 */ 246 typedef struct ztest_shared { 247 mutex_t zs_vdev_lock; 248 rwlock_t zs_name_lock; 249 uint64_t zs_vdev_next_leaf; 250 uint64_t zs_vdev_aux; 251 uint64_t zs_enospc_count; 252 hrtime_t zs_start_time; 253 hrtime_t zs_stop_time; 254 uint64_t zs_alloc; 255 uint64_t zs_space; 256 ztest_info_t zs_info[ZTEST_FUNCS]; 257 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 258 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 259 } ztest_shared_t; 260 261 static char ztest_dev_template[] = "%s/%s.%llua"; 262 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 263 static ztest_shared_t *ztest_shared; 264 265 static int ztest_random_fd; 266 static int ztest_dump_core = 1; 267 268 static uint64_t metaslab_sz; 269 static boolean_t ztest_exiting; 270 271 /* Global commit callback list */ 272 static ztest_cb_list_t zcl; 273 274 extern uint64_t metaslab_gang_bang; 275 extern uint64_t metaslab_df_alloc_threshold; 276 277 #define ZTEST_DIROBJ 1 278 #define ZTEST_MICROZAP_OBJ 2 279 #define ZTEST_FATZAP_OBJ 3 280 281 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 282 #define ZTEST_DIRSIZE 256 283 284 static void usage(boolean_t) __NORETURN; 285 286 /* 287 * These libumem hooks provide a reasonable set of defaults for the allocator's 288 * debugging facilities. 289 */ 290 const char * 291 _umem_debug_init() 292 { 293 return ("default,verbose"); /* $UMEM_DEBUG setting */ 294 } 295 296 const char * 297 _umem_logging_init(void) 298 { 299 return ("fail,contents"); /* $UMEM_LOGGING setting */ 300 } 301 302 #define FATAL_MSG_SZ 1024 303 304 char *fatal_msg; 305 306 static void 307 fatal(int do_perror, char *message, ...) 308 { 309 va_list args; 310 int save_errno = errno; 311 char buf[FATAL_MSG_SZ]; 312 313 (void) fflush(stdout); 314 315 va_start(args, message); 316 (void) sprintf(buf, "ztest: "); 317 /* LINTED */ 318 (void) vsprintf(buf + strlen(buf), message, args); 319 va_end(args); 320 if (do_perror) { 321 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 322 ": %s", strerror(save_errno)); 323 } 324 (void) fprintf(stderr, "%s\n", buf); 325 fatal_msg = buf; /* to ease debugging */ 326 if (ztest_dump_core) 327 abort(); 328 exit(3); 329 } 330 331 static int 332 str2shift(const char *buf) 333 { 334 const char *ends = "BKMGTPEZ"; 335 int i; 336 337 if (buf[0] == '\0') 338 return (0); 339 for (i = 0; i < strlen(ends); i++) { 340 if (toupper(buf[0]) == ends[i]) 341 break; 342 } 343 if (i == strlen(ends)) { 344 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 345 buf); 346 usage(B_FALSE); 347 } 348 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 349 return (10*i); 350 } 351 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 352 usage(B_FALSE); 353 /* NOTREACHED */ 354 } 355 356 static uint64_t 357 nicenumtoull(const char *buf) 358 { 359 char *end; 360 uint64_t val; 361 362 val = strtoull(buf, &end, 0); 363 if (end == buf) { 364 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 365 usage(B_FALSE); 366 } else if (end[0] == '.') { 367 double fval = strtod(buf, &end); 368 fval *= pow(2, str2shift(end)); 369 if (fval > UINT64_MAX) { 370 (void) fprintf(stderr, "ztest: value too large: %s\n", 371 buf); 372 usage(B_FALSE); 373 } 374 val = (uint64_t)fval; 375 } else { 376 int shift = str2shift(end); 377 if (shift >= 64 || (val << shift) >> shift != val) { 378 (void) fprintf(stderr, "ztest: value too large: %s\n", 379 buf); 380 usage(B_FALSE); 381 } 382 val <<= shift; 383 } 384 return (val); 385 } 386 387 static void 388 usage(boolean_t requested) 389 { 390 char nice_vdev_size[10]; 391 char nice_gang_bang[10]; 392 FILE *fp = requested ? stdout : stderr; 393 394 nicenum(zopt_vdev_size, nice_vdev_size); 395 nicenum(metaslab_gang_bang, nice_gang_bang); 396 397 (void) fprintf(fp, "Usage: %s\n" 398 "\t[-v vdevs (default: %llu)]\n" 399 "\t[-s size_of_each_vdev (default: %s)]\n" 400 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 401 "\t[-m mirror_copies (default: %d)]\n" 402 "\t[-r raidz_disks (default: %d)]\n" 403 "\t[-R raidz_parity (default: %d)]\n" 404 "\t[-d datasets (default: %d)]\n" 405 "\t[-t threads (default: %d)]\n" 406 "\t[-g gang_block_threshold (default: %s)]\n" 407 "\t[-i initialize pool i times (default: %d)]\n" 408 "\t[-k kill percentage (default: %llu%%)]\n" 409 "\t[-p pool_name (default: %s)]\n" 410 "\t[-f file directory for vdev files (default: %s)]\n" 411 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 412 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 413 "\t[-T time] total run time (default: %llu sec)\n" 414 "\t[-P passtime] time per pass (default: %llu sec)\n" 415 "\t[-h] (print help)\n" 416 "", 417 cmdname, 418 (u_longlong_t)zopt_vdevs, /* -v */ 419 nice_vdev_size, /* -s */ 420 zopt_ashift, /* -a */ 421 zopt_mirrors, /* -m */ 422 zopt_raidz, /* -r */ 423 zopt_raidz_parity, /* -R */ 424 zopt_datasets, /* -d */ 425 zopt_threads, /* -t */ 426 nice_gang_bang, /* -g */ 427 zopt_init, /* -i */ 428 (u_longlong_t)zopt_killrate, /* -k */ 429 zopt_pool, /* -p */ 430 zopt_dir, /* -f */ 431 (u_longlong_t)zopt_time, /* -T */ 432 (u_longlong_t)zopt_passtime); /* -P */ 433 exit(requested ? 0 : 1); 434 } 435 436 static uint64_t 437 ztest_random(uint64_t range) 438 { 439 uint64_t r; 440 441 if (range == 0) 442 return (0); 443 444 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 445 fatal(1, "short read from /dev/urandom"); 446 447 return (r % range); 448 } 449 450 /* ARGSUSED */ 451 static void 452 ztest_record_enospc(char *s) 453 { 454 ztest_shared->zs_enospc_count++; 455 } 456 457 static void 458 process_options(int argc, char **argv) 459 { 460 int opt; 461 uint64_t value; 462 463 /* By default, test gang blocks for blocks 32K and greater */ 464 metaslab_gang_bang = 32 << 10; 465 466 while ((opt = getopt(argc, argv, 467 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 468 value = 0; 469 switch (opt) { 470 case 'v': 471 case 's': 472 case 'a': 473 case 'm': 474 case 'r': 475 case 'R': 476 case 'd': 477 case 't': 478 case 'g': 479 case 'i': 480 case 'k': 481 case 'T': 482 case 'P': 483 value = nicenumtoull(optarg); 484 } 485 switch (opt) { 486 case 'v': 487 zopt_vdevs = value; 488 break; 489 case 's': 490 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 491 break; 492 case 'a': 493 zopt_ashift = value; 494 break; 495 case 'm': 496 zopt_mirrors = value; 497 break; 498 case 'r': 499 zopt_raidz = MAX(1, value); 500 break; 501 case 'R': 502 zopt_raidz_parity = MIN(MAX(value, 1), 3); 503 break; 504 case 'd': 505 zopt_datasets = MAX(1, value); 506 break; 507 case 't': 508 zopt_threads = MAX(1, value); 509 break; 510 case 'g': 511 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 512 break; 513 case 'i': 514 zopt_init = value; 515 break; 516 case 'k': 517 zopt_killrate = value; 518 break; 519 case 'p': 520 zopt_pool = strdup(optarg); 521 break; 522 case 'f': 523 zopt_dir = strdup(optarg); 524 break; 525 case 'V': 526 zopt_verbose++; 527 break; 528 case 'E': 529 zopt_init = 0; 530 break; 531 case 'T': 532 zopt_time = value; 533 break; 534 case 'P': 535 zopt_passtime = MAX(1, value); 536 break; 537 case 'h': 538 usage(B_TRUE); 539 break; 540 case '?': 541 default: 542 usage(B_FALSE); 543 break; 544 } 545 } 546 547 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 548 549 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 550 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 551 } 552 553 static uint64_t 554 ztest_get_ashift(void) 555 { 556 if (zopt_ashift == 0) 557 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 558 return (zopt_ashift); 559 } 560 561 static nvlist_t * 562 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 563 { 564 char pathbuf[MAXPATHLEN]; 565 uint64_t vdev; 566 nvlist_t *file; 567 568 if (ashift == 0) 569 ashift = ztest_get_ashift(); 570 571 if (path == NULL) { 572 path = pathbuf; 573 574 if (aux != NULL) { 575 vdev = ztest_shared->zs_vdev_aux; 576 (void) sprintf(path, ztest_aux_template, 577 zopt_dir, zopt_pool, aux, vdev); 578 } else { 579 vdev = ztest_shared->zs_vdev_next_leaf++; 580 (void) sprintf(path, ztest_dev_template, 581 zopt_dir, zopt_pool, vdev); 582 } 583 } 584 585 if (size != 0) { 586 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 587 if (fd == -1) 588 fatal(1, "can't open %s", path); 589 if (ftruncate(fd, size) != 0) 590 fatal(1, "can't ftruncate %s", path); 591 (void) close(fd); 592 } 593 594 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 595 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 596 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 597 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 598 599 return (file); 600 } 601 602 static nvlist_t * 603 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 604 { 605 nvlist_t *raidz, **child; 606 int c; 607 608 if (r < 2) 609 return (make_vdev_file(path, aux, size, ashift)); 610 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 611 612 for (c = 0; c < r; c++) 613 child[c] = make_vdev_file(path, aux, size, ashift); 614 615 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 616 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 617 VDEV_TYPE_RAIDZ) == 0); 618 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 619 zopt_raidz_parity) == 0); 620 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 621 child, r) == 0); 622 623 for (c = 0; c < r; c++) 624 nvlist_free(child[c]); 625 626 umem_free(child, r * sizeof (nvlist_t *)); 627 628 return (raidz); 629 } 630 631 static nvlist_t * 632 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 633 int r, int m) 634 { 635 nvlist_t *mirror, **child; 636 int c; 637 638 if (m < 1) 639 return (make_vdev_raidz(path, aux, size, ashift, r)); 640 641 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 642 643 for (c = 0; c < m; c++) 644 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 645 646 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 647 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 648 VDEV_TYPE_MIRROR) == 0); 649 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 650 child, m) == 0); 651 652 for (c = 0; c < m; c++) 653 nvlist_free(child[c]); 654 655 umem_free(child, m * sizeof (nvlist_t *)); 656 657 return (mirror); 658 } 659 660 static nvlist_t * 661 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 662 int log, int r, int m, int t) 663 { 664 nvlist_t *root, **child; 665 int c; 666 667 ASSERT(t > 0); 668 669 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 670 671 for (c = 0; c < t; c++) { 672 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 673 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 674 log) == 0); 675 } 676 677 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 678 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 679 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 680 child, t) == 0); 681 682 for (c = 0; c < t; c++) 683 nvlist_free(child[c]); 684 685 umem_free(child, t * sizeof (nvlist_t *)); 686 687 return (root); 688 } 689 690 static void 691 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 692 { 693 int bs = SPA_MINBLOCKSHIFT + 694 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 695 int ibs = DN_MIN_INDBLKSHIFT + 696 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 697 int error; 698 699 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 700 if (error) { 701 char osname[300]; 702 dmu_objset_name(os, osname); 703 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 704 osname, object, 1 << bs, ibs, error); 705 } 706 } 707 708 static uint8_t 709 ztest_random_checksum(void) 710 { 711 uint8_t checksum; 712 713 do { 714 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 715 } while (zio_checksum_table[checksum].ci_zbt); 716 717 if (checksum == ZIO_CHECKSUM_OFF) 718 checksum = ZIO_CHECKSUM_ON; 719 720 return (checksum); 721 } 722 723 static uint8_t 724 ztest_random_compress(void) 725 { 726 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 727 } 728 729 static int 730 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 731 { 732 dmu_tx_t *tx; 733 int error; 734 735 if (byteswap) 736 byteswap_uint64_array(lr, sizeof (*lr)); 737 738 tx = dmu_tx_create(os); 739 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 740 error = dmu_tx_assign(tx, TXG_WAIT); 741 if (error) { 742 dmu_tx_abort(tx); 743 return (error); 744 } 745 746 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 747 DMU_OT_NONE, 0, tx); 748 ASSERT3U(error, ==, 0); 749 dmu_tx_commit(tx); 750 751 if (zopt_verbose >= 5) { 752 char osname[MAXNAMELEN]; 753 dmu_objset_name(os, osname); 754 (void) printf("replay create of %s object %llu" 755 " in txg %llu = %d\n", 756 osname, (u_longlong_t)lr->lr_doid, 757 (u_longlong_t)dmu_tx_get_txg(tx), error); 758 } 759 760 return (error); 761 } 762 763 static int 764 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 765 { 766 dmu_tx_t *tx; 767 int error; 768 769 if (byteswap) 770 byteswap_uint64_array(lr, sizeof (*lr)); 771 772 tx = dmu_tx_create(os); 773 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 774 error = dmu_tx_assign(tx, TXG_WAIT); 775 if (error) { 776 dmu_tx_abort(tx); 777 return (error); 778 } 779 780 error = dmu_object_free(os, lr->lr_doid, tx); 781 dmu_tx_commit(tx); 782 783 return (error); 784 } 785 786 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 787 NULL, /* 0 no such transaction type */ 788 ztest_replay_create, /* TX_CREATE */ 789 NULL, /* TX_MKDIR */ 790 NULL, /* TX_MKXATTR */ 791 NULL, /* TX_SYMLINK */ 792 ztest_replay_remove, /* TX_REMOVE */ 793 NULL, /* TX_RMDIR */ 794 NULL, /* TX_LINK */ 795 NULL, /* TX_RENAME */ 796 NULL, /* TX_WRITE */ 797 NULL, /* TX_TRUNCATE */ 798 NULL, /* TX_SETATTR */ 799 NULL, /* TX_ACL */ 800 }; 801 802 /* 803 * Verify that we can't destroy an active pool, create an existing pool, 804 * or create a pool with a bad vdev spec. 805 */ 806 void 807 ztest_spa_create_destroy(ztest_args_t *za) 808 { 809 int error; 810 spa_t *spa; 811 nvlist_t *nvroot; 812 813 /* 814 * Attempt to create using a bad file. 815 */ 816 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 817 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 818 nvlist_free(nvroot); 819 if (error != ENOENT) 820 fatal(0, "spa_create(bad_file) = %d", error); 821 822 /* 823 * Attempt to create using a bad mirror. 824 */ 825 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 826 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 827 nvlist_free(nvroot); 828 if (error != ENOENT) 829 fatal(0, "spa_create(bad_mirror) = %d", error); 830 831 /* 832 * Attempt to create an existing pool. It shouldn't matter 833 * what's in the nvroot; we should fail with EEXIST. 834 */ 835 (void) rw_rdlock(&ztest_shared->zs_name_lock); 836 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 837 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 838 nvlist_free(nvroot); 839 if (error != EEXIST) 840 fatal(0, "spa_create(whatever) = %d", error); 841 842 error = spa_open(za->za_pool, &spa, FTAG); 843 if (error) 844 fatal(0, "spa_open() = %d", error); 845 846 error = spa_destroy(za->za_pool); 847 if (error != EBUSY) 848 fatal(0, "spa_destroy() = %d", error); 849 850 spa_close(spa, FTAG); 851 (void) rw_unlock(&ztest_shared->zs_name_lock); 852 } 853 854 static vdev_t * 855 vdev_lookup_by_path(vdev_t *vd, const char *path) 856 { 857 vdev_t *mvd; 858 859 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 860 return (vd); 861 862 for (int c = 0; c < vd->vdev_children; c++) 863 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 864 NULL) 865 return (mvd); 866 867 return (NULL); 868 } 869 870 /* 871 * Find the first available hole which can be used as a top-level. 872 */ 873 int 874 find_vdev_hole(spa_t *spa) 875 { 876 vdev_t *rvd = spa->spa_root_vdev; 877 int c; 878 879 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 880 881 for (c = 0; c < rvd->vdev_children; c++) { 882 vdev_t *cvd = rvd->vdev_child[c]; 883 884 if (cvd->vdev_ishole) 885 break; 886 } 887 return (c); 888 } 889 890 /* 891 * Verify that vdev_add() works as expected. 892 */ 893 void 894 ztest_vdev_add_remove(ztest_args_t *za) 895 { 896 spa_t *spa = za->za_spa; 897 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 898 uint64_t guid; 899 nvlist_t *nvroot; 900 int error; 901 902 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 903 904 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 905 906 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 907 908 /* 909 * If we have slogs then remove them 1/4 of the time. 910 */ 911 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 912 /* 913 * Grab the guid from the head of the log class rotor. 914 */ 915 guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid; 916 917 spa_config_exit(spa, SCL_VDEV, FTAG); 918 919 /* 920 * We have to grab the zs_name_lock as writer to 921 * prevent a race between removing a slog (dmu_objset_find) 922 * and destroying a dataset. Removing the slog will 923 * grab a reference on the dataset which may cause 924 * dmu_objset_destroy() to fail with EBUSY thus 925 * leaving the dataset in an inconsistent state. 926 */ 927 (void) rw_wrlock(&ztest_shared->zs_name_lock); 928 error = spa_vdev_remove(spa, guid, B_FALSE); 929 (void) rw_unlock(&ztest_shared->zs_name_lock); 930 931 if (error && error != EEXIST) 932 fatal(0, "spa_vdev_remove() = %d", error); 933 } else { 934 spa_config_exit(spa, SCL_VDEV, FTAG); 935 936 /* 937 * Make 1/4 of the devices be log devices. 938 */ 939 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 940 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 941 942 error = spa_vdev_add(spa, nvroot); 943 nvlist_free(nvroot); 944 945 if (error == ENOSPC) 946 ztest_record_enospc("spa_vdev_add"); 947 else if (error != 0) 948 fatal(0, "spa_vdev_add() = %d", error); 949 } 950 951 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 952 } 953 954 /* 955 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 956 */ 957 void 958 ztest_vdev_aux_add_remove(ztest_args_t *za) 959 { 960 spa_t *spa = za->za_spa; 961 vdev_t *rvd = spa->spa_root_vdev; 962 spa_aux_vdev_t *sav; 963 char *aux; 964 uint64_t guid = 0; 965 int error; 966 967 if (ztest_random(2) == 0) { 968 sav = &spa->spa_spares; 969 aux = ZPOOL_CONFIG_SPARES; 970 } else { 971 sav = &spa->spa_l2cache; 972 aux = ZPOOL_CONFIG_L2CACHE; 973 } 974 975 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 976 977 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 978 979 if (sav->sav_count != 0 && ztest_random(4) == 0) { 980 /* 981 * Pick a random device to remove. 982 */ 983 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 984 } else { 985 /* 986 * Find an unused device we can add. 987 */ 988 ztest_shared->zs_vdev_aux = 0; 989 for (;;) { 990 char path[MAXPATHLEN]; 991 int c; 992 (void) sprintf(path, ztest_aux_template, zopt_dir, 993 zopt_pool, aux, ztest_shared->zs_vdev_aux); 994 for (c = 0; c < sav->sav_count; c++) 995 if (strcmp(sav->sav_vdevs[c]->vdev_path, 996 path) == 0) 997 break; 998 if (c == sav->sav_count && 999 vdev_lookup_by_path(rvd, path) == NULL) 1000 break; 1001 ztest_shared->zs_vdev_aux++; 1002 } 1003 } 1004 1005 spa_config_exit(spa, SCL_VDEV, FTAG); 1006 1007 if (guid == 0) { 1008 /* 1009 * Add a new device. 1010 */ 1011 nvlist_t *nvroot = make_vdev_root(NULL, aux, 1012 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 1013 error = spa_vdev_add(spa, nvroot); 1014 if (error != 0) 1015 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 1016 nvlist_free(nvroot); 1017 } else { 1018 /* 1019 * Remove an existing device. Sometimes, dirty its 1020 * vdev state first to make sure we handle removal 1021 * of devices that have pending state changes. 1022 */ 1023 if (ztest_random(2) == 0) 1024 (void) vdev_online(spa, guid, 0, NULL); 1025 1026 error = spa_vdev_remove(spa, guid, B_FALSE); 1027 if (error != 0 && error != EBUSY) 1028 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 1029 } 1030 1031 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1032 } 1033 1034 /* 1035 * Verify that we can attach and detach devices. 1036 */ 1037 void 1038 ztest_vdev_attach_detach(ztest_args_t *za) 1039 { 1040 spa_t *spa = za->za_spa; 1041 spa_aux_vdev_t *sav = &spa->spa_spares; 1042 vdev_t *rvd = spa->spa_root_vdev; 1043 vdev_t *oldvd, *newvd, *pvd; 1044 nvlist_t *root; 1045 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1046 uint64_t leaf, top; 1047 uint64_t ashift = ztest_get_ashift(); 1048 uint64_t oldguid, pguid; 1049 size_t oldsize, newsize; 1050 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 1051 int replacing; 1052 int oldvd_has_siblings = B_FALSE; 1053 int newvd_is_spare = B_FALSE; 1054 int oldvd_is_log; 1055 int error, expected_error; 1056 1057 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1058 1059 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1060 1061 /* 1062 * Decide whether to do an attach or a replace. 1063 */ 1064 replacing = ztest_random(2); 1065 1066 /* 1067 * Pick a random top-level vdev. 1068 */ 1069 top = ztest_random(rvd->vdev_children); 1070 1071 /* 1072 * Pick a random leaf within it. 1073 */ 1074 leaf = ztest_random(leaves); 1075 1076 /* 1077 * Locate this vdev. 1078 */ 1079 oldvd = rvd->vdev_child[top]; 1080 if (zopt_mirrors >= 1) { 1081 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1082 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1083 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1084 } 1085 if (zopt_raidz > 1) { 1086 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1087 ASSERT(oldvd->vdev_children == zopt_raidz); 1088 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1089 } 1090 1091 /* 1092 * If we're already doing an attach or replace, oldvd may be a 1093 * mirror vdev -- in which case, pick a random child. 1094 */ 1095 while (oldvd->vdev_children != 0) { 1096 oldvd_has_siblings = B_TRUE; 1097 ASSERT(oldvd->vdev_children >= 2); 1098 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1099 } 1100 1101 oldguid = oldvd->vdev_guid; 1102 oldsize = vdev_get_min_asize(oldvd); 1103 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1104 (void) strcpy(oldpath, oldvd->vdev_path); 1105 pvd = oldvd->vdev_parent; 1106 pguid = pvd->vdev_guid; 1107 1108 /* 1109 * If oldvd has siblings, then half of the time, detach it. 1110 */ 1111 if (oldvd_has_siblings && ztest_random(2) == 0) { 1112 spa_config_exit(spa, SCL_VDEV, FTAG); 1113 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1114 if (error != 0 && error != ENODEV && error != EBUSY && 1115 error != ENOTSUP) 1116 fatal(0, "detach (%s) returned %d", oldpath, error); 1117 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1118 return; 1119 } 1120 1121 /* 1122 * For the new vdev, choose with equal probability between the two 1123 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1124 */ 1125 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1126 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1127 newvd_is_spare = B_TRUE; 1128 (void) strcpy(newpath, newvd->vdev_path); 1129 } else { 1130 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1131 zopt_dir, zopt_pool, top * leaves + leaf); 1132 if (ztest_random(2) == 0) 1133 newpath[strlen(newpath) - 1] = 'b'; 1134 newvd = vdev_lookup_by_path(rvd, newpath); 1135 } 1136 1137 if (newvd) { 1138 newsize = vdev_get_min_asize(newvd); 1139 } else { 1140 /* 1141 * Make newsize a little bigger or smaller than oldsize. 1142 * If it's smaller, the attach should fail. 1143 * If it's larger, and we're doing a replace, 1144 * we should get dynamic LUN growth when we're done. 1145 */ 1146 newsize = 10 * oldsize / (9 + ztest_random(3)); 1147 } 1148 1149 /* 1150 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1151 * unless it's a replace; in that case any non-replacing parent is OK. 1152 * 1153 * If newvd is already part of the pool, it should fail with EBUSY. 1154 * 1155 * If newvd is too small, it should fail with EOVERFLOW. 1156 */ 1157 if (pvd->vdev_ops != &vdev_mirror_ops && 1158 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1159 pvd->vdev_ops == &vdev_replacing_ops || 1160 pvd->vdev_ops == &vdev_spare_ops)) 1161 expected_error = ENOTSUP; 1162 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1163 expected_error = ENOTSUP; 1164 else if (newvd == oldvd) 1165 expected_error = replacing ? 0 : EBUSY; 1166 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1167 expected_error = EBUSY; 1168 else if (newsize < oldsize) 1169 expected_error = EOVERFLOW; 1170 else if (ashift > oldvd->vdev_top->vdev_ashift) 1171 expected_error = EDOM; 1172 else 1173 expected_error = 0; 1174 1175 spa_config_exit(spa, SCL_VDEV, FTAG); 1176 1177 /* 1178 * Build the nvlist describing newpath. 1179 */ 1180 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1181 ashift, 0, 0, 0, 1); 1182 1183 error = spa_vdev_attach(spa, oldguid, root, replacing); 1184 1185 nvlist_free(root); 1186 1187 /* 1188 * If our parent was the replacing vdev, but the replace completed, 1189 * then instead of failing with ENOTSUP we may either succeed, 1190 * fail with ENODEV, or fail with EOVERFLOW. 1191 */ 1192 if (expected_error == ENOTSUP && 1193 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1194 expected_error = error; 1195 1196 /* 1197 * If someone grew the LUN, the replacement may be too small. 1198 */ 1199 if (error == EOVERFLOW || error == EBUSY) 1200 expected_error = error; 1201 1202 /* XXX workaround 6690467 */ 1203 if (error != expected_error && expected_error != EBUSY) { 1204 fatal(0, "attach (%s %llu, %s %llu, %d) " 1205 "returned %d, expected %d", 1206 oldpath, (longlong_t)oldsize, newpath, 1207 (longlong_t)newsize, replacing, error, expected_error); 1208 } 1209 1210 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1211 } 1212 1213 /* 1214 * Callback function which expands the physical size of the vdev. 1215 */ 1216 vdev_t * 1217 grow_vdev(vdev_t *vd, void *arg) 1218 { 1219 spa_t *spa = vd->vdev_spa; 1220 size_t *newsize = arg; 1221 size_t fsize; 1222 int fd; 1223 1224 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1225 ASSERT(vd->vdev_ops->vdev_op_leaf); 1226 1227 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 1228 return (vd); 1229 1230 fsize = lseek(fd, 0, SEEK_END); 1231 (void) ftruncate(fd, *newsize); 1232 1233 if (zopt_verbose >= 6) { 1234 (void) printf("%s grew from %lu to %lu bytes\n", 1235 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 1236 } 1237 (void) close(fd); 1238 return (NULL); 1239 } 1240 1241 /* 1242 * Callback function which expands a given vdev by calling vdev_online(). 1243 */ 1244 /* ARGSUSED */ 1245 vdev_t * 1246 online_vdev(vdev_t *vd, void *arg) 1247 { 1248 spa_t *spa = vd->vdev_spa; 1249 vdev_t *tvd = vd->vdev_top; 1250 uint64_t guid = vd->vdev_guid; 1251 uint64_t generation = spa->spa_config_generation + 1; 1252 1253 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1254 ASSERT(vd->vdev_ops->vdev_op_leaf); 1255 1256 /* Calling vdev_online will initialize the new metaslabs */ 1257 spa_config_exit(spa, SCL_STATE, spa); 1258 (void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL); 1259 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1260 1261 /* 1262 * Since we dropped the lock we need to ensure that we're 1263 * still talking to the original vdev. It's possible this 1264 * vdev may have been detached/replaced while we were 1265 * trying to online it. 1266 */ 1267 if (generation != spa->spa_config_generation) { 1268 if (zopt_verbose >= 5) { 1269 (void) printf("vdev configuration has changed, " 1270 "guid %llu, state %llu, expected gen %llu, " 1271 "got gen %llu\n", (u_longlong_t)guid, 1272 (u_longlong_t)tvd->vdev_state, 1273 (u_longlong_t)generation, 1274 (u_longlong_t)spa->spa_config_generation); 1275 } 1276 return (vd); 1277 } 1278 return (NULL); 1279 } 1280 1281 /* 1282 * Traverse the vdev tree calling the supplied function. 1283 * We continue to walk the tree until we either have walked all 1284 * children or we receive a non-NULL return from the callback. 1285 * If a NULL callback is passed, then we just return back the first 1286 * leaf vdev we encounter. 1287 */ 1288 vdev_t * 1289 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 1290 { 1291 if (vd->vdev_ops->vdev_op_leaf) { 1292 if (func == NULL) 1293 return (vd); 1294 else 1295 return (func(vd, arg)); 1296 } 1297 1298 for (uint_t c = 0; c < vd->vdev_children; c++) { 1299 vdev_t *cvd = vd->vdev_child[c]; 1300 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 1301 return (cvd); 1302 } 1303 return (NULL); 1304 } 1305 1306 /* 1307 * Verify that dynamic LUN growth works as expected. 1308 */ 1309 void 1310 ztest_vdev_LUN_growth(ztest_args_t *za) 1311 { 1312 spa_t *spa = za->za_spa; 1313 vdev_t *vd, *tvd = NULL; 1314 size_t psize, newsize; 1315 uint64_t spa_newsize, spa_cursize, ms_count; 1316 1317 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1318 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1319 1320 while (tvd == NULL || tvd->vdev_islog) { 1321 uint64_t vdev; 1322 1323 vdev = ztest_random(spa->spa_root_vdev->vdev_children); 1324 tvd = spa->spa_root_vdev->vdev_child[vdev]; 1325 } 1326 1327 /* 1328 * Determine the size of the first leaf vdev associated with 1329 * our top-level device. 1330 */ 1331 vd = vdev_walk_tree(tvd, NULL, NULL); 1332 ASSERT3P(vd, !=, NULL); 1333 ASSERT(vd->vdev_ops->vdev_op_leaf); 1334 1335 psize = vd->vdev_psize; 1336 1337 /* 1338 * We only try to expand the vdev if it's healthy, less than 4x its 1339 * original size, and it has a valid psize. 1340 */ 1341 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 1342 psize == 0 || psize >= 4 * zopt_vdev_size) { 1343 spa_config_exit(spa, SCL_STATE, spa); 1344 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1345 return; 1346 } 1347 ASSERT(psize > 0); 1348 newsize = psize + psize / 8; 1349 ASSERT3U(newsize, >, psize); 1350 1351 if (zopt_verbose >= 6) { 1352 (void) printf("Expanding vdev %s from %lu to %lu\n", 1353 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 1354 } 1355 1356 spa_cursize = spa_get_space(spa); 1357 ms_count = tvd->vdev_ms_count; 1358 1359 /* 1360 * Growing the vdev is a two step process: 1361 * 1). expand the physical size (i.e. relabel) 1362 * 2). online the vdev to create the new metaslabs 1363 */ 1364 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 1365 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 1366 tvd->vdev_state != VDEV_STATE_HEALTHY) { 1367 if (zopt_verbose >= 5) { 1368 (void) printf("Could not expand LUN because " 1369 "the vdev configuration changed.\n"); 1370 } 1371 (void) spa_config_exit(spa, SCL_STATE, spa); 1372 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1373 return; 1374 } 1375 1376 (void) spa_config_exit(spa, SCL_STATE, spa); 1377 1378 /* 1379 * Expanding the LUN will update the config asynchronously, 1380 * thus we must wait for the async thread to complete any 1381 * pending tasks before proceeding. 1382 */ 1383 mutex_enter(&spa->spa_async_lock); 1384 while (spa->spa_async_thread != NULL || spa->spa_async_tasks) 1385 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 1386 mutex_exit(&spa->spa_async_lock); 1387 1388 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1389 spa_newsize = spa_get_space(spa); 1390 1391 /* 1392 * Make sure we were able to grow the pool. 1393 */ 1394 if (ms_count >= tvd->vdev_ms_count || 1395 spa_cursize >= spa_newsize) { 1396 (void) printf("Top-level vdev metaslab count: " 1397 "before %llu, after %llu\n", 1398 (u_longlong_t)ms_count, 1399 (u_longlong_t)tvd->vdev_ms_count); 1400 fatal(0, "LUN expansion failed: before %llu, " 1401 "after %llu\n", spa_cursize, spa_newsize); 1402 } else if (zopt_verbose >= 5) { 1403 char oldnumbuf[6], newnumbuf[6]; 1404 1405 nicenum(spa_cursize, oldnumbuf); 1406 nicenum(spa_newsize, newnumbuf); 1407 (void) printf("%s grew from %s to %s\n", 1408 spa->spa_name, oldnumbuf, newnumbuf); 1409 } 1410 spa_config_exit(spa, SCL_STATE, spa); 1411 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1412 } 1413 1414 /* ARGSUSED */ 1415 static void 1416 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1417 { 1418 /* 1419 * Create the directory object. 1420 */ 1421 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1422 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1423 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1424 1425 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1426 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1427 1428 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1429 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1430 } 1431 1432 static int 1433 ztest_destroy_cb(char *name, void *arg) 1434 { 1435 ztest_args_t *za = arg; 1436 objset_t *os; 1437 dmu_object_info_t *doi = &za->za_doi; 1438 int error; 1439 1440 /* 1441 * Verify that the dataset contains a directory object. 1442 */ 1443 error = dmu_objset_hold(name, FTAG, &os); 1444 ASSERT3U(error, ==, 0); 1445 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1446 if (error != ENOENT) { 1447 /* We could have crashed in the middle of destroying it */ 1448 ASSERT3U(error, ==, 0); 1449 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1450 ASSERT3S(doi->doi_physical_blks, >=, 0); 1451 } 1452 dmu_objset_rele(os, FTAG); 1453 1454 /* 1455 * Destroy the dataset. 1456 */ 1457 error = dmu_objset_destroy(name, B_FALSE); 1458 if (error) { 1459 (void) dmu_objset_hold(name, FTAG, &os); 1460 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error); 1461 } 1462 return (0); 1463 } 1464 1465 /* 1466 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1467 */ 1468 static uint64_t 1469 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1470 { 1471 itx_t *itx; 1472 lr_create_t *lr; 1473 size_t namesize; 1474 char name[24]; 1475 1476 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1477 namesize = strlen(name) + 1; 1478 1479 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1480 ztest_random(ZIL_MAX_BLKSZ)); 1481 lr = (lr_create_t *)&itx->itx_lr; 1482 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1483 lr->lr_doid = object; 1484 lr->lr_foid = 0; 1485 lr->lr_mode = mode; 1486 lr->lr_uid = 0; 1487 lr->lr_gid = 0; 1488 lr->lr_gen = dmu_tx_get_txg(tx); 1489 lr->lr_crtime[0] = time(NULL); 1490 lr->lr_crtime[1] = 0; 1491 lr->lr_rdev = 0; 1492 bcopy(name, (char *)(lr + 1), namesize); 1493 1494 return (zil_itx_assign(zilog, itx, tx)); 1495 } 1496 1497 void 1498 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1499 { 1500 int error; 1501 objset_t *os, *os2; 1502 char name[100]; 1503 zilog_t *zilog; 1504 uint64_t seq; 1505 uint64_t objects; 1506 1507 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1508 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1509 (u_longlong_t)za->za_instance); 1510 1511 /* 1512 * If this dataset exists from a previous run, process its replay log 1513 * half of the time. If we don't replay it, then dmu_objset_destroy() 1514 * (invoked from ztest_destroy_cb() below) should just throw it away. 1515 */ 1516 if (ztest_random(2) == 0 && 1517 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 1518 zil_replay(os, os, ztest_replay_vector); 1519 dmu_objset_disown(os, FTAG); 1520 } 1521 1522 /* 1523 * There may be an old instance of the dataset we're about to 1524 * create lying around from a previous run. If so, destroy it 1525 * and all of its snapshots. 1526 */ 1527 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1528 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1529 1530 /* 1531 * Verify that the destroyed dataset is no longer in the namespace. 1532 */ 1533 error = dmu_objset_hold(name, FTAG, &os); 1534 if (error != ENOENT) 1535 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1536 name, os); 1537 1538 /* 1539 * Verify that we can create a new dataset. 1540 */ 1541 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 1542 ztest_create_cb, NULL); 1543 if (error) { 1544 if (error == ENOSPC) { 1545 ztest_record_enospc("dmu_objset_create"); 1546 (void) rw_unlock(&ztest_shared->zs_name_lock); 1547 return; 1548 } 1549 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1550 } 1551 1552 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os); 1553 if (error) { 1554 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1555 } 1556 1557 /* 1558 * Open the intent log for it. 1559 */ 1560 zilog = zil_open(os, NULL); 1561 1562 /* 1563 * Put a random number of objects in there. 1564 */ 1565 objects = ztest_random(20); 1566 seq = 0; 1567 while (objects-- != 0) { 1568 uint64_t object; 1569 dmu_tx_t *tx = dmu_tx_create(os); 1570 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1571 error = dmu_tx_assign(tx, TXG_WAIT); 1572 if (error) { 1573 dmu_tx_abort(tx); 1574 } else { 1575 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1576 DMU_OT_NONE, 0, tx); 1577 ztest_set_random_blocksize(os, object, tx); 1578 seq = ztest_log_create(zilog, tx, object, 1579 DMU_OT_UINT64_OTHER); 1580 dmu_write(os, object, 0, sizeof (name), name, tx); 1581 dmu_tx_commit(tx); 1582 } 1583 if (ztest_random(5) == 0) { 1584 zil_commit(zilog, seq, object); 1585 } 1586 if (ztest_random(100) == 0) { 1587 error = zil_suspend(zilog); 1588 if (error == 0) { 1589 zil_resume(zilog); 1590 } 1591 } 1592 } 1593 1594 /* 1595 * Verify that we cannot create an existing dataset. 1596 */ 1597 error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL); 1598 if (error != EEXIST) 1599 fatal(0, "created existing dataset, error = %d", error); 1600 1601 /* 1602 * Verify that we can hold an objset that is also owned. 1603 */ 1604 error = dmu_objset_hold(name, FTAG, &os2); 1605 if (error) 1606 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1607 dmu_objset_rele(os2, FTAG); 1608 1609 /* 1610 * Verify that we can not own an objset that is already owned. 1611 */ 1612 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2); 1613 if (error != EBUSY) 1614 fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY", 1615 name, error); 1616 1617 zil_close(zilog); 1618 dmu_objset_disown(os, FTAG); 1619 1620 error = dmu_objset_destroy(name, B_FALSE); 1621 if (error) 1622 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1623 1624 (void) rw_unlock(&ztest_shared->zs_name_lock); 1625 } 1626 1627 /* 1628 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1629 */ 1630 void 1631 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1632 { 1633 int error; 1634 objset_t *os = za->za_os; 1635 char snapname[100]; 1636 char osname[MAXNAMELEN]; 1637 1638 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1639 dmu_objset_name(os, osname); 1640 (void) snprintf(snapname, 100, "%s@%llu", osname, 1641 (u_longlong_t)za->za_instance); 1642 1643 error = dmu_objset_destroy(snapname, B_FALSE); 1644 if (error != 0 && error != ENOENT) 1645 fatal(0, "dmu_objset_destroy() = %d", error); 1646 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1647 NULL, FALSE); 1648 if (error == ENOSPC) 1649 ztest_record_enospc("dmu_take_snapshot"); 1650 else if (error != 0 && error != EEXIST) 1651 fatal(0, "dmu_take_snapshot() = %d", error); 1652 (void) rw_unlock(&ztest_shared->zs_name_lock); 1653 } 1654 1655 /* 1656 * Cleanup non-standard snapshots and clones. 1657 */ 1658 void 1659 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) 1660 { 1661 char snap1name[100]; 1662 char clone1name[100]; 1663 char snap2name[100]; 1664 char clone2name[100]; 1665 char snap3name[100]; 1666 int error; 1667 1668 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1669 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1670 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1671 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1672 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1673 1674 error = dmu_objset_destroy(clone2name, B_FALSE); 1675 if (error && error != ENOENT) 1676 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1677 error = dmu_objset_destroy(snap3name, B_FALSE); 1678 if (error && error != ENOENT) 1679 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1680 error = dmu_objset_destroy(snap2name, B_FALSE); 1681 if (error && error != ENOENT) 1682 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1683 error = dmu_objset_destroy(clone1name, B_FALSE); 1684 if (error && error != ENOENT) 1685 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1686 error = dmu_objset_destroy(snap1name, B_FALSE); 1687 if (error && error != ENOENT) 1688 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1689 } 1690 1691 /* 1692 * Verify dsl_dataset_promote handles EBUSY 1693 */ 1694 void 1695 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1696 { 1697 int error; 1698 objset_t *os = za->za_os; 1699 objset_t *clone; 1700 dsl_dataset_t *ds; 1701 char snap1name[100]; 1702 char clone1name[100]; 1703 char snap2name[100]; 1704 char clone2name[100]; 1705 char snap3name[100]; 1706 char osname[MAXNAMELEN]; 1707 uint64_t curval = za->za_instance; 1708 1709 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1710 1711 dmu_objset_name(os, osname); 1712 ztest_dsl_dataset_cleanup(osname, curval); 1713 1714 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1715 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1716 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1717 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1718 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1719 1720 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1721 NULL, FALSE); 1722 if (error && error != EEXIST) { 1723 if (error == ENOSPC) { 1724 ztest_record_enospc("dmu_take_snapshot"); 1725 goto out; 1726 } 1727 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1728 } 1729 1730 error = dmu_objset_hold(snap1name, FTAG, &clone); 1731 if (error) 1732 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1733 1734 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 1735 dmu_objset_rele(clone, FTAG); 1736 if (error) { 1737 if (error == ENOSPC) { 1738 ztest_record_enospc("dmu_objset_create"); 1739 goto out; 1740 } 1741 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1742 } 1743 1744 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1745 NULL, FALSE); 1746 if (error && error != EEXIST) { 1747 if (error == ENOSPC) { 1748 ztest_record_enospc("dmu_take_snapshot"); 1749 goto out; 1750 } 1751 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1752 } 1753 1754 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1755 NULL, FALSE); 1756 if (error && error != EEXIST) { 1757 if (error == ENOSPC) { 1758 ztest_record_enospc("dmu_take_snapshot"); 1759 goto out; 1760 } 1761 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1762 } 1763 1764 error = dmu_objset_hold(snap3name, FTAG, &clone); 1765 if (error) 1766 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1767 1768 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 1769 dmu_objset_rele(clone, FTAG); 1770 if (error) { 1771 if (error == ENOSPC) { 1772 ztest_record_enospc("dmu_objset_create"); 1773 goto out; 1774 } 1775 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1776 } 1777 1778 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 1779 if (error) 1780 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1781 error = dsl_dataset_promote(clone2name, NULL); 1782 if (error != EBUSY) 1783 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1784 error); 1785 dsl_dataset_disown(ds, FTAG); 1786 1787 out: 1788 ztest_dsl_dataset_cleanup(osname, curval); 1789 1790 (void) rw_unlock(&ztest_shared->zs_name_lock); 1791 } 1792 1793 /* 1794 * Verify that dmu_object_{alloc,free} work as expected. 1795 */ 1796 void 1797 ztest_dmu_object_alloc_free(ztest_args_t *za) 1798 { 1799 objset_t *os = za->za_os; 1800 dmu_buf_t *db; 1801 dmu_tx_t *tx; 1802 uint64_t batchobj, object, batchsize, endoff, temp; 1803 int b, c, error, bonuslen; 1804 dmu_object_info_t *doi = &za->za_doi; 1805 char osname[MAXNAMELEN]; 1806 1807 dmu_objset_name(os, osname); 1808 1809 endoff = -8ULL; 1810 batchsize = 2; 1811 1812 /* 1813 * Create a batch object if necessary, and record it in the directory. 1814 */ 1815 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1816 sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); 1817 if (batchobj == 0) { 1818 tx = dmu_tx_create(os); 1819 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1820 sizeof (uint64_t)); 1821 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1822 error = dmu_tx_assign(tx, TXG_WAIT); 1823 if (error) { 1824 ztest_record_enospc("create a batch object"); 1825 dmu_tx_abort(tx); 1826 return; 1827 } 1828 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1829 DMU_OT_NONE, 0, tx); 1830 ztest_set_random_blocksize(os, batchobj, tx); 1831 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1832 sizeof (uint64_t), &batchobj, tx); 1833 dmu_tx_commit(tx); 1834 } 1835 1836 /* 1837 * Destroy the previous batch of objects. 1838 */ 1839 for (b = 0; b < batchsize; b++) { 1840 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1841 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 1842 if (object == 0) 1843 continue; 1844 /* 1845 * Read and validate contents. 1846 * We expect the nth byte of the bonus buffer to be n. 1847 */ 1848 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1849 za->za_dbuf = db; 1850 1851 dmu_object_info_from_db(db, doi); 1852 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1853 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1854 ASSERT3S(doi->doi_physical_blks, >=, 0); 1855 1856 bonuslen = doi->doi_bonus_size; 1857 1858 for (c = 0; c < bonuslen; c++) { 1859 if (((uint8_t *)db->db_data)[c] != 1860 (uint8_t)(c + bonuslen)) { 1861 fatal(0, 1862 "bad bonus: %s, obj %llu, off %d: %u != %u", 1863 osname, object, c, 1864 ((uint8_t *)db->db_data)[c], 1865 (uint8_t)(c + bonuslen)); 1866 } 1867 } 1868 1869 dmu_buf_rele(db, FTAG); 1870 za->za_dbuf = NULL; 1871 1872 /* 1873 * We expect the word at endoff to be our object number. 1874 */ 1875 VERIFY(0 == dmu_read(os, object, endoff, 1876 sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); 1877 1878 if (temp != object) { 1879 fatal(0, "bad data in %s, got %llu, expected %llu", 1880 osname, temp, object); 1881 } 1882 1883 /* 1884 * Destroy old object and clear batch entry. 1885 */ 1886 tx = dmu_tx_create(os); 1887 dmu_tx_hold_write(tx, batchobj, 1888 b * sizeof (uint64_t), sizeof (uint64_t)); 1889 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1890 error = dmu_tx_assign(tx, TXG_WAIT); 1891 if (error) { 1892 ztest_record_enospc("free object"); 1893 dmu_tx_abort(tx); 1894 return; 1895 } 1896 error = dmu_object_free(os, object, tx); 1897 if (error) { 1898 fatal(0, "dmu_object_free('%s', %llu) = %d", 1899 osname, object, error); 1900 } 1901 object = 0; 1902 1903 dmu_object_set_checksum(os, batchobj, 1904 ztest_random_checksum(), tx); 1905 dmu_object_set_compress(os, batchobj, 1906 ztest_random_compress(), tx); 1907 1908 dmu_write(os, batchobj, b * sizeof (uint64_t), 1909 sizeof (uint64_t), &object, tx); 1910 1911 dmu_tx_commit(tx); 1912 } 1913 1914 /* 1915 * Before creating the new batch of objects, generate a bunch of churn. 1916 */ 1917 for (b = ztest_random(100); b > 0; b--) { 1918 tx = dmu_tx_create(os); 1919 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1920 error = dmu_tx_assign(tx, TXG_WAIT); 1921 if (error) { 1922 ztest_record_enospc("churn objects"); 1923 dmu_tx_abort(tx); 1924 return; 1925 } 1926 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1927 DMU_OT_NONE, 0, tx); 1928 ztest_set_random_blocksize(os, object, tx); 1929 error = dmu_object_free(os, object, tx); 1930 if (error) { 1931 fatal(0, "dmu_object_free('%s', %llu) = %d", 1932 osname, object, error); 1933 } 1934 dmu_tx_commit(tx); 1935 } 1936 1937 /* 1938 * Create a new batch of objects with randomly chosen 1939 * blocksizes and record them in the batch directory. 1940 */ 1941 for (b = 0; b < batchsize; b++) { 1942 uint32_t va_blksize; 1943 u_longlong_t va_nblocks; 1944 1945 tx = dmu_tx_create(os); 1946 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1947 sizeof (uint64_t)); 1948 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1949 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1950 sizeof (uint64_t)); 1951 error = dmu_tx_assign(tx, TXG_WAIT); 1952 if (error) { 1953 ztest_record_enospc("create batchobj"); 1954 dmu_tx_abort(tx); 1955 return; 1956 } 1957 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1958 1959 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1960 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1961 1962 ztest_set_random_blocksize(os, object, tx); 1963 1964 dmu_object_set_checksum(os, object, 1965 ztest_random_checksum(), tx); 1966 dmu_object_set_compress(os, object, 1967 ztest_random_compress(), tx); 1968 1969 dmu_write(os, batchobj, b * sizeof (uint64_t), 1970 sizeof (uint64_t), &object, tx); 1971 1972 /* 1973 * Write to both the bonus buffer and the regular data. 1974 */ 1975 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1976 za->za_dbuf = db; 1977 ASSERT3U(bonuslen, <=, db->db_size); 1978 1979 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1980 ASSERT3S(va_nblocks, >=, 0); 1981 1982 dmu_buf_will_dirty(db, tx); 1983 1984 /* 1985 * See comments above regarding the contents of 1986 * the bonus buffer and the word at endoff. 1987 */ 1988 for (c = 0; c < bonuslen; c++) 1989 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1990 1991 dmu_buf_rele(db, FTAG); 1992 za->za_dbuf = NULL; 1993 1994 /* 1995 * Write to a large offset to increase indirection. 1996 */ 1997 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1998 1999 dmu_tx_commit(tx); 2000 } 2001 } 2002 2003 /* 2004 * Verify that dmu_{read,write} work as expected. 2005 */ 2006 typedef struct bufwad { 2007 uint64_t bw_index; 2008 uint64_t bw_txg; 2009 uint64_t bw_data; 2010 } bufwad_t; 2011 2012 typedef struct dmu_read_write_dir { 2013 uint64_t dd_packobj; 2014 uint64_t dd_bigobj; 2015 uint64_t dd_chunk; 2016 } dmu_read_write_dir_t; 2017 2018 void 2019 ztest_dmu_read_write(ztest_args_t *za) 2020 { 2021 objset_t *os = za->za_os; 2022 dmu_read_write_dir_t dd; 2023 dmu_tx_t *tx; 2024 int i, freeit, error; 2025 uint64_t n, s, txg; 2026 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 2027 uint64_t packoff, packsize, bigoff, bigsize; 2028 uint64_t regions = 997; 2029 uint64_t stride = 123456789ULL; 2030 uint64_t width = 40; 2031 int free_percent = 5; 2032 2033 /* 2034 * This test uses two objects, packobj and bigobj, that are always 2035 * updated together (i.e. in the same tx) so that their contents are 2036 * in sync and can be compared. Their contents relate to each other 2037 * in a simple way: packobj is a dense array of 'bufwad' structures, 2038 * while bigobj is a sparse array of the same bufwads. Specifically, 2039 * for any index n, there are three bufwads that should be identical: 2040 * 2041 * packobj, at offset n * sizeof (bufwad_t) 2042 * bigobj, at the head of the nth chunk 2043 * bigobj, at the tail of the nth chunk 2044 * 2045 * The chunk size is arbitrary. It doesn't have to be a power of two, 2046 * and it doesn't have any relation to the object blocksize. 2047 * The only requirement is that it can hold at least two bufwads. 2048 * 2049 * Normally, we write the bufwad to each of these locations. 2050 * However, free_percent of the time we instead write zeroes to 2051 * packobj and perform a dmu_free_range() on bigobj. By comparing 2052 * bigobj to packobj, we can verify that the DMU is correctly 2053 * tracking which parts of an object are allocated and free, 2054 * and that the contents of the allocated blocks are correct. 2055 */ 2056 2057 /* 2058 * Read the directory info. If it's the first time, set things up. 2059 */ 2060 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2061 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2062 if (dd.dd_chunk == 0) { 2063 ASSERT(dd.dd_packobj == 0); 2064 ASSERT(dd.dd_bigobj == 0); 2065 tx = dmu_tx_create(os); 2066 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2067 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2068 error = dmu_tx_assign(tx, TXG_WAIT); 2069 if (error) { 2070 ztest_record_enospc("create r/w directory"); 2071 dmu_tx_abort(tx); 2072 return; 2073 } 2074 2075 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2076 DMU_OT_NONE, 0, tx); 2077 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2078 DMU_OT_NONE, 0, tx); 2079 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 2080 2081 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2082 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2083 2084 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2085 tx); 2086 dmu_tx_commit(tx); 2087 } 2088 2089 /* 2090 * Prefetch a random chunk of the big object. 2091 * Our aim here is to get some async reads in flight 2092 * for blocks that we may free below; the DMU should 2093 * handle this race correctly. 2094 */ 2095 n = ztest_random(regions) * stride + ztest_random(width); 2096 s = 1 + ztest_random(2 * width - 1); 2097 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 2098 2099 /* 2100 * Pick a random index and compute the offsets into packobj and bigobj. 2101 */ 2102 n = ztest_random(regions) * stride + ztest_random(width); 2103 s = 1 + ztest_random(width - 1); 2104 2105 packoff = n * sizeof (bufwad_t); 2106 packsize = s * sizeof (bufwad_t); 2107 2108 bigoff = n * dd.dd_chunk; 2109 bigsize = s * dd.dd_chunk; 2110 2111 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 2112 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 2113 2114 /* 2115 * free_percent of the time, free a range of bigobj rather than 2116 * overwriting it. 2117 */ 2118 freeit = (ztest_random(100) < free_percent); 2119 2120 /* 2121 * Read the current contents of our objects. 2122 */ 2123 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, 2124 DMU_READ_PREFETCH); 2125 ASSERT3U(error, ==, 0); 2126 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, 2127 DMU_READ_PREFETCH); 2128 ASSERT3U(error, ==, 0); 2129 2130 /* 2131 * Get a tx for the mods to both packobj and bigobj. 2132 */ 2133 tx = dmu_tx_create(os); 2134 2135 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2136 2137 if (freeit) 2138 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 2139 else 2140 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2141 2142 error = dmu_tx_assign(tx, TXG_WAIT); 2143 2144 if (error) { 2145 ztest_record_enospc("dmu r/w range"); 2146 dmu_tx_abort(tx); 2147 umem_free(packbuf, packsize); 2148 umem_free(bigbuf, bigsize); 2149 return; 2150 } 2151 2152 txg = dmu_tx_get_txg(tx); 2153 2154 /* 2155 * For each index from n to n + s, verify that the existing bufwad 2156 * in packobj matches the bufwads at the head and tail of the 2157 * corresponding chunk in bigobj. Then update all three bufwads 2158 * with the new values we want to write out. 2159 */ 2160 for (i = 0; i < s; i++) { 2161 /* LINTED */ 2162 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2163 /* LINTED */ 2164 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2165 /* LINTED */ 2166 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2167 2168 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2169 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2170 2171 if (pack->bw_txg > txg) 2172 fatal(0, "future leak: got %llx, open txg is %llx", 2173 pack->bw_txg, txg); 2174 2175 if (pack->bw_data != 0 && pack->bw_index != n + i) 2176 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2177 pack->bw_index, n, i); 2178 2179 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2180 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2181 2182 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2183 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2184 2185 if (freeit) { 2186 bzero(pack, sizeof (bufwad_t)); 2187 } else { 2188 pack->bw_index = n + i; 2189 pack->bw_txg = txg; 2190 pack->bw_data = 1 + ztest_random(-2ULL); 2191 } 2192 *bigH = *pack; 2193 *bigT = *pack; 2194 } 2195 2196 /* 2197 * We've verified all the old bufwads, and made new ones. 2198 * Now write them out. 2199 */ 2200 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2201 2202 if (freeit) { 2203 if (zopt_verbose >= 6) { 2204 (void) printf("freeing offset %llx size %llx" 2205 " txg %llx\n", 2206 (u_longlong_t)bigoff, 2207 (u_longlong_t)bigsize, 2208 (u_longlong_t)txg); 2209 } 2210 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2211 bigsize, tx)); 2212 } else { 2213 if (zopt_verbose >= 6) { 2214 (void) printf("writing offset %llx size %llx" 2215 " txg %llx\n", 2216 (u_longlong_t)bigoff, 2217 (u_longlong_t)bigsize, 2218 (u_longlong_t)txg); 2219 } 2220 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2221 } 2222 2223 dmu_tx_commit(tx); 2224 2225 /* 2226 * Sanity check the stuff we just wrote. 2227 */ 2228 { 2229 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2230 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2231 2232 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2233 packsize, packcheck, DMU_READ_PREFETCH)); 2234 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2235 bigsize, bigcheck, DMU_READ_PREFETCH)); 2236 2237 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2238 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2239 2240 umem_free(packcheck, packsize); 2241 umem_free(bigcheck, bigsize); 2242 } 2243 2244 umem_free(packbuf, packsize); 2245 umem_free(bigbuf, bigsize); 2246 } 2247 2248 void 2249 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2250 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2251 { 2252 uint64_t i; 2253 bufwad_t *pack; 2254 bufwad_t *bigH; 2255 bufwad_t *bigT; 2256 2257 /* 2258 * For each index from n to n + s, verify that the existing bufwad 2259 * in packobj matches the bufwads at the head and tail of the 2260 * corresponding chunk in bigobj. Then update all three bufwads 2261 * with the new values we want to write out. 2262 */ 2263 for (i = 0; i < s; i++) { 2264 /* LINTED */ 2265 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2266 /* LINTED */ 2267 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2268 /* LINTED */ 2269 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2270 2271 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2272 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2273 2274 if (pack->bw_txg > txg) 2275 fatal(0, "future leak: got %llx, open txg is %llx", 2276 pack->bw_txg, txg); 2277 2278 if (pack->bw_data != 0 && pack->bw_index != n + i) 2279 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2280 pack->bw_index, n, i); 2281 2282 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2283 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2284 2285 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2286 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2287 2288 pack->bw_index = n + i; 2289 pack->bw_txg = txg; 2290 pack->bw_data = 1 + ztest_random(-2ULL); 2291 2292 *bigH = *pack; 2293 *bigT = *pack; 2294 } 2295 } 2296 2297 void 2298 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2299 { 2300 objset_t *os = za->za_os; 2301 dmu_read_write_dir_t dd; 2302 dmu_tx_t *tx; 2303 uint64_t i; 2304 int error; 2305 uint64_t n, s, txg; 2306 bufwad_t *packbuf, *bigbuf; 2307 uint64_t packoff, packsize, bigoff, bigsize; 2308 uint64_t regions = 997; 2309 uint64_t stride = 123456789ULL; 2310 uint64_t width = 9; 2311 dmu_buf_t *bonus_db; 2312 arc_buf_t **bigbuf_arcbufs; 2313 dmu_object_info_t *doi = &za->za_doi; 2314 2315 /* 2316 * This test uses two objects, packobj and bigobj, that are always 2317 * updated together (i.e. in the same tx) so that their contents are 2318 * in sync and can be compared. Their contents relate to each other 2319 * in a simple way: packobj is a dense array of 'bufwad' structures, 2320 * while bigobj is a sparse array of the same bufwads. Specifically, 2321 * for any index n, there are three bufwads that should be identical: 2322 * 2323 * packobj, at offset n * sizeof (bufwad_t) 2324 * bigobj, at the head of the nth chunk 2325 * bigobj, at the tail of the nth chunk 2326 * 2327 * The chunk size is set equal to bigobj block size so that 2328 * dmu_assign_arcbuf() can be tested for object updates. 2329 */ 2330 2331 /* 2332 * Read the directory info. If it's the first time, set things up. 2333 */ 2334 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2335 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2336 if (dd.dd_chunk == 0) { 2337 ASSERT(dd.dd_packobj == 0); 2338 ASSERT(dd.dd_bigobj == 0); 2339 tx = dmu_tx_create(os); 2340 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2341 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2342 error = dmu_tx_assign(tx, TXG_WAIT); 2343 if (error) { 2344 ztest_record_enospc("create r/w directory"); 2345 dmu_tx_abort(tx); 2346 return; 2347 } 2348 2349 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2350 DMU_OT_NONE, 0, tx); 2351 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2352 DMU_OT_NONE, 0, tx); 2353 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2354 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2355 2356 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2357 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2358 ASSERT(ISP2(doi->doi_data_block_size)); 2359 dd.dd_chunk = doi->doi_data_block_size; 2360 2361 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2362 tx); 2363 dmu_tx_commit(tx); 2364 } else { 2365 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2366 VERIFY(ISP2(doi->doi_data_block_size)); 2367 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2368 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2369 } 2370 2371 /* 2372 * Pick a random index and compute the offsets into packobj and bigobj. 2373 */ 2374 n = ztest_random(regions) * stride + ztest_random(width); 2375 s = 1 + ztest_random(width - 1); 2376 2377 packoff = n * sizeof (bufwad_t); 2378 packsize = s * sizeof (bufwad_t); 2379 2380 bigoff = n * dd.dd_chunk; 2381 bigsize = s * dd.dd_chunk; 2382 2383 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2384 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2385 2386 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2387 2388 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2389 2390 /* 2391 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2392 * Iteration 1 test zcopy to already referenced dbufs. 2393 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2394 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2395 * Iteration 4 test zcopy when dbuf is no longer dirty. 2396 * Iteration 5 test zcopy when it can't be done. 2397 * Iteration 6 one more zcopy write. 2398 */ 2399 for (i = 0; i < 7; i++) { 2400 uint64_t j; 2401 uint64_t off; 2402 2403 /* 2404 * In iteration 5 (i == 5) use arcbufs 2405 * that don't match bigobj blksz to test 2406 * dmu_assign_arcbuf() when it can't directly 2407 * assign an arcbuf to a dbuf. 2408 */ 2409 for (j = 0; j < s; j++) { 2410 if (i != 5) { 2411 bigbuf_arcbufs[j] = 2412 dmu_request_arcbuf(bonus_db, 2413 dd.dd_chunk); 2414 } else { 2415 bigbuf_arcbufs[2 * j] = 2416 dmu_request_arcbuf(bonus_db, 2417 dd.dd_chunk / 2); 2418 bigbuf_arcbufs[2 * j + 1] = 2419 dmu_request_arcbuf(bonus_db, 2420 dd.dd_chunk / 2); 2421 } 2422 } 2423 2424 /* 2425 * Get a tx for the mods to both packobj and bigobj. 2426 */ 2427 tx = dmu_tx_create(os); 2428 2429 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2430 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2431 2432 if (ztest_random(100) == 0) { 2433 error = -1; 2434 } else { 2435 error = dmu_tx_assign(tx, TXG_WAIT); 2436 } 2437 2438 if (error) { 2439 if (error != -1) { 2440 ztest_record_enospc("dmu r/w range"); 2441 } 2442 dmu_tx_abort(tx); 2443 umem_free(packbuf, packsize); 2444 umem_free(bigbuf, bigsize); 2445 for (j = 0; j < s; j++) { 2446 if (i != 5) { 2447 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2448 } else { 2449 dmu_return_arcbuf( 2450 bigbuf_arcbufs[2 * j]); 2451 dmu_return_arcbuf( 2452 bigbuf_arcbufs[2 * j + 1]); 2453 } 2454 } 2455 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2456 dmu_buf_rele(bonus_db, FTAG); 2457 return; 2458 } 2459 2460 txg = dmu_tx_get_txg(tx); 2461 2462 /* 2463 * 50% of the time don't read objects in the 1st iteration to 2464 * test dmu_assign_arcbuf() for the case when there're no 2465 * existing dbufs for the specified offsets. 2466 */ 2467 if (i != 0 || ztest_random(2) != 0) { 2468 error = dmu_read(os, dd.dd_packobj, packoff, 2469 packsize, packbuf, DMU_READ_PREFETCH); 2470 ASSERT3U(error, ==, 0); 2471 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2472 bigbuf, DMU_READ_PREFETCH); 2473 ASSERT3U(error, ==, 0); 2474 } 2475 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2476 n, dd, txg); 2477 2478 /* 2479 * We've verified all the old bufwads, and made new ones. 2480 * Now write them out. 2481 */ 2482 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2483 if (zopt_verbose >= 6) { 2484 (void) printf("writing offset %llx size %llx" 2485 " txg %llx\n", 2486 (u_longlong_t)bigoff, 2487 (u_longlong_t)bigsize, 2488 (u_longlong_t)txg); 2489 } 2490 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2491 dmu_buf_t *dbt; 2492 if (i != 5) { 2493 bcopy((caddr_t)bigbuf + (off - bigoff), 2494 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2495 } else { 2496 bcopy((caddr_t)bigbuf + (off - bigoff), 2497 bigbuf_arcbufs[2 * j]->b_data, 2498 dd.dd_chunk / 2); 2499 bcopy((caddr_t)bigbuf + (off - bigoff) + 2500 dd.dd_chunk / 2, 2501 bigbuf_arcbufs[2 * j + 1]->b_data, 2502 dd.dd_chunk / 2); 2503 } 2504 2505 if (i == 1) { 2506 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2507 FTAG, &dbt) == 0); 2508 } 2509 if (i != 5) { 2510 dmu_assign_arcbuf(bonus_db, off, 2511 bigbuf_arcbufs[j], tx); 2512 } else { 2513 dmu_assign_arcbuf(bonus_db, off, 2514 bigbuf_arcbufs[2 * j], tx); 2515 dmu_assign_arcbuf(bonus_db, 2516 off + dd.dd_chunk / 2, 2517 bigbuf_arcbufs[2 * j + 1], tx); 2518 } 2519 if (i == 1) { 2520 dmu_buf_rele(dbt, FTAG); 2521 } 2522 } 2523 dmu_tx_commit(tx); 2524 2525 /* 2526 * Sanity check the stuff we just wrote. 2527 */ 2528 { 2529 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2530 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2531 2532 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2533 packsize, packcheck, DMU_READ_PREFETCH)); 2534 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2535 bigsize, bigcheck, DMU_READ_PREFETCH)); 2536 2537 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2538 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2539 2540 umem_free(packcheck, packsize); 2541 umem_free(bigcheck, bigsize); 2542 } 2543 if (i == 2) { 2544 txg_wait_open(dmu_objset_pool(os), 0); 2545 } else if (i == 3) { 2546 txg_wait_synced(dmu_objset_pool(os), 0); 2547 } 2548 } 2549 2550 dmu_buf_rele(bonus_db, FTAG); 2551 umem_free(packbuf, packsize); 2552 umem_free(bigbuf, bigsize); 2553 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2554 } 2555 2556 void 2557 ztest_dmu_check_future_leak(ztest_args_t *za) 2558 { 2559 objset_t *os = za->za_os; 2560 dmu_buf_t *db; 2561 ztest_block_tag_t *bt; 2562 dmu_object_info_t *doi = &za->za_doi; 2563 2564 /* 2565 * Make sure that, if there is a write record in the bonus buffer 2566 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2567 * last synced txg of the pool. 2568 */ 2569 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2570 za->za_dbuf = db; 2571 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2572 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2573 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2574 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2575 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2576 if (bt->bt_objset != 0) { 2577 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2578 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2579 ASSERT3U(bt->bt_offset, ==, -1ULL); 2580 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2581 } 2582 dmu_buf_rele(db, FTAG); 2583 za->za_dbuf = NULL; 2584 } 2585 2586 void 2587 ztest_dmu_write_parallel(ztest_args_t *za) 2588 { 2589 objset_t *os = za->za_os; 2590 ztest_block_tag_t *rbt = &za->za_rbt; 2591 ztest_block_tag_t *wbt = &za->za_wbt; 2592 const size_t btsize = sizeof (ztest_block_tag_t); 2593 dmu_buf_t *db; 2594 int b, error; 2595 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2596 int do_free = 0; 2597 uint64_t off, txg, txg_how; 2598 mutex_t *lp; 2599 char osname[MAXNAMELEN]; 2600 char iobuf[SPA_MAXBLOCKSIZE]; 2601 blkptr_t blk = { 0 }; 2602 uint64_t blkoff; 2603 zbookmark_t zb; 2604 dmu_tx_t *tx = dmu_tx_create(os); 2605 dmu_buf_t *bonus_db; 2606 arc_buf_t *abuf = NULL; 2607 2608 dmu_objset_name(os, osname); 2609 2610 /* 2611 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2612 * to verify that having multiple threads writing to the same object 2613 * in parallel doesn't cause any trouble. 2614 */ 2615 if (ztest_random(4) == 0) { 2616 /* 2617 * Do the bonus buffer instead of a regular block. 2618 * We need a lock to serialize resize vs. others, 2619 * so we hash on the objset ID. 2620 */ 2621 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2622 off = -1ULL; 2623 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2624 } else { 2625 b = ztest_random(ZTEST_SYNC_LOCKS); 2626 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2627 if (ztest_random(4) == 0) { 2628 do_free = 1; 2629 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2630 } else { 2631 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2632 } 2633 } 2634 2635 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2636 ztest_random(8) == 0) { 2637 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2638 abuf = dmu_request_arcbuf(bonus_db, bs); 2639 } 2640 2641 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2642 error = dmu_tx_assign(tx, txg_how); 2643 if (error) { 2644 if (error == ERESTART) { 2645 ASSERT(txg_how == TXG_NOWAIT); 2646 dmu_tx_wait(tx); 2647 } else { 2648 ztest_record_enospc("dmu write parallel"); 2649 } 2650 dmu_tx_abort(tx); 2651 if (abuf != NULL) { 2652 dmu_return_arcbuf(abuf); 2653 dmu_buf_rele(bonus_db, FTAG); 2654 } 2655 return; 2656 } 2657 txg = dmu_tx_get_txg(tx); 2658 2659 lp = &ztest_shared->zs_sync_lock[b]; 2660 (void) mutex_lock(lp); 2661 2662 wbt->bt_objset = dmu_objset_id(os); 2663 wbt->bt_object = ZTEST_DIROBJ; 2664 wbt->bt_offset = off; 2665 wbt->bt_txg = txg; 2666 wbt->bt_thread = za->za_instance; 2667 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2668 2669 /* 2670 * Occasionally, write an all-zero block to test the behavior 2671 * of blocks that compress into holes. 2672 */ 2673 if (off != -1ULL && ztest_random(8) == 0) 2674 bzero(wbt, btsize); 2675 2676 if (off == -1ULL) { 2677 dmu_object_info_t *doi = &za->za_doi; 2678 char *dboff; 2679 2680 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2681 za->za_dbuf = db; 2682 dmu_object_info_from_db(db, doi); 2683 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2684 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2685 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2686 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2687 bcopy(dboff, rbt, btsize); 2688 if (rbt->bt_objset != 0) { 2689 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2690 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2691 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2692 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2693 } 2694 if (ztest_random(10) == 0) { 2695 int newsize = (ztest_random(db->db_size / 2696 btsize) + 1) * btsize; 2697 2698 ASSERT3U(newsize, >=, btsize); 2699 ASSERT3U(newsize, <=, db->db_size); 2700 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2701 dboff = (char *)db->db_data + newsize - btsize; 2702 } 2703 dmu_buf_will_dirty(db, tx); 2704 bcopy(wbt, dboff, btsize); 2705 dmu_buf_rele(db, FTAG); 2706 za->za_dbuf = NULL; 2707 } else if (do_free) { 2708 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2709 } else if (abuf == NULL) { 2710 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2711 } else { 2712 bcopy(wbt, abuf->b_data, btsize); 2713 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2714 dmu_buf_rele(bonus_db, FTAG); 2715 } 2716 2717 (void) mutex_unlock(lp); 2718 2719 if (ztest_random(1000) == 0) 2720 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2721 2722 dmu_tx_commit(tx); 2723 2724 if (ztest_random(10000) == 0) 2725 txg_wait_synced(dmu_objset_pool(os), txg); 2726 2727 if (off == -1ULL || do_free) 2728 return; 2729 2730 if (ztest_random(2) != 0) 2731 return; 2732 2733 /* 2734 * dmu_sync() the block we just wrote. 2735 */ 2736 (void) mutex_lock(lp); 2737 2738 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2739 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2740 za->za_dbuf = db; 2741 if (error) { 2742 (void) mutex_unlock(lp); 2743 return; 2744 } 2745 blkoff = off - blkoff; 2746 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2747 dmu_buf_rele(db, FTAG); 2748 za->za_dbuf = NULL; 2749 2750 if (error) { 2751 (void) mutex_unlock(lp); 2752 return; 2753 } 2754 2755 if (blk.blk_birth == 0) { /* concurrent free */ 2756 (void) mutex_unlock(lp); 2757 return; 2758 } 2759 2760 txg_suspend(dmu_objset_pool(os)); 2761 2762 (void) mutex_unlock(lp); 2763 2764 ASSERT(blk.blk_fill == 1); 2765 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2766 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2767 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2768 2769 /* 2770 * Read the block that dmu_sync() returned to make sure its contents 2771 * match what we wrote. We do this while still txg_suspend()ed 2772 * to ensure that the block can't be reused before we read it. 2773 */ 2774 zb.zb_objset = dmu_objset_id(os); 2775 zb.zb_object = ZTEST_DIROBJ; 2776 zb.zb_level = 0; 2777 zb.zb_blkid = off / bs; 2778 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2779 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2780 ASSERT3U(error, ==, 0); 2781 2782 txg_resume(dmu_objset_pool(os)); 2783 2784 bcopy(&iobuf[blkoff], rbt, btsize); 2785 2786 if (rbt->bt_objset == 0) /* concurrent free */ 2787 return; 2788 2789 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2790 return; 2791 2792 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2793 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2794 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2795 2796 /* 2797 * The semantic of dmu_sync() is that we always push the most recent 2798 * version of the data, so in the face of concurrent updates we may 2799 * see a newer version of the block. That's OK. 2800 */ 2801 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2802 if (rbt->bt_thread == wbt->bt_thread) 2803 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2804 else 2805 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2806 } 2807 2808 /* 2809 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2810 */ 2811 #define ZTEST_ZAP_MIN_INTS 1 2812 #define ZTEST_ZAP_MAX_INTS 4 2813 #define ZTEST_ZAP_MAX_PROPS 1000 2814 2815 void 2816 ztest_zap(ztest_args_t *za) 2817 { 2818 objset_t *os = za->za_os; 2819 uint64_t object; 2820 uint64_t txg, last_txg; 2821 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2822 uint64_t zl_ints, zl_intsize, prop; 2823 int i, ints; 2824 dmu_tx_t *tx; 2825 char propname[100], txgname[100]; 2826 int error; 2827 char osname[MAXNAMELEN]; 2828 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2829 2830 dmu_objset_name(os, osname); 2831 2832 /* 2833 * Create a new object if necessary, and record it in the directory. 2834 */ 2835 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2836 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2837 2838 if (object == 0) { 2839 tx = dmu_tx_create(os); 2840 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2841 sizeof (uint64_t)); 2842 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2843 error = dmu_tx_assign(tx, TXG_WAIT); 2844 if (error) { 2845 ztest_record_enospc("create zap test obj"); 2846 dmu_tx_abort(tx); 2847 return; 2848 } 2849 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2850 if (error) { 2851 fatal(0, "zap_create('%s', %llu) = %d", 2852 osname, object, error); 2853 } 2854 ASSERT(object != 0); 2855 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2856 sizeof (uint64_t), &object, tx); 2857 /* 2858 * Generate a known hash collision, and verify that 2859 * we can lookup and remove both entries. 2860 */ 2861 for (i = 0; i < 2; i++) { 2862 value[i] = i; 2863 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2864 1, &value[i], tx); 2865 ASSERT3U(error, ==, 0); 2866 } 2867 for (i = 0; i < 2; i++) { 2868 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2869 1, &value[i], tx); 2870 ASSERT3U(error, ==, EEXIST); 2871 error = zap_length(os, object, hc[i], 2872 &zl_intsize, &zl_ints); 2873 ASSERT3U(error, ==, 0); 2874 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2875 ASSERT3U(zl_ints, ==, 1); 2876 } 2877 for (i = 0; i < 2; i++) { 2878 error = zap_remove(os, object, hc[i], tx); 2879 ASSERT3U(error, ==, 0); 2880 } 2881 2882 dmu_tx_commit(tx); 2883 } 2884 2885 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2886 2887 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2888 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2889 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2890 bzero(value, sizeof (value)); 2891 last_txg = 0; 2892 2893 /* 2894 * If these zap entries already exist, validate their contents. 2895 */ 2896 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2897 if (error == 0) { 2898 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2899 ASSERT3U(zl_ints, ==, 1); 2900 2901 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2902 zl_ints, &last_txg) == 0); 2903 2904 VERIFY(zap_length(os, object, propname, &zl_intsize, 2905 &zl_ints) == 0); 2906 2907 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2908 ASSERT3U(zl_ints, ==, ints); 2909 2910 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2911 zl_ints, value) == 0); 2912 2913 for (i = 0; i < ints; i++) { 2914 ASSERT3U(value[i], ==, last_txg + object + i); 2915 } 2916 } else { 2917 ASSERT3U(error, ==, ENOENT); 2918 } 2919 2920 /* 2921 * Atomically update two entries in our zap object. 2922 * The first is named txg_%llu, and contains the txg 2923 * in which the property was last updated. The second 2924 * is named prop_%llu, and the nth element of its value 2925 * should be txg + object + n. 2926 */ 2927 tx = dmu_tx_create(os); 2928 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2929 error = dmu_tx_assign(tx, TXG_WAIT); 2930 if (error) { 2931 ztest_record_enospc("create zap entry"); 2932 dmu_tx_abort(tx); 2933 return; 2934 } 2935 txg = dmu_tx_get_txg(tx); 2936 2937 if (last_txg > txg) 2938 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2939 2940 for (i = 0; i < ints; i++) 2941 value[i] = txg + object + i; 2942 2943 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2944 if (error) 2945 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2946 osname, object, txgname, error); 2947 2948 error = zap_update(os, object, propname, sizeof (uint64_t), 2949 ints, value, tx); 2950 if (error) 2951 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2952 osname, object, propname, error); 2953 2954 dmu_tx_commit(tx); 2955 2956 /* 2957 * Remove a random pair of entries. 2958 */ 2959 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2960 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2961 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2962 2963 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2964 2965 if (error == ENOENT) 2966 return; 2967 2968 ASSERT3U(error, ==, 0); 2969 2970 tx = dmu_tx_create(os); 2971 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2972 error = dmu_tx_assign(tx, TXG_WAIT); 2973 if (error) { 2974 ztest_record_enospc("remove zap entry"); 2975 dmu_tx_abort(tx); 2976 return; 2977 } 2978 error = zap_remove(os, object, txgname, tx); 2979 if (error) 2980 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2981 osname, object, txgname, error); 2982 2983 error = zap_remove(os, object, propname, tx); 2984 if (error) 2985 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2986 osname, object, propname, error); 2987 2988 dmu_tx_commit(tx); 2989 2990 /* 2991 * Once in a while, destroy the object. 2992 */ 2993 if (ztest_random(1000) != 0) 2994 return; 2995 2996 tx = dmu_tx_create(os); 2997 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2998 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2999 error = dmu_tx_assign(tx, TXG_WAIT); 3000 if (error) { 3001 ztest_record_enospc("destroy zap object"); 3002 dmu_tx_abort(tx); 3003 return; 3004 } 3005 error = zap_destroy(os, object, tx); 3006 if (error) 3007 fatal(0, "zap_destroy('%s', %llu) = %d", 3008 osname, object, error); 3009 object = 0; 3010 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3011 &object, tx); 3012 dmu_tx_commit(tx); 3013 } 3014 3015 /* 3016 * Testcase to test the upgrading of a microzap to fatzap. 3017 */ 3018 void 3019 ztest_fzap(ztest_args_t *za) 3020 { 3021 objset_t *os = za->za_os; 3022 uint64_t object; 3023 uint64_t value; 3024 dmu_tx_t *tx; 3025 int i, error; 3026 char osname[MAXNAMELEN]; 3027 char *name = "aaa"; 3028 char entname[MAXNAMELEN]; 3029 3030 dmu_objset_name(os, osname); 3031 3032 /* 3033 * Create a new object if necessary, and record it in the directory. 3034 */ 3035 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 3036 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 3037 3038 if (object == 0) { 3039 tx = dmu_tx_create(os); 3040 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 3041 sizeof (uint64_t)); 3042 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 3043 error = dmu_tx_assign(tx, TXG_WAIT); 3044 if (error) { 3045 ztest_record_enospc("create zap test obj"); 3046 dmu_tx_abort(tx); 3047 return; 3048 } 3049 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 3050 if (error) { 3051 fatal(0, "zap_create('%s', %llu) = %d", 3052 osname, object, error); 3053 } 3054 ASSERT(object != 0); 3055 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 3056 sizeof (uint64_t), &object, tx); 3057 dmu_tx_commit(tx); 3058 } 3059 3060 /* 3061 * Add entries to this ZAP amd make sure it spills over 3062 * and gets upgraded to a fatzap. Also, since we are adding 3063 * 2050 entries we should see ptrtbl growth and leaf-block 3064 * split. 3065 */ 3066 for (i = 0; i < 2050; i++) { 3067 (void) snprintf(entname, sizeof (entname), "%s-%d", name, i); 3068 value = i; 3069 3070 tx = dmu_tx_create(os); 3071 dmu_tx_hold_zap(tx, object, TRUE, entname); 3072 error = dmu_tx_assign(tx, TXG_WAIT); 3073 3074 if (error) { 3075 ztest_record_enospc("create zap entry"); 3076 dmu_tx_abort(tx); 3077 return; 3078 } 3079 error = zap_add(os, object, entname, sizeof (uint64_t), 3080 1, &value, tx); 3081 3082 ASSERT(error == 0 || error == EEXIST); 3083 dmu_tx_commit(tx); 3084 } 3085 3086 /* 3087 * Once in a while, destroy the object. 3088 */ 3089 if (ztest_random(1000) != 0) 3090 return; 3091 3092 tx = dmu_tx_create(os); 3093 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3094 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 3095 error = dmu_tx_assign(tx, TXG_WAIT); 3096 if (error) { 3097 ztest_record_enospc("destroy zap object"); 3098 dmu_tx_abort(tx); 3099 return; 3100 } 3101 error = zap_destroy(os, object, tx); 3102 if (error) 3103 fatal(0, "zap_destroy('%s', %llu) = %d", 3104 osname, object, error); 3105 object = 0; 3106 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3107 &object, tx); 3108 dmu_tx_commit(tx); 3109 } 3110 3111 void 3112 ztest_zap_parallel(ztest_args_t *za) 3113 { 3114 objset_t *os = za->za_os; 3115 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3116 dmu_tx_t *tx; 3117 int i, namelen, error; 3118 char name[20], string_value[20]; 3119 void *data; 3120 3121 /* 3122 * Generate a random name of the form 'xxx.....' where each 3123 * x is a random printable character and the dots are dots. 3124 * There are 94 such characters, and the name length goes from 3125 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3126 */ 3127 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3128 3129 for (i = 0; i < 3; i++) 3130 name[i] = '!' + ztest_random('~' - '!' + 1); 3131 for (; i < namelen - 1; i++) 3132 name[i] = '.'; 3133 name[i] = '\0'; 3134 3135 if (ztest_random(2) == 0) 3136 object = ZTEST_MICROZAP_OBJ; 3137 else 3138 object = ZTEST_FATZAP_OBJ; 3139 3140 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 3141 wsize = sizeof (txg); 3142 wc = 1; 3143 data = &txg; 3144 } else { 3145 wsize = 1; 3146 wc = namelen; 3147 data = string_value; 3148 } 3149 3150 count = -1ULL; 3151 VERIFY(zap_count(os, object, &count) == 0); 3152 ASSERT(count != -1ULL); 3153 3154 /* 3155 * Select an operation: length, lookup, add, update, remove. 3156 */ 3157 i = ztest_random(5); 3158 3159 if (i >= 2) { 3160 tx = dmu_tx_create(os); 3161 dmu_tx_hold_zap(tx, object, TRUE, NULL); 3162 error = dmu_tx_assign(tx, TXG_WAIT); 3163 if (error) { 3164 ztest_record_enospc("zap parallel"); 3165 dmu_tx_abort(tx); 3166 return; 3167 } 3168 txg = dmu_tx_get_txg(tx); 3169 bcopy(name, string_value, namelen); 3170 } else { 3171 tx = NULL; 3172 txg = 0; 3173 bzero(string_value, namelen); 3174 } 3175 3176 switch (i) { 3177 3178 case 0: 3179 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3180 if (error == 0) { 3181 ASSERT3U(wsize, ==, zl_wsize); 3182 ASSERT3U(wc, ==, zl_wc); 3183 } else { 3184 ASSERT3U(error, ==, ENOENT); 3185 } 3186 break; 3187 3188 case 1: 3189 error = zap_lookup(os, object, name, wsize, wc, data); 3190 if (error == 0) { 3191 if (data == string_value && 3192 bcmp(name, data, namelen) != 0) 3193 fatal(0, "name '%s' != val '%s' len %d", 3194 name, data, namelen); 3195 } else { 3196 ASSERT3U(error, ==, ENOENT); 3197 } 3198 break; 3199 3200 case 2: 3201 error = zap_add(os, object, name, wsize, wc, data, tx); 3202 ASSERT(error == 0 || error == EEXIST); 3203 break; 3204 3205 case 3: 3206 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3207 break; 3208 3209 case 4: 3210 error = zap_remove(os, object, name, tx); 3211 ASSERT(error == 0 || error == ENOENT); 3212 break; 3213 } 3214 3215 if (tx != NULL) 3216 dmu_tx_commit(tx); 3217 } 3218 3219 /* 3220 * Commit callback data. 3221 */ 3222 typedef struct ztest_cb_data { 3223 list_node_t zcd_node; 3224 uint64_t zcd_txg; 3225 int zcd_expected_err; 3226 boolean_t zcd_added; 3227 boolean_t zcd_called; 3228 spa_t *zcd_spa; 3229 } ztest_cb_data_t; 3230 3231 /* This is the actual commit callback function */ 3232 static void 3233 ztest_commit_callback(void *arg, int error) 3234 { 3235 ztest_cb_data_t *data = arg; 3236 uint64_t synced_txg; 3237 3238 VERIFY(data != NULL); 3239 VERIFY3S(data->zcd_expected_err, ==, error); 3240 VERIFY(!data->zcd_called); 3241 3242 synced_txg = spa_last_synced_txg(data->zcd_spa); 3243 if (data->zcd_txg > synced_txg) 3244 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 3245 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 3246 synced_txg); 3247 3248 data->zcd_called = B_TRUE; 3249 3250 if (error == ECANCELED) { 3251 ASSERT3U(data->zcd_txg, ==, 0); 3252 ASSERT(!data->zcd_added); 3253 3254 /* 3255 * The private callback data should be destroyed here, but 3256 * since we are going to check the zcd_called field after 3257 * dmu_tx_abort(), we will destroy it there. 3258 */ 3259 return; 3260 } 3261 3262 /* Was this callback added to the global callback list? */ 3263 if (!data->zcd_added) 3264 goto out; 3265 3266 ASSERT3U(data->zcd_txg, !=, 0); 3267 3268 /* Remove our callback from the list */ 3269 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3270 list_remove(&zcl.zcl_callbacks, data); 3271 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3272 3273 out: 3274 umem_free(data, sizeof (ztest_cb_data_t)); 3275 } 3276 3277 /* Allocate and initialize callback data structure */ 3278 static ztest_cb_data_t * 3279 ztest_create_cb_data(objset_t *os, uint64_t txg) 3280 { 3281 ztest_cb_data_t *cb_data; 3282 3283 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 3284 3285 cb_data->zcd_txg = txg; 3286 cb_data->zcd_spa = dmu_objset_spa(os); 3287 3288 return (cb_data); 3289 } 3290 3291 /* 3292 * If a number of txgs equal to this threshold have been created after a commit 3293 * callback has been registered but not called, then we assume there is an 3294 * implementation bug. 3295 */ 3296 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 3297 3298 /* 3299 * Commit callback test. 3300 */ 3301 void 3302 ztest_dmu_commit_callbacks(ztest_args_t *za) 3303 { 3304 objset_t *os = za->za_os; 3305 dmu_tx_t *tx; 3306 ztest_cb_data_t *cb_data[3], *tmp_cb; 3307 uint64_t old_txg, txg; 3308 int i, error; 3309 3310 tx = dmu_tx_create(os); 3311 3312 cb_data[0] = ztest_create_cb_data(os, 0); 3313 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 3314 3315 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3316 3317 /* Every once in a while, abort the transaction on purpose */ 3318 if (ztest_random(100) == 0) 3319 error = -1; 3320 3321 if (!error) 3322 error = dmu_tx_assign(tx, TXG_NOWAIT); 3323 3324 txg = error ? 0 : dmu_tx_get_txg(tx); 3325 3326 cb_data[0]->zcd_txg = txg; 3327 cb_data[1] = ztest_create_cb_data(os, txg); 3328 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 3329 3330 if (error) { 3331 /* 3332 * It's not a strict requirement to call the registered 3333 * callbacks from inside dmu_tx_abort(), but that's what 3334 * it's supposed to happen in the current implementation 3335 * so we will check for that. 3336 */ 3337 for (i = 0; i < 2; i++) { 3338 cb_data[i]->zcd_expected_err = ECANCELED; 3339 VERIFY(!cb_data[i]->zcd_called); 3340 } 3341 3342 dmu_tx_abort(tx); 3343 3344 for (i = 0; i < 2; i++) { 3345 VERIFY(cb_data[i]->zcd_called); 3346 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 3347 } 3348 3349 return; 3350 } 3351 3352 cb_data[2] = ztest_create_cb_data(os, txg); 3353 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 3354 3355 /* 3356 * Read existing data to make sure there isn't a future leak. 3357 */ 3358 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3359 &old_txg, DMU_READ_PREFETCH)); 3360 3361 if (old_txg > txg) 3362 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 3363 old_txg, txg); 3364 3365 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &txg, tx); 3366 3367 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3368 3369 /* 3370 * Since commit callbacks don't have any ordering requirement and since 3371 * it is theoretically possible for a commit callback to be called 3372 * after an arbitrary amount of time has elapsed since its txg has been 3373 * synced, it is difficult to reliably determine whether a commit 3374 * callback hasn't been called due to high load or due to a flawed 3375 * implementation. 3376 * 3377 * In practice, we will assume that if after a certain number of txgs a 3378 * commit callback hasn't been called, then most likely there's an 3379 * implementation bug.. 3380 */ 3381 tmp_cb = list_head(&zcl.zcl_callbacks); 3382 if (tmp_cb != NULL && 3383 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 3384 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 3385 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 3386 } 3387 3388 /* 3389 * Let's find the place to insert our callbacks. 3390 * 3391 * Even though the list is ordered by txg, it is possible for the 3392 * insertion point to not be the end because our txg may already be 3393 * quiescing at this point and other callbacks in the open txg 3394 * (from other objsets) may have sneaked in. 3395 */ 3396 tmp_cb = list_tail(&zcl.zcl_callbacks); 3397 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 3398 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 3399 3400 /* Add the 3 callbacks to the list */ 3401 for (i = 0; i < 3; i++) { 3402 if (tmp_cb == NULL) 3403 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 3404 else 3405 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 3406 cb_data[i]); 3407 3408 cb_data[i]->zcd_added = B_TRUE; 3409 VERIFY(!cb_data[i]->zcd_called); 3410 3411 tmp_cb = cb_data[i]; 3412 } 3413 3414 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3415 3416 dmu_tx_commit(tx); 3417 } 3418 3419 void 3420 ztest_dsl_prop_get_set(ztest_args_t *za) 3421 { 3422 objset_t *os = za->za_os; 3423 int i, inherit; 3424 uint64_t value; 3425 const char *prop, *valname; 3426 char setpoint[MAXPATHLEN]; 3427 char osname[MAXNAMELEN]; 3428 int error; 3429 3430 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3431 3432 dmu_objset_name(os, osname); 3433 3434 for (i = 0; i < 2; i++) { 3435 if (i == 0) { 3436 prop = "checksum"; 3437 value = ztest_random_checksum(); 3438 inherit = (value == ZIO_CHECKSUM_INHERIT); 3439 } else { 3440 prop = "compression"; 3441 value = ztest_random_compress(); 3442 inherit = (value == ZIO_COMPRESS_INHERIT); 3443 } 3444 3445 error = dsl_prop_set(osname, prop, sizeof (value), 3446 !inherit, &value); 3447 3448 if (error == ENOSPC) { 3449 ztest_record_enospc("dsl_prop_set"); 3450 break; 3451 } 3452 3453 ASSERT3U(error, ==, 0); 3454 3455 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 3456 1, &value, setpoint), ==, 0); 3457 3458 if (i == 0) 3459 valname = zio_checksum_table[value].ci_name; 3460 else 3461 valname = zio_compress_table[value].ci_name; 3462 3463 if (zopt_verbose >= 6) { 3464 (void) printf("%s %s = %s for '%s'\n", 3465 osname, prop, valname, setpoint); 3466 } 3467 } 3468 3469 (void) rw_unlock(&ztest_shared->zs_name_lock); 3470 } 3471 3472 /* 3473 * Test snapshot hold/release and deferred destroy. 3474 */ 3475 void 3476 ztest_dmu_snapshot_hold(ztest_args_t *za) 3477 { 3478 int error; 3479 objset_t *os = za->za_os; 3480 objset_t *origin; 3481 uint64_t curval = za->za_instance; 3482 char snapname[100]; 3483 char fullname[100]; 3484 char clonename[100]; 3485 char tag[100]; 3486 char osname[MAXNAMELEN]; 3487 3488 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3489 3490 dmu_objset_name(os, osname); 3491 3492 (void) snprintf(snapname, 100, "sh1_%llu", curval); 3493 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 3494 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, curval); 3495 (void) snprintf(tag, 100, "%tag_%llu", curval); 3496 3497 /* 3498 * Clean up from any previous run. 3499 */ 3500 (void) dmu_objset_destroy(clonename, B_FALSE); 3501 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 3502 (void) dmu_objset_destroy(fullname, B_FALSE); 3503 3504 /* 3505 * Create snapshot, clone it, mark snap for deferred destroy, 3506 * destroy clone, verify snap was also destroyed. 3507 */ 3508 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 3509 if (error) { 3510 if (error == ENOSPC) { 3511 ztest_record_enospc("dmu_objset_snapshot"); 3512 goto out; 3513 } 3514 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 3515 } 3516 3517 error = dmu_objset_hold(fullname, FTAG, &origin); 3518 if (error) 3519 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 3520 3521 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 3522 dmu_objset_rele(origin, FTAG); 3523 if (error) { 3524 if (error == ENOSPC) { 3525 ztest_record_enospc("dmu_objset_clone"); 3526 goto out; 3527 } 3528 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 3529 } 3530 3531 error = dmu_objset_destroy(fullname, B_TRUE); 3532 if (error) { 3533 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 3534 fullname, error); 3535 } 3536 3537 error = dmu_objset_destroy(clonename, B_FALSE); 3538 if (error) 3539 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 3540 3541 error = dmu_objset_hold(fullname, FTAG, &origin); 3542 if (error != ENOENT) 3543 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 3544 3545 /* 3546 * Create snapshot, add temporary hold, verify that we can't 3547 * destroy a held snapshot, mark for deferred destroy, 3548 * release hold, verify snapshot was destroyed. 3549 */ 3550 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 3551 if (error) { 3552 if (error == ENOSPC) { 3553 ztest_record_enospc("dmu_objset_snapshot"); 3554 goto out; 3555 } 3556 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 3557 } 3558 3559 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 3560 if (error) 3561 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 3562 3563 error = dmu_objset_destroy(fullname, B_FALSE); 3564 if (error != EBUSY) { 3565 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 3566 fullname, error); 3567 } 3568 3569 error = dmu_objset_destroy(fullname, B_TRUE); 3570 if (error) { 3571 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 3572 fullname, error); 3573 } 3574 3575 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 3576 if (error) 3577 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 3578 3579 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 3580 3581 out: 3582 (void) rw_unlock(&ztest_shared->zs_name_lock); 3583 } 3584 3585 /* 3586 * Inject random faults into the on-disk data. 3587 */ 3588 void 3589 ztest_fault_inject(ztest_args_t *za) 3590 { 3591 int fd; 3592 uint64_t offset; 3593 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 3594 uint64_t bad = 0x1990c0ffeedecade; 3595 uint64_t top, leaf; 3596 char path0[MAXPATHLEN]; 3597 char pathrand[MAXPATHLEN]; 3598 size_t fsize; 3599 spa_t *spa = za->za_spa; 3600 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 3601 int iters = 1000; 3602 int maxfaults = zopt_maxfaults; 3603 vdev_t *vd0 = NULL; 3604 uint64_t guid0 = 0; 3605 boolean_t islog = B_FALSE; 3606 3607 ASSERT(leaves >= 1); 3608 3609 /* 3610 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 3611 */ 3612 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3613 3614 if (ztest_random(2) == 0) { 3615 /* 3616 * Inject errors on a normal data device. 3617 */ 3618 top = ztest_random(spa->spa_root_vdev->vdev_children); 3619 leaf = ztest_random(leaves); 3620 3621 /* 3622 * Generate paths to the first leaf in this top-level vdev, 3623 * and to the random leaf we selected. We'll induce transient 3624 * write failures and random online/offline activity on leaf 0, 3625 * and we'll write random garbage to the randomly chosen leaf. 3626 */ 3627 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3628 zopt_dir, zopt_pool, top * leaves + 0); 3629 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3630 zopt_dir, zopt_pool, top * leaves + leaf); 3631 3632 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3633 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 3634 islog = B_TRUE; 3635 3636 if (vd0 != NULL && maxfaults != 1) { 3637 /* 3638 * Make vd0 explicitly claim to be unreadable, 3639 * or unwriteable, or reach behind its back 3640 * and close the underlying fd. We can do this if 3641 * maxfaults == 0 because we'll fail and reexecute, 3642 * and we can do it if maxfaults >= 2 because we'll 3643 * have enough redundancy. If maxfaults == 1, the 3644 * combination of this with injection of random data 3645 * corruption below exceeds the pool's fault tolerance. 3646 */ 3647 vdev_file_t *vf = vd0->vdev_tsd; 3648 3649 if (vf != NULL && ztest_random(3) == 0) { 3650 (void) close(vf->vf_vnode->v_fd); 3651 vf->vf_vnode->v_fd = -1; 3652 } else if (ztest_random(2) == 0) { 3653 vd0->vdev_cant_read = B_TRUE; 3654 } else { 3655 vd0->vdev_cant_write = B_TRUE; 3656 } 3657 guid0 = vd0->vdev_guid; 3658 } 3659 } else { 3660 /* 3661 * Inject errors on an l2cache device. 3662 */ 3663 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3664 3665 if (sav->sav_count == 0) { 3666 spa_config_exit(spa, SCL_STATE, FTAG); 3667 return; 3668 } 3669 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3670 guid0 = vd0->vdev_guid; 3671 (void) strcpy(path0, vd0->vdev_path); 3672 (void) strcpy(pathrand, vd0->vdev_path); 3673 3674 leaf = 0; 3675 leaves = 1; 3676 maxfaults = INT_MAX; /* no limit on cache devices */ 3677 } 3678 3679 spa_config_exit(spa, SCL_STATE, FTAG); 3680 3681 /* 3682 * If we can tolerate two or more faults, or we're dealing 3683 * with a slog, randomly online/offline vd0. 3684 */ 3685 if ((maxfaults >= 2 || islog) && guid0 != 0) { 3686 if (ztest_random(10) < 6) { 3687 int flags = (ztest_random(2) == 0 ? 3688 ZFS_OFFLINE_TEMPORARY : 0); 3689 3690 /* 3691 * We have to grab the zs_name_lock as writer to 3692 * prevent a race between offlining a slog and 3693 * destroying a dataset. Offlining the slog will 3694 * grab a reference on the dataset which may cause 3695 * dmu_objset_destroy() to fail with EBUSY thus 3696 * leaving the dataset in an inconsistent state. 3697 */ 3698 if (islog) 3699 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3700 3701 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3702 3703 if (islog) 3704 (void) rw_unlock(&ztest_shared->zs_name_lock); 3705 } else { 3706 (void) vdev_online(spa, guid0, 0, NULL); 3707 } 3708 } 3709 3710 if (maxfaults == 0) 3711 return; 3712 3713 /* 3714 * We have at least single-fault tolerance, so inject data corruption. 3715 */ 3716 fd = open(pathrand, O_RDWR); 3717 3718 if (fd == -1) /* we hit a gap in the device namespace */ 3719 return; 3720 3721 fsize = lseek(fd, 0, SEEK_END); 3722 3723 while (--iters != 0) { 3724 offset = ztest_random(fsize / (leaves << bshift)) * 3725 (leaves << bshift) + (leaf << bshift) + 3726 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3727 3728 if (offset >= fsize) 3729 continue; 3730 3731 if (zopt_verbose >= 6) 3732 (void) printf("injecting bad word into %s," 3733 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3734 3735 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3736 fatal(1, "can't inject bad word at 0x%llx in %s", 3737 offset, pathrand); 3738 } 3739 3740 (void) close(fd); 3741 } 3742 3743 /* 3744 * Scrub the pool. 3745 */ 3746 void 3747 ztest_scrub(ztest_args_t *za) 3748 { 3749 spa_t *spa = za->za_spa; 3750 3751 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3752 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3753 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3754 } 3755 3756 /* 3757 * Rename the pool to a different name and then rename it back. 3758 */ 3759 void 3760 ztest_spa_rename(ztest_args_t *za) 3761 { 3762 char *oldname, *newname; 3763 int error; 3764 spa_t *spa; 3765 3766 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3767 3768 oldname = za->za_pool; 3769 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3770 (void) strcpy(newname, oldname); 3771 (void) strcat(newname, "_tmp"); 3772 3773 /* 3774 * Do the rename 3775 */ 3776 error = spa_rename(oldname, newname); 3777 if (error) 3778 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3779 newname, error); 3780 3781 /* 3782 * Try to open it under the old name, which shouldn't exist 3783 */ 3784 error = spa_open(oldname, &spa, FTAG); 3785 if (error != ENOENT) 3786 fatal(0, "spa_open('%s') = %d", oldname, error); 3787 3788 /* 3789 * Open it under the new name and make sure it's still the same spa_t. 3790 */ 3791 error = spa_open(newname, &spa, FTAG); 3792 if (error != 0) 3793 fatal(0, "spa_open('%s') = %d", newname, error); 3794 3795 ASSERT(spa == za->za_spa); 3796 spa_close(spa, FTAG); 3797 3798 /* 3799 * Rename it back to the original 3800 */ 3801 error = spa_rename(newname, oldname); 3802 if (error) 3803 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3804 oldname, error); 3805 3806 /* 3807 * Make sure it can still be opened 3808 */ 3809 error = spa_open(oldname, &spa, FTAG); 3810 if (error != 0) 3811 fatal(0, "spa_open('%s') = %d", oldname, error); 3812 3813 ASSERT(spa == za->za_spa); 3814 spa_close(spa, FTAG); 3815 3816 umem_free(newname, strlen(newname) + 1); 3817 3818 (void) rw_unlock(&ztest_shared->zs_name_lock); 3819 } 3820 3821 3822 /* 3823 * Completely obliterate one disk. 3824 */ 3825 static void 3826 ztest_obliterate_one_disk(uint64_t vdev) 3827 { 3828 int fd; 3829 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3830 size_t fsize; 3831 3832 if (zopt_maxfaults < 2) 3833 return; 3834 3835 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3836 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3837 3838 fd = open(dev_name, O_RDWR); 3839 3840 if (fd == -1) 3841 fatal(1, "can't open %s", dev_name); 3842 3843 /* 3844 * Determine the size. 3845 */ 3846 fsize = lseek(fd, 0, SEEK_END); 3847 3848 (void) close(fd); 3849 3850 /* 3851 * Rename the old device to dev_name.old (useful for debugging). 3852 */ 3853 VERIFY(rename(dev_name, copy_name) == 0); 3854 3855 /* 3856 * Create a new one. 3857 */ 3858 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3859 VERIFY(ftruncate(fd, fsize) == 0); 3860 (void) close(fd); 3861 } 3862 3863 static void 3864 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3865 { 3866 char dev_name[MAXPATHLEN]; 3867 nvlist_t *root; 3868 int error; 3869 uint64_t guid; 3870 vdev_t *vd; 3871 3872 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3873 3874 /* 3875 * Build the nvlist describing dev_name. 3876 */ 3877 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3878 3879 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3880 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3881 guid = 0; 3882 else 3883 guid = vd->vdev_guid; 3884 spa_config_exit(spa, SCL_VDEV, FTAG); 3885 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3886 if (error != 0 && 3887 error != EBUSY && 3888 error != ENOTSUP && 3889 error != ENODEV && 3890 error != EDOM) 3891 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3892 3893 nvlist_free(root); 3894 } 3895 3896 static void 3897 ztest_verify_blocks(char *pool) 3898 { 3899 int status; 3900 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3901 char zbuf[1024]; 3902 char *bin; 3903 char *ztest; 3904 char *isa; 3905 int isalen; 3906 FILE *fp; 3907 3908 (void) realpath(getexecname(), zdb); 3909 3910 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3911 bin = strstr(zdb, "/usr/bin/"); 3912 ztest = strstr(bin, "/ztest"); 3913 isa = bin + 8; 3914 isalen = ztest - isa; 3915 isa = strdup(isa); 3916 /* LINTED */ 3917 (void) sprintf(bin, 3918 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3919 isalen, 3920 isa, 3921 zopt_verbose >= 3 ? "s" : "", 3922 zopt_verbose >= 4 ? "v" : "", 3923 pool); 3924 free(isa); 3925 3926 if (zopt_verbose >= 5) 3927 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3928 3929 fp = popen(zdb, "r"); 3930 3931 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3932 if (zopt_verbose >= 3) 3933 (void) printf("%s", zbuf); 3934 3935 status = pclose(fp); 3936 3937 if (status == 0) 3938 return; 3939 3940 ztest_dump_core = 0; 3941 if (WIFEXITED(status)) 3942 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3943 else 3944 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3945 } 3946 3947 static void 3948 ztest_walk_pool_directory(char *header) 3949 { 3950 spa_t *spa = NULL; 3951 3952 if (zopt_verbose >= 6) 3953 (void) printf("%s\n", header); 3954 3955 mutex_enter(&spa_namespace_lock); 3956 while ((spa = spa_next(spa)) != NULL) 3957 if (zopt_verbose >= 6) 3958 (void) printf("\t%s\n", spa_name(spa)); 3959 mutex_exit(&spa_namespace_lock); 3960 } 3961 3962 static void 3963 ztest_spa_import_export(char *oldname, char *newname) 3964 { 3965 nvlist_t *config, *newconfig; 3966 uint64_t pool_guid; 3967 spa_t *spa; 3968 int error; 3969 3970 if (zopt_verbose >= 4) { 3971 (void) printf("import/export: old = %s, new = %s\n", 3972 oldname, newname); 3973 } 3974 3975 /* 3976 * Clean up from previous runs. 3977 */ 3978 (void) spa_destroy(newname); 3979 3980 /* 3981 * Get the pool's configuration and guid. 3982 */ 3983 error = spa_open(oldname, &spa, FTAG); 3984 if (error) 3985 fatal(0, "spa_open('%s') = %d", oldname, error); 3986 3987 /* 3988 * Kick off a scrub to tickle scrub/export races. 3989 */ 3990 if (ztest_random(2) == 0) 3991 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3992 3993 pool_guid = spa_guid(spa); 3994 spa_close(spa, FTAG); 3995 3996 ztest_walk_pool_directory("pools before export"); 3997 3998 /* 3999 * Export it. 4000 */ 4001 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 4002 if (error) 4003 fatal(0, "spa_export('%s') = %d", oldname, error); 4004 4005 ztest_walk_pool_directory("pools after export"); 4006 4007 /* 4008 * Try to import it. 4009 */ 4010 newconfig = spa_tryimport(config); 4011 ASSERT(newconfig != NULL); 4012 nvlist_free(newconfig); 4013 4014 /* 4015 * Import it under the new name. 4016 */ 4017 error = spa_import(newname, config, NULL); 4018 if (error) 4019 fatal(0, "spa_import('%s') = %d", newname, error); 4020 4021 ztest_walk_pool_directory("pools after import"); 4022 4023 /* 4024 * Try to import it again -- should fail with EEXIST. 4025 */ 4026 error = spa_import(newname, config, NULL); 4027 if (error != EEXIST) 4028 fatal(0, "spa_import('%s') twice", newname); 4029 4030 /* 4031 * Try to import it under a different name -- should fail with EEXIST. 4032 */ 4033 error = spa_import(oldname, config, NULL); 4034 if (error != EEXIST) 4035 fatal(0, "spa_import('%s') under multiple names", newname); 4036 4037 /* 4038 * Verify that the pool is no longer visible under the old name. 4039 */ 4040 error = spa_open(oldname, &spa, FTAG); 4041 if (error != ENOENT) 4042 fatal(0, "spa_open('%s') = %d", newname, error); 4043 4044 /* 4045 * Verify that we can open and close the pool using the new name. 4046 */ 4047 error = spa_open(newname, &spa, FTAG); 4048 if (error) 4049 fatal(0, "spa_open('%s') = %d", newname, error); 4050 ASSERT(pool_guid == spa_guid(spa)); 4051 spa_close(spa, FTAG); 4052 4053 nvlist_free(config); 4054 } 4055 4056 static void 4057 ztest_resume(spa_t *spa) 4058 { 4059 if (spa_suspended(spa)) { 4060 spa_vdev_state_enter(spa, SCL_NONE); 4061 vdev_clear(spa, NULL); 4062 (void) spa_vdev_state_exit(spa, NULL, 0); 4063 (void) zio_resume(spa); 4064 } 4065 } 4066 4067 static void * 4068 ztest_resume_thread(void *arg) 4069 { 4070 spa_t *spa = arg; 4071 4072 while (!ztest_exiting) { 4073 (void) poll(NULL, 0, 1000); 4074 ztest_resume(spa); 4075 } 4076 return (NULL); 4077 } 4078 4079 static void * 4080 ztest_thread(void *arg) 4081 { 4082 ztest_args_t *za = arg; 4083 ztest_shared_t *zs = ztest_shared; 4084 hrtime_t now, functime; 4085 ztest_info_t *zi; 4086 int f, i; 4087 4088 while ((now = gethrtime()) < za->za_stop) { 4089 /* 4090 * See if it's time to force a crash. 4091 */ 4092 if (now > za->za_kill) { 4093 zs->zs_alloc = spa_get_alloc(za->za_spa); 4094 zs->zs_space = spa_get_space(za->za_spa); 4095 (void) kill(getpid(), SIGKILL); 4096 } 4097 4098 /* 4099 * Pick a random function. 4100 */ 4101 f = ztest_random(ZTEST_FUNCS); 4102 zi = &zs->zs_info[f]; 4103 4104 /* 4105 * Decide whether to call it, based on the requested frequency. 4106 */ 4107 if (zi->zi_call_target == 0 || 4108 (double)zi->zi_call_total / zi->zi_call_target > 4109 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 4110 continue; 4111 4112 atomic_add_64(&zi->zi_calls, 1); 4113 atomic_add_64(&zi->zi_call_total, 1); 4114 4115 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 4116 ZTEST_DIRSIZE; 4117 za->za_diroff_shared = (1ULL << 63); 4118 4119 for (i = 0; i < zi->zi_iters; i++) 4120 zi->zi_func(za); 4121 4122 functime = gethrtime() - now; 4123 4124 atomic_add_64(&zi->zi_call_time, functime); 4125 4126 if (zopt_verbose >= 4) { 4127 Dl_info dli; 4128 (void) dladdr((void *)zi->zi_func, &dli); 4129 (void) printf("%6.2f sec in %s\n", 4130 (double)functime / NANOSEC, dli.dli_sname); 4131 } 4132 4133 /* 4134 * If we're getting ENOSPC with some regularity, stop. 4135 */ 4136 if (zs->zs_enospc_count > 10) 4137 break; 4138 } 4139 4140 return (NULL); 4141 } 4142 4143 /* 4144 * Kick off threads to run tests on all datasets in parallel. 4145 */ 4146 static void 4147 ztest_run(char *pool) 4148 { 4149 int t, d, error; 4150 ztest_shared_t *zs = ztest_shared; 4151 ztest_args_t *za; 4152 spa_t *spa; 4153 char name[100]; 4154 thread_t resume_tid; 4155 4156 ztest_exiting = B_FALSE; 4157 4158 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 4159 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 4160 4161 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, 4162 NULL); 4163 4164 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 4165 offsetof(ztest_cb_data_t, zcd_node)); 4166 4167 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 4168 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 4169 4170 /* 4171 * Destroy one disk before we even start. 4172 * It's mirrored, so everything should work just fine. 4173 * This makes us exercise fault handling very early in spa_load(). 4174 */ 4175 ztest_obliterate_one_disk(0); 4176 4177 /* 4178 * Verify that the sum of the sizes of all blocks in the pool 4179 * equals the SPA's allocated space total. 4180 */ 4181 ztest_verify_blocks(pool); 4182 4183 /* 4184 * Kick off a replacement of the disk we just obliterated. 4185 */ 4186 kernel_init(FREAD | FWRITE); 4187 VERIFY(spa_open(pool, &spa, FTAG) == 0); 4188 ztest_replace_one_disk(spa, 0); 4189 if (zopt_verbose >= 5) 4190 show_pool_stats(spa); 4191 spa_close(spa, FTAG); 4192 kernel_fini(); 4193 4194 kernel_init(FREAD | FWRITE); 4195 4196 /* 4197 * Verify that we can export the pool and reimport it under a 4198 * different name. 4199 */ 4200 if (ztest_random(2) == 0) { 4201 (void) snprintf(name, 100, "%s_import", pool); 4202 ztest_spa_import_export(pool, name); 4203 ztest_spa_import_export(name, pool); 4204 } 4205 4206 /* 4207 * Verify that we can loop over all pools. 4208 */ 4209 mutex_enter(&spa_namespace_lock); 4210 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 4211 if (zopt_verbose > 3) { 4212 (void) printf("spa_next: found %s\n", spa_name(spa)); 4213 } 4214 } 4215 mutex_exit(&spa_namespace_lock); 4216 4217 /* 4218 * Open our pool. 4219 */ 4220 VERIFY(spa_open(pool, &spa, FTAG) == 0); 4221 4222 /* 4223 * We don't expect the pool to suspend unless maxfaults == 0, 4224 * in which case ztest_fault_inject() temporarily takes away 4225 * the only valid replica. 4226 */ 4227 if (zopt_maxfaults == 0) 4228 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 4229 else 4230 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 4231 4232 /* 4233 * Create a thread to periodically resume suspended I/O. 4234 */ 4235 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 4236 &resume_tid) == 0); 4237 4238 /* 4239 * Verify that we can safely inquire about about any object, 4240 * whether it's allocated or not. To make it interesting, 4241 * we probe a 5-wide window around each power of two. 4242 * This hits all edge cases, including zero and the max. 4243 */ 4244 for (t = 0; t < 64; t++) { 4245 for (d = -5; d <= 5; d++) { 4246 error = dmu_object_info(spa->spa_meta_objset, 4247 (1ULL << t) + d, NULL); 4248 ASSERT(error == 0 || error == ENOENT || 4249 error == EINVAL); 4250 } 4251 } 4252 4253 /* 4254 * Now kick off all the tests that run in parallel. 4255 */ 4256 zs->zs_enospc_count = 0; 4257 4258 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 4259 4260 if (zopt_verbose >= 4) 4261 (void) printf("starting main threads...\n"); 4262 4263 za[0].za_start = gethrtime(); 4264 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 4265 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 4266 za[0].za_kill = za[0].za_stop; 4267 if (ztest_random(100) < zopt_killrate) 4268 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 4269 4270 for (t = 0; t < zopt_threads; t++) { 4271 d = t % zopt_datasets; 4272 4273 (void) strcpy(za[t].za_pool, pool); 4274 za[t].za_os = za[d].za_os; 4275 za[t].za_spa = spa; 4276 za[t].za_zilog = za[d].za_zilog; 4277 za[t].za_instance = t; 4278 za[t].za_random = ztest_random(-1ULL); 4279 za[t].za_start = za[0].za_start; 4280 za[t].za_stop = za[0].za_stop; 4281 za[t].za_kill = za[0].za_kill; 4282 4283 if (t < zopt_datasets) { 4284 int test_future = FALSE; 4285 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4286 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 4287 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 4288 ztest_create_cb, NULL); 4289 if (error == EEXIST) { 4290 test_future = TRUE; 4291 } else if (error == ENOSPC) { 4292 zs->zs_enospc_count++; 4293 (void) rw_unlock(&ztest_shared->zs_name_lock); 4294 break; 4295 } else if (error != 0) { 4296 fatal(0, "dmu_objset_create(%s) = %d", 4297 name, error); 4298 } 4299 error = dmu_objset_hold(name, FTAG, &za[d].za_os); 4300 if (error) 4301 fatal(0, "dmu_objset_open('%s') = %d", 4302 name, error); 4303 (void) rw_unlock(&ztest_shared->zs_name_lock); 4304 if (test_future) 4305 ztest_dmu_check_future_leak(&za[t]); 4306 zil_replay(za[d].za_os, za[d].za_os, 4307 ztest_replay_vector); 4308 za[d].za_zilog = zil_open(za[d].za_os, NULL); 4309 } 4310 4311 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 4312 &za[t].za_thread) == 0); 4313 } 4314 4315 while (--t >= 0) { 4316 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 4317 if (t < zopt_datasets) { 4318 zil_close(za[t].za_zilog); 4319 dmu_objset_rele(za[t].za_os, FTAG); 4320 } 4321 } 4322 4323 if (zopt_verbose >= 3) 4324 show_pool_stats(spa); 4325 4326 txg_wait_synced(spa_get_dsl(spa), 0); 4327 4328 zs->zs_alloc = spa_get_alloc(spa); 4329 zs->zs_space = spa_get_space(spa); 4330 4331 /* 4332 * If we had out-of-space errors, destroy a random objset. 4333 */ 4334 if (zs->zs_enospc_count != 0) { 4335 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4336 d = (int)ztest_random(zopt_datasets); 4337 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 4338 if (zopt_verbose >= 3) 4339 (void) printf("Destroying %s to free up space\n", name); 4340 4341 /* Cleanup any non-standard clones and snapshots */ 4342 ztest_dsl_dataset_cleanup(name, za[d].za_instance); 4343 4344 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 4345 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4346 (void) rw_unlock(&ztest_shared->zs_name_lock); 4347 } 4348 4349 txg_wait_synced(spa_get_dsl(spa), 0); 4350 4351 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 4352 4353 /* Kill the resume thread */ 4354 ztest_exiting = B_TRUE; 4355 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 4356 ztest_resume(spa); 4357 4358 /* 4359 * Right before closing the pool, kick off a bunch of async I/O; 4360 * spa_close() should wait for it to complete. 4361 */ 4362 for (t = 1; t < 50; t++) 4363 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 4364 4365 spa_close(spa, FTAG); 4366 4367 kernel_fini(); 4368 4369 list_destroy(&zcl.zcl_callbacks); 4370 4371 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 4372 4373 (void) rwlock_destroy(&zs->zs_name_lock); 4374 (void) _mutex_destroy(&zs->zs_vdev_lock); 4375 } 4376 4377 void 4378 print_time(hrtime_t t, char *timebuf) 4379 { 4380 hrtime_t s = t / NANOSEC; 4381 hrtime_t m = s / 60; 4382 hrtime_t h = m / 60; 4383 hrtime_t d = h / 24; 4384 4385 s -= m * 60; 4386 m -= h * 60; 4387 h -= d * 24; 4388 4389 timebuf[0] = '\0'; 4390 4391 if (d) 4392 (void) sprintf(timebuf, 4393 "%llud%02lluh%02llum%02llus", d, h, m, s); 4394 else if (h) 4395 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 4396 else if (m) 4397 (void) sprintf(timebuf, "%llum%02llus", m, s); 4398 else 4399 (void) sprintf(timebuf, "%llus", s); 4400 } 4401 4402 /* 4403 * Create a storage pool with the given name and initial vdev size. 4404 * Then create the specified number of datasets in the pool. 4405 */ 4406 static void 4407 ztest_init(char *pool) 4408 { 4409 spa_t *spa; 4410 int error; 4411 nvlist_t *nvroot; 4412 4413 kernel_init(FREAD | FWRITE); 4414 4415 /* 4416 * Create the storage pool. 4417 */ 4418 (void) spa_destroy(pool); 4419 ztest_shared->zs_vdev_next_leaf = 0; 4420 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 4421 0, zopt_raidz, zopt_mirrors, 1); 4422 error = spa_create(pool, nvroot, NULL, NULL, NULL); 4423 nvlist_free(nvroot); 4424 4425 if (error) 4426 fatal(0, "spa_create() = %d", error); 4427 error = spa_open(pool, &spa, FTAG); 4428 if (error) 4429 fatal(0, "spa_open() = %d", error); 4430 4431 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 4432 4433 if (zopt_verbose >= 3) 4434 show_pool_stats(spa); 4435 4436 spa_close(spa, FTAG); 4437 4438 kernel_fini(); 4439 } 4440 4441 int 4442 main(int argc, char **argv) 4443 { 4444 int kills = 0; 4445 int iters = 0; 4446 int i, f; 4447 ztest_shared_t *zs; 4448 ztest_info_t *zi; 4449 char timebuf[100]; 4450 char numbuf[6]; 4451 4452 (void) setvbuf(stdout, NULL, _IOLBF, 0); 4453 4454 /* Override location of zpool.cache */ 4455 spa_config_path = "/tmp/zpool.cache"; 4456 4457 ztest_random_fd = open("/dev/urandom", O_RDONLY); 4458 4459 process_options(argc, argv); 4460 4461 /* 4462 * Blow away any existing copy of zpool.cache 4463 */ 4464 if (zopt_init != 0) 4465 (void) remove("/tmp/zpool.cache"); 4466 4467 zs = ztest_shared = (void *)mmap(0, 4468 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 4469 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 4470 4471 if (zopt_verbose >= 1) { 4472 (void) printf("%llu vdevs, %d datasets, %d threads," 4473 " %llu seconds...\n", 4474 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 4475 (u_longlong_t)zopt_time); 4476 } 4477 4478 /* 4479 * Create and initialize our storage pool. 4480 */ 4481 for (i = 1; i <= zopt_init; i++) { 4482 bzero(zs, sizeof (ztest_shared_t)); 4483 if (zopt_verbose >= 3 && zopt_init != 1) 4484 (void) printf("ztest_init(), pass %d\n", i); 4485 ztest_init(zopt_pool); 4486 } 4487 4488 /* 4489 * Initialize the call targets for each function. 4490 */ 4491 for (f = 0; f < ZTEST_FUNCS; f++) { 4492 zi = &zs->zs_info[f]; 4493 4494 *zi = ztest_info[f]; 4495 4496 if (*zi->zi_interval == 0) 4497 zi->zi_call_target = UINT64_MAX; 4498 else 4499 zi->zi_call_target = zopt_time / *zi->zi_interval; 4500 } 4501 4502 zs->zs_start_time = gethrtime(); 4503 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 4504 4505 /* 4506 * Run the tests in a loop. These tests include fault injection 4507 * to verify that self-healing data works, and forced crashes 4508 * to verify that we never lose on-disk consistency. 4509 */ 4510 while (gethrtime() < zs->zs_stop_time) { 4511 int status; 4512 pid_t pid; 4513 char *tmp; 4514 4515 /* 4516 * Initialize the workload counters for each function. 4517 */ 4518 for (f = 0; f < ZTEST_FUNCS; f++) { 4519 zi = &zs->zs_info[f]; 4520 zi->zi_calls = 0; 4521 zi->zi_call_time = 0; 4522 } 4523 4524 /* Set the allocation switch size */ 4525 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 4526 4527 pid = fork(); 4528 4529 if (pid == -1) 4530 fatal(1, "fork failed"); 4531 4532 if (pid == 0) { /* child */ 4533 struct rlimit rl = { 1024, 1024 }; 4534 (void) setrlimit(RLIMIT_NOFILE, &rl); 4535 (void) enable_extended_FILE_stdio(-1, -1); 4536 ztest_run(zopt_pool); 4537 exit(0); 4538 } 4539 4540 while (waitpid(pid, &status, 0) != pid) 4541 continue; 4542 4543 if (WIFEXITED(status)) { 4544 if (WEXITSTATUS(status) != 0) { 4545 (void) fprintf(stderr, 4546 "child exited with code %d\n", 4547 WEXITSTATUS(status)); 4548 exit(2); 4549 } 4550 } else if (WIFSIGNALED(status)) { 4551 if (WTERMSIG(status) != SIGKILL) { 4552 (void) fprintf(stderr, 4553 "child died with signal %d\n", 4554 WTERMSIG(status)); 4555 exit(3); 4556 } 4557 kills++; 4558 } else { 4559 (void) fprintf(stderr, "something strange happened " 4560 "to child\n"); 4561 exit(4); 4562 } 4563 4564 iters++; 4565 4566 if (zopt_verbose >= 1) { 4567 hrtime_t now = gethrtime(); 4568 4569 now = MIN(now, zs->zs_stop_time); 4570 print_time(zs->zs_stop_time - now, timebuf); 4571 nicenum(zs->zs_space, numbuf); 4572 4573 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 4574 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 4575 iters, 4576 WIFEXITED(status) ? "Complete" : "SIGKILL", 4577 (u_longlong_t)zs->zs_enospc_count, 4578 100.0 * zs->zs_alloc / zs->zs_space, 4579 numbuf, 4580 100.0 * (now - zs->zs_start_time) / 4581 (zopt_time * NANOSEC), timebuf); 4582 } 4583 4584 if (zopt_verbose >= 2) { 4585 (void) printf("\nWorkload summary:\n\n"); 4586 (void) printf("%7s %9s %s\n", 4587 "Calls", "Time", "Function"); 4588 (void) printf("%7s %9s %s\n", 4589 "-----", "----", "--------"); 4590 for (f = 0; f < ZTEST_FUNCS; f++) { 4591 Dl_info dli; 4592 4593 zi = &zs->zs_info[f]; 4594 print_time(zi->zi_call_time, timebuf); 4595 (void) dladdr((void *)zi->zi_func, &dli); 4596 (void) printf("%7llu %9s %s\n", 4597 (u_longlong_t)zi->zi_calls, timebuf, 4598 dli.dli_sname); 4599 } 4600 (void) printf("\n"); 4601 } 4602 4603 /* 4604 * It's possible that we killed a child during a rename test, in 4605 * which case we'll have a 'ztest_tmp' pool lying around instead 4606 * of 'ztest'. Do a blind rename in case this happened. 4607 */ 4608 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 4609 (void) strcpy(tmp, zopt_pool); 4610 (void) strcat(tmp, "_tmp"); 4611 kernel_init(FREAD | FWRITE); 4612 (void) spa_rename(tmp, zopt_pool); 4613 kernel_fini(); 4614 umem_free(tmp, strlen(tmp) + 1); 4615 } 4616 4617 ztest_verify_blocks(zopt_pool); 4618 4619 if (zopt_verbose >= 1) { 4620 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 4621 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 4622 } 4623 4624 return (0); 4625 } 4626