xref: /titanic_44/usr/src/cmd/sgs/rtld/sparcv9/sparc_elf.c (revision 67e3a03ed4a2813074d36330f062ed6e593a4937)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SPARC V9 machine dependent and ELF file class dependent functions.
30  * Contains routines for performing function binding and symbol relocations.
31  */
32 #include	"_synonyms.h"
33 
34 #include	<stdio.h>
35 #include	<sys/elf.h>
36 #include	<sys/elf_SPARC.h>
37 #include	<sys/mman.h>
38 #include	<dlfcn.h>
39 #include	<synch.h>
40 #include	<string.h>
41 #include	<debug.h>
42 #include	<reloc.h>
43 #include	<conv.h>
44 #include	"_rtld.h"
45 #include	"_audit.h"
46 #include	"_elf.h"
47 #include	"msg.h"
48 
49 extern void	iflush_range(caddr_t, size_t);
50 extern void	plt_upper_32(uintptr_t, uintptr_t);
51 extern void	plt_upper_44(uintptr_t, uintptr_t);
52 extern void	plt_full_range(uintptr_t, uintptr_t);
53 extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
54 extern void	elf_rtbndr_far(Rt_map *, ulong_t, caddr_t);
55 
56 
57 int
58 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
59 {
60 	/*
61 	 * Check machine type and flags.
62 	 */
63 	if (ehdr->e_flags & EF_SPARC_EXT_MASK) {
64 		/*
65 		 * Check vendor-specific extensions.
66 		 */
67 		if (ehdr->e_flags & EF_SPARC_HAL_R1) {
68 			rej->rej_type = SGS_REJ_HAL;
69 			rej->rej_info = (uint_t)ehdr->e_flags;
70 			return (0);
71 		}
72 		if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) {
73 			rej->rej_type = SGS_REJ_US3;
74 			rej->rej_info = (uint_t)ehdr->e_flags;
75 			return (0);
76 		}
77 
78 		/*
79 		 * Generic check.
80 		 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1)
81 		 * instructions so that bit isn't worth checking for explicitly.
82 		 */
83 		if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) {
84 			rej->rej_type = SGS_REJ_BADFLAG;
85 			rej->rej_info = (uint_t)ehdr->e_flags;
86 			return (0);
87 		}
88 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
89 		rej->rej_type = SGS_REJ_BADFLAG;
90 		rej->rej_info = (uint_t)ehdr->e_flags;
91 		return (0);
92 	}
93 	return (1);
94 }
95 
96 
97 void
98 ldso_plt_init(Rt_map * lmp)
99 {
100 	/*
101 	 * There is no need to analyze ld.so because we don't map in any of
102 	 * its dependencies.  However we may map these dependencies in later
103 	 * (as if ld.so had dlopened them), so initialize the plt and the
104 	 * permission information.
105 	 */
106 	if (PLTGOT(lmp)) {
107 		Xword pltoff;
108 
109 		/*
110 		 * Install the lm pointer in .PLT2 as per the ABI.
111 		 */
112 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
113 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
114 
115 		/*
116 		 * The V9 ABI states that the first 32k PLT entries
117 		 * use .PLT1, with .PLT0 used by the "latter" entries.
118 		 * We don't currently implement the extendend format,
119 		 * so install an error handler in .PLT0 to catch anyone
120 		 * trying to use it.
121 		 */
122 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
123 
124 		/*
125 		 * Initialize .PLT1
126 		 */
127 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
128 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
129 	}
130 }
131 
132 /*
133  * elf_plt_write() will test to see how far away our destination
134  *	address lies.  If it is close enough that a branch can
135  *	be used instead of a jmpl - we will fill the plt in with
136  * 	single branch.  The branches are much quicker then
137  *	a jmpl instruction - see bug#4356879 for further
138  *	details.
139  *
140  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
141  *		librtld/dldump update PLT's who's physical
142  *		address is not the same as the 'virtual' runtime
143  *		address.
144  */
145 Pltbindtype
146 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
147 	Xword pltndx)
148 {
149 	Rela		*rel = (Rela *)rptr;
150 	uintptr_t	nsym = ~symval;
151 	uintptr_t	vpltaddr, pltaddr;
152 	long		disp;
153 
154 
155 	pltaddr = addr + rel->r_offset;
156 	vpltaddr = vaddr + rel->r_offset;
157 	disp = symval - vpltaddr - 4;
158 
159 	if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) {
160 		*((Sxword *)pltaddr) = (uintptr_t)symval +
161 		    (uintptr_t)rel->r_addend - vaddr;
162 		DBG_CALL(pltcntfar++);
163 		return (PLT_T_FAR);
164 	}
165 
166 	/*
167 	 * Test if the destination address is close enough to use
168 	 * a ba,a... instruction to reach it.
169 	 */
170 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
171 		uint_t		*pltent, bainstr;
172 		Pltbindtype	rc;
173 
174 		pltent = (uint_t *)pltaddr;
175 		/*
176 		 * The
177 		 *
178 		 *	ba,a,pt %icc, <dest>
179 		 *
180 		 * is the most efficient of the PLT's.  If we
181 		 * are within +-20 bits - use that branch.
182 		 */
183 		if (S_INRANGE(disp, 20)) {
184 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
185 			/* LINTED */
186 			bainstr |= (uint_t)(S_MASK(19) & (disp >> 2));
187 			rc = PLT_T_21D;
188 			DBG_CALL(pltcnt21d++);
189 		} else {
190 			/*
191 			 * Otherwise - we fall back to the good old
192 			 *
193 			 *	ba,a	<dest>
194 			 *
195 			 * Which still beats a jmpl instruction.
196 			 */
197 			bainstr = M_BA_A;		/* ba,a <dest> */
198 			/* LINTED */
199 			bainstr |= (uint_t)(S_MASK(22) & (disp >> 2));
200 			rc = PLT_T_24D;
201 			DBG_CALL(pltcnt24d++);
202 		}
203 
204 		pltent[2] = M_NOP;		/* nop instr */
205 		pltent[1] = bainstr;
206 
207 		iflush_range((char *)(&pltent[1]), 4);
208 		pltent[0] = M_NOP;		/* nop instr */
209 		iflush_range((char *)(&pltent[0]), 4);
210 		return (rc);
211 	}
212 
213 	if ((nsym >> 32) == 0) {
214 		plt_upper_32(pltaddr, symval);
215 		DBG_CALL(pltcntu32++);
216 		return (PLT_T_U32);
217 	}
218 
219 	if ((nsym >> 44) == 0) {
220 		plt_upper_44(pltaddr, symval);
221 		DBG_CALL(pltcntu44++);
222 		return (PLT_T_U44);
223 	}
224 
225 	/*
226 	 * The PLT destination is not in reach of
227 	 * a branch instruction - so we fall back
228 	 * to a 'jmpl' sequence.
229 	 */
230 	plt_full_range(pltaddr, symval);
231 	DBG_CALL(pltcntfull++);
232 	return (PLT_T_FULL);
233 }
234 
235 
236 
237 /*
238  * Once relocated, the following 6 instruction sequence moves
239  * a 64-bit immediate value into register %g1
240  */
241 #define	VAL64_TO_G1 \
242 /* 0x00 */	0x0b, 0x00, 0x00, 0x00,	/* sethi %hh(value), %g5 */ \
243 /* 0x04 */	0x8a, 0x11, 0x60, 0x00,	/* or %g5, %hm(value), %g5 */ \
244 /* 0x08 */	0x8b, 0x29, 0x70, 0x20,	/* sllx %g5, 32, %g5 */ \
245 /* 0x0c */	0x03, 0x00, 0x00, 0x00,	/* sethi %lm(value), %g1 */ \
246 /* 0x10 */	0x82, 0x10, 0x60, 0x00,	/* or %g1, %lo(value), %g1 */ \
247 /* 0x14 */	0x82, 0x10, 0x40, 0x05	/* or %g1, %g5, %g1 */
248 
249 /*
250  * Local storage space created on the stack created for this glue
251  * code includes space for:
252  *		0x8	pointer to dyn_data
253  *		0x8	size prev stack frame
254  */
255 static const Byte dyn_plt_template[] = {
256 /* 0x0 */	0x2a, 0xcf, 0x80, 0x03,	/* brnz,a,pt %fp, 0xc	*/
257 /* 0x4 */	0x82, 0x27, 0x80, 0x0e,	/* sub %fp, %sp, %g1 */
258 /* 0x8 */	0x82, 0x10, 0x20, 0xb0,	/* mov 176, %g1	*/
259 /* 0xc */	0x9d, 0xe3, 0xbf, 0x40,	/* save %sp, -192, %sp	*/
260 /* 0x10 */	0xc2, 0x77, 0xa7, 0xef,	/* stx %g1, [%fp + 2031] */
261 
262 					/* store prev stack size */
263 /* 0x14 */	VAL64_TO_G1,		/* dyn_data to g1 */
264 /* 0x2c */	0xc2, 0x77, 0xa7, 0xf7,	/* stx %g1, [%fp + 2039] */
265 
266 /* 0x30 */	VAL64_TO_G1,		/* elf_plt_trace() addr to g1 */
267 
268 					/* Call to elf_plt_trace() via g1 */
269 /* 0x48 */	0x9f, 0xc0, 0x60, 0x00,	/* jmpl ! link r[15] to addr in g1 */
270 /* 0x4c */	0x01, 0x00, 0x00, 0x00	/* nop ! for jmpl delay slot *AND* */
271 					/*	to get 8-byte alignment */
272 };
273 
274 
275 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
276 		sizeof (Addr) +		/* reflmp */
277 		sizeof (Addr) +		/* deflmp */
278 		sizeof (Word) +		/* symndx */
279 		sizeof (Word) +		/* sb_flags */
280 		sizeof (Sym);		/* symdef */
281 
282 
283 /*
284  * the dynamic plt entry is:
285  *
286  *	brnz,a,pt	%fp, 1f
287  *	sub     	%sp, %fp, %g1
288  *	mov     	SA(MINFRAME), %g1
289  * 1:
290  *	save    	%sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp
291  *
292  *	! store prev stack size
293  *	stx     	%g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)]
294  *
295  * 2:
296  *	! move dyn_data to %g1
297  *	sethi   	%hh(dyn_data), %g5
298  *	or      	%g5, %hm(dyn_data), %g5
299  *	sllx    	%g5, 32, %g5
300  *	sethi   	%lm(dyn_data), %g1
301  *	or      	%g1, %lo(dyn_data), %g1
302  *	or      	%g1, %g5, %g1
303  *
304  *	! store dyn_data ptr on frame (from %g1)
305  *	 stx     	%g1, [%fp + STACK_BIAS - CLONGSIZE]
306  *
307  *	! Move address of elf_plt_trace() into %g1
308  *	[Uses same 6 instructions as shown at label 2: above. Not shown.]
309  *
310  *	! Use JMPL to make call. CALL instruction is limited to 30-bits.
311  *	! of displacement.
312  *	jmp1		%g1, %o7
313  *
314  *	! JMPL has a delay slot that must be filled. And, the sequence
315  *	! of instructions needs to have 8-byte alignment. This NOP does both.
316  *	! The alignment is needed for the data we put following the
317  *	! instruction.
318  *	nop
319  *
320  * dyn data:
321  *	Addr		reflmp
322  *	Addr		deflmp
323  *	Word		symndx
324  *	Word		sb_flags
325  *	Sym		symdef  (Elf64_Sym = 24-bytes)
326  */
327 
328 
329 /*
330  * Relocate the instructions given by the VAL64_TO_G1 macro above.
331  * The arguments parallel those of do_reloc_rtld().
332  *
333  * entry:
334  *	off - Address of 1st instruction in sequence.
335  *	value - Value being relocated (addend)
336  *	sym - Name of value being relocated.
337  *	lml - link map list
338  *
339  * exit:
340  *	Returns TRUE for success, FALSE for failure.
341  */
342 static int
343 reloc_val64_to_g1(Byte *off, Addr *value, const char *sym, Lm_list *lml)
344 {
345 	Xword	tmp_value;
346 
347 	/*
348 	 * relocating:
349 	 *	sethi	%hh(value), %g5
350 	 */
351 	tmp_value = (Xword)value;
352 	if (do_reloc_rtld(R_SPARC_HH22, off, &tmp_value, sym,
353 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
354 		return (0);
355 	}
356 
357 	/*
358 	 * relocating:
359 	 *	or	%g5, %hm(value), %g5
360 	 */
361 	tmp_value = (Xword)value;
362 	if (do_reloc_rtld(R_SPARC_HM10, off + 4, &tmp_value, sym,
363 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
364 		return (0);
365 	}
366 
367 	/*
368 	 * relocating:
369 	 *	sethi	%lm(value), %g1
370 	 */
371 	tmp_value = (Xword)value;
372 	if (do_reloc_rtld(R_SPARC_LM22, off + 12, &tmp_value, sym,
373 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
374 		return (0);
375 	}
376 
377 	/*
378 	 * relocating:
379 	 *	or	%g1, %lo(value), %g1
380 	 */
381 	tmp_value = (Xword)value;
382 	if (do_reloc_rtld(R_SPARC_LO10, off + 16, &tmp_value, sym,
383 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
384 		return (0);
385 	}
386 
387 	return (1);
388 }
389 
390 static caddr_t
391 elf_plt_trace_write(caddr_t addr, Rela * rptr, Rt_map * rlmp, Rt_map * dlmp,
392     Sym * sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags,
393     int *fail)
394 {
395 	extern ulong_t	elf_plt_trace();
396 	Addr		dyn_plt, *dyndata;
397 
398 	/*
399 	 * If both pltenter & pltexit have been disabled there
400 	 * there is no reason to even create the glue code.
401 	 */
402 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
403 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
404 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
405 		    rptr, (uintptr_t)to, pltndx);
406 		return (to);
407 	}
408 
409 	/*
410 	 * We only need to add the glue code if there is an auditing
411 	 * library that is interested in this binding.
412 	 */
413 	dyn_plt = (Xword)AUDINFO(rlmp)->ai_dynplts +
414 	    (pltndx * dyn_plt_ent_size);
415 
416 	/*
417 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
418 	 * now.  Otherwise this function has been called before, but from a
419 	 * different plt (ie. from another shared object).  In that case
420 	 * we just set the plt to point to the new dyn_plt.
421 	 */
422 	if (*(Word *)dyn_plt == 0) {
423 		Sym	*symp;
424 		Lm_list	*lml = LIST(rlmp);
425 
426 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
427 		    sizeof (dyn_plt_template));
428 		dyndata = (Addr *)(dyn_plt + sizeof (dyn_plt_template));
429 
430 		/*
431 		 * relocating:
432 		 *	VAL64_TO_G1(dyndata)
433 		 *	VAL64_TO_G1(&elf_plt_trace)
434 		 */
435 		if (!(reloc_val64_to_g1((Byte *) (dyn_plt + 0x14), dyndata,
436 		    MSG_ORIG(MSG_SYM_LADYNDATA), lml) &&
437 		    reloc_val64_to_g1((Byte *) (dyn_plt + 0x30),
438 		    (Addr *)&elf_plt_trace, MSG_ORIG(MSG_SYM_ELFPLTTRACE),
439 		    lml))) {
440 			*fail = 1;
441 			return (0);
442 		}
443 
444 		*dyndata++ = (Addr)rlmp;
445 		*dyndata++ = (Addr)dlmp;
446 
447 		/*
448 		 * symndx in the high word, sb_flags in the low.
449 		 */
450 		*dyndata = (Addr)sb_flags;
451 		*(Word *)dyndata = symndx;
452 		dyndata++;
453 
454 		symp = (Sym *)dyndata;
455 		*symp = *sym;
456 		symp->st_value = (Addr)to;
457 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
458 	}
459 
460 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
461 	    (uintptr_t)dyn_plt, pltndx);
462 	return ((caddr_t)dyn_plt);
463 }
464 
465 /*
466  * Function binding routine - invoked on the first call to a function through
467  * the procedure linkage table;
468  * passes first through an assembly language interface.
469  *
470  * Takes the address of the PLT entry where the call originated,
471  * the offset into the relocation table of the associated
472  * relocation entry and the address of the link map (rt_private_map struct)
473  * for the entry.
474  *
475  * Returns the address of the function referenced after re-writing the PLT
476  * entry to invoke the function directly.
477  *
478  * On error, causes process to terminate with a signal.
479  */
480 
481 ulong_t
482 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
483 {
484 	Rt_map		*nlmp, *llmp;
485 	Addr		addr, vaddr, reloff, symval;
486 	char		*name;
487 	Rela		*rptr;
488 	Sym		*rsym, *nsym;
489 	Xword		pltndx;
490 	uint_t		binfo, sb_flags = 0;
491 	ulong_t		rsymndx;
492 	Slookup		sl;
493 	Pltbindtype	pbtype;
494 	int		entry, lmflags, farplt = 0;
495 	uint_t		dbg_class;
496 	Lm_list		*lml = LIST(lmp);
497 
498 	/*
499 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
500 	 * value.  A zero value indicates we have recursed into ld.so.1 to
501 	 * further process a locking request.  Under this recursion we disable
502 	 * tsort and cleanup activities.
503 	 */
504 	entry = enter(0);
505 
506 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
507 		dbg_class = dbg_desc->d_class;
508 		dbg_desc->d_class = 0;
509 	}
510 
511 	/*
512 	 * Must calculate true plt relocation address from reloc.
513 	 * Take offset, subtract number of reserved PLT entries, and divide
514 	 * by PLT entry size, which should give the index of the plt
515 	 * entry (and relocation entry since they have been defined to be
516 	 * in the same order).  Then we must multiply by the size of
517 	 * a relocation entry, which will give us the offset of the
518 	 * plt relocation entry from the start of them given by JMPREL(lm).
519 	 */
520 	addr = pltoff - M_PLT_RESERVSZ;
521 
522 	if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) {
523 		pltndx = addr / M_PLT_ENTSIZE;
524 	} else {
525 		ulong_t	pltblockoff;
526 
527 		pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE);
528 		pltndx = M64_PLT_NEARPLTS +
529 		    ((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) +
530 		    ((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) -
531 		    M_PLT_XNumber;
532 		farplt = 1;
533 	}
534 
535 	/*
536 	 * Perform some basic sanity checks.  If we didn't get a load map
537 	 * or the plt offset is invalid then its possible someone has walked
538 	 * over the plt entries or jumped to plt[01] out of the blue.
539 	 */
540 	if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) ||
541 	    (farplt && (addr % M_PLT_INSSIZE))) {
542 		Conv_inv_buf_t	inv_buf;
543 
544 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
545 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
546 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
547 		rtldexit(lml, 1);
548 	}
549 	reloff = pltndx * sizeof (Rela);
550 
551 	/*
552 	 * Use relocation entry to get symbol table entry and symbol name.
553 	 */
554 	addr = (ulong_t)JMPREL(lmp);
555 	rptr = (Rela *)(addr + reloff);
556 	rsymndx = ELF_R_SYM(rptr->r_info);
557 	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
558 	name = (char *)(STRTAB(lmp) + rsym->st_name);
559 
560 	/*
561 	 * Determine the last link-map of this list, this'll be the starting
562 	 * point for any tsort() processing.
563 	 */
564 	llmp = lml->lm_tail;
565 
566 	/*
567 	 * Find definition for symbol.  Initialize the symbol lookup data
568 	 * structure.
569 	 */
570 	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
571 	    rsymndx, rsym, 0, LKUP_DEFT);
572 
573 	if ((nsym = lookup_sym(&sl, &nlmp, &binfo, NULL)) == 0) {
574 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
575 		    demangle(name));
576 		rtldexit(lml, 1);
577 	}
578 
579 	symval = nsym->st_value;
580 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
581 	    (nsym->st_shndx != SHN_ABS))
582 		symval += ADDR(nlmp);
583 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
584 		/*
585 		 * Record that this new link map is now bound to the caller.
586 		 */
587 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
588 			rtldexit(lml, 1);
589 	}
590 
591 	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) {
592 		/* LINTED */
593 		uint_t	symndx = (uint_t)(((uintptr_t)nsym -
594 		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
595 
596 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
597 		    &sb_flags);
598 	}
599 
600 	if (FLAGS(lmp) & FLG_RT_FIXED)
601 		vaddr = 0;
602 	else
603 		vaddr = ADDR(lmp);
604 
605 	pbtype = PLT_T_NONE;
606 	if (!(rtld_flags & RT_FL_NOBIND)) {
607 		if (((lml->lm_tflags | FLAGS1(lmp)) &
608 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
609 		    AUDINFO(lmp)->ai_dynplts) {
610 			int	fail = 0;
611 			/* LINTED */
612 			uint_t	symndx = (uint_t)(((uintptr_t)nsym -
613 			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
614 
615 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
616 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
617 			    (caddr_t)symval, sb_flags, &fail);
618 			if (fail)
619 				rtldexit(lml, 1);
620 		} else {
621 			/*
622 			 * Write standard PLT entry to jump directly
623 			 * to newly bound function.
624 			 */
625 			pbtype = elf_plt_write((uintptr_t)vaddr,
626 			    (uintptr_t)vaddr, rptr, symval, pltndx);
627 		}
628 	}
629 
630 	/*
631 	 * Print binding information and rebuild PLT entry.
632 	 */
633 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
634 	    (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value,
635 	    name, binfo));
636 
637 	/*
638 	 * Complete any processing for newly loaded objects.  Note we don't
639 	 * know exactly where any new objects are loaded (we know the object
640 	 * that supplied the symbol, but others may have been loaded lazily as
641 	 * we searched for the symbol), so sorting starts from the last
642 	 * link-map know on entry to this routine.
643 	 */
644 	if (entry)
645 		load_completion(llmp);
646 
647 	/*
648 	 * Some operations like dldump() or dlopen()'ing a relocatable object
649 	 * result in objects being loaded on rtld's link-map, make sure these
650 	 * objects are initialized also.
651 	 */
652 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
653 		load_completion(nlmp);
654 
655 	/*
656 	 * If the object we've bound to is in the process of being initialized
657 	 * by another thread, determine whether we should block.
658 	 */
659 	is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL);
660 
661 	/*
662 	 * Make sure the object to which we've bound has had it's .init fired.
663 	 * Cleanup before return to user code.
664 	 */
665 	if (entry) {
666 		is_dep_init(nlmp, lmp);
667 		leave(LIST(lmp), 0);
668 	}
669 
670 	if (lmflags & LML_FLG_RTLDLM)
671 		dbg_desc->d_class = dbg_class;
672 
673 	return (symval);
674 }
675 
676 
677 static int
678 bindpltpad(Rt_map *lmp, List *padlist, Addr value, void **pltaddr,
679     const char *fname, const char *sname)
680 {
681 	Listnode	*lnp, *prevlnp;
682 	Pltpadinfo	*pip;
683 	void		*plt;
684 	uintptr_t	pltoff;
685 	Rela		rel;
686 	int		i;
687 
688 	prevlnp = 0;
689 	for (LIST_TRAVERSE(padlist, lnp, pip)) {
690 		if (pip->pp_addr == value) {
691 			*pltaddr = pip->pp_plt;
692 			DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr,
693 			    sname));
694 			return (1);
695 		}
696 		if (pip->pp_addr > value)
697 			break;
698 		prevlnp = lnp;
699 	}
700 
701 	plt = PLTPAD(lmp);
702 	pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp);
703 
704 	PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE);
705 
706 	if (PLTPAD(lmp) > PLTPADEND(lmp)) {
707 		/*
708 		 * Just fail in usual relocation way
709 		 */
710 		*pltaddr = (void *)value;
711 		return (1);
712 	}
713 	rel.r_offset = pltoff;
714 	rel.r_info = 0;
715 	rel.r_addend = 0;
716 
717 
718 	/*
719 	 * elf_plt_write assumes the plt was previously filled
720 	 * with NOP's, so fill it in now.
721 	 */
722 	for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) {
723 		((uint_t *)plt)[i] = M_NOP;
724 	}
725 	iflush_range((caddr_t)plt, M_PLT_ENTSIZE);
726 
727 	(void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0);
728 
729 	if ((pip = calloc(sizeof (Pltpadinfo), 1)) == 0)
730 		return (0);
731 	pip->pp_addr = value;
732 	pip->pp_plt = plt;
733 
734 	if (prevlnp)
735 		lnp = list_insert(padlist, pip, prevlnp);
736 	else
737 		lnp = list_prepend(padlist, pip);
738 
739 	if (!lnp) {
740 		free(pip);
741 		return (0);
742 	}
743 
744 	*pltaddr = plt;
745 	DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname));
746 	return (1);
747 }
748 
749 /*
750  * Read and process the relocations for one link object, we assume all
751  * relocation sections for loadable segments are stored contiguously in
752  * the file.
753  */
754 int
755 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl)
756 {
757 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
758 	ulong_t		roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp);
759 	ulong_t		emap, pltndx;
760 	uint_t		dsymndx, binfo, pbinfo;
761 	Byte		rtype;
762 	long		reladd;
763 	Addr		value, pvalue;
764 	Sym		*symref, *psymref, *symdef, *psymdef;
765 	char		*name, *pname;
766 	Rt_map		*_lmp, *plmp;
767 	int		textrel = 0, ret = 1, noplt = 0;
768 	long		relacount = RELACOUNT(lmp);
769 	Rela		*rel;
770 	Pltbindtype	pbtype;
771 	List		pltpadlist = {0, 0};
772 	APlist		*bound = NULL;
773 
774 	/*
775 	 * If an object has any DT_REGISTER entries associated with
776 	 * it, they are processed now.
777 	 */
778 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
779 		if (elf_regsyms(lmp) == 0)
780 			return (0);
781 	}
782 
783 	/*
784 	 * Although only necessary for lazy binding, initialize the first
785 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
786 	 * to find this useful.
787 	 */
788 	if ((plt == 0) && PLTGOT(lmp)) {
789 		Xword pltoff;
790 
791 		if ((ulong_t)PLTGOT(lmp) < etext) {
792 			if (elf_set_prot(lmp, PROT_WRITE) == 0)
793 				return (0);
794 			textrel = 1;
795 		}
796 
797 		/*
798 		 * Install the lm pointer in .PLT2 as per the ABI.
799 		 */
800 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
801 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
802 
803 		/*
804 		 * The V9 ABI states that the first 32k PLT entries
805 		 * use .PLT1, with .PLT0 used by the "latter" entries.
806 		 * We don't currently implement the extendend format,
807 		 * so install an error handler in .PLT0 to catch anyone
808 		 * trying to use it.
809 		 */
810 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
811 
812 		/*
813 		 * Initialize .PLT1
814 		 */
815 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
816 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
817 	}
818 
819 	/*
820 	 * Initialize the plt start and end addresses.
821 	 */
822 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
823 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
824 
825 	/*
826 	 * If we've been called upon to promote an RTLD_LAZY object to an
827 	 * RTLD_NOW then we're only interested in scaning the .plt table.
828 	 */
829 	if (plt) {
830 		relbgn = pltbgn;
831 		relend = pltend;
832 	} else {
833 		/*
834 		 * The relocation sections appear to the run-time linker as a
835 		 * single table.  Determine the address of the beginning and end
836 		 * of this table.  There are two different interpretations of
837 		 * the ABI at this point:
838 		 *
839 		 *   o	The REL table and its associated RELSZ indicate the
840 		 *	concatenation of *all* relocation sections (this is the
841 		 *	model our link-editor constructs).
842 		 *
843 		 *   o	The REL table and its associated RELSZ indicate the
844 		 *	concatenation of all *but* the .plt relocations.  These
845 		 *	relocations are specified individually by the JMPREL and
846 		 *	PLTRELSZ entries.
847 		 *
848 		 * Determine from our knowledege of the relocation range and
849 		 * .plt range, the range of the total relocation table.  Note
850 		 * that one other ABI assumption seems to be that the .plt
851 		 * relocations always follow any other relocations, the
852 		 * following range checking drops that assumption.
853 		 */
854 		relbgn = (ulong_t)(REL(lmp));
855 		relend = relbgn + (ulong_t)(RELSZ(lmp));
856 		if (pltbgn) {
857 			if (!relbgn || (relbgn > pltbgn))
858 				relbgn = pltbgn;
859 			if (!relbgn || (relend < pltend))
860 				relend = pltend;
861 		}
862 	}
863 	if (!relbgn || (relbgn == relend)) {
864 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
865 		return (1);
866 	}
867 
868 	relsiz = (ulong_t)(RELENT(lmp));
869 	basebgn = ADDR(lmp);
870 	emap = ADDR(lmp) + MSIZE(lmp);
871 
872 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
873 
874 	/*
875 	 * If we're processing in lazy mode there is no need to scan the
876 	 * .rela.plt table.
877 	 */
878 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
879 		noplt = 1;
880 
881 	/*
882 	 * Loop through relocations.
883 	 */
884 	while (relbgn < relend) {
885 		Addr		vaddr;
886 		uint_t		sb_flags = 0;
887 
888 		rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
889 
890 		/*
891 		 * If this is a RELATIVE relocation in a shared object
892 		 * (the common case), and if we are not debugging, then
893 		 * jump into a tighter relocaiton loop (elf_reloc_relacount)
894 		 * Only make the jump if we've been given a hint on the
895 		 * number of relocations.
896 		 */
897 		if ((rtype == R_SPARC_RELATIVE) &&
898 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
899 			/*
900 			 * It's possible that the relative relocation block
901 			 * has relocations against the text segment as well
902 			 * as the data segment.  Since our optimized relocation
903 			 * engine does not check which segment the relocation
904 			 * is against - just mprotect it now if it's been
905 			 * marked as containing TEXTREL's.
906 			 */
907 			if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) {
908 				if (elf_set_prot(lmp, PROT_WRITE) == 0) {
909 					ret = 0;
910 					break;
911 				}
912 				textrel = 1;
913 			}
914 			if (relacount) {
915 				relbgn = elf_reloc_relacount(relbgn, relacount,
916 				    relsiz, basebgn);
917 				relacount = 0;
918 			} else {
919 				relbgn = elf_reloc_relative(relbgn, relend,
920 				    relsiz, basebgn, etext, emap);
921 			}
922 			if (relbgn >= relend)
923 				break;
924 			rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info,
925 			    M_MACH);
926 		}
927 
928 		roffset = ((Rela *)relbgn)->r_offset;
929 
930 		reladd = (long)(((Rela *)relbgn)->r_addend);
931 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
932 
933 		rel = (Rela *)relbgn;
934 		relbgn += relsiz;
935 
936 		/*
937 		 * Optimizations.
938 		 */
939 		if (rtype == R_SPARC_NONE)
940 			continue;
941 		if (noplt && ((ulong_t)rel >= pltbgn) &&
942 		    ((ulong_t)rel < pltend)) {
943 			relbgn = pltend;
944 			continue;
945 		}
946 
947 		if (rtype != R_SPARC_REGISTER) {
948 			/*
949 			 * If this is a shared object, add the base address
950 			 * to offset.
951 			 */
952 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
953 				roffset += basebgn;
954 
955 			/*
956 			 * If this relocation is not against part of the image
957 			 * mapped into memory we skip it.
958 			 */
959 			if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) +
960 			    MSIZE(lmp)))) {
961 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
962 				    rsymndx);
963 				continue;
964 			}
965 		}
966 
967 		/*
968 		 * If we're promoting plts determine if this one has already
969 		 * been written. An uninitialized plts' second instruction is a
970 		 * branch.
971 		 */
972 		if (plt) {
973 			uchar_t	*_roffset = (uchar_t *)roffset;
974 
975 			_roffset += M_PLT_INSSIZE;
976 			/* LINTED */
977 			if ((*(uint_t *)_roffset &
978 			    (~(S_MASK(19)))) != M_BA_A_XCC)
979 				continue;
980 		}
981 
982 		binfo = 0;
983 		pltndx = (ulong_t)-1;
984 		pbtype = PLT_T_NONE;
985 		/*
986 		 * If a symbol index is specified then get the symbol table
987 		 * entry, locate the symbol definition, and determine its
988 		 * address.
989 		 */
990 		if (rsymndx) {
991 			/*
992 			 * Get the local symbol table entry.
993 			 */
994 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
995 			    (rsymndx * SYMENT(lmp)));
996 
997 			/*
998 			 * If this is a local symbol, just use the base address.
999 			 * (we should have no local relocations in the
1000 			 * executable).
1001 			 */
1002 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
1003 				value = basebgn;
1004 				name = (char *)0;
1005 
1006 				/*
1007 				 * Special case TLS relocations.
1008 				 */
1009 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1010 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
1011 					/*
1012 					 * Use the TLS modid.
1013 					 */
1014 					value = TLSMODID(lmp);
1015 
1016 				} else if ((rtype == R_SPARC_TLS_TPOFF32) ||
1017 				    (rtype == R_SPARC_TLS_TPOFF64)) {
1018 					if ((value = elf_static_tls(lmp, symref,
1019 					    rel, rtype, 0, roffset, 0)) == 0) {
1020 						ret = 0;
1021 						break;
1022 					}
1023 				}
1024 			} else {
1025 				/*
1026 				 * If the symbol index is equal to the previous
1027 				 * symbol index relocation we processed then
1028 				 * reuse the previous values. (Note that there
1029 				 * have been cases where a relocation exists
1030 				 * against a copy relocation symbol, our ld(1)
1031 				 * should optimize this away, but make sure we
1032 				 * don't use the same symbol information should
1033 				 * this case exist).
1034 				 */
1035 				if ((rsymndx == psymndx) &&
1036 				    (rtype != R_SPARC_COPY)) {
1037 					/* LINTED */
1038 					if (psymdef == 0) {
1039 						DBG_CALL(Dbg_bind_weak(lmp,
1040 						    (Addr)roffset, (Addr)
1041 						    (roffset - basebgn), name));
1042 						continue;
1043 					}
1044 					/* LINTED */
1045 					value = pvalue;
1046 					/* LINTED */
1047 					name = pname;
1048 					symdef = psymdef;
1049 					/* LINTED */
1050 					symref = psymref;
1051 					/* LINTED */
1052 					_lmp = plmp;
1053 					/* LINTED */
1054 					binfo = pbinfo;
1055 
1056 					if ((LIST(_lmp)->lm_tflags |
1057 					    FLAGS1(_lmp)) &
1058 					    LML_TFLG_AUD_SYMBIND) {
1059 						value = audit_symbind(lmp, _lmp,
1060 						    /* LINTED */
1061 						    symdef, dsymndx, value,
1062 						    &sb_flags);
1063 					}
1064 				} else {
1065 					Slookup		sl;
1066 
1067 					/*
1068 					 * Lookup the symbol definition.
1069 					 * Initialize the symbol lookup data
1070 					 * structure.
1071 					 */
1072 					name = (char *)(STRTAB(lmp) +
1073 					    symref->st_name);
1074 
1075 					SLOOKUP_INIT(sl, name, lmp, 0,
1076 					    ld_entry_cnt, 0, rsymndx, symref,
1077 					    rtype, LKUP_STDRELOC);
1078 
1079 					symdef = lookup_sym(&sl, &_lmp,
1080 					    &binfo, in_nfavl);
1081 
1082 					/*
1083 					 * If the symbol is not found and the
1084 					 * reference was not to a weak symbol,
1085 					 * report an error.  Weak references
1086 					 * may be unresolved.
1087 					 */
1088 					/* BEGIN CSTYLED */
1089 					if (symdef == 0) {
1090 					    if (sl.sl_bind != STB_WEAK) {
1091 						if (elf_reloc_error(lmp, name,
1092 						    rel, binfo))
1093 							continue;
1094 
1095 						ret = 0;
1096 						break;
1097 
1098 					    } else {
1099 						psymndx = rsymndx;
1100 						psymdef = 0;
1101 
1102 						DBG_CALL(Dbg_bind_weak(lmp,
1103 						    (Addr)roffset, (Addr)
1104 						    (roffset - basebgn), name));
1105 						continue;
1106 					    }
1107 					}
1108 					/* END CSTYLED */
1109 
1110 					/*
1111 					 * If symbol was found in an object
1112 					 * other than the referencing object
1113 					 * then record the binding.
1114 					 */
1115 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
1116 					    FL1_RT_NOINIFIN) == 0)) {
1117 						if (aplist_test(&bound, _lmp,
1118 						    AL_CNT_RELBIND) == 0) {
1119 							ret = 0;
1120 							break;
1121 						}
1122 					}
1123 
1124 					/*
1125 					 * Calculate the location of definition;
1126 					 * symbol value plus base address of
1127 					 * containing shared object.
1128 					 */
1129 					if (IS_SIZE(rtype))
1130 						value = symdef->st_size;
1131 					else
1132 						value = symdef->st_value;
1133 
1134 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
1135 					    !(IS_SIZE(rtype)) &&
1136 					    (symdef->st_shndx != SHN_ABS) &&
1137 					    (ELF_ST_TYPE(symdef->st_info) !=
1138 					    STT_TLS))
1139 						value += ADDR(_lmp);
1140 
1141 					/*
1142 					 * Retain this symbol index and the
1143 					 * value in case it can be used for the
1144 					 * subsequent relocations.
1145 					 */
1146 					if (rtype != R_SPARC_COPY) {
1147 						psymndx = rsymndx;
1148 						pvalue = value;
1149 						pname = name;
1150 						psymdef = symdef;
1151 						psymref = symref;
1152 						plmp = _lmp;
1153 						pbinfo = binfo;
1154 					}
1155 					if ((LIST(_lmp)->lm_tflags |
1156 					    FLAGS1(_lmp)) &
1157 					    LML_TFLG_AUD_SYMBIND) {
1158 						/* LINTED */
1159 						dsymndx = (((uintptr_t)symdef -
1160 						    (uintptr_t)SYMTAB(_lmp)) /
1161 						    SYMENT(_lmp));
1162 						value = audit_symbind(lmp, _lmp,
1163 						    symdef, dsymndx, value,
1164 						    &sb_flags);
1165 					}
1166 				}
1167 
1168 				/*
1169 				 * If relocation is PC-relative, subtract
1170 				 * offset address.
1171 				 */
1172 				if (IS_PC_RELATIVE(rtype))
1173 					value -= roffset;
1174 
1175 				/*
1176 				 * Special case TLS relocations.
1177 				 */
1178 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1179 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
1180 					/*
1181 					 * Relocation value is the TLS modid.
1182 					 */
1183 					value = TLSMODID(_lmp);
1184 
1185 				} else if ((rtype == R_SPARC_TLS_TPOFF64) ||
1186 				    (rtype == R_SPARC_TLS_TPOFF32)) {
1187 					if ((value = elf_static_tls(_lmp,
1188 					    symdef, rel, rtype, name, roffset,
1189 					    value)) == 0) {
1190 						ret = 0;
1191 						break;
1192 					}
1193 				}
1194 			}
1195 		} else {
1196 			/*
1197 			 * Special cases.
1198 			 */
1199 			if (rtype == R_SPARC_REGISTER) {
1200 				/*
1201 				 * A register symbol associated with symbol
1202 				 * index 0 is initialized (i.e. relocated) to
1203 				 * a constant in the r_addend field rather than
1204 				 * to a symbol value.
1205 				 */
1206 				value = 0;
1207 
1208 			} else if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1209 			    (rtype == R_SPARC_TLS_DTPMOD64)) {
1210 				/*
1211 				 * TLS relocation value is the TLS modid.
1212 				 */
1213 				value = TLSMODID(lmp);
1214 			} else
1215 				value = basebgn;
1216 			name = (char *)0;
1217 		}
1218 
1219 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
1220 		    M_REL_SHT_TYPE, rel, NULL, name));
1221 
1222 		/*
1223 		 * If this object has relocations in the text segment, turn
1224 		 * off the write protect.
1225 		 */
1226 		if ((rtype != R_SPARC_REGISTER) && (roffset < etext) &&
1227 		    (textrel == 0)) {
1228 			if (elf_set_prot(lmp, PROT_WRITE) == 0) {
1229 				ret = 0;
1230 				break;
1231 			}
1232 			textrel = 1;
1233 		}
1234 
1235 		/*
1236 		 * Call relocation routine to perform required relocation.
1237 		 */
1238 		switch (rtype) {
1239 		case R_SPARC_REGISTER:
1240 			/*
1241 			 * The v9 ABI 4.2.4 says that system objects may,
1242 			 * but are not required to, use register symbols
1243 			 * to inidcate how they use global registers. Thus
1244 			 * at least %g6, %g7 must be allowed in addition
1245 			 * to %g2 and %g3.
1246 			 */
1247 			value += reladd;
1248 			if (roffset == STO_SPARC_REGISTER_G1) {
1249 				set_sparc_g1(value);
1250 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1251 				set_sparc_g2(value);
1252 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1253 				set_sparc_g3(value);
1254 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1255 				set_sparc_g4(value);
1256 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1257 				set_sparc_g5(value);
1258 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1259 				set_sparc_g6(value);
1260 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1261 				set_sparc_g7(value);
1262 			} else {
1263 				eprintf(LIST(lmp), ERR_FATAL,
1264 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1265 				    EC_ADDR(roffset));
1266 				ret = 0;
1267 				break;
1268 			}
1269 
1270 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1271 			    M_MACH, (Xword)roffset, (Xword)value));
1272 			break;
1273 		case R_SPARC_COPY:
1274 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1275 			    symdef, _lmp, (const void *)value) == 0)
1276 				ret = 0;
1277 			break;
1278 		case R_SPARC_JMP_SLOT:
1279 			pltndx = ((uintptr_t)rel -
1280 			    (uintptr_t)JMPREL(lmp)) / relsiz;
1281 
1282 			if (FLAGS(lmp) & FLG_RT_FIXED)
1283 				vaddr = 0;
1284 			else
1285 				vaddr = ADDR(lmp);
1286 
1287 			if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) &
1288 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1289 			    AUDINFO(lmp)->ai_dynplts) {
1290 				int	fail = 0;
1291 				/* LINTED */
1292 				uint_t	symndx = (uint_t)(((uintptr_t)symdef -
1293 				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1294 
1295 				(void) elf_plt_trace_write((caddr_t)vaddr,
1296 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1297 				    pltndx, (caddr_t)value, sb_flags, &fail);
1298 				if (fail)
1299 					ret = 0;
1300 			} else {
1301 				/*
1302 				 * Write standard PLT entry to jump directly
1303 				 * to newly bound function.
1304 				 */
1305 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1306 				    ELF_DBG_RTLD, (Xword)roffset,
1307 				    (Xword)value));
1308 				pbtype = elf_plt_write((uintptr_t)vaddr,
1309 				    (uintptr_t)vaddr, (void *)rel, value,
1310 				    pltndx);
1311 			}
1312 			break;
1313 		case R_SPARC_WDISP30:
1314 			if (PLTPAD(lmp) &&
1315 			    (S_INRANGE((Sxword)value, 29) == 0)) {
1316 				void *	plt = 0;
1317 
1318 				if (bindpltpad(lmp, &pltpadlist,
1319 				    value + roffset, &plt,
1320 				    NAME(_lmp), name) == 0) {
1321 					ret = 0;
1322 					break;
1323 				}
1324 				value = (Addr)((Addr)plt - roffset);
1325 			}
1326 			/* FALLTHROUGH */
1327 		default:
1328 			value += reladd;
1329 			if (IS_EXTOFFSET(rtype))
1330 				value += (Word)ELF_R_TYPE_DATA(rel->r_info);
1331 
1332 			/*
1333 			 * Write the relocation out.  If this relocation is a
1334 			 * common basic write, skip the doreloc() engine.
1335 			 */
1336 			if ((rtype == R_SPARC_GLOB_DAT) ||
1337 			    (rtype == R_SPARC_64)) {
1338 				if (roffset & 0x7) {
1339 					Conv_inv_buf_t	inv_buf;
1340 
1341 					eprintf(LIST(lmp), ERR_FATAL,
1342 					    MSG_INTL(MSG_REL_NONALIGN),
1343 					    conv_reloc_SPARC_type(rtype,
1344 					    0, &inv_buf),
1345 					    NAME(lmp), demangle(name),
1346 					    EC_OFF(roffset));
1347 					ret = 0;
1348 				} else
1349 					*(ulong_t *)roffset += value;
1350 			} else {
1351 				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1352 				    (Xword *)&value, name,
1353 				    NAME(lmp), LIST(lmp)) == 0)
1354 					ret = 0;
1355 			}
1356 
1357 			/*
1358 			 * The value now contains the 'bit-shifted' value that
1359 			 * was or'ed into memory (this was set by
1360 			 * do_reloc_rtld()).
1361 			 */
1362 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1363 			    (Xword)roffset, (Xword)value));
1364 
1365 			/*
1366 			 * If this relocation is against a text segment, make
1367 			 * sure that the instruction cache is flushed.
1368 			 */
1369 			if (textrel)
1370 				iflush_range((caddr_t)roffset, 0x4);
1371 		}
1372 
1373 		if ((ret == 0) &&
1374 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1375 			break;
1376 
1377 		if (binfo) {
1378 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1379 			    (Off)(roffset - basebgn), pltndx, pbtype,
1380 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * Free up any items on the pltpadlist if it was allocated
1386 	 */
1387 	if (pltpadlist.head) {
1388 		Listnode *	lnp;
1389 		Listnode *	plnp;
1390 		Pltpadinfo *	pip;
1391 
1392 		plnp = 0;
1393 		for (LIST_TRAVERSE(&pltpadlist, lnp, pip)) {
1394 			if (plnp != 0)
1395 				free(plnp);
1396 			free(pip);
1397 			plnp = lnp;
1398 		}
1399 		if (plnp != 0)
1400 			free(plnp);
1401 	}
1402 
1403 	return (relocate_finish(lmp, bound, textrel, ret));
1404 }
1405 
1406 /*
1407  * Provide a machine specific interface to the conversion routine.  By calling
1408  * the machine specific version, rather than the generic version, we insure that
1409  * the data tables/strings for all known machine versions aren't dragged into
1410  * ld.so.1.
1411  */
1412 const char *
1413 _conv_reloc_type(uint_t rel)
1414 {
1415 	static Conv_inv_buf_t	inv_buf;
1416 
1417 	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1418 }
1419