1 /* 2 * Author: Tatu Ylonen <ylo@cs.hut.fi> 3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland 4 * All rights reserved 5 * This file contains code implementing the packet protocol and communication 6 * with the other side. This same code is used both on client and server side. 7 * 8 * As far as I am concerned, the code I have written for this software 9 * can be used freely for any purpose. Any derived versions of this 10 * software must be clearly marked as such, and if the derived work is 11 * incompatible with the protocol description in the RFC file, it must be 12 * called by a name other than "ssh" or "Secure Shell". 13 * 14 * 15 * SSH2 packet format added by Markus Friedl. 16 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 28 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 29 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 30 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 31 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 32 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 33 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 34 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 36 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /* 39 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 40 * Use is subject to license terms. 41 */ 42 43 /* $OpenBSD: packet.c,v 1.148 2007/06/07 19:37:34 pvalchev Exp $ */ 44 45 #include "includes.h" 46 47 #include "sys-queue.h" 48 #include "xmalloc.h" 49 #include "buffer.h" 50 #include "packet.h" 51 #include "bufaux.h" 52 #include "crc32.h" 53 #include "getput.h" 54 #include "compress.h" 55 #include "deattack.h" 56 #include "channels.h" 57 #include "compat.h" 58 #include "ssh1.h" 59 #include "ssh2.h" 60 #include "cipher.h" 61 #include "kex.h" 62 #include "mac.h" 63 #include "log.h" 64 #include "canohost.h" 65 #include "misc.h" 66 #include "ssh.h" 67 #include "engine.h" 68 69 /* PKCS#11 engine */ 70 ENGINE *e; 71 72 #ifdef ALTPRIVSEP 73 static int packet_server = 0; 74 static int packet_monitor = 0; 75 #endif /* ALTPRIVSEP */ 76 77 #ifdef PACKET_DEBUG 78 #define DBG(x) x 79 #else 80 #define DBG(x) 81 #endif 82 83 static void packet_send2(void); 84 85 /* 86 * This variable contains the file descriptors used for communicating with 87 * the other side. connection_in is used for reading; connection_out for 88 * writing. These can be the same descriptor, in which case it is assumed to 89 * be a socket. 90 */ 91 static int connection_in = -1; 92 static int connection_out = -1; 93 94 /* Protocol flags for the remote side. */ 95 static u_int remote_protocol_flags = 0; 96 97 /* Encryption context for receiving data. This is only used for decryption. */ 98 static CipherContext receive_context; 99 100 /* Encryption context for sending data. This is only used for encryption. */ 101 static CipherContext send_context; 102 103 /* Buffer for raw input data from the socket. */ 104 Buffer input; 105 106 /* Buffer for raw output data going to the socket. */ 107 Buffer output; 108 109 /* Buffer for the partial outgoing packet being constructed. */ 110 static Buffer outgoing_packet; 111 112 /* Buffer for the incoming packet currently being processed. */ 113 static Buffer incoming_packet; 114 115 /* Scratch buffer for packet compression/decompression. */ 116 static Buffer compression_buffer; 117 static int compression_buffer_ready = 0; 118 119 /* Flag indicating whether packet compression/decompression is enabled. */ 120 static int packet_compression = 0; 121 122 /* default maximum packet size */ 123 int max_packet_size = 32768; 124 125 /* Flag indicating whether this module has been initialized. */ 126 static int initialized = 0; 127 128 /* Set to true if the connection is interactive. */ 129 static int interactive_mode = 0; 130 131 /* Session key information for Encryption and MAC */ 132 Newkeys *newkeys[MODE_MAX]; 133 static struct packet_state { 134 u_int32_t seqnr; 135 u_int32_t packets; 136 u_int64_t blocks; 137 } p_read, p_send; 138 139 static u_int64_t max_blocks_in, max_blocks_out; 140 static u_int32_t rekey_limit; 141 142 /* Session key for protocol v1 */ 143 static u_char ssh1_key[SSH_SESSION_KEY_LENGTH]; 144 static u_int ssh1_keylen; 145 146 /* roundup current message to extra_pad bytes */ 147 static u_char extra_pad = 0; 148 149 struct packet { 150 TAILQ_ENTRY(packet) next; 151 u_char type; 152 Buffer payload; 153 }; 154 TAILQ_HEAD(, packet) outgoing; 155 156 /* 157 * Part of what -f option and ~& escape sequence do in the client is that they 158 * will force it to daemonize itself. Due to the fork safety rules inherent in 159 * any PKCS#11 environment, if the engine is used we must do a key re-exchange 160 * before forking a child to negotiate the new keys. Those keys will be used to 161 * inicialize the new crypto contexts. This involves finishing the engine in the 162 * parent and reinitializing it again in both processes after fork() returns. 163 * This approach also leaves protocol 1 out since it doesn't support rekeying. 164 */ 165 int will_daemonize; 166 167 #ifdef PACKET_DEBUG 168 /* This function dumps data onto stderr. This is for debugging only. */ 169 void 170 data_dump(void *data, u_int len) 171 { 172 Buffer buf; 173 174 buffer_init(&buf); 175 buffer_append(&buf, data, len); 176 buffer_dump(&buf); 177 buffer_free(&buf); 178 } 179 #endif 180 181 /* 182 * Sets the descriptors used for communication. Disables encryption until 183 * packet_set_encryption_key is called. 184 */ 185 void 186 packet_set_connection(int fd_in, int fd_out) 187 { 188 Cipher *none = cipher_by_name("none"); 189 190 if (none == NULL) 191 fatal("packet_set_connection: cannot load cipher 'none'"); 192 connection_in = fd_in; 193 connection_out = fd_out; 194 cipher_init(&send_context, none, (unsigned char *) "", 0, NULL, 0, CIPHER_ENCRYPT); 195 cipher_init(&receive_context, none, (unsigned char *) "", 0, NULL, 0, CIPHER_DECRYPT); 196 newkeys[MODE_IN] = newkeys[MODE_OUT] = NULL; 197 if (!initialized) { 198 initialized = 1; 199 buffer_init(&input); 200 buffer_init(&output); 201 buffer_init(&outgoing_packet); 202 buffer_init(&incoming_packet); 203 TAILQ_INIT(&outgoing); 204 } else { 205 buffer_clear(&input); 206 buffer_clear(&output); 207 buffer_clear(&outgoing_packet); 208 buffer_clear(&incoming_packet); 209 } 210 211 /* 212 * Prime the cache for get_remote_ipaddr() while we have a 213 * socket on which to do a getpeername(). 214 */ 215 (void) get_remote_ipaddr(); 216 217 /* Kludge: arrange the close function to be called from fatal(). */ 218 fatal_add_cleanup((void (*) (void *)) packet_close, NULL); 219 } 220 221 /* Returns 1 if remote host is connected via socket, 0 if not. */ 222 223 int 224 packet_connection_is_on_socket(void) 225 { 226 struct sockaddr_storage from, to; 227 socklen_t fromlen, tolen; 228 229 /* filedescriptors in and out are the same, so it's a socket */ 230 if (connection_in != -1 && connection_in == connection_out) 231 return 1; 232 fromlen = sizeof(from); 233 memset(&from, 0, sizeof(from)); 234 if (getpeername(connection_in, (struct sockaddr *)&from, &fromlen) < 0) 235 return 0; 236 tolen = sizeof(to); 237 memset(&to, 0, sizeof(to)); 238 if (getpeername(connection_out, (struct sockaddr *)&to, &tolen) < 0) 239 return 0; 240 if (fromlen != tolen || memcmp(&from, &to, fromlen) != 0) 241 return 0; 242 if (from.ss_family != AF_INET && from.ss_family != AF_INET6) 243 return 0; 244 return 1; 245 } 246 247 /* returns 1 if connection is via ipv4 */ 248 249 int 250 packet_connection_is_ipv4(void) 251 { 252 struct sockaddr_storage to; 253 socklen_t tolen = sizeof(to); 254 255 memset(&to, 0, sizeof(to)); 256 if (getsockname(connection_out, (struct sockaddr *)&to, &tolen) < 0) 257 return 0; 258 if (to.ss_family == AF_INET) 259 return 1; 260 #ifdef IPV4_IN_IPV6 261 if (to.ss_family == AF_INET6 && 262 IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)&to)->sin6_addr)) 263 return 1; 264 #endif 265 return 0; 266 } 267 268 /* Sets the connection into non-blocking mode. */ 269 270 void 271 packet_set_nonblocking(void) 272 { 273 /* Set the socket into non-blocking mode. */ 274 if (fcntl(connection_in, F_SETFL, O_NONBLOCK) < 0) 275 error("fcntl O_NONBLOCK: %.100s", strerror(errno)); 276 277 if (connection_out != connection_in) { 278 if (fcntl(connection_out, F_SETFL, O_NONBLOCK) < 0) 279 error("fcntl O_NONBLOCK: %.100s", strerror(errno)); 280 } 281 } 282 283 /* Returns the socket used for reading. */ 284 285 int 286 packet_get_connection_in(void) 287 { 288 return connection_in; 289 } 290 291 /* Returns the descriptor used for writing. */ 292 293 int 294 packet_get_connection_out(void) 295 { 296 return connection_out; 297 } 298 299 /* Closes the connection and clears and frees internal data structures. */ 300 301 void 302 packet_close(void) 303 { 304 if (!initialized) 305 return; 306 initialized = 0; 307 if (connection_in == connection_out) { 308 shutdown(connection_out, SHUT_RDWR); 309 close(connection_out); 310 } else { 311 close(connection_in); 312 close(connection_out); 313 } 314 buffer_free(&input); 315 buffer_free(&output); 316 buffer_free(&outgoing_packet); 317 buffer_free(&incoming_packet); 318 if (compression_buffer_ready) { 319 buffer_free(&compression_buffer); 320 buffer_compress_uninit(); 321 compression_buffer_ready = 0; 322 } 323 cipher_cleanup(&send_context); 324 cipher_cleanup(&receive_context); 325 } 326 327 /* Sets remote side protocol flags. */ 328 329 void 330 packet_set_protocol_flags(u_int protocol_flags) 331 { 332 remote_protocol_flags = protocol_flags; 333 } 334 335 /* Returns the remote protocol flags set earlier by the above function. */ 336 337 u_int 338 packet_get_protocol_flags(void) 339 { 340 return remote_protocol_flags; 341 } 342 343 /* 344 * Starts packet compression from the next packet on in both directions. 345 * Level is compression level 1 (fastest) - 9 (slow, best) as in gzip. 346 */ 347 348 static void 349 packet_init_compression(void) 350 { 351 if (compression_buffer_ready == 1) 352 return; 353 compression_buffer_ready = 1; 354 buffer_init(&compression_buffer); 355 } 356 357 void 358 packet_start_compression(int level) 359 { 360 #ifdef ALTPRIVSEP 361 /* shouldn't happen! */ 362 if (packet_monitor) 363 fatal("INTERNAL ERROR: The monitor cannot compress."); 364 #endif /* ALTPRIVSEP */ 365 366 if (packet_compression && !compat20) 367 fatal("Compression already enabled."); 368 packet_compression = 1; 369 packet_init_compression(); 370 buffer_compress_init_send(level); 371 buffer_compress_init_recv(); 372 } 373 374 /* 375 * Causes any further packets to be encrypted using the given key. The same 376 * key is used for both sending and reception. However, both directions are 377 * encrypted independently of each other. 378 */ 379 380 void 381 packet_set_encryption_key(const u_char *key, u_int keylen, 382 int number) 383 { 384 Cipher *cipher = cipher_by_number(number); 385 386 if (cipher == NULL) 387 fatal("packet_set_encryption_key: unknown cipher number %d", number); 388 if (keylen < 20) 389 fatal("packet_set_encryption_key: keylen too small: %d", keylen); 390 if (keylen > SSH_SESSION_KEY_LENGTH) 391 fatal("packet_set_encryption_key: keylen too big: %d", keylen); 392 memcpy(ssh1_key, key, keylen); 393 ssh1_keylen = keylen; 394 cipher_init(&send_context, cipher, key, keylen, NULL, 0, CIPHER_ENCRYPT); 395 cipher_init(&receive_context, cipher, key, keylen, NULL, 0, CIPHER_DECRYPT); 396 } 397 398 u_int 399 packet_get_encryption_key(u_char *key) 400 { 401 if (key == NULL) 402 return (ssh1_keylen); 403 memcpy(key, ssh1_key, ssh1_keylen); 404 return (ssh1_keylen); 405 } 406 407 /* Start constructing a packet to send. */ 408 void 409 packet_start(u_char type) 410 { 411 u_char buf[9]; 412 int len; 413 414 DBG(debug("packet_start[%d]", type)); 415 len = compat20 ? 6 : 9; 416 memset(buf, 0, len - 1); 417 buf[len - 1] = type; 418 buffer_clear(&outgoing_packet); 419 buffer_append(&outgoing_packet, buf, len); 420 } 421 422 /* Append payload. */ 423 void 424 packet_put_char(int value) 425 { 426 char ch = value; 427 428 buffer_append(&outgoing_packet, &ch, 1); 429 } 430 431 void 432 packet_put_int(u_int value) 433 { 434 buffer_put_int(&outgoing_packet, value); 435 } 436 437 void 438 packet_put_string(const void *buf, u_int len) 439 { 440 buffer_put_string(&outgoing_packet, buf, len); 441 } 442 443 void 444 packet_put_cstring(const char *str) 445 { 446 buffer_put_cstring(&outgoing_packet, str); 447 } 448 449 void 450 packet_put_ascii_cstring(const char *str) 451 { 452 buffer_put_ascii_cstring(&outgoing_packet, str); 453 } 454 void 455 packet_put_utf8_cstring(const u_char *str) 456 { 457 buffer_put_utf8_cstring(&outgoing_packet, str); 458 } 459 #if 0 460 void 461 packet_put_ascii_string(const void *buf, u_int len) 462 { 463 buffer_put_ascii_string(&outgoing_packet, buf, len); 464 } 465 void 466 packet_put_utf8_string(const void *buf, u_int len) 467 { 468 buffer_put_utf8_string(&outgoing_packet, buf, len); 469 } 470 #endif 471 void 472 packet_put_raw(const void *buf, u_int len) 473 { 474 buffer_append(&outgoing_packet, buf, len); 475 } 476 477 void 478 packet_put_bignum(BIGNUM * value) 479 { 480 buffer_put_bignum(&outgoing_packet, value); 481 } 482 483 void 484 packet_put_bignum2(BIGNUM * value) 485 { 486 buffer_put_bignum2(&outgoing_packet, value); 487 } 488 489 /* 490 * Finalizes and sends the packet. If the encryption key has been set, 491 * encrypts the packet before sending. 492 */ 493 494 static void 495 packet_send1(void) 496 { 497 u_char buf[8], *cp; 498 int i, padding, len; 499 u_int checksum; 500 u_int32_t rnd = 0; 501 502 /* 503 * If using packet compression, compress the payload of the outgoing 504 * packet. 505 */ 506 if (packet_compression) { 507 buffer_clear(&compression_buffer); 508 /* Skip padding. */ 509 buffer_consume(&outgoing_packet, 8); 510 /* padding */ 511 buffer_append(&compression_buffer, "\0\0\0\0\0\0\0\0", 8); 512 buffer_compress(&outgoing_packet, &compression_buffer); 513 buffer_clear(&outgoing_packet); 514 buffer_append(&outgoing_packet, buffer_ptr(&compression_buffer), 515 buffer_len(&compression_buffer)); 516 } 517 /* Compute packet length without padding (add checksum, remove padding). */ 518 len = buffer_len(&outgoing_packet) + 4 - 8; 519 520 /* Insert padding. Initialized to zero in packet_start1() */ 521 padding = 8 - len % 8; 522 if (!send_context.plaintext) { 523 cp = buffer_ptr(&outgoing_packet); 524 for (i = 0; i < padding; i++) { 525 if (i % 4 == 0) 526 rnd = arc4random(); 527 cp[7 - i] = rnd & 0xff; 528 rnd >>= 8; 529 } 530 } 531 buffer_consume(&outgoing_packet, 8 - padding); 532 533 /* Add check bytes. */ 534 checksum = ssh_crc32(buffer_ptr(&outgoing_packet), 535 buffer_len(&outgoing_packet)); 536 PUT_32BIT(buf, checksum); 537 buffer_append(&outgoing_packet, buf, 4); 538 539 #ifdef PACKET_DEBUG 540 fprintf(stderr, "packet_send plain: "); 541 buffer_dump(&outgoing_packet); 542 #endif 543 544 /* Append to output. */ 545 PUT_32BIT(buf, len); 546 buffer_append(&output, buf, 4); 547 cp = buffer_append_space(&output, buffer_len(&outgoing_packet)); 548 cipher_crypt(&send_context, cp, buffer_ptr(&outgoing_packet), 549 buffer_len(&outgoing_packet)); 550 551 #ifdef PACKET_DEBUG 552 debug("encrypted output queue now contains (%d bytes):\n", 553 buffer_len(&output)); 554 buffer_dump(&output); 555 #endif 556 557 buffer_clear(&outgoing_packet); 558 559 /* 560 * Note that the packet is now only buffered in output. It won\'t be 561 * actually sent until packet_write_wait or packet_write_poll is 562 * called. 563 */ 564 } 565 566 void 567 set_newkeys(int mode) 568 { 569 Enc *enc; 570 Mac *mac; 571 Comp *comp; 572 CipherContext *cc; 573 u_int64_t *max_blocks; 574 int crypt_type; 575 576 debug2("set_newkeys: mode %d", mode); 577 578 if (mode == MODE_OUT) { 579 cc = &send_context; 580 crypt_type = CIPHER_ENCRYPT; 581 p_send.packets = p_send.blocks = 0; 582 max_blocks = &max_blocks_out; 583 } else { 584 cc = &receive_context; 585 crypt_type = CIPHER_DECRYPT; 586 p_read.packets = p_read.blocks = 0; 587 max_blocks = &max_blocks_in; 588 } 589 590 debug("set_newkeys: setting new keys for '%s' mode", 591 mode == MODE_IN ? "in" : "out"); 592 593 if (newkeys[mode] != NULL) { 594 cipher_cleanup(cc); 595 free_keys(newkeys[mode]); 596 } 597 598 newkeys[mode] = kex_get_newkeys(mode); 599 if (newkeys[mode] == NULL) 600 fatal("newkeys: no keys for mode %d", mode); 601 enc = &newkeys[mode]->enc; 602 mac = &newkeys[mode]->mac; 603 comp = &newkeys[mode]->comp; 604 if (mac->md != NULL) 605 mac->enabled = 1; 606 #ifdef PACKET_DEBUG 607 debug("new encryption key:\n"); 608 data_dump(enc->key, enc->key_len); 609 debug("new encryption IV:\n"); 610 data_dump(enc->iv, enc->block_size); 611 debug("new MAC key:\n"); 612 data_dump(mac->key, mac->key_len); 613 #endif 614 cipher_init(cc, enc->cipher, enc->key, enc->key_len, 615 enc->iv, enc->block_size, crypt_type); 616 /* Deleting the keys does not gain extra security */ 617 /* memset(enc->iv, 0, enc->block_size); 618 memset(enc->key, 0, enc->key_len); */ 619 if (comp->type != 0 && comp->enabled == 0) { 620 packet_init_compression(); 621 if (mode == MODE_OUT) 622 buffer_compress_init_send(6); 623 else 624 buffer_compress_init_recv(); 625 comp->enabled = 1; 626 } 627 628 /* 629 * In accordance to the RFCs listed below we enforce the key 630 * re-exchange for: 631 * 632 * - every 1GB of transmitted data if the selected cipher block size 633 * is less than 16 bytes (3DES, Blowfish) 634 * - every 2^(2*B) cipher blocks transmitted (B is block size in bytes) 635 * if the cipher block size is greater than or equal to 16 bytes (AES) 636 * - and we never send more than 2^32 SSH packets using the same keys. 637 * The recommendation of 2^31 packets is not enforced here but in 638 * packet_need_rekeying(). There is also a hard check in 639 * packet_send2_wrapped() that we don't send more than 2^32 packets. 640 * 641 * Note that if the SSH_BUG_NOREKEY compatibility flag is set then no 642 * automatic rekeying is performed nor do we enforce the 3rd rule. 643 * This means that we can be always forced by the opposite side to never 644 * initiate automatic key re-exchange. This might change in the future. 645 * 646 * The RekeyLimit option keyword may only enforce more frequent key 647 * renegotiation, never less. For more information on key renegotiation, 648 * see: 649 * 650 * - RFC 4253 (SSH Transport Layer Protocol), section "9. Key 651 * Re-Exchange" 652 * - RFC 4344 (SSH Transport Layer Encryption Modes), sections "3. 653 * Rekeying" and "6.1 Rekeying Considerations" 654 */ 655 if (enc->block_size >= 16) 656 *max_blocks = (u_int64_t)1 << (enc->block_size * 2); 657 else 658 *max_blocks = ((u_int64_t)1 << 30) / enc->block_size; 659 660 if (rekey_limit) 661 *max_blocks = MIN(*max_blocks, rekey_limit / enc->block_size); 662 } 663 664 void 665 free_keys(Newkeys *keys) 666 { 667 Enc *enc; 668 Mac *mac; 669 Comp *comp; 670 671 enc = &keys->enc; 672 mac = &keys->mac; 673 comp = &keys->comp; 674 memset(mac->key, 0, mac->key_len); 675 xfree(enc->name); 676 xfree(enc->iv); 677 xfree(enc->key); 678 xfree(mac->name); 679 xfree(mac->key); 680 xfree(comp->name); 681 xfree(keys); 682 } 683 684 /* 685 * Process SSH2_MSG_NEWKEYS message. If we are using the engine we must have 686 * both SSH2_MSG_NEWKEYS processed before we can finish the engine, fork, and 687 * reinitialize the crypto contexts. We can't fork before processing the 2nd 688 * message otherwise we couldn't encrypt/decrypt that message at all - note that 689 * parent's PKCS#11 sessions are useless after the fork and we must process 690 * both SSH2_MSG_NEWKEYS messages using the old keys. 691 */ 692 void 693 process_newkeys(int mode) 694 { 695 /* this function is for the client only */ 696 if (packet_is_server() != 0) 697 return; 698 699 if (will_daemonize == FIRST_NEWKEYS_PROCESSED) { 700 debug3("both SSH2_MSG_NEWKEYS processed, will daemonize now"); 701 cipher_cleanup(&send_context); 702 cipher_cleanup(&receive_context); 703 pkcs11_engine_finish(e); 704 if (daemon(1, 1) < 0) { 705 fatal("daemon() failed: %.200s", 706 strerror(errno)); 707 } 708 e = pkcs11_engine_load(e != NULL ? 1 : 0); 709 710 set_newkeys(MODE_OUT); 711 set_newkeys(MODE_IN); 712 will_daemonize = SECOND_NEWKEYS_PROCESSED; 713 packet_send2(); 714 } else { 715 if (will_daemonize == DAEMONIZING_REQUESTED) 716 will_daemonize = FIRST_NEWKEYS_PROCESSED; 717 else 718 set_newkeys(mode); 719 } 720 } 721 722 /* 723 * Finalize packet in SSH2 format (compress, mac, encrypt, enqueue) 724 */ 725 static void 726 packet_send2_wrapped(void) 727 { 728 u_char type, *cp, *macbuf = NULL; 729 u_char padlen, pad; 730 u_int packet_length = 0; 731 u_int i, len; 732 u_int32_t rnd = 0; 733 Enc *enc = NULL; 734 Mac *mac = NULL; 735 Comp *comp = NULL; 736 int block_size; 737 738 if (newkeys[MODE_OUT] != NULL) { 739 enc = &newkeys[MODE_OUT]->enc; 740 mac = &newkeys[MODE_OUT]->mac; 741 comp = &newkeys[MODE_OUT]->comp; 742 } 743 block_size = enc ? enc->block_size : 8; 744 745 cp = buffer_ptr(&outgoing_packet); 746 type = cp[5]; 747 748 #ifdef PACKET_DEBUG 749 debug("plain output packet to be processed (%d bytes):\n", 750 buffer_len(&outgoing_packet)); 751 buffer_dump(&outgoing_packet); 752 #endif 753 754 if (comp && comp->enabled) { 755 len = buffer_len(&outgoing_packet); 756 /* skip header, compress only payload */ 757 buffer_consume(&outgoing_packet, 5); 758 buffer_clear(&compression_buffer); 759 buffer_compress(&outgoing_packet, &compression_buffer); 760 buffer_clear(&outgoing_packet); 761 buffer_append(&outgoing_packet, "\0\0\0\0\0", 5); 762 buffer_append(&outgoing_packet, buffer_ptr(&compression_buffer), 763 buffer_len(&compression_buffer)); 764 DBG(debug("compression: raw %d compressed %d", len, 765 buffer_len(&outgoing_packet))); 766 } 767 768 /* sizeof (packet_len + pad_len + payload) */ 769 len = buffer_len(&outgoing_packet); 770 771 /* 772 * calc size of padding, alloc space, get random data, 773 * minimum padding is 4 bytes 774 */ 775 padlen = block_size - (len % block_size); 776 if (padlen < 4) 777 padlen += block_size; 778 if (extra_pad) { 779 /* will wrap if extra_pad+padlen > 255 */ 780 extra_pad = roundup(extra_pad, block_size); 781 pad = extra_pad - ((len + padlen) % extra_pad); 782 debug3("packet_send2: adding %d (len %d padlen %d extra_pad %d)", 783 pad, len, padlen, extra_pad); 784 padlen += pad; 785 extra_pad = 0; 786 } 787 cp = buffer_append_space(&outgoing_packet, padlen); 788 if (enc && !send_context.plaintext) { 789 /* random padding */ 790 for (i = 0; i < padlen; i++) { 791 if (i % 4 == 0) 792 rnd = arc4random(); 793 cp[i] = rnd & 0xff; 794 rnd >>= 8; 795 } 796 } else { 797 /* clear padding */ 798 memset(cp, 0, padlen); 799 } 800 /* packet_length includes payload, padding and padding length field */ 801 packet_length = buffer_len(&outgoing_packet) - 4; 802 cp = buffer_ptr(&outgoing_packet); 803 PUT_32BIT(cp, packet_length); 804 cp[4] = padlen; 805 DBG(debug("will send %d bytes (includes padlen %d)", 806 packet_length + 4, padlen)); 807 808 /* compute MAC over seqnr and packet(length fields, payload, padding) */ 809 if (mac && mac->enabled) { 810 macbuf = mac_compute(mac, p_send.seqnr, 811 buffer_ptr(&outgoing_packet), 812 buffer_len(&outgoing_packet)); 813 DBG(debug("done calc MAC out #%d", p_send.seqnr)); 814 } 815 /* encrypt packet and append to output buffer. */ 816 cp = buffer_append_space(&output, buffer_len(&outgoing_packet)); 817 cipher_crypt(&send_context, cp, buffer_ptr(&outgoing_packet), 818 buffer_len(&outgoing_packet)); 819 /* append unencrypted MAC */ 820 if (mac && mac->enabled) 821 buffer_append(&output, (char *)macbuf, mac->mac_len); 822 #ifdef PACKET_DEBUG 823 debug("encrypted output queue now contains (%d bytes):\n", 824 buffer_len(&output)); 825 buffer_dump(&output); 826 #endif 827 /* increment sequence number for outgoing packets */ 828 if (++p_send.seqnr == 0) 829 log("outgoing seqnr wraps around"); 830 831 /* 832 * RFC 4344: 3.1. First Rekeying Recommendation 833 * 834 * "Because of possible information leakage through the MAC tag after a 835 * key exchange, .... an SSH implementation SHOULD NOT send more than 836 * 2**32 packets before rekeying again." 837 * 838 * The code below is a hard check so that we are sure we don't go across 839 * the suggestion. However, since the largest cipher block size we have 840 * (AES) is 16 bytes we can't reach 2^32 SSH packets encrypted with the 841 * same key while performing periodic rekeying. 842 */ 843 if (++p_send.packets == 0) 844 if (!(datafellows & SSH_BUG_NOREKEY)) 845 fatal("too many packets encrypted with same key"); 846 p_send.blocks += (packet_length + 4) / block_size; 847 buffer_clear(&outgoing_packet); 848 849 if (type == SSH2_MSG_NEWKEYS) { 850 /* 851 * set_newkeys(MODE_OUT) in the client. Note that in the 852 * unprivileged child, set_newkeys() for MODE_OUT are set after 853 * SSH2_MSG_NEWKEYS is read from the monitor and forwarded to 854 * the client side. 855 */ 856 process_newkeys(MODE_OUT); 857 } 858 } 859 860 /* 861 * Packets we deal with here are plain until we encrypt them in 862 * packet_send2_wrapped(). 863 * 864 * As already mentioned in a comment at process_newkeys() function we must not 865 * fork() until both SSH2_MSG_NEWKEYS packets were processed. Until this is done 866 * we must queue all packets so that they can be encrypted with the new keys and 867 * then sent to the other side. However, what can happen here is that we get 868 * SSH2_MSG_NEWKEYS after we sent it. In that situation we must call 869 * packet_send2() anyway to empty the queue, and set the rekey flag to the 870 * finished state. If we didn't do that we would just hang and enqueue data. 871 */ 872 static void 873 packet_send2(void) 874 { 875 static int rekeying = 0; 876 struct packet *p; 877 u_char type, *cp; 878 879 if (will_daemonize != SECOND_NEWKEYS_PROCESSED) { 880 cp = buffer_ptr(&outgoing_packet); 881 type = cp[5]; 882 883 /* during rekeying we can only send key exchange messages */ 884 if (rekeying) { 885 if (!((type >= SSH2_MSG_TRANSPORT_MIN) && 886 (type <= SSH2_MSG_TRANSPORT_MAX))) { 887 debug("enqueue a plain packet because rekex in " 888 "progress [type %u]", type); 889 p = xmalloc(sizeof(*p)); 890 p->type = type; 891 memcpy(&p->payload, &outgoing_packet, sizeof(Buffer)); 892 buffer_init(&outgoing_packet); 893 TAILQ_INSERT_TAIL(&outgoing, p, next); 894 return; 895 } 896 } 897 898 /* rekeying starts with sending KEXINIT */ 899 if (type == SSH2_MSG_KEXINIT) 900 rekeying = 1; 901 902 packet_send2_wrapped(); 903 } 904 905 /* after rekex is done we can process the queue of plain packets */ 906 if (will_daemonize == SECOND_NEWKEYS_PROCESSED || 907 (will_daemonize == NOT_DAEMONIZING && type == SSH2_MSG_NEWKEYS)) { 908 rekeying = 0; 909 will_daemonize = NOT_DAEMONIZING; 910 while ((p = TAILQ_FIRST(&outgoing)) != NULL) { 911 type = p->type; 912 debug("dequeuing a plain packet since rekex is over " 913 "[type %u]", type); 914 buffer_free(&outgoing_packet); 915 memcpy(&outgoing_packet, &p->payload, sizeof(Buffer)); 916 TAILQ_REMOVE(&outgoing, p, next); 917 xfree(p); 918 packet_send2_wrapped(); 919 } 920 } 921 } 922 923 void 924 packet_send(void) 925 { 926 if (compat20) 927 packet_send2(); 928 else 929 packet_send1(); 930 DBG(debug("packet_send done")); 931 } 932 933 /* 934 * Waits until a packet has been received, and returns its type. Note that 935 * no other data is processed until this returns, so this function should not 936 * be used during the interactive session. 937 */ 938 939 int 940 packet_read_seqnr(u_int32_t *seqnr_p) 941 { 942 int type, len; 943 fd_set *setp; 944 char buf[8192]; 945 DBG(debug("packet_read()")); 946 947 setp = (fd_set *)xmalloc(howmany(connection_in+1, NFDBITS) * 948 sizeof(fd_mask)); 949 950 /* Since we are blocking, ensure that all written packets have been sent. */ 951 packet_write_wait(); 952 953 /* Stay in the loop until we have received a complete packet. */ 954 for (;;) { 955 /* Try to read a packet from the buffer. */ 956 type = packet_read_poll_seqnr(seqnr_p); 957 if (!compat20 && ( 958 type == SSH_SMSG_SUCCESS 959 || type == SSH_SMSG_FAILURE 960 || type == SSH_CMSG_EOF 961 || type == SSH_CMSG_EXIT_CONFIRMATION)) 962 packet_check_eom(); 963 /* If we got a packet, return it. */ 964 if (type != SSH_MSG_NONE) { 965 xfree(setp); 966 return type; 967 } 968 /* 969 * Otherwise, wait for some data to arrive, add it to the 970 * buffer, and try again. 971 */ 972 memset(setp, 0, howmany(connection_in + 1, NFDBITS) * 973 sizeof(fd_mask)); 974 FD_SET(connection_in, setp); 975 976 /* Wait for some data to arrive. */ 977 while (select(connection_in + 1, setp, NULL, NULL, NULL) == -1 && 978 (errno == EAGAIN || errno == EINTR)) 979 ; 980 981 /* Read data from the socket. */ 982 len = read(connection_in, buf, sizeof(buf)); 983 if (len == 0) { 984 log("Connection closed by %.200s", get_remote_ipaddr()); 985 fatal_cleanup(); 986 } 987 if (len < 0) 988 fatal("Read from socket failed: %.100s", strerror(errno)); 989 /* Append it to the buffer. */ 990 packet_process_incoming(buf, len); 991 } 992 /* NOTREACHED */ 993 } 994 995 int 996 packet_read(void) 997 { 998 return packet_read_seqnr(NULL); 999 } 1000 1001 /* 1002 * Waits until a packet has been received, verifies that its type matches 1003 * that given, and gives a fatal error and exits if there is a mismatch. 1004 */ 1005 1006 void 1007 packet_read_expect(int expected_type) 1008 { 1009 int type; 1010 1011 type = packet_read(); 1012 if (type != expected_type) 1013 packet_disconnect("Protocol error: expected packet type %d, got %d", 1014 expected_type, type); 1015 } 1016 1017 /* Checks if a full packet is available in the data received so far via 1018 * packet_process_incoming. If so, reads the packet; otherwise returns 1019 * SSH_MSG_NONE. This does not wait for data from the connection. 1020 * 1021 * SSH_MSG_DISCONNECT is handled specially here. Also, 1022 * SSH_MSG_IGNORE messages are skipped by this function and are never returned 1023 * to higher levels. 1024 */ 1025 1026 static int 1027 packet_read_poll1(void) 1028 { 1029 u_int len, padded_len; 1030 u_char *cp, type; 1031 u_int checksum, stored_checksum; 1032 1033 /* Check if input size is less than minimum packet size. */ 1034 if (buffer_len(&input) < 4 + 8) 1035 return SSH_MSG_NONE; 1036 /* Get length of incoming packet. */ 1037 cp = buffer_ptr(&input); 1038 len = GET_32BIT(cp); 1039 if (len < 1 + 2 + 2 || len > 256 * 1024) 1040 packet_disconnect("Bad packet length %d.", len); 1041 padded_len = (len + 8) & ~7; 1042 1043 /* Check if the packet has been entirely received. */ 1044 if (buffer_len(&input) < 4 + padded_len) 1045 return SSH_MSG_NONE; 1046 1047 /* The entire packet is in buffer. */ 1048 1049 /* Consume packet length. */ 1050 buffer_consume(&input, 4); 1051 1052 /* 1053 * Cryptographic attack detector for ssh 1054 * (C)1998 CORE-SDI, Buenos Aires Argentina 1055 * Ariel Futoransky(futo@core-sdi.com) 1056 */ 1057 if (!receive_context.plaintext) { 1058 switch (detect_attack(buffer_ptr(&input), padded_len, NULL)) { 1059 case DEATTACK_DETECTED: 1060 packet_disconnect("crc32 compensation attack: " 1061 "network attack detected"); 1062 break; 1063 case DEATTACK_DOS_DETECTED: 1064 packet_disconnect("deattack denial of " 1065 "service detected"); 1066 break; 1067 } 1068 } 1069 1070 /* Decrypt data to incoming_packet. */ 1071 buffer_clear(&incoming_packet); 1072 cp = buffer_append_space(&incoming_packet, padded_len); 1073 cipher_crypt(&receive_context, cp, buffer_ptr(&input), padded_len); 1074 1075 buffer_consume(&input, padded_len); 1076 1077 #ifdef PACKET_DEBUG 1078 debug("read_poll plain/full:\n"); 1079 buffer_dump(&incoming_packet); 1080 #endif 1081 1082 /* Compute packet checksum. */ 1083 checksum = ssh_crc32(buffer_ptr(&incoming_packet), 1084 buffer_len(&incoming_packet) - 4); 1085 1086 /* Skip padding. */ 1087 buffer_consume(&incoming_packet, 8 - len % 8); 1088 1089 /* Test check bytes. */ 1090 if (len != buffer_len(&incoming_packet)) 1091 packet_disconnect("packet_read_poll1: len %d != buffer_len %d.", 1092 len, buffer_len(&incoming_packet)); 1093 1094 cp = (u_char *)buffer_ptr(&incoming_packet) + len - 4; 1095 stored_checksum = GET_32BIT(cp); 1096 if (checksum != stored_checksum) 1097 packet_disconnect("Corrupted check bytes on input."); 1098 buffer_consume_end(&incoming_packet, 4); 1099 1100 if (packet_compression) { 1101 buffer_clear(&compression_buffer); 1102 buffer_uncompress(&incoming_packet, &compression_buffer); 1103 buffer_clear(&incoming_packet); 1104 buffer_append(&incoming_packet, buffer_ptr(&compression_buffer), 1105 buffer_len(&compression_buffer)); 1106 } 1107 type = buffer_get_char(&incoming_packet); 1108 return type; 1109 } 1110 1111 static int 1112 packet_read_poll2(u_int32_t *seqnr_p) 1113 { 1114 static u_int packet_length = 0; 1115 u_int padlen, need; 1116 u_char *macbuf, *cp, type; 1117 int maclen, block_size; 1118 Enc *enc = NULL; 1119 Mac *mac = NULL; 1120 Comp *comp = NULL; 1121 1122 if (newkeys[MODE_IN] != NULL) { 1123 enc = &newkeys[MODE_IN]->enc; 1124 mac = &newkeys[MODE_IN]->mac; 1125 comp = &newkeys[MODE_IN]->comp; 1126 } 1127 maclen = mac && mac->enabled ? mac->mac_len : 0; 1128 block_size = enc ? enc->block_size : 8; 1129 1130 if (packet_length == 0) { 1131 /* 1132 * check if input size is less than the cipher block size, 1133 * decrypt first block and extract length of incoming packet 1134 */ 1135 if (buffer_len(&input) < block_size) 1136 return SSH_MSG_NONE; 1137 #ifdef PACKET_DEBUG 1138 debug("encrypted data we have in read queue (%d bytes):\n", 1139 buffer_len(&input)); 1140 buffer_dump(&input); 1141 #endif 1142 buffer_clear(&incoming_packet); 1143 cp = buffer_append_space(&incoming_packet, block_size); 1144 cipher_crypt(&receive_context, cp, buffer_ptr(&input), 1145 block_size); 1146 cp = buffer_ptr(&incoming_packet); 1147 packet_length = GET_32BIT(cp); 1148 if (packet_length < 1 + 4 || packet_length > 256 * 1024) { 1149 error("bad packet length %d; i/o counters " 1150 "%llu/%llu", packet_length, 1151 p_read.blocks * block_size, 1152 p_send.blocks * block_size); 1153 error("decrypted %d bytes follows:\n", block_size); 1154 buffer_dump(&incoming_packet); 1155 packet_disconnect("Bad packet length %d, i/o counters " 1156 "%llu/%llu.", packet_length, 1157 p_read.blocks * block_size, 1158 p_send.blocks * block_size); 1159 } 1160 DBG(debug("input: packet len %u", packet_length + 4)); 1161 buffer_consume(&input, block_size); 1162 } 1163 /* we have a partial packet of block_size bytes */ 1164 need = 4 + packet_length - block_size; 1165 DBG(debug("partial packet %d, still need %d, maclen %d", block_size, 1166 need, maclen)); 1167 if (need % block_size != 0) 1168 fatal("padding error: need %d block %d mod %d", 1169 need, block_size, need % block_size); 1170 /* 1171 * check if the entire packet has been received and 1172 * decrypt into incoming_packet 1173 */ 1174 if (buffer_len(&input) < need + maclen) 1175 return SSH_MSG_NONE; 1176 #ifdef PACKET_DEBUG 1177 debug("in read_poll, the encrypted input queue now contains " 1178 "(%d bytes):\n", buffer_len(&input)); 1179 buffer_dump(&input); 1180 #endif 1181 cp = buffer_append_space(&incoming_packet, need); 1182 cipher_crypt(&receive_context, cp, buffer_ptr(&input), need); 1183 buffer_consume(&input, need); 1184 /* 1185 * compute MAC over seqnr and packet, 1186 * increment sequence number for incoming packet 1187 */ 1188 if (mac && mac->enabled) { 1189 macbuf = mac_compute(mac, p_read.seqnr, 1190 buffer_ptr(&incoming_packet), 1191 buffer_len(&incoming_packet)); 1192 if (memcmp(macbuf, buffer_ptr(&input), mac->mac_len) != 0) 1193 packet_disconnect("Corrupted MAC on input."); 1194 DBG(debug("MAC #%d ok", p_read.seqnr)); 1195 buffer_consume(&input, mac->mac_len); 1196 } 1197 if (seqnr_p != NULL) 1198 *seqnr_p = p_read.seqnr; 1199 if (++p_read.seqnr == 0) 1200 log("incoming seqnr wraps around"); 1201 1202 /* see above for the comment on "First Rekeying Recommendation" */ 1203 if (++p_read.packets == 0) 1204 if (!(datafellows & SSH_BUG_NOREKEY)) 1205 fatal("too many packets with same key"); 1206 p_read.blocks += (packet_length + 4) / block_size; 1207 1208 /* get padlen */ 1209 cp = buffer_ptr(&incoming_packet); 1210 padlen = cp[4]; 1211 DBG(debug("input: padlen %d", padlen)); 1212 if (padlen < 4) 1213 packet_disconnect("Corrupted padlen %d on input.", padlen); 1214 1215 /* skip packet size + padlen, discard padding */ 1216 buffer_consume(&incoming_packet, 4 + 1); 1217 buffer_consume_end(&incoming_packet, padlen); 1218 1219 DBG(debug("input: len before de-compress %d", buffer_len(&incoming_packet))); 1220 if (comp && comp->enabled) { 1221 buffer_clear(&compression_buffer); 1222 buffer_uncompress(&incoming_packet, &compression_buffer); 1223 buffer_clear(&incoming_packet); 1224 buffer_append(&incoming_packet, buffer_ptr(&compression_buffer), 1225 buffer_len(&compression_buffer)); 1226 DBG(debug("input: len after de-compress %d", 1227 buffer_len(&incoming_packet))); 1228 } 1229 /* 1230 * get packet type, implies consume. 1231 * return length of payload (without type field) 1232 */ 1233 type = buffer_get_char(&incoming_packet); 1234 if (type == SSH2_MSG_NEWKEYS) { 1235 /* 1236 * set_newkeys(MODE_IN) in the client because it doesn't have a 1237 * dispatch function for SSH2_MSG_NEWKEYS in contrast to the 1238 * server processes. Note that in the unprivileged child, 1239 * set_newkeys() for MODE_IN are set in dispatch function 1240 * altprivsep_rekey() after SSH2_MSG_NEWKEYS packet is received 1241 * from the client. 1242 */ 1243 process_newkeys(MODE_IN); 1244 } 1245 1246 #ifdef PACKET_DEBUG 1247 debug("decrypted input packet [type %d]:\n", type); 1248 buffer_dump(&incoming_packet); 1249 #endif 1250 /* reset for next packet */ 1251 packet_length = 0; 1252 return type; 1253 } 1254 1255 /* 1256 * This tries to read a packet from the buffer of received data. Note that it 1257 * doesn't read() anything from the network socket. 1258 */ 1259 int 1260 packet_read_poll_seqnr(u_int32_t *seqnr_p) 1261 { 1262 u_int reason, seqnr; 1263 u_char type; 1264 char *msg; 1265 1266 for (;;) { 1267 if (compat20) { 1268 type = packet_read_poll2(seqnr_p); 1269 DBG(debug("received packet type %d", type)); 1270 switch (type) { 1271 case SSH2_MSG_IGNORE: 1272 break; 1273 case SSH2_MSG_DEBUG: 1274 packet_get_char(); 1275 msg = packet_get_string(NULL); 1276 debug("Remote: %.900s", msg); 1277 xfree(msg); 1278 msg = packet_get_string(NULL); 1279 xfree(msg); 1280 break; 1281 case SSH2_MSG_DISCONNECT: 1282 reason = packet_get_int(); 1283 msg = packet_get_string(NULL); 1284 log("Received disconnect from %s: %u: %.400s", 1285 get_remote_ipaddr(), reason, msg); 1286 xfree(msg); 1287 fatal_cleanup(); 1288 break; 1289 case SSH2_MSG_UNIMPLEMENTED: 1290 seqnr = packet_get_int(); 1291 debug("Received SSH2_MSG_UNIMPLEMENTED for %u", 1292 seqnr); 1293 break; 1294 default: 1295 return type; 1296 break; 1297 } 1298 } else { 1299 type = packet_read_poll1(); 1300 DBG(debug("received packet type %d", type)); 1301 switch (type) { 1302 case SSH_MSG_IGNORE: 1303 break; 1304 case SSH_MSG_DEBUG: 1305 msg = packet_get_string(NULL); 1306 debug("Remote: %.900s", msg); 1307 xfree(msg); 1308 break; 1309 case SSH_MSG_DISCONNECT: 1310 msg = packet_get_string(NULL); 1311 log("Received disconnect from %s: %.400s", 1312 get_remote_ipaddr(), msg); 1313 fatal_cleanup(); 1314 xfree(msg); 1315 break; 1316 default: 1317 return type; 1318 break; 1319 } 1320 } 1321 } 1322 } 1323 1324 int 1325 packet_read_poll(void) 1326 { 1327 return packet_read_poll_seqnr(NULL); 1328 } 1329 1330 /* 1331 * Buffers the given amount of input characters. This is intended to be used 1332 * together with packet_read_poll. 1333 */ 1334 1335 void 1336 packet_process_incoming(const char *buf, u_int len) 1337 { 1338 buffer_append(&input, buf, len); 1339 } 1340 1341 /* Returns a character from the packet. */ 1342 1343 u_int 1344 packet_get_char(void) 1345 { 1346 char ch; 1347 1348 buffer_get(&incoming_packet, &ch, 1); 1349 return (u_char) ch; 1350 } 1351 1352 /* Returns an integer from the packet data. */ 1353 1354 u_int 1355 packet_get_int(void) 1356 { 1357 return buffer_get_int(&incoming_packet); 1358 } 1359 1360 /* 1361 * Returns an arbitrary precision integer from the packet data. The integer 1362 * must have been initialized before this call. 1363 */ 1364 1365 void 1366 packet_get_bignum(BIGNUM * value) 1367 { 1368 buffer_get_bignum(&incoming_packet, value); 1369 } 1370 1371 void 1372 packet_get_bignum2(BIGNUM * value) 1373 { 1374 buffer_get_bignum2(&incoming_packet, value); 1375 } 1376 1377 void * 1378 packet_get_raw(u_int *length_ptr) 1379 { 1380 u_int bytes = buffer_len(&incoming_packet); 1381 1382 if (length_ptr != NULL) 1383 *length_ptr = bytes; 1384 return buffer_ptr(&incoming_packet); 1385 } 1386 1387 int 1388 packet_remaining(void) 1389 { 1390 return buffer_len(&incoming_packet); 1391 } 1392 1393 /* 1394 * Returns a string from the packet data. The string is allocated using 1395 * xmalloc; it is the responsibility of the calling program to free it when 1396 * no longer needed. The length_ptr argument may be NULL, or point to an 1397 * integer into which the length of the string is stored. 1398 */ 1399 1400 void * 1401 packet_get_string(u_int *length_ptr) 1402 { 1403 return buffer_get_string(&incoming_packet, length_ptr); 1404 } 1405 char * 1406 packet_get_ascii_cstring() 1407 { 1408 return buffer_get_ascii_cstring(&incoming_packet); 1409 } 1410 u_char * 1411 packet_get_utf8_cstring() 1412 { 1413 return buffer_get_utf8_cstring(&incoming_packet); 1414 } 1415 1416 /* 1417 * Sends a diagnostic message from the server to the client. This message 1418 * can be sent at any time (but not while constructing another message). The 1419 * message is printed immediately, but only if the client is being executed 1420 * in verbose mode. These messages are primarily intended to ease debugging 1421 * authentication problems. The length of the formatted message must not 1422 * exceed 1024 bytes. This will automatically call packet_write_wait. 1423 */ 1424 1425 void 1426 packet_send_debug(const char *fmt,...) 1427 { 1428 char buf[1024]; 1429 va_list args; 1430 1431 if (compat20 && (datafellows & SSH_BUG_DEBUG)) 1432 return; 1433 1434 va_start(args, fmt); 1435 vsnprintf(buf, sizeof(buf), gettext(fmt), args); 1436 va_end(args); 1437 1438 #ifdef ALTPRIVSEP 1439 /* shouldn't happen */ 1440 if (packet_monitor) { 1441 debug("packet_send_debug: %s", buf); 1442 return; 1443 } 1444 #endif /* ALTPRIVSEP */ 1445 1446 if (compat20) { 1447 packet_start(SSH2_MSG_DEBUG); 1448 packet_put_char(0); /* bool: always display */ 1449 packet_put_cstring(buf); 1450 packet_put_cstring(""); 1451 } else { 1452 packet_start(SSH_MSG_DEBUG); 1453 packet_put_cstring(buf); 1454 } 1455 packet_send(); 1456 packet_write_wait(); 1457 } 1458 1459 /* 1460 * Logs the error plus constructs and sends a disconnect packet, closes the 1461 * connection, and exits. This function never returns. The error message 1462 * should not contain a newline. The length of the formatted message must 1463 * not exceed 1024 bytes. 1464 */ 1465 1466 void 1467 packet_disconnect(const char *fmt,...) 1468 { 1469 char buf[1024]; 1470 va_list args; 1471 static int disconnecting = 0; 1472 1473 if (disconnecting) /* Guard against recursive invocations. */ 1474 fatal("packet_disconnect called recursively."); 1475 disconnecting = 1; 1476 1477 /* 1478 * Format the message. Note that the caller must make sure the 1479 * message is of limited size. 1480 */ 1481 va_start(args, fmt); 1482 vsnprintf(buf, sizeof(buf), fmt, args); 1483 va_end(args); 1484 1485 #ifdef ALTPRIVSEP 1486 /* 1487 * If we packet_disconnect() in the monitor the fatal cleanups will take 1488 * care of the child. See main() in sshd.c. We don't send the packet 1489 * disconnect message here because: a) the child might not be looking 1490 * for it and b) because we don't really know if the child is compat20 1491 * or not as we lost that information when packet_set_monitor() was 1492 * called. 1493 */ 1494 if (packet_monitor) 1495 goto close_stuff; 1496 #endif /* ALTPRIVSEP */ 1497 1498 /* Send the disconnect message to the other side, and wait for it to get sent. */ 1499 if (compat20) { 1500 packet_start(SSH2_MSG_DISCONNECT); 1501 packet_put_int(SSH2_DISCONNECT_PROTOCOL_ERROR); 1502 packet_put_cstring(buf); 1503 packet_put_cstring(""); 1504 } else { 1505 packet_start(SSH_MSG_DISCONNECT); 1506 packet_put_cstring(buf); 1507 } 1508 packet_send(); 1509 packet_write_wait(); 1510 1511 #ifdef ALTPRIVSEP 1512 close_stuff: 1513 #endif /* ALTPRIVSEP */ 1514 /* Stop listening for connections. */ 1515 channel_close_all(); 1516 1517 /* Close the connection. */ 1518 packet_close(); 1519 1520 /* Display the error locally and exit. */ 1521 log("Disconnecting: %.100s", buf); 1522 fatal_cleanup(); 1523 } 1524 1525 /* Checks if there is any buffered output, and tries to write some of the output. */ 1526 1527 void 1528 packet_write_poll(void) 1529 { 1530 int len = buffer_len(&output); 1531 1532 if (len > 0) { 1533 len = write(connection_out, buffer_ptr(&output), len); 1534 if (len <= 0) { 1535 if (errno == EAGAIN) 1536 return; 1537 else 1538 fatal("Write failed: %.100s", strerror(errno)); 1539 } 1540 #ifdef PACKET_DEBUG 1541 debug("in packet_write_poll, %d bytes just sent to the " 1542 "remote side", len); 1543 #endif 1544 buffer_consume(&output, len); 1545 } 1546 } 1547 1548 /* 1549 * Calls packet_write_poll repeatedly until all pending output data has been 1550 * written. 1551 */ 1552 1553 void 1554 packet_write_wait(void) 1555 { 1556 fd_set *setp; 1557 1558 setp = (fd_set *)xmalloc(howmany(connection_out + 1, NFDBITS) * 1559 sizeof(fd_mask)); 1560 packet_write_poll(); 1561 while (packet_have_data_to_write()) { 1562 memset(setp, 0, howmany(connection_out + 1, NFDBITS) * 1563 sizeof(fd_mask)); 1564 FD_SET(connection_out, setp); 1565 while (select(connection_out + 1, NULL, setp, NULL, NULL) == -1 && 1566 (errno == EAGAIN || errno == EINTR)) 1567 ; 1568 packet_write_poll(); 1569 } 1570 xfree(setp); 1571 } 1572 1573 /* Returns true if there is buffered data to write to the connection. */ 1574 1575 int 1576 packet_have_data_to_write(void) 1577 { 1578 return buffer_len(&output) != 0; 1579 } 1580 1581 /* Returns true if there is not too much data to write to the connection. */ 1582 1583 int 1584 packet_not_very_much_data_to_write(void) 1585 { 1586 if (interactive_mode) 1587 return buffer_len(&output) < 16384; 1588 else 1589 return buffer_len(&output) < 128 * 1024; 1590 } 1591 1592 /* Informs that the current session is interactive. Sets IP flags for that. */ 1593 1594 void 1595 packet_set_interactive(int interactive) 1596 { 1597 static int called = 0; 1598 #if defined(IP_TOS) && !defined(IP_TOS_IS_BROKEN) 1599 int lowdelay = IPTOS_LOWDELAY; 1600 int throughput = IPTOS_THROUGHPUT; 1601 #endif 1602 1603 if (called) 1604 return; 1605 called = 1; 1606 1607 /* Record that we are in interactive mode. */ 1608 interactive_mode = interactive; 1609 1610 /* Only set socket options if using a socket. */ 1611 if (!packet_connection_is_on_socket()) 1612 return; 1613 /* 1614 * IPTOS_LOWDELAY and IPTOS_THROUGHPUT are IPv4 only 1615 */ 1616 if (interactive) { 1617 /* 1618 * Set IP options for an interactive connection. Use 1619 * IPTOS_LOWDELAY and TCP_NODELAY. 1620 */ 1621 #if defined(IP_TOS) && !defined(IP_TOS_IS_BROKEN) 1622 if (packet_connection_is_ipv4()) { 1623 if (setsockopt(connection_in, IPPROTO_IP, IP_TOS, 1624 &lowdelay, sizeof(lowdelay)) < 0) 1625 error("setsockopt IPTOS_LOWDELAY: %.100s", 1626 strerror(errno)); 1627 } 1628 #endif 1629 set_nodelay(connection_in); 1630 } 1631 #if defined(IP_TOS) && !defined(IP_TOS_IS_BROKEN) 1632 else if (packet_connection_is_ipv4()) { 1633 /* 1634 * Set IP options for a non-interactive connection. Use 1635 * IPTOS_THROUGHPUT. 1636 */ 1637 if (setsockopt(connection_in, IPPROTO_IP, IP_TOS, &throughput, 1638 sizeof(throughput)) < 0) 1639 error("setsockopt IPTOS_THROUGHPUT: %.100s", strerror(errno)); 1640 } 1641 #endif 1642 } 1643 1644 /* Returns true if the current connection is interactive. */ 1645 1646 int 1647 packet_is_interactive(void) 1648 { 1649 return interactive_mode; 1650 } 1651 1652 int 1653 packet_set_maxsize(int s) 1654 { 1655 static int called = 0; 1656 1657 if (called) { 1658 log("packet_set_maxsize: called twice: old %d new %d", 1659 max_packet_size, s); 1660 return -1; 1661 } 1662 if (s < 4 * 1024 || s > 1024 * 1024) { 1663 log("packet_set_maxsize: bad size %d", s); 1664 return -1; 1665 } 1666 called = 1; 1667 debug("packet_set_maxsize: setting to %d", s); 1668 max_packet_size = s; 1669 return s; 1670 } 1671 1672 /* roundup current message to pad bytes */ 1673 void 1674 packet_add_padding(u_char pad) 1675 { 1676 extra_pad = pad; 1677 } 1678 1679 /* 1680 * 9.2. Ignored Data Message 1681 * 1682 * byte SSH_MSG_IGNORE 1683 * string data 1684 * 1685 * All implementations MUST understand (and ignore) this message at any 1686 * time (after receiving the protocol version). No implementation is 1687 * required to send them. This message can be used as an additional 1688 * protection measure against advanced traffic analysis techniques. 1689 */ 1690 void 1691 packet_send_ignore(int nbytes) 1692 { 1693 u_int32_t rnd = 0; 1694 int i; 1695 1696 #ifdef ALTPRIVSEP 1697 /* shouldn't happen -- see packet_set_monitor() */ 1698 if (packet_monitor) 1699 return; 1700 #endif /* ALTPRIVSEP */ 1701 1702 packet_start(compat20 ? SSH2_MSG_IGNORE : SSH_MSG_IGNORE); 1703 packet_put_int(nbytes); 1704 for (i = 0; i < nbytes; i++) { 1705 if (i % 4 == 0) 1706 rnd = arc4random(); 1707 packet_put_char((u_char)rnd & 0xff); 1708 rnd >>= 8; 1709 } 1710 } 1711 1712 #define MAX_PACKETS (1U<<31) 1713 int 1714 packet_need_rekeying(void) 1715 { 1716 if (datafellows & SSH_BUG_NOREKEY) 1717 return 0; 1718 return 1719 (p_send.packets > MAX_PACKETS) || 1720 (p_read.packets > MAX_PACKETS) || 1721 (max_blocks_out && (p_send.blocks > max_blocks_out)) || 1722 (max_blocks_in && (p_read.blocks > max_blocks_in)); 1723 } 1724 1725 void 1726 packet_set_rekey_limit(u_int32_t bytes) 1727 { 1728 rekey_limit = bytes; 1729 } 1730 1731 #ifdef ALTPRIVSEP 1732 void 1733 packet_set_server(void) 1734 { 1735 packet_server = 1; 1736 } 1737 1738 int 1739 packet_is_server(void) 1740 { 1741 return (packet_server); 1742 } 1743 1744 void 1745 packet_set_monitor(int pipe) 1746 { 1747 int dup_fd; 1748 1749 packet_server = 1; 1750 packet_monitor = 1; 1751 1752 /* 1753 * Awful hack follows. 1754 * 1755 * For SSHv1 the monitor does not process any SSHv1 packets, only 1756 * ALTPRIVSEP packets. We take advantage of that here to keep changes 1757 * to packet.c to a minimum by using the SSHv2 binary packet protocol, 1758 * with cipher "none," mac "none" and compression alg "none," as the 1759 * basis for the monitor protocol. And so to force packet.c to treat 1760 * packets as SSHv2 we force compat20 == 1 here. 1761 * 1762 * For completeness and to help future developers catch this we also 1763 * force compat20 == 1 in the monitor loop, in serverloop.c. 1764 */ 1765 compat20 = 1; 1766 1767 /* 1768 * NOTE: Assumptions below! 1769 * 1770 * - lots of packet.c code assumes that (connection_in == 1771 * connection_out) -> connection is socket 1772 * 1773 * - packet_close() does not shutdown() the connection fildes 1774 * if connection_in != connection_out 1775 * 1776 * - other code assumes the connection is a socket if 1777 * connection_in == connection_out 1778 */ 1779 1780 if ((dup_fd = dup(pipe)) < 0) 1781 fatal("Monitor failed to start: %s", strerror(errno)); 1782 1783 /* 1784 * make sure that the monitor's child's socket is not shutdown(3SOCKET) 1785 * when we packet_close(). Setting connection_out to -1 will take care 1786 * of that. 1787 */ 1788 if (packet_connection_is_on_socket()) 1789 connection_out = -1; 1790 1791 /* 1792 * Now clean up the state related to the server socket. As a side 1793 * effect, we also clean up existing cipher contexts that were 1794 * initialized with 'none' cipher in packet_set_connection(). That 1795 * function was called in the child server process shortly after the 1796 * master SSH process forked. However, all of that is reinialized again 1797 * by another packet_set_connection() call right below. 1798 */ 1799 packet_close(); 1800 1801 /* 1802 * Now make the monitor pipe look like the ssh connection which means 1803 * that connection_in and connection_out will be set to the 1804 * communication pipe descriptors. 1805 */ 1806 packet_set_connection(pipe, dup_fd); 1807 } 1808 1809 /* 1810 * We temporarily need to set connection_in and connection_out descriptors so 1811 * that we can make use of existing code that gets the IP address and hostname 1812 * of the peer to write a login/logout record. It's not nice but we would have 1813 * to change more code when implementing the PKCS#11 engine support. 1814 */ 1815 void 1816 packet_set_fds(int fd, int restore) 1817 { 1818 static int stored_fd; 1819 1820 if (stored_fd == 0 && restore == 0) { 1821 debug3("packet_set_fds: saving %d, installing %d", 1822 connection_in, fd); 1823 stored_fd = connection_in; 1824 /* we don't have a socket in inetd mode */ 1825 if (fd != -1) 1826 connection_in = connection_out = fd; 1827 return; 1828 } 1829 1830 if (restore == 1) { 1831 debug3("restoring %d to connection_in/out", stored_fd); 1832 connection_in = connection_out = stored_fd; 1833 } 1834 } 1835 1836 int 1837 packet_is_monitor(void) 1838 { 1839 return (packet_monitor); 1840 } 1841 #endif /* ALTPRIVSEP */ 1842