1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * SPARC machine dependent and ELF file class dependent functions. 33 * Contains routines for performing function binding and symbol relocations. 34 */ 35 #include "_synonyms.h" 36 37 #include <stdio.h> 38 #include <sys/elf.h> 39 #include <sys/elf_SPARC.h> 40 #include <sys/mman.h> 41 #include <dlfcn.h> 42 #include <synch.h> 43 #include <string.h> 44 #include <debug.h> 45 #include <reloc.h> 46 #include <conv.h> 47 #include "_rtld.h" 48 #include "_audit.h" 49 #include "_elf.h" 50 #include "msg.h" 51 52 53 extern void iflush_range(caddr_t, size_t); 54 extern void plt_full_range(uintptr_t, uintptr_t); 55 56 57 int 58 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr) 59 { 60 /* 61 * Check machine type and flags. 62 */ 63 if (ehdr->e_machine != EM_SPARC) { 64 if (ehdr->e_machine != EM_SPARC32PLUS) { 65 rej->rej_type = SGS_REJ_MACH; 66 rej->rej_info = (uint_t)ehdr->e_machine; 67 return (0); 68 } 69 if ((ehdr->e_flags & EF_SPARC_32PLUS) == 0) { 70 rej->rej_type = SGS_REJ_MISFLAG; 71 rej->rej_info = (uint_t)ehdr->e_flags; 72 return (0); 73 } 74 if ((ehdr->e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) { 75 rej->rej_type = SGS_REJ_BADFLAG; 76 rej->rej_info = (uint_t)ehdr->e_flags; 77 return (0); 78 } 79 } else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) { 80 rej->rej_type = SGS_REJ_BADFLAG; 81 rej->rej_info = (uint_t)ehdr->e_flags; 82 return (0); 83 } 84 return (1); 85 } 86 87 void 88 ldso_plt_init(Rt_map * lmp) 89 { 90 /* 91 * There is no need to analyze ld.so because we don't map in any of 92 * its dependencies. However we may map these dependencies in later 93 * (as if ld.so had dlopened them), so initialize the plt and the 94 * permission information. 95 */ 96 if (PLTGOT(lmp)) 97 elf_plt_init((PLTGOT(lmp)), (caddr_t)lmp); 98 } 99 100 /* 101 * elf_plt_write() will test to see how far away our destination 102 * address lies. If it is close enough that a branch can 103 * be used instead of a jmpl - we will fill the plt in with 104 * single branch. The branches are much quicker then 105 * a jmpl instruction - see bug#4356879 for further 106 * details. 107 * 108 * NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since 109 * librtld/dldump update PLT's who's physical 110 * address is not the same as the 'virtual' runtime 111 * address. 112 */ 113 Pltbindtype 114 /* ARGSUSED4 */ 115 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval, 116 Xword pltndx) 117 { 118 Rela *rel = (Rela *)rptr; 119 uintptr_t vpltaddr, pltaddr; 120 long disp; 121 122 123 pltaddr = addr + rel->r_offset; 124 vpltaddr = vaddr + rel->r_offset; 125 disp = symval - vpltaddr - 4; 126 127 /* 128 * Test if the destination address is close enough to use 129 * a ba,a... instruction to reach it. 130 */ 131 if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) { 132 uint_t *pltent, bainstr; 133 Pltbindtype rc; 134 135 pltent = (uint_t *)pltaddr; 136 /* 137 * The 138 * 139 * ba,a,pt %icc, <dest> 140 * 141 * is the most efficient of the PLT's. If we 142 * are within +-20 bits *and* running on a 143 * v8plus architecture - use that branch. 144 */ 145 if ((at_flags & EF_SPARC_32PLUS) && 146 S_INRANGE(disp, 20)) { 147 bainstr = M_BA_A_PT; /* ba,a,pt %icc,<dest> */ 148 bainstr |= (S_MASK(19) & (disp >> 2)); 149 rc = PLT_T_21D; 150 DBG_CALL(pltcnt21d++); 151 } else { 152 /* 153 * Otherwise - we fall back to the good old 154 * 155 * ba,a <dest> 156 * 157 * Which still beats a jmpl instruction. 158 */ 159 bainstr = M_BA_A; /* ba,a <dest> */ 160 bainstr |= (S_MASK(22) & (disp >> 2)); 161 rc = PLT_T_24D; 162 DBG_CALL(pltcnt24d++); 163 } 164 165 pltent[2] = M_NOP; /* nop instr */ 166 pltent[1] = bainstr; 167 168 iflush_range((char *)(&pltent[1]), 4); 169 pltent[0] = M_NOP; /* nop instr */ 170 iflush_range((char *)(&pltent[0]), 4); 171 return (rc); 172 } 173 174 /* 175 * The PLT destination is not in reach of 176 * a branch instruction - so we fall back 177 * to a 'jmpl' sequence. 178 */ 179 plt_full_range(pltaddr, symval); 180 DBG_CALL(pltcntfull++); 181 return (PLT_T_FULL); 182 } 183 184 185 /* 186 * Local storage space created on the stack created for this glue 187 * code includes space for: 188 * 0x4 pointer to dyn_data 189 * 0x4 size prev stack frame 190 */ 191 static const uchar_t dyn_plt_template[] = { 192 /* 0x00 */ 0x80, 0x90, 0x00, 0x1e, /* tst %fp */ 193 /* 0x04 */ 0x02, 0x80, 0x00, 0x04, /* be 0x14 */ 194 /* 0x08 */ 0x82, 0x27, 0x80, 0x0e, /* sub %sp, %fp, %g1 */ 195 /* 0x0c */ 0x10, 0x80, 0x00, 0x03, /* ba 0x20 */ 196 /* 0x10 */ 0x01, 0x00, 0x00, 0x00, /* nop */ 197 /* 0x14 */ 0x82, 0x10, 0x20, 0x60, /* mov 0x60, %g1 */ 198 /* 0x18 */ 0x9d, 0xe3, 0xbf, 0x98, /* save %sp, -0x68, %sp */ 199 /* 0x1c */ 0xc2, 0x27, 0xbf, 0xf8, /* st %g1, [%fp + -0x8] */ 200 /* 0x20 */ 0x03, 0x00, 0x00, 0x00, /* sethi %hi(val), %g1 */ 201 /* 0x24 */ 0x82, 0x10, 0x60, 0x00, /* or %g1, %lo(val), %g1 */ 202 /* 0x28 */ 0x40, 0x00, 0x00, 0x00, /* call <rel_addr> */ 203 /* 0x2c */ 0xc2, 0x27, 0xbf, 0xfc /* st %g1, [%fp + -0x4] */ 204 }; 205 206 int dyn_plt_ent_size = sizeof (dyn_plt_template) + 207 sizeof (uintptr_t) + /* reflmp */ 208 sizeof (uintptr_t) + /* deflmp */ 209 sizeof (ulong_t) + /* symndx */ 210 sizeof (ulong_t) + /* sb_flags */ 211 sizeof (Sym); /* symdef */ 212 213 /* 214 * the dynamic plt entry is: 215 * 216 * tst %fp 217 * be 1f 218 * nop 219 * sub %sp, %fp, %g1 220 * ba 2f 221 * nop 222 * 1: 223 * mov SA(MINFRAME), %g1 ! if %fp is null this is the 224 * ! 'minimum stack'. %fp is null 225 * ! on the initial stack frame 226 * 2: 227 * save %sp, -(SA(MINFRAME) + 2 * CLONGSIZE), %sp 228 * st %g1, [%fp + -0x8] ! store prev_stack size in [%fp - 8] 229 * sethi %hi(dyn_data), %g1 230 * or %g1, %lo(dyn_data), %g1 231 * call elf_plt_trace 232 * st %g1, [%fp + -0x4] ! store dyn_data ptr in [%fp - 4] 233 * dyn data: 234 * uintptr_t reflmp 235 * uintptr_t deflmp 236 * ulong_t symndx 237 * ulong_t sb_flags 238 * Sym symdef 239 */ 240 static caddr_t 241 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp, 242 Sym *sym, ulong_t symndx, ulong_t pltndx, caddr_t to, ulong_t sb_flags, 243 int *fail) 244 { 245 extern ulong_t elf_plt_trace(); 246 uintptr_t dyn_plt, *dyndata; 247 248 /* 249 * If both pltenter & pltexit have been disabled there 250 * there is no reason to even create the glue code. 251 */ 252 if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) == 253 (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) { 254 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 255 rptr, (uintptr_t)to, pltndx); 256 return (to); 257 } 258 259 /* 260 * We only need to add the glue code if there is an auditing 261 * library that is interested in this binding. 262 */ 263 dyn_plt = (uintptr_t)AUDINFO(rlmp)->ai_dynplts + 264 (pltndx * dyn_plt_ent_size); 265 266 /* 267 * Have we initialized this dynamic plt entry yet? If we haven't do it 268 * now. Otherwise this function has been called before, but from a 269 * different plt (ie. from another shared object). In that case 270 * we just set the plt to point to the new dyn_plt. 271 */ 272 if (*(uint_t *)dyn_plt == 0) { 273 Sym *symp; 274 Xword symvalue; 275 Lm_list *lml = LIST(rlmp); 276 277 (void) memcpy((void *)dyn_plt, dyn_plt_template, 278 sizeof (dyn_plt_template)); 279 dyndata = (uintptr_t *)(dyn_plt + sizeof (dyn_plt_template)); 280 281 /* 282 * relocating: 283 * sethi %hi(dyndata), %g1 284 */ 285 symvalue = (Xword)dyndata; 286 if (do_reloc_rtld(R_SPARC_HI22, (uchar_t *)(dyn_plt + 0x20), 287 &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA), 288 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 289 *fail = 1; 290 return (0); 291 } 292 293 /* 294 * relocating: 295 * or %g1, %lo(dyndata), %g1 296 */ 297 symvalue = (Xword)dyndata; 298 if (do_reloc_rtld(R_SPARC_LO10, (uchar_t *)(dyn_plt + 0x24), 299 &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA), 300 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 301 *fail = 1; 302 return (0); 303 } 304 305 /* 306 * relocating: 307 * call elf_plt_trace 308 */ 309 symvalue = (Xword)((uintptr_t)&elf_plt_trace - 310 (dyn_plt + 0x28)); 311 if (do_reloc_rtld(R_SPARC_WDISP30, (uchar_t *)(dyn_plt + 0x28), 312 &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE), 313 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 314 *fail = 1; 315 return (0); 316 } 317 318 *dyndata++ = (uintptr_t)rlmp; 319 *dyndata++ = (uintptr_t)dlmp; 320 *(ulong_t *)dyndata++ = symndx; 321 *(ulong_t *)dyndata++ = sb_flags; 322 symp = (Sym *)dyndata; 323 *symp = *sym; 324 symp->st_name += (Word)STRTAB(dlmp); 325 symp->st_value = (Addr)to; 326 327 iflush_range((void *)dyn_plt, sizeof (dyn_plt_template)); 328 } 329 330 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 331 rptr, (uintptr_t)dyn_plt, 0); 332 return ((caddr_t)dyn_plt); 333 } 334 335 336 /* 337 * Function binding routine - invoked on the first call to a function through 338 * the procedure linkage table; 339 * passes first through an assembly language interface. 340 * 341 * Takes the address of the PLT entry where the call originated, 342 * the offset into the relocation table of the associated 343 * relocation entry and the address of the link map (rt_private_map struct) 344 * for the entry. 345 * 346 * Returns the address of the function referenced after re-writing the PLT 347 * entry to invoke the function directly. 348 * 349 * On error, causes process to terminate with a signal. 350 */ 351 ulong_t 352 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from) 353 { 354 Rt_map *nlmp, *llmp; 355 ulong_t addr, vaddr, reloff, symval, rsymndx; 356 char *name; 357 Rela *rptr; 358 Sym *rsym, *nsym; 359 Xword pltndx; 360 uint_t binfo, sb_flags = 0; 361 Slookup sl; 362 Pltbindtype pbtype; 363 int entry, lmflags; 364 uint_t dbg_class; 365 Lm_list *lml = LIST(lmp); 366 367 /* 368 * For compatibility with libthread (TI_VERSION 1) we track the entry 369 * value. A zero value indicates we have recursed into ld.so.1 to 370 * further process a locking request. Under this recursion we disable 371 * tsort and cleanup activities. 372 */ 373 entry = enter(); 374 375 if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) { 376 dbg_class = dbg_desc->d_class; 377 dbg_desc->d_class = 0; 378 } 379 380 /* 381 * Must calculate true plt relocation address from reloc. 382 * Take offset, subtract number of reserved PLT entries, and divide 383 * by PLT entry size, which should give the index of the plt 384 * entry (and relocation entry since they have been defined to be 385 * in the same order). Then we must multiply by the size of 386 * a relocation entry, which will give us the offset of the 387 * plt relocation entry from the start of them given by JMPREL(lm). 388 */ 389 addr = pltoff - M_PLT_RESERVSZ; 390 pltndx = addr / M_PLT_ENTSIZE; 391 392 /* 393 * Perform some basic sanity checks. If we didn't get a load map 394 * or the plt offset is invalid then its possible someone has walked 395 * over the plt entries or jumped to plt0 out of the blue. 396 */ 397 if (!lmp || ((addr % M_PLT_ENTSIZE) != 0)) { 398 Conv_inv_buf_t inv_buf; 399 400 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF), 401 conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf), 402 EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from)); 403 rtldexit(lml, 1); 404 } 405 reloff = pltndx * sizeof (Rela); 406 407 /* 408 * Use relocation entry to get symbol table entry and symbol name. 409 */ 410 addr = (ulong_t)JMPREL(lmp); 411 rptr = (Rela *)(addr + reloff); 412 rsymndx = ELF_R_SYM(rptr->r_info); 413 rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); 414 name = (char *)(STRTAB(lmp) + rsym->st_name); 415 416 /* 417 * Determine the last link-map of this list, this'll be the starting 418 * point for any tsort() processing. 419 */ 420 llmp = lml->lm_tail; 421 422 /* 423 * Find definition for symbol. Initialize the symbol lookup data 424 * structure. 425 */ 426 SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0, 427 rsymndx, rsym, 0, LKUP_DEFT); 428 429 if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) { 430 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp), 431 demangle(name)); 432 rtldexit(lml, 1); 433 } 434 435 symval = nsym->st_value; 436 if (!(FLAGS(nlmp) & FLG_RT_FIXED) && 437 (nsym->st_shndx != SHN_ABS)) 438 symval += ADDR(nlmp); 439 if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) { 440 /* 441 * Record that this new link map is now bound to the caller. 442 */ 443 if (bind_one(lmp, nlmp, BND_REFER) == 0) 444 rtldexit(lml, 1); 445 } 446 447 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) { 448 ulong_t symndx = (((uintptr_t)nsym - 449 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 450 451 symval = audit_symbind(lmp, nlmp, nsym, symndx, symval, 452 &sb_flags); 453 } 454 455 if (FLAGS(lmp) & FLG_RT_FIXED) 456 vaddr = 0; 457 else 458 vaddr = ADDR(lmp); 459 460 pbtype = PLT_T_NONE; 461 if (!(rtld_flags & RT_FL_NOBIND)) { 462 if (((lml->lm_tflags | FLAGS1(lmp)) & 463 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 464 AUDINFO(lmp)->ai_dynplts) { 465 int fail = 0; 466 ulong_t symndx = (((uintptr_t)nsym - 467 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 468 469 symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr, 470 rptr, lmp, nlmp, nsym, symndx, pltndx, 471 (caddr_t)symval, sb_flags, &fail); 472 if (fail) 473 rtldexit(lml, 1); 474 } else { 475 /* 476 * Write standard PLT entry to jump directly 477 * to newly bound function. 478 */ 479 pbtype = elf_plt_write((uintptr_t)vaddr, 480 (uintptr_t)vaddr, rptr, symval, pltndx); 481 } 482 } 483 484 /* 485 * Print binding information and rebuild PLT entry. 486 */ 487 DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)), 488 pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo)); 489 490 /* 491 * Complete any processing for newly loaded objects. Note we don't 492 * know exactly where any new objects are loaded (we know the object 493 * that supplied the symbol, but others may have been loaded lazily as 494 * we searched for the symbol), so sorting starts from the last 495 * link-map know on entry to this routine. 496 */ 497 if (entry) 498 load_completion(llmp); 499 500 /* 501 * Some operations like dldump() or dlopen()'ing a relocatable object 502 * result in objects being loaded on rtld's link-map, make sure these 503 * objects are initialized also. 504 */ 505 if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init) 506 load_completion(nlmp); 507 508 /* 509 * If the object we've bound to is in the process of being initialized 510 * by another thread, determine whether we should block. 511 */ 512 is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL); 513 514 /* 515 * Make sure the object to which we've bound has had it's .init fired. 516 * Cleanup before return to user code. 517 */ 518 if (entry) { 519 is_dep_init(nlmp, lmp); 520 leave(lml); 521 } 522 523 if (lmflags & LML_FLG_RTLDLM) 524 dbg_desc->d_class = dbg_class; 525 526 return (symval); 527 } 528 529 530 /* 531 * Read and process the relocations for one link object, we assume all 532 * relocation sections for loadable segments are stored contiguously in 533 * the file. 534 */ 535 int 536 elf_reloc(Rt_map *lmp, uint_t plt) 537 { 538 ulong_t relbgn, relend, relsiz, basebgn, pltbgn, pltend; 539 ulong_t roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp); 540 ulong_t emap, dsymndx, pltndx; 541 uchar_t rtype; 542 long reladd, value, pvalue; 543 Sym *symref, *psymref, *symdef, *psymdef; 544 char *name, *pname; 545 Rt_map *_lmp, *plmp; 546 int textrel = 0, ret = 1, noplt = 0; 547 long relacount = RELACOUNT(lmp); 548 Rela *rel; 549 Pltbindtype pbtype; 550 uint_t binfo, pbinfo; 551 APlist *bound = NULL; 552 553 /* 554 * If an object has any DT_REGISTER entries associated with 555 * it, they are processed now. 556 */ 557 if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) { 558 if (elf_regsyms(lmp) == 0) 559 return (0); 560 } 561 562 /* 563 * Although only necessary for lazy binding, initialize the first 564 * procedure linkage table entry to go to elf_rtbndr(). dbx(1) seems 565 * to find this useful. 566 */ 567 if ((plt == 0) && PLTGOT(lmp)) { 568 if ((ulong_t)PLTGOT(lmp) < etext) { 569 if (elf_set_prot(lmp, PROT_WRITE) == 0) 570 return (0); 571 textrel = 1; 572 } 573 elf_plt_init(PLTGOT(lmp), (caddr_t)lmp); 574 } 575 576 /* 577 * Initialize the plt start and end addresses. 578 */ 579 if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0) 580 pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp)); 581 582 /* 583 * If we've been called upon to promote an RTLD_LAZY object to an 584 * RTLD_NOW then we're only interested in scaning the .plt table. 585 */ 586 if (plt) { 587 relbgn = pltbgn; 588 relend = pltend; 589 } else { 590 /* 591 * The relocation sections appear to the run-time linker as a 592 * single table. Determine the address of the beginning and end 593 * of this table. There are two different interpretations of 594 * the ABI at this point: 595 * 596 * o The REL table and its associated RELSZ indicate the 597 * concatenation of *all* relocation sections (this is the 598 * model our link-editor constructs). 599 * 600 * o The REL table and its associated RELSZ indicate the 601 * concatenation of all *but* the .plt relocations. These 602 * relocations are specified individually by the JMPREL and 603 * PLTRELSZ entries. 604 * 605 * Determine from our knowledege of the relocation range and 606 * .plt range, the range of the total relocation table. Note 607 * that one other ABI assumption seems to be that the .plt 608 * relocations always follow any other relocations, the 609 * following range checking drops that assumption. 610 */ 611 relbgn = (ulong_t)(REL(lmp)); 612 relend = relbgn + (ulong_t)(RELSZ(lmp)); 613 if (pltbgn) { 614 if (!relbgn || (relbgn > pltbgn)) 615 relbgn = pltbgn; 616 if (!relbgn || (relend < pltend)) 617 relend = pltend; 618 } 619 } 620 if (!relbgn || (relbgn == relend)) { 621 DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE)); 622 return (1); 623 } 624 625 relsiz = (ulong_t)(RELENT(lmp)); 626 basebgn = ADDR(lmp); 627 emap = ADDR(lmp) + MSIZE(lmp); 628 629 DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START)); 630 631 /* 632 * If we're processing in lazy mode there is no need to scan the 633 * .rela.plt table. 634 */ 635 if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0)) 636 noplt = 1; 637 638 /* 639 * Loop through relocations. 640 */ 641 while (relbgn < relend) { 642 Addr vaddr; 643 uint_t sb_flags = 0; 644 645 rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info); 646 647 /* 648 * If this is a RELATIVE relocation in a shared object (the 649 * common case), and if we are not debugging, then jump into a 650 * tighter relocation loop (elf_reloc_relative). Only make the 651 * jump if we've been given a hint on the number of relocations. 652 */ 653 if ((rtype == R_SPARC_RELATIVE) && 654 ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) { 655 /* 656 * It's possible that the relative relocation block 657 * has relocations against the text segment as well 658 * as the data segment. Since our optimized relocation 659 * engine does not check which segment the relocation 660 * is against - just mprotect it now if it's been 661 * marked as containing TEXTREL's. 662 */ 663 if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) { 664 if (elf_set_prot(lmp, PROT_WRITE) == 0) { 665 ret = 0; 666 break; 667 } 668 textrel = 1; 669 } 670 if (relacount) { 671 relbgn = elf_reloc_relacount(relbgn, relacount, 672 relsiz, basebgn); 673 relacount = 0; 674 } else { 675 relbgn = elf_reloc_relative(relbgn, relend, 676 relsiz, basebgn, etext, emap); 677 } 678 if (relbgn >= relend) 679 break; 680 rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info); 681 } 682 683 roffset = ((Rela *)relbgn)->r_offset; 684 685 reladd = (long)(((Rela *)relbgn)->r_addend); 686 rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info); 687 688 rel = (Rela *)relbgn; 689 relbgn += relsiz; 690 691 /* 692 * Optimizations. 693 */ 694 if (rtype == R_SPARC_NONE) 695 continue; 696 if (noplt && ((ulong_t)rel >= pltbgn) && 697 ((ulong_t)rel < pltend)) { 698 relbgn = pltend; 699 continue; 700 } 701 702 if (rtype != R_SPARC_REGISTER) { 703 /* 704 * If this is a shared object, add the base address 705 * to offset. 706 */ 707 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 708 roffset += basebgn; 709 710 /* 711 * If this relocation is not against part of the image 712 * mapped into memory we skip it. 713 */ 714 if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) + 715 MSIZE(lmp)))) { 716 elf_reloc_bad(lmp, (void *)rel, rtype, roffset, 717 rsymndx); 718 continue; 719 } 720 } 721 722 /* 723 * If we're promoting .plts try and determine if this one has 724 * already been written. An uninitialized .plts' second 725 * instruction is a branch. Note, elf_plt_write() optimizes 726 * .plt relocations, and it's possible that a relocated entry 727 * is a branch. If this is the case, we can't tell the 728 * difference between an uninitialized .plt and a relocated, 729 * .plt that uses a branch. In this case, we'll simply redo 730 * the relocation calculation, which is a bit sad. 731 */ 732 if (plt) { 733 ulong_t *_roffset = (ulong_t *)roffset; 734 735 _roffset++; 736 if ((*_roffset & (~(S_MASK(22)))) != M_BA_A) 737 continue; 738 } 739 740 binfo = 0; 741 pltndx = (ulong_t)-1; 742 pbtype = PLT_T_NONE; 743 /* 744 * If a symbol index is specified then get the symbol table 745 * entry, locate the symbol definition, and determine its 746 * address. 747 */ 748 if (rsymndx) { 749 /* 750 * Get the local symbol table entry. 751 */ 752 symref = (Sym *)((ulong_t)SYMTAB(lmp) + 753 (rsymndx * SYMENT(lmp))); 754 755 /* 756 * If this is a local symbol, just use the base address. 757 * (we should have no local relocations in the 758 * executable). 759 */ 760 if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) { 761 value = basebgn; 762 name = (char *)0; 763 764 /* 765 * Special case TLS relocations. 766 */ 767 if (rtype == R_SPARC_TLS_DTPMOD32) { 768 /* 769 * Use the TLS modid. 770 */ 771 value = TLSMODID(lmp); 772 773 } else if (rtype == R_SPARC_TLS_TPOFF32) { 774 if ((value = elf_static_tls(lmp, symref, 775 rel, rtype, 0, roffset, 0)) == 0) { 776 ret = 0; 777 break; 778 } 779 } 780 } else { 781 /* 782 * If the symbol index is equal to the previous 783 * symbol index relocation we processed then 784 * reuse the previous values. (Note that there 785 * have been cases where a relocation exists 786 * against a copy relocation symbol, our ld(1) 787 * should optimize this away, but make sure we 788 * don't use the same symbol information should 789 * this case exist). 790 */ 791 if ((rsymndx == psymndx) && 792 (rtype != R_SPARC_COPY)) { 793 /* LINTED */ 794 if (psymdef == 0) { 795 DBG_CALL(Dbg_bind_weak(lmp, 796 (Addr)roffset, (Addr) 797 (roffset - basebgn), name)); 798 continue; 799 } 800 /* LINTED */ 801 value = pvalue; 802 /* LINTED */ 803 name = pname; 804 symdef = psymdef; 805 /* LINTED */ 806 symref = psymref; 807 /* LINTED */ 808 _lmp = plmp; 809 /* LINTED */ 810 binfo = pbinfo; 811 812 if ((LIST(_lmp)->lm_tflags | 813 FLAGS1(_lmp)) & 814 LML_TFLG_AUD_SYMBIND) { 815 value = audit_symbind(lmp, _lmp, 816 /* LINTED */ 817 symdef, dsymndx, value, 818 &sb_flags); 819 } 820 } else { 821 Slookup sl; 822 823 /* 824 * Lookup the symbol definition. 825 * Initialize the symbol lookup data 826 * structure. 827 */ 828 name = (char *)(STRTAB(lmp) + 829 symref->st_name); 830 831 SLOOKUP_INIT(sl, name, lmp, 0, 832 ld_entry_cnt, 0, rsymndx, symref, 833 rtype, LKUP_STDRELOC); 834 835 symdef = lookup_sym(&sl, &_lmp, &binfo); 836 837 /* 838 * If the symbol is not found and the 839 * reference was not to a weak symbol, 840 * report an error. Weak references 841 * may be unresolved. 842 */ 843 /* BEGIN CSTYLED */ 844 if (symdef == 0) { 845 Lm_list *lml = LIST(lmp); 846 847 if (sl.sl_bind != STB_WEAK) { 848 if (lml->lm_flags & 849 LML_FLG_IGNRELERR) { 850 continue; 851 } else if (lml->lm_flags & 852 LML_FLG_TRC_WARN) { 853 (void) printf(MSG_INTL( 854 MSG_LDD_SYM_NFOUND), 855 demangle(name), 856 NAME(lmp)); 857 continue; 858 } else { 859 DBG_CALL(Dbg_reloc_in(lml, 860 ELF_DBG_RTLD, M_MACH, 861 M_REL_SHT_TYPE, rel, 862 NULL, name)); 863 eprintf(lml, ERR_FATAL, 864 MSG_INTL(MSG_REL_NOSYM), 865 NAME(lmp), 866 demangle(name)); 867 ret = 0; 868 break; 869 } 870 } else { 871 psymndx = rsymndx; 872 psymdef = 0; 873 874 DBG_CALL(Dbg_bind_weak(lmp, 875 (Addr)roffset, (Addr) 876 (roffset - basebgn), name)); 877 continue; 878 } 879 } 880 /* END CSTYLED */ 881 882 /* 883 * If symbol was found in an object 884 * other than the referencing object 885 * then record the binding. 886 */ 887 if ((lmp != _lmp) && ((FLAGS1(_lmp) & 888 FL1_RT_NOINIFIN) == 0)) { 889 if (aplist_test(&bound, _lmp, 890 AL_CNT_RELBIND) == 0) { 891 ret = 0; 892 break; 893 } 894 } 895 896 /* 897 * Calculate the location of definition; 898 * symbol value plus base address of 899 * containing shared object. 900 */ 901 if (IS_SIZE(rtype)) 902 value = symdef->st_size; 903 else 904 value = symdef->st_value; 905 906 if (!(FLAGS(_lmp) & FLG_RT_FIXED) && 907 !(IS_SIZE(rtype)) && 908 (symdef->st_shndx != SHN_ABS) && 909 (ELF_ST_TYPE(symdef->st_info) != 910 STT_TLS)) 911 value += ADDR(_lmp); 912 913 /* 914 * Retain this symbol index and the 915 * value in case it can be used for the 916 * subsequent relocations. 917 */ 918 if (rtype != R_SPARC_COPY) { 919 psymndx = rsymndx; 920 pvalue = value; 921 pname = name; 922 psymdef = symdef; 923 psymref = symref; 924 plmp = _lmp; 925 pbinfo = binfo; 926 } 927 if ((LIST(_lmp)->lm_tflags | 928 FLAGS1(_lmp)) & 929 LML_TFLG_AUD_SYMBIND) { 930 dsymndx = (((uintptr_t)symdef - 931 (uintptr_t)SYMTAB(_lmp)) / 932 SYMENT(_lmp)); 933 value = audit_symbind(lmp, _lmp, 934 symdef, dsymndx, value, 935 &sb_flags); 936 } 937 } 938 939 /* 940 * If relocation is PC-relative, subtract 941 * offset address. 942 */ 943 if (IS_PC_RELATIVE(rtype)) 944 value -= roffset; 945 946 /* 947 * Special case TLS relocations. 948 */ 949 if (rtype == R_SPARC_TLS_DTPMOD32) { 950 /* 951 * Relocation value is the TLS modid. 952 */ 953 value = TLSMODID(_lmp); 954 955 } else if (rtype == R_SPARC_TLS_TPOFF32) { 956 if ((value = elf_static_tls(_lmp, 957 symdef, rel, rtype, name, roffset, 958 value)) == 0) { 959 ret = 0; 960 break; 961 } 962 } 963 } 964 } else { 965 /* 966 * Special cases. 967 */ 968 if (rtype == R_SPARC_REGISTER) { 969 /* 970 * A register symbol associated with symbol 971 * index 0 is initialized (i.e. relocated) to 972 * a constant in the r_addend field rather than 973 * to a symbol value. 974 */ 975 value = 0; 976 977 } else if (rtype == R_SPARC_TLS_DTPMOD32) { 978 /* 979 * TLS relocation value is the TLS modid. 980 */ 981 value = TLSMODID(lmp); 982 } else 983 value = basebgn; 984 name = (char *)0; 985 } 986 987 DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH, 988 M_REL_SHT_TYPE, rel, NULL, name)); 989 990 /* 991 * If this object has relocations in the text segment, turn 992 * off the write protect. 993 */ 994 if ((rtype != R_SPARC_REGISTER) && (roffset < etext) && 995 (textrel == 0)) { 996 if (elf_set_prot(lmp, PROT_WRITE) == 0) { 997 ret = 0; 998 break; 999 } 1000 textrel = 1; 1001 } 1002 1003 /* 1004 * Call relocation routine to perform required relocation. 1005 */ 1006 switch (rtype) { 1007 case R_SPARC_REGISTER: 1008 /* 1009 * The v9 ABI 4.2.4 says that system objects may, 1010 * but are not required to, use register symbols 1011 * to inidcate how they use global registers. Thus 1012 * at least %g6, %g7 must be allowed in addition 1013 * to %g2 and %g3. 1014 */ 1015 value += reladd; 1016 if (roffset == STO_SPARC_REGISTER_G1) { 1017 set_sparc_g1(value); 1018 } else if (roffset == STO_SPARC_REGISTER_G2) { 1019 set_sparc_g2(value); 1020 } else if (roffset == STO_SPARC_REGISTER_G3) { 1021 set_sparc_g3(value); 1022 } else if (roffset == STO_SPARC_REGISTER_G4) { 1023 set_sparc_g4(value); 1024 } else if (roffset == STO_SPARC_REGISTER_G5) { 1025 set_sparc_g5(value); 1026 } else if (roffset == STO_SPARC_REGISTER_G6) { 1027 set_sparc_g6(value); 1028 } else if (roffset == STO_SPARC_REGISTER_G7) { 1029 set_sparc_g7(value); 1030 } else { 1031 eprintf(LIST(lmp), ERR_FATAL, 1032 MSG_INTL(MSG_REL_BADREG), NAME(lmp), 1033 EC_ADDR(roffset)); 1034 ret = 0; 1035 break; 1036 } 1037 1038 DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD, 1039 M_MACH, (Xword)roffset, (Xword)value)); 1040 break; 1041 case R_SPARC_COPY: 1042 if (elf_copy_reloc(name, symref, lmp, (void *)roffset, 1043 symdef, _lmp, (const void *)value) == 0) 1044 ret = 0; 1045 break; 1046 case R_SPARC_JMP_SLOT: 1047 pltndx = ((ulong_t)rel - 1048 (uintptr_t)JMPREL(lmp)) / relsiz; 1049 1050 if (FLAGS(lmp) & FLG_RT_FIXED) 1051 vaddr = 0; 1052 else 1053 vaddr = ADDR(lmp); 1054 1055 if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) & 1056 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 1057 AUDINFO(lmp)->ai_dynplts) { 1058 int fail = 0; 1059 ulong_t symndx = (((uintptr_t)symdef - 1060 (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp)); 1061 1062 (void) elf_plt_trace_write((caddr_t)vaddr, 1063 (Rela *)rel, lmp, _lmp, symdef, symndx, 1064 pltndx, (caddr_t)value, sb_flags, &fail); 1065 if (fail) 1066 ret = 0; 1067 } else { 1068 /* 1069 * Write standard PLT entry to jump directly 1070 * to newly bound function. 1071 */ 1072 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), 1073 ELF_DBG_RTLD, (Xword)roffset, 1074 (Xword)value)); 1075 pbtype = elf_plt_write((uintptr_t)vaddr, 1076 (uintptr_t)vaddr, (void *)rel, value, 1077 pltndx); 1078 } 1079 break; 1080 default: 1081 value += reladd; 1082 1083 /* 1084 * Write the relocation out. If this relocation is a 1085 * common basic write, skip the doreloc() engine. 1086 */ 1087 if ((rtype == R_SPARC_GLOB_DAT) || 1088 (rtype == R_SPARC_32)) { 1089 if (roffset & 0x3) { 1090 Conv_inv_buf_t inv_buf; 1091 1092 eprintf(LIST(lmp), ERR_FATAL, 1093 MSG_INTL(MSG_REL_NONALIGN), 1094 conv_reloc_SPARC_type(rtype, 1095 0, &inv_buf), 1096 NAME(lmp), demangle(name), 1097 EC_OFF(roffset)); 1098 ret = 0; 1099 } else 1100 *(uint_t *)roffset += value; 1101 } else { 1102 if (do_reloc_rtld(rtype, (uchar_t *)roffset, 1103 (Xword *)&value, name, 1104 NAME(lmp), LIST(lmp)) == 0) 1105 ret = 0; 1106 } 1107 1108 /* 1109 * The value now contains the 'bit-shifted' value that 1110 * was or'ed into memory (this was set by 1111 * do_reloc_rtld()). 1112 */ 1113 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD, 1114 (Xword)roffset, (Xword)value)); 1115 1116 /* 1117 * If this relocation is against a text segment, make 1118 * sure that the instruction cache is flushed. 1119 */ 1120 if (textrel) 1121 iflush_range((caddr_t)roffset, 0x4); 1122 } 1123 1124 if ((ret == 0) && 1125 ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0)) 1126 break; 1127 1128 if (binfo) { 1129 DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset, 1130 (Off)(roffset - basebgn), pltndx, pbtype, 1131 _lmp, (Addr)value, symdef->st_value, name, binfo)); 1132 } 1133 } 1134 1135 return (relocate_finish(lmp, bound, textrel, ret)); 1136 } 1137 1138 /* 1139 * Provide a machine specific interface to the conversion routine. By calling 1140 * the machine specific version, rather than the generic version, we insure that 1141 * the data tables/strings for all known machine versions aren't dragged into 1142 * ld.so.1. 1143 */ 1144 const char * 1145 _conv_reloc_type(uint_t rel) 1146 { 1147 static Conv_inv_buf_t inv_buf; 1148 1149 return (conv_reloc_SPARC_type(rel, 0, &inv_buf)); 1150 } 1151