1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * SPARC machine dependent and ELF file class dependent functions. 33 * Contains routines for performing function binding and symbol relocations. 34 */ 35 #include "_synonyms.h" 36 37 #include <stdio.h> 38 #include <sys/elf.h> 39 #include <sys/elf_SPARC.h> 40 #include <sys/mman.h> 41 #include <dlfcn.h> 42 #include <synch.h> 43 #include <string.h> 44 #include <debug.h> 45 #include <reloc.h> 46 #include <conv.h> 47 #include "_rtld.h" 48 #include "_audit.h" 49 #include "_elf.h" 50 #include "msg.h" 51 52 53 extern void iflush_range(caddr_t, size_t); 54 extern void plt_full_range(uintptr_t, uintptr_t); 55 56 57 int 58 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr) 59 { 60 /* 61 * Check machine type and flags. 62 */ 63 if (ehdr->e_machine != EM_SPARC) { 64 if (ehdr->e_machine != EM_SPARC32PLUS) { 65 rej->rej_type = SGS_REJ_MACH; 66 rej->rej_info = (uint_t)ehdr->e_machine; 67 return (0); 68 } 69 if ((ehdr->e_flags & EF_SPARC_32PLUS) == 0) { 70 rej->rej_type = SGS_REJ_MISFLAG; 71 rej->rej_info = (uint_t)ehdr->e_flags; 72 return (0); 73 } 74 if ((ehdr->e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) { 75 rej->rej_type = SGS_REJ_BADFLAG; 76 rej->rej_info = (uint_t)ehdr->e_flags; 77 return (0); 78 } 79 } else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) { 80 rej->rej_type = SGS_REJ_BADFLAG; 81 rej->rej_info = (uint_t)ehdr->e_flags; 82 return (0); 83 } 84 return (1); 85 } 86 87 void 88 ldso_plt_init(Rt_map * lmp) 89 { 90 /* 91 * There is no need to analyze ld.so because we don't map in any of 92 * its dependencies. However we may map these dependencies in later 93 * (as if ld.so had dlopened them), so initialize the plt and the 94 * permission information. 95 */ 96 if (PLTGOT(lmp)) 97 elf_plt_init((PLTGOT(lmp)), (caddr_t)lmp); 98 } 99 100 /* 101 * elf_plt_write() will test to see how far away our destination 102 * address lies. If it is close enough that a branch can 103 * be used instead of a jmpl - we will fill the plt in with 104 * single branch. The branches are much quicker then 105 * a jmpl instruction - see bug#4356879 for further 106 * details. 107 * 108 * NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since 109 * librtld/dldump update PLT's who's physical 110 * address is not the same as the 'virtual' runtime 111 * address. 112 */ 113 Pltbindtype 114 /* ARGSUSED4 */ 115 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval, 116 Xword pltndx) 117 { 118 Rela *rel = (Rela *)rptr; 119 uintptr_t vpltaddr, pltaddr; 120 long disp; 121 122 123 pltaddr = addr + rel->r_offset; 124 vpltaddr = vaddr + rel->r_offset; 125 disp = symval - vpltaddr - 4; 126 127 /* 128 * Test if the destination address is close enough to use 129 * a ba,a... instruction to reach it. 130 */ 131 if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) { 132 uint_t *pltent, bainstr; 133 Pltbindtype rc; 134 135 pltent = (uint_t *)pltaddr; 136 /* 137 * The 138 * 139 * ba,a,pt %icc, <dest> 140 * 141 * is the most efficient of the PLT's. If we 142 * are within +-20 bits *and* running on a 143 * v8plus architecture - use that branch. 144 */ 145 if ((at_flags & EF_SPARC_32PLUS) && 146 S_INRANGE(disp, 20)) { 147 bainstr = M_BA_A_PT; /* ba,a,pt %icc,<dest> */ 148 bainstr |= (S_MASK(19) & (disp >> 2)); 149 rc = PLT_T_21D; 150 DBG_CALL(pltcnt21d++); 151 } else { 152 /* 153 * Otherwise - we fall back to the good old 154 * 155 * ba,a <dest> 156 * 157 * Which still beats a jmpl instruction. 158 */ 159 bainstr = M_BA_A; /* ba,a <dest> */ 160 bainstr |= (S_MASK(22) & (disp >> 2)); 161 rc = PLT_T_24D; 162 DBG_CALL(pltcnt24d++); 163 } 164 165 pltent[2] = M_NOP; /* nop instr */ 166 pltent[1] = bainstr; 167 168 iflush_range((char *)(&pltent[1]), 4); 169 pltent[0] = M_NOP; /* nop instr */ 170 iflush_range((char *)(&pltent[0]), 4); 171 return (rc); 172 } 173 174 /* 175 * The PLT destination is not in reach of 176 * a branch instruction - so we fall back 177 * to a 'jmpl' sequence. 178 */ 179 plt_full_range(pltaddr, symval); 180 DBG_CALL(pltcntfull++); 181 return (PLT_T_FULL); 182 } 183 184 185 /* 186 * Local storage space created on the stack created for this glue 187 * code includes space for: 188 * 0x4 pointer to dyn_data 189 * 0x4 size prev stack frame 190 */ 191 static const uchar_t dyn_plt_template[] = { 192 /* 0x00 */ 0x80, 0x90, 0x00, 0x1e, /* tst %fp */ 193 /* 0x04 */ 0x02, 0x80, 0x00, 0x04, /* be 0x14 */ 194 /* 0x08 */ 0x82, 0x27, 0x80, 0x0e, /* sub %sp, %fp, %g1 */ 195 /* 0x0c */ 0x10, 0x80, 0x00, 0x03, /* ba 0x20 */ 196 /* 0x10 */ 0x01, 0x00, 0x00, 0x00, /* nop */ 197 /* 0x14 */ 0x82, 0x10, 0x20, 0x60, /* mov 0x60, %g1 */ 198 /* 0x18 */ 0x9d, 0xe3, 0xbf, 0x98, /* save %sp, -0x68, %sp */ 199 /* 0x1c */ 0xc2, 0x27, 0xbf, 0xf8, /* st %g1, [%fp + -0x8] */ 200 /* 0x20 */ 0x03, 0x00, 0x00, 0x00, /* sethi %hi(val), %g1 */ 201 /* 0x24 */ 0x82, 0x10, 0x60, 0x00, /* or %g1, %lo(val), %g1 */ 202 /* 0x28 */ 0x40, 0x00, 0x00, 0x00, /* call <rel_addr> */ 203 /* 0x2c */ 0xc2, 0x27, 0xbf, 0xfc /* st %g1, [%fp + -0x4] */ 204 }; 205 206 int dyn_plt_ent_size = sizeof (dyn_plt_template) + 207 sizeof (uintptr_t) + /* reflmp */ 208 sizeof (uintptr_t) + /* deflmp */ 209 sizeof (ulong_t) + /* symndx */ 210 sizeof (ulong_t) + /* sb_flags */ 211 sizeof (Sym); /* symdef */ 212 213 /* 214 * the dynamic plt entry is: 215 * 216 * tst %fp 217 * be 1f 218 * nop 219 * sub %sp, %fp, %g1 220 * ba 2f 221 * nop 222 * 1: 223 * mov SA(MINFRAME), %g1 ! if %fp is null this is the 224 * ! 'minimum stack'. %fp is null 225 * ! on the initial stack frame 226 * 2: 227 * save %sp, -(SA(MINFRAME) + 2 * CLONGSIZE), %sp 228 * st %g1, [%fp + -0x8] ! store prev_stack size in [%fp - 8] 229 * sethi %hi(dyn_data), %g1 230 * or %g1, %lo(dyn_data), %g1 231 * call elf_plt_trace 232 * st %g1, [%fp + -0x4] ! store dyn_data ptr in [%fp - 4] 233 * dyn data: 234 * uintptr_t reflmp 235 * uintptr_t deflmp 236 * ulong_t symndx 237 * ulong_t sb_flags 238 * Sym symdef 239 */ 240 static caddr_t 241 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp, 242 Sym *sym, ulong_t symndx, ulong_t pltndx, caddr_t to, ulong_t sb_flags, 243 int *fail) 244 { 245 extern ulong_t elf_plt_trace(); 246 uintptr_t dyn_plt, *dyndata; 247 248 /* 249 * If both pltenter & pltexit have been disabled there 250 * there is no reason to even create the glue code. 251 */ 252 if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) == 253 (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) { 254 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 255 rptr, (uintptr_t)to, pltndx); 256 return (to); 257 } 258 259 /* 260 * We only need to add the glue code if there is an auditing 261 * library that is interested in this binding. 262 */ 263 dyn_plt = (uintptr_t)AUDINFO(rlmp)->ai_dynplts + 264 (pltndx * dyn_plt_ent_size); 265 266 /* 267 * Have we initialized this dynamic plt entry yet? If we haven't do it 268 * now. Otherwise this function has been called before, but from a 269 * different plt (ie. from another shared object). In that case 270 * we just set the plt to point to the new dyn_plt. 271 */ 272 if (*(uint_t *)dyn_plt == 0) { 273 Sym *symp; 274 Xword symvalue; 275 Lm_list *lml = LIST(rlmp); 276 277 (void) memcpy((void *)dyn_plt, dyn_plt_template, 278 sizeof (dyn_plt_template)); 279 dyndata = (uintptr_t *)(dyn_plt + sizeof (dyn_plt_template)); 280 281 /* 282 * relocating: 283 * sethi %hi(dyndata), %g1 284 */ 285 symvalue = (Xword)dyndata; 286 if (do_reloc_rtld(R_SPARC_HI22, (uchar_t *)(dyn_plt + 0x20), 287 &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA), 288 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 289 *fail = 1; 290 return (0); 291 } 292 293 /* 294 * relocating: 295 * or %g1, %lo(dyndata), %g1 296 */ 297 symvalue = (Xword)dyndata; 298 if (do_reloc_rtld(R_SPARC_LO10, (uchar_t *)(dyn_plt + 0x24), 299 &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA), 300 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 301 *fail = 1; 302 return (0); 303 } 304 305 /* 306 * relocating: 307 * call elf_plt_trace 308 */ 309 symvalue = (Xword)((uintptr_t)&elf_plt_trace - 310 (dyn_plt + 0x28)); 311 if (do_reloc_rtld(R_SPARC_WDISP30, (uchar_t *)(dyn_plt + 0x28), 312 &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE), 313 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 314 *fail = 1; 315 return (0); 316 } 317 318 *dyndata++ = (uintptr_t)rlmp; 319 *dyndata++ = (uintptr_t)dlmp; 320 *(ulong_t *)dyndata++ = symndx; 321 *(ulong_t *)dyndata++ = sb_flags; 322 symp = (Sym *)dyndata; 323 *symp = *sym; 324 symp->st_name += (Word)STRTAB(dlmp); 325 symp->st_value = (Addr)to; 326 327 iflush_range((void *)dyn_plt, sizeof (dyn_plt_template)); 328 } 329 330 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 331 rptr, (uintptr_t)dyn_plt, 0); 332 return ((caddr_t)dyn_plt); 333 } 334 335 336 /* 337 * Function binding routine - invoked on the first call to a function through 338 * the procedure linkage table; 339 * passes first through an assembly language interface. 340 * 341 * Takes the address of the PLT entry where the call originated, 342 * the offset into the relocation table of the associated 343 * relocation entry and the address of the link map (rt_private_map struct) 344 * for the entry. 345 * 346 * Returns the address of the function referenced after re-writing the PLT 347 * entry to invoke the function directly. 348 * 349 * On error, causes process to terminate with a signal. 350 */ 351 ulong_t 352 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from) 353 { 354 Rt_map *nlmp, *llmp; 355 ulong_t addr, vaddr, reloff, symval, rsymndx; 356 char *name; 357 Rela *rptr; 358 Sym *rsym, *nsym; 359 Xword pltndx; 360 uint_t binfo, sb_flags = 0; 361 Slookup sl; 362 Pltbindtype pbtype; 363 int entry, lmflags; 364 uint_t dbg_class; 365 Lm_list *lml = LIST(lmp); 366 367 /* 368 * For compatibility with libthread (TI_VERSION 1) we track the entry 369 * value. A zero value indicates we have recursed into ld.so.1 to 370 * further process a locking request. Under this recursion we disable 371 * tsort and cleanup activities. 372 */ 373 entry = enter(); 374 375 if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) { 376 dbg_class = dbg_desc->d_class; 377 dbg_desc->d_class = 0; 378 } 379 380 /* 381 * Must calculate true plt relocation address from reloc. 382 * Take offset, subtract number of reserved PLT entries, and divide 383 * by PLT entry size, which should give the index of the plt 384 * entry (and relocation entry since they have been defined to be 385 * in the same order). Then we must multiply by the size of 386 * a relocation entry, which will give us the offset of the 387 * plt relocation entry from the start of them given by JMPREL(lm). 388 */ 389 addr = pltoff - M_PLT_RESERVSZ; 390 pltndx = addr / M_PLT_ENTSIZE; 391 392 /* 393 * Perform some basic sanity checks. If we didn't get a load map 394 * or the plt offset is invalid then its possible someone has walked 395 * over the plt entries or jumped to plt0 out of the blue. 396 */ 397 if (!lmp || ((addr % M_PLT_ENTSIZE) != 0)) { 398 Conv_inv_buf_t inv_buf; 399 400 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF), 401 conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf), 402 EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from)); 403 rtldexit(lml, 1); 404 } 405 reloff = pltndx * sizeof (Rela); 406 407 /* 408 * Use relocation entry to get symbol table entry and symbol name. 409 */ 410 addr = (ulong_t)JMPREL(lmp); 411 rptr = (Rela *)(addr + reloff); 412 rsymndx = ELF_R_SYM(rptr->r_info); 413 rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); 414 name = (char *)(STRTAB(lmp) + rsym->st_name); 415 416 /* 417 * Determine the last link-map of this list, this'll be the starting 418 * point for any tsort() processing. 419 */ 420 llmp = lml->lm_tail; 421 422 /* 423 * Find definition for symbol. 424 */ 425 sl.sl_name = name; 426 sl.sl_cmap = lmp; 427 sl.sl_imap = lml->lm_head; 428 sl.sl_hash = 0; 429 sl.sl_rsymndx = rsymndx; 430 sl.sl_rsym = rsym; 431 sl.sl_flags = LKUP_DEFT; 432 433 if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) { 434 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp), 435 demangle(name)); 436 rtldexit(lml, 1); 437 } 438 439 symval = nsym->st_value; 440 if (!(FLAGS(nlmp) & FLG_RT_FIXED) && 441 (nsym->st_shndx != SHN_ABS)) 442 symval += ADDR(nlmp); 443 if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) { 444 /* 445 * Record that this new link map is now bound to the caller. 446 */ 447 if (bind_one(lmp, nlmp, BND_REFER) == 0) 448 rtldexit(lml, 1); 449 } 450 451 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) { 452 ulong_t symndx = (((uintptr_t)nsym - 453 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 454 455 symval = audit_symbind(lmp, nlmp, nsym, symndx, symval, 456 &sb_flags); 457 } 458 459 if (FLAGS(lmp) & FLG_RT_FIXED) 460 vaddr = 0; 461 else 462 vaddr = ADDR(lmp); 463 464 pbtype = PLT_T_NONE; 465 if (!(rtld_flags & RT_FL_NOBIND)) { 466 if (((lml->lm_tflags | FLAGS1(lmp)) & 467 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 468 AUDINFO(lmp)->ai_dynplts) { 469 int fail = 0; 470 ulong_t symndx = (((uintptr_t)nsym - 471 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 472 473 symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr, 474 rptr, lmp, nlmp, nsym, symndx, pltndx, 475 (caddr_t)symval, sb_flags, &fail); 476 if (fail) 477 rtldexit(lml, 1); 478 } else { 479 /* 480 * Write standard PLT entry to jump directly 481 * to newly bound function. 482 */ 483 pbtype = elf_plt_write((uintptr_t)vaddr, 484 (uintptr_t)vaddr, rptr, symval, pltndx); 485 } 486 } 487 488 /* 489 * Print binding information and rebuild PLT entry. 490 */ 491 DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)), 492 pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo)); 493 494 /* 495 * Complete any processing for newly loaded objects. Note we don't 496 * know exactly where any new objects are loaded (we know the object 497 * that supplied the symbol, but others may have been loaded lazily as 498 * we searched for the symbol), so sorting starts from the last 499 * link-map know on entry to this routine. 500 */ 501 if (entry) 502 load_completion(llmp); 503 504 /* 505 * Some operations like dldump() or dlopen()'ing a relocatable object 506 * result in objects being loaded on rtld's link-map, make sure these 507 * objects are initialized also. 508 */ 509 if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init) 510 load_completion(nlmp); 511 512 /* 513 * If the object we've bound to is in the process of being initialized 514 * by another thread, determine whether we should block. 515 */ 516 is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL); 517 518 /* 519 * Make sure the object to which we've bound has had it's .init fired. 520 * Cleanup before return to user code. 521 */ 522 if (entry) { 523 is_dep_init(nlmp, lmp); 524 leave(lml); 525 } 526 527 if (lmflags & LML_FLG_RTLDLM) 528 dbg_desc->d_class = dbg_class; 529 530 return (symval); 531 } 532 533 534 /* 535 * Read and process the relocations for one link object, we assume all 536 * relocation sections for loadable segments are stored contiguously in 537 * the file. 538 */ 539 int 540 elf_reloc(Rt_map *lmp, uint_t plt) 541 { 542 ulong_t relbgn, relend, relsiz, basebgn, pltbgn, pltend; 543 ulong_t roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp); 544 ulong_t emap, dsymndx, pltndx; 545 uchar_t rtype; 546 long reladd, value, pvalue; 547 Sym *symref, *psymref, *symdef, *psymdef; 548 char *name, *pname; 549 Rt_map *_lmp, *plmp; 550 int textrel = 0, ret = 1, noplt = 0; 551 long relacount = RELACOUNT(lmp); 552 Rela *rel; 553 Pltbindtype pbtype; 554 uint_t binfo, pbinfo; 555 APlist *bound = NULL; 556 557 /* 558 * If an object has any DT_REGISTER entries associated with 559 * it, they are processed now. 560 */ 561 if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) { 562 if (elf_regsyms(lmp) == 0) 563 return (0); 564 } 565 566 /* 567 * Although only necessary for lazy binding, initialize the first 568 * procedure linkage table entry to go to elf_rtbndr(). dbx(1) seems 569 * to find this useful. 570 */ 571 if ((plt == 0) && PLTGOT(lmp)) { 572 if ((ulong_t)PLTGOT(lmp) < etext) { 573 if (elf_set_prot(lmp, PROT_WRITE) == 0) 574 return (0); 575 textrel = 1; 576 } 577 elf_plt_init(PLTGOT(lmp), (caddr_t)lmp); 578 } 579 580 /* 581 * Initialize the plt start and end addresses. 582 */ 583 if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0) 584 pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp)); 585 586 /* 587 * If we've been called upon to promote an RTLD_LAZY object to an 588 * RTLD_NOW then we're only interested in scaning the .plt table. 589 */ 590 if (plt) { 591 relbgn = pltbgn; 592 relend = pltend; 593 } else { 594 /* 595 * The relocation sections appear to the run-time linker as a 596 * single table. Determine the address of the beginning and end 597 * of this table. There are two different interpretations of 598 * the ABI at this point: 599 * 600 * o The REL table and its associated RELSZ indicate the 601 * concatenation of *all* relocation sections (this is the 602 * model our link-editor constructs). 603 * 604 * o The REL table and its associated RELSZ indicate the 605 * concatenation of all *but* the .plt relocations. These 606 * relocations are specified individually by the JMPREL and 607 * PLTRELSZ entries. 608 * 609 * Determine from our knowledege of the relocation range and 610 * .plt range, the range of the total relocation table. Note 611 * that one other ABI assumption seems to be that the .plt 612 * relocations always follow any other relocations, the 613 * following range checking drops that assumption. 614 */ 615 relbgn = (ulong_t)(REL(lmp)); 616 relend = relbgn + (ulong_t)(RELSZ(lmp)); 617 if (pltbgn) { 618 if (!relbgn || (relbgn > pltbgn)) 619 relbgn = pltbgn; 620 if (!relbgn || (relend < pltend)) 621 relend = pltend; 622 } 623 } 624 if (!relbgn || (relbgn == relend)) { 625 DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE)); 626 return (1); 627 } 628 629 relsiz = (ulong_t)(RELENT(lmp)); 630 basebgn = ADDR(lmp); 631 emap = ADDR(lmp) + MSIZE(lmp); 632 633 DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START)); 634 635 /* 636 * If we're processing in lazy mode there is no need to scan the 637 * .rela.plt table. 638 */ 639 if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0)) 640 noplt = 1; 641 642 /* 643 * Loop through relocations. 644 */ 645 while (relbgn < relend) { 646 Addr vaddr; 647 uint_t sb_flags = 0; 648 649 rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info); 650 651 /* 652 * If this is a RELATIVE relocation in a shared object (the 653 * common case), and if we are not debugging, then jump into a 654 * tighter relocation loop (elf_reloc_relative). Only make the 655 * jump if we've been given a hint on the number of relocations. 656 */ 657 if ((rtype == R_SPARC_RELATIVE) && 658 ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) { 659 /* 660 * It's possible that the relative relocation block 661 * has relocations against the text segment as well 662 * as the data segment. Since our optimized relocation 663 * engine does not check which segment the relocation 664 * is against - just mprotect it now if it's been 665 * marked as containing TEXTREL's. 666 */ 667 if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) { 668 if (elf_set_prot(lmp, PROT_WRITE) == 0) { 669 ret = 0; 670 break; 671 } 672 textrel = 1; 673 } 674 if (relacount) { 675 relbgn = elf_reloc_relacount(relbgn, relacount, 676 relsiz, basebgn); 677 relacount = 0; 678 } else { 679 relbgn = elf_reloc_relative(relbgn, relend, 680 relsiz, basebgn, etext, emap); 681 } 682 if (relbgn >= relend) 683 break; 684 rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info); 685 } 686 687 roffset = ((Rela *)relbgn)->r_offset; 688 689 reladd = (long)(((Rela *)relbgn)->r_addend); 690 rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info); 691 692 rel = (Rela *)relbgn; 693 relbgn += relsiz; 694 695 /* 696 * Optimizations. 697 */ 698 if (rtype == R_SPARC_NONE) 699 continue; 700 if (noplt && ((ulong_t)rel >= pltbgn) && 701 ((ulong_t)rel < pltend)) { 702 relbgn = pltend; 703 continue; 704 } 705 706 if (rtype != R_SPARC_REGISTER) { 707 /* 708 * If this is a shared object, add the base address 709 * to offset. 710 */ 711 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 712 roffset += basebgn; 713 714 /* 715 * If this relocation is not against part of the image 716 * mapped into memory we skip it. 717 */ 718 if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) + 719 MSIZE(lmp)))) { 720 elf_reloc_bad(lmp, (void *)rel, rtype, roffset, 721 rsymndx); 722 continue; 723 } 724 } 725 726 /* 727 * If we're promoting .plts try and determine if this one has 728 * already been written. An uninitialized .plts' second 729 * instruction is a branch. Note, elf_plt_write() optimizes 730 * .plt relocations, and it's possible that a relocated entry 731 * is a branch. If this is the case, we can't tell the 732 * difference between an uninitialized .plt and a relocated, 733 * .plt that uses a branch. In this case, we'll simply redo 734 * the relocation calculation, which is a bit sad. 735 */ 736 if (plt) { 737 ulong_t *_roffset = (ulong_t *)roffset; 738 739 _roffset++; 740 if ((*_roffset & (~(S_MASK(22)))) != M_BA_A) 741 continue; 742 } 743 744 binfo = 0; 745 pltndx = (ulong_t)-1; 746 pbtype = PLT_T_NONE; 747 /* 748 * If a symbol index is specified then get the symbol table 749 * entry, locate the symbol definition, and determine its 750 * address. 751 */ 752 if (rsymndx) { 753 /* 754 * Get the local symbol table entry. 755 */ 756 symref = (Sym *)((ulong_t)SYMTAB(lmp) + 757 (rsymndx * SYMENT(lmp))); 758 759 /* 760 * If this is a local symbol, just use the base address. 761 * (we should have no local relocations in the 762 * executable). 763 */ 764 if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) { 765 value = basebgn; 766 name = (char *)0; 767 768 /* 769 * Special case TLS relocations. 770 */ 771 if (rtype == R_SPARC_TLS_DTPMOD32) { 772 /* 773 * Use the TLS modid. 774 */ 775 value = TLSMODID(lmp); 776 777 } else if (rtype == R_SPARC_TLS_TPOFF32) { 778 if ((value = elf_static_tls(lmp, symref, 779 rel, rtype, 0, roffset, 0)) == 0) { 780 ret = 0; 781 break; 782 } 783 } 784 } else { 785 /* 786 * If the symbol index is equal to the previous 787 * symbol index relocation we processed then 788 * reuse the previous values. (Note that there 789 * have been cases where a relocation exists 790 * against a copy relocation symbol, our ld(1) 791 * should optimize this away, but make sure we 792 * don't use the same symbol information should 793 * this case exist). 794 */ 795 if ((rsymndx == psymndx) && 796 (rtype != R_SPARC_COPY)) { 797 /* LINTED */ 798 if (psymdef == 0) { 799 DBG_CALL(Dbg_bind_weak(lmp, 800 (Addr)roffset, (Addr) 801 (roffset - basebgn), name)); 802 continue; 803 } 804 /* LINTED */ 805 value = pvalue; 806 /* LINTED */ 807 name = pname; 808 symdef = psymdef; 809 /* LINTED */ 810 symref = psymref; 811 /* LINTED */ 812 _lmp = plmp; 813 /* LINTED */ 814 binfo = pbinfo; 815 816 if ((LIST(_lmp)->lm_tflags | 817 FLAGS1(_lmp)) & 818 LML_TFLG_AUD_SYMBIND) { 819 value = audit_symbind(lmp, _lmp, 820 /* LINTED */ 821 symdef, dsymndx, value, 822 &sb_flags); 823 } 824 } else { 825 Slookup sl; 826 827 /* 828 * Lookup the symbol definition. 829 */ 830 name = (char *)(STRTAB(lmp) + 831 symref->st_name); 832 833 sl.sl_name = name; 834 sl.sl_cmap = lmp; 835 sl.sl_imap = 0; 836 sl.sl_hash = 0; 837 sl.sl_rsymndx = rsymndx; 838 sl.sl_rsym = symref; 839 sl.sl_rtype = rtype; 840 sl.sl_flags = LKUP_STDRELOC; 841 842 symdef = lookup_sym(&sl, &_lmp, &binfo); 843 844 /* 845 * If the symbol is not found and the 846 * reference was not to a weak symbol, 847 * report an error. Weak references 848 * may be unresolved. 849 */ 850 /* BEGIN CSTYLED */ 851 if (symdef == 0) { 852 Lm_list *lml = LIST(lmp); 853 854 if (sl.sl_bind != STB_WEAK) { 855 if (lml->lm_flags & 856 LML_FLG_IGNRELERR) { 857 continue; 858 } else if (lml->lm_flags & 859 LML_FLG_TRC_WARN) { 860 (void) printf(MSG_INTL( 861 MSG_LDD_SYM_NFOUND), 862 demangle(name), 863 NAME(lmp)); 864 continue; 865 } else { 866 DBG_CALL(Dbg_reloc_in(lml, 867 ELF_DBG_RTLD, M_MACH, 868 M_REL_SHT_TYPE, rel, 869 NULL, name)); 870 eprintf(lml, ERR_FATAL, 871 MSG_INTL(MSG_REL_NOSYM), 872 NAME(lmp), 873 demangle(name)); 874 ret = 0; 875 break; 876 } 877 } else { 878 psymndx = rsymndx; 879 psymdef = 0; 880 881 DBG_CALL(Dbg_bind_weak(lmp, 882 (Addr)roffset, (Addr) 883 (roffset - basebgn), name)); 884 continue; 885 } 886 } 887 /* END CSTYLED */ 888 889 /* 890 * If symbol was found in an object 891 * other than the referencing object 892 * then record the binding. 893 */ 894 if ((lmp != _lmp) && ((FLAGS1(_lmp) & 895 FL1_RT_NOINIFIN) == 0)) { 896 if (aplist_test(&bound, _lmp, 897 AL_CNT_RELBIND) == 0) { 898 ret = 0; 899 break; 900 } 901 } 902 903 /* 904 * Calculate the location of definition; 905 * symbol value plus base address of 906 * containing shared object. 907 */ 908 if (IS_SIZE(rtype)) 909 value = symdef->st_size; 910 else 911 value = symdef->st_value; 912 913 if (!(FLAGS(_lmp) & FLG_RT_FIXED) && 914 !(IS_SIZE(rtype)) && 915 (symdef->st_shndx != SHN_ABS) && 916 (ELF_ST_TYPE(symdef->st_info) != 917 STT_TLS)) 918 value += ADDR(_lmp); 919 920 /* 921 * Retain this symbol index and the 922 * value in case it can be used for the 923 * subsequent relocations. 924 */ 925 if (rtype != R_SPARC_COPY) { 926 psymndx = rsymndx; 927 pvalue = value; 928 pname = name; 929 psymdef = symdef; 930 psymref = symref; 931 plmp = _lmp; 932 pbinfo = binfo; 933 } 934 if ((LIST(_lmp)->lm_tflags | 935 FLAGS1(_lmp)) & 936 LML_TFLG_AUD_SYMBIND) { 937 dsymndx = (((uintptr_t)symdef - 938 (uintptr_t)SYMTAB(_lmp)) / 939 SYMENT(_lmp)); 940 value = audit_symbind(lmp, _lmp, 941 symdef, dsymndx, value, 942 &sb_flags); 943 } 944 } 945 946 /* 947 * If relocation is PC-relative, subtract 948 * offset address. 949 */ 950 if (IS_PC_RELATIVE(rtype)) 951 value -= roffset; 952 953 /* 954 * Special case TLS relocations. 955 */ 956 if (rtype == R_SPARC_TLS_DTPMOD32) { 957 /* 958 * Relocation value is the TLS modid. 959 */ 960 value = TLSMODID(_lmp); 961 962 } else if (rtype == R_SPARC_TLS_TPOFF32) { 963 if ((value = elf_static_tls(_lmp, 964 symdef, rel, rtype, name, roffset, 965 value)) == 0) { 966 ret = 0; 967 break; 968 } 969 } 970 } 971 } else { 972 /* 973 * Special cases. 974 */ 975 if (rtype == R_SPARC_REGISTER) { 976 /* 977 * A register symbol associated with symbol 978 * index 0 is initialized (i.e. relocated) to 979 * a constant in the r_addend field rather than 980 * to a symbol value. 981 */ 982 value = 0; 983 984 } else if (rtype == R_SPARC_TLS_DTPMOD32) { 985 /* 986 * TLS relocation value is the TLS modid. 987 */ 988 value = TLSMODID(lmp); 989 } else 990 value = basebgn; 991 name = (char *)0; 992 } 993 994 DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH, 995 M_REL_SHT_TYPE, rel, NULL, name)); 996 997 /* 998 * If this object has relocations in the text segment, turn 999 * off the write protect. 1000 */ 1001 if ((rtype != R_SPARC_REGISTER) && (roffset < etext) && 1002 (textrel == 0)) { 1003 if (elf_set_prot(lmp, PROT_WRITE) == 0) { 1004 ret = 0; 1005 break; 1006 } 1007 textrel = 1; 1008 } 1009 1010 /* 1011 * Call relocation routine to perform required relocation. 1012 */ 1013 switch (rtype) { 1014 case R_SPARC_REGISTER: 1015 /* 1016 * The v9 ABI 4.2.4 says that system objects may, 1017 * but are not required to, use register symbols 1018 * to inidcate how they use global registers. Thus 1019 * at least %g6, %g7 must be allowed in addition 1020 * to %g2 and %g3. 1021 */ 1022 value += reladd; 1023 if (roffset == STO_SPARC_REGISTER_G1) { 1024 set_sparc_g1(value); 1025 } else if (roffset == STO_SPARC_REGISTER_G2) { 1026 set_sparc_g2(value); 1027 } else if (roffset == STO_SPARC_REGISTER_G3) { 1028 set_sparc_g3(value); 1029 } else if (roffset == STO_SPARC_REGISTER_G4) { 1030 set_sparc_g4(value); 1031 } else if (roffset == STO_SPARC_REGISTER_G5) { 1032 set_sparc_g5(value); 1033 } else if (roffset == STO_SPARC_REGISTER_G6) { 1034 set_sparc_g6(value); 1035 } else if (roffset == STO_SPARC_REGISTER_G7) { 1036 set_sparc_g7(value); 1037 } else { 1038 eprintf(LIST(lmp), ERR_FATAL, 1039 MSG_INTL(MSG_REL_BADREG), NAME(lmp), 1040 EC_ADDR(roffset)); 1041 ret = 0; 1042 break; 1043 } 1044 1045 DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD, 1046 M_MACH, (Xword)roffset, (Xword)value)); 1047 break; 1048 case R_SPARC_COPY: 1049 if (elf_copy_reloc(name, symref, lmp, (void *)roffset, 1050 symdef, _lmp, (const void *)value) == 0) 1051 ret = 0; 1052 break; 1053 case R_SPARC_JMP_SLOT: 1054 pltndx = ((ulong_t)rel - 1055 (uintptr_t)JMPREL(lmp)) / relsiz; 1056 1057 if (FLAGS(lmp) & FLG_RT_FIXED) 1058 vaddr = 0; 1059 else 1060 vaddr = ADDR(lmp); 1061 1062 if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) & 1063 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 1064 AUDINFO(lmp)->ai_dynplts) { 1065 int fail = 0; 1066 ulong_t symndx = (((uintptr_t)symdef - 1067 (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp)); 1068 1069 (void) elf_plt_trace_write((caddr_t)vaddr, 1070 (Rela *)rel, lmp, _lmp, symdef, symndx, 1071 pltndx, (caddr_t)value, sb_flags, &fail); 1072 if (fail) 1073 ret = 0; 1074 } else { 1075 /* 1076 * Write standard PLT entry to jump directly 1077 * to newly bound function. 1078 */ 1079 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), 1080 ELF_DBG_RTLD, (Xword)roffset, 1081 (Xword)value)); 1082 pbtype = elf_plt_write((uintptr_t)vaddr, 1083 (uintptr_t)vaddr, (void *)rel, value, 1084 pltndx); 1085 } 1086 break; 1087 default: 1088 value += reladd; 1089 1090 /* 1091 * Write the relocation out. If this relocation is a 1092 * common basic write, skip the doreloc() engine. 1093 */ 1094 if ((rtype == R_SPARC_GLOB_DAT) || 1095 (rtype == R_SPARC_32)) { 1096 if (roffset & 0x3) { 1097 Conv_inv_buf_t inv_buf; 1098 1099 eprintf(LIST(lmp), ERR_FATAL, 1100 MSG_INTL(MSG_REL_NONALIGN), 1101 conv_reloc_SPARC_type(rtype, 1102 0, &inv_buf), 1103 NAME(lmp), demangle(name), 1104 EC_OFF(roffset)); 1105 ret = 0; 1106 } else 1107 *(uint_t *)roffset += value; 1108 } else { 1109 if (do_reloc_rtld(rtype, (uchar_t *)roffset, 1110 (Xword *)&value, name, 1111 NAME(lmp), LIST(lmp)) == 0) 1112 ret = 0; 1113 } 1114 1115 /* 1116 * The value now contains the 'bit-shifted' value that 1117 * was or'ed into memory (this was set by 1118 * do_reloc_rtld()). 1119 */ 1120 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD, 1121 (Xword)roffset, (Xword)value)); 1122 1123 /* 1124 * If this relocation is against a text segment, make 1125 * sure that the instruction cache is flushed. 1126 */ 1127 if (textrel) 1128 iflush_range((caddr_t)roffset, 0x4); 1129 } 1130 1131 if ((ret == 0) && 1132 ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0)) 1133 break; 1134 1135 if (binfo) { 1136 DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset, 1137 (Off)(roffset - basebgn), pltndx, pbtype, 1138 _lmp, (Addr)value, symdef->st_value, name, binfo)); 1139 } 1140 } 1141 1142 return (relocate_finish(lmp, bound, textrel, ret)); 1143 } 1144 1145 /* 1146 * Provide a machine specific interface to the conversion routine. By calling 1147 * the machine specific version, rather than the generic version, we insure that 1148 * the data tables/strings for all known machine versions aren't dragged into 1149 * ld.so.1. 1150 */ 1151 const char * 1152 _conv_reloc_type(uint_t rel) 1153 { 1154 static Conv_inv_buf_t inv_buf; 1155 1156 return (conv_reloc_SPARC_type(rel, 0, &inv_buf)); 1157 } 1158