1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(sparc) || defined(i386) || defined(__amd64) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that x86, 206 * sparc, sparcv9, and amd64 all share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for FullpathNode AVL tree. 353 */ 354 static int 355 fpavl_compare(const void * n1, const void * n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((FullpathNode *)n1)->fpn_hash; 362 hash2 = ((FullpathNode *)n2)->fpn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((FullpathNode *)n1)->fpn_name; 370 st2 = ((FullpathNode *)n2)->fpn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 381 /* 382 * Determine if a given pathname has already been loaded in the AVL tree. 383 * If the pathname does not exist in the AVL tree, the next insertion point 384 * is deposited in "where". This value can be used by fpavl_insert() to 385 * expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullpathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 400 SGSOFFSETOF(FullpathNode, fpn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_name = name; 405 fpn.fpn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 414 /* 415 * Insert a name into the FullpathNode AVL tree for the link-map list. The 416 * objects NAME() is the path that would have originally been searched for, and 417 * is therefore the name to associate with any "where" value. If the object has 418 * a different PATHNAME(), perhaps because it has resolved to a different file 419 * (see fullpath), then this name is recorded also. See load_file(). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullpathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree 439 */ 440 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_name = name; 444 fpnp->fpn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 448 AL_CNT_FPNODE) == 0) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 460 * the objects link-map is torn down (remove_so), which is where any NAME() and 461 * PATHNAME() strings will be deallocated. 462 */ 463 void 464 fpavl_remove(Rt_map *lmp) 465 { 466 FullpathNode **fpnpp; 467 Aliste off; 468 469 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 470 FullpathNode *fpnp = *fpnpp; 471 472 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 473 free(fpnp); 474 } 475 free(FPNODE(lmp)); 476 FPNODE(lmp) = 0; 477 } 478 479 480 /* 481 * Prior to calling an object, either via a .plt or through dlsym(), make sure 482 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 483 * init's in the correct order, however, this order is typically based on needed 484 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 485 * still occur and result in bindings that were not captured during topological 486 * sorting. This routine compensates for this lack of binding information, and 487 * provides for dynamic .init firing. 488 */ 489 void 490 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 491 { 492 Rt_map ** tobj; 493 494 /* 495 * If the caller is an auditor, and the destination isn't, then don't 496 * run any .inits (see comments in load_completion()). 497 */ 498 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 499 (LIST(clmp) != LIST(dlmp))) 500 return; 501 502 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 503 return; 504 505 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 506 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 507 return; 508 509 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 510 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 511 DBG_CALL(Dbg_util_no_init(dlmp)); 512 return; 513 } 514 515 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 516 tobj[0] = dlmp; 517 call_init(tobj, DBG_INIT_DYN); 518 } 519 } 520 521 /* 522 * In a threaded environment insure the thread responsible for loading an object 523 * has completed .init processing for that object before any new thread is 524 * allowed to access the object. This check is only valid with libthread 525 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 526 * 527 * When a new link-map is created, the thread that causes it to be loaded is 528 * identified by THREADID(dlmp). Compare this with the current thread to 529 * determine if it must be blocked. 530 * 531 * NOTE, there are a number of instances (typically only for .plt processing) 532 * where we must skip this test: 533 * 534 * . any thread id of 0 - threads that call thr_exit() may be in this state 535 * thus we can't deduce what tid they used to be. Also some of the 536 * lib/libthread worker threads have this id and must bind (to themselves 537 * or libc) for libthread to function. 538 * 539 * . libthread itself binds to libc, and as libthread is INITFIRST 540 * libc's .init can't have fired yet. Luckly libc's .init is not required 541 * by libthreads binding. 542 * 543 * . if the caller is an auditor, and the destination isn't, then don't 544 * block (see comments in load_completion()). 545 */ 546 void 547 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 548 { 549 thread_t tid; 550 551 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 552 (LIST(clmp) != LIST(dlmp))) 553 return; 554 555 if ((rtld_flags & RT_FL_CONCUR) && 556 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 557 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 558 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 559 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 560 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 561 DBG_CALL(Dbg_util_wait(clmp, dlmp, what)); 562 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 563 } 564 } 565 } 566 567 /* 568 * Execute .{preinit|init|fini}array sections 569 */ 570 void 571 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 572 { 573 int start, stop, incr, ndx; 574 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 575 576 if (array == NULL) 577 return; 578 579 /* 580 * initarray & preinitarray are walked from beginning to end - while 581 * finiarray is walked from end to beginning. 582 */ 583 if (shtype == SHT_FINI_ARRAY) { 584 start = arraycnt - 1; 585 stop = incr = -1; 586 } else { 587 start = 0; 588 stop = arraycnt; 589 incr = 1; 590 } 591 592 /* 593 * Call the .*array[] entries 594 */ 595 for (ndx = start; ndx != stop; ndx += incr) { 596 void (*fptr)(void) = (void(*)())array[ndx]; 597 598 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 599 600 leave(LIST(lmp)); 601 (*fptr)(); 602 (void) enter(); 603 } 604 } 605 606 607 /* 608 * Execute any .init sections. These are passed to us in an lmp array which 609 * (by default) will have been sorted. 610 */ 611 void 612 call_init(Rt_map ** tobj, int flag) 613 { 614 Rt_map ** _tobj, ** _nobj; 615 static List pending = { NULL, NULL }; 616 617 /* 618 * If we're in the middle of an INITFIRST, this must complete before 619 * any new init's are fired. In this case add the object list to the 620 * pending queue and return. We'll pick up the queue after any 621 * INITFIRST objects have their init's fired. 622 */ 623 if (rtld_flags & RT_FL_INITFIRST) { 624 (void) list_append(&pending, tobj); 625 return; 626 } 627 628 /* 629 * Traverse the tobj array firing each objects init. 630 */ 631 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 632 Rt_map * lmp = *_tobj; 633 void (* iptr)() = INIT(lmp); 634 635 if (FLAGS(lmp) & FLG_RT_INITCALL) 636 continue; 637 638 FLAGS(lmp) |= FLG_RT_INITCALL; 639 640 /* 641 * Establish an initfirst state if necessary - no other inits 642 * will be fired (because of additional relocation bindings) 643 * when in this state. 644 */ 645 if (FLAGS(lmp) & FLG_RT_INITFRST) 646 rtld_flags |= RT_FL_INITFIRST; 647 648 if (INITARRAY(lmp) || iptr) { 649 Aliste off; 650 Bnd_desc ** bdpp; 651 652 /* 653 * Make sure that all dependencies that have been 654 * relocated to are initialized before this objects 655 * .init is executed. This insures that a dependency 656 * on an external item that must first be initialized 657 * by its associated object is satisfied. 658 */ 659 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 660 Bnd_desc * bdp = *bdpp; 661 662 if ((bdp->b_flags & BND_REFER) == 0) 663 continue; 664 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 665 } 666 DBG_CALL(Dbg_util_call_init(lmp, flag)); 667 } 668 669 if (iptr) { 670 leave(LIST(lmp)); 671 (*iptr)(); 672 (void) enter(); 673 } 674 675 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 676 SHT_INIT_ARRAY); 677 678 if (INITARRAY(lmp) || iptr) 679 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 680 681 /* 682 * Set the initdone flag regardless of whether this object 683 * actually contains an .init section. This flag prevents us 684 * from processing this section again for an .init and also 685 * signifies that a .fini must be called should it exist. 686 * Clear the sort field for use in later .fini processing. 687 */ 688 FLAGS(lmp) |= FLG_RT_INITDONE; 689 SORTVAL(lmp) = -1; 690 691 /* 692 * Wake anyone up who might be waiting on this .init. 693 */ 694 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 695 DBG_CALL(Dbg_util_broadcast(lmp)); 696 (void) rt_cond_broadcast(CONDVAR(lmp)); 697 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 698 } 699 700 /* 701 * If we're firing an INITFIRST object, and other objects must 702 * be fired which are not INITFIRST, make sure we grab any 703 * pending objects that might have been delayed as this 704 * INITFIRST was processed. 705 */ 706 if ((rtld_flags & RT_FL_INITFIRST) && 707 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 708 Listnode * lnp; 709 Rt_map ** pobj; 710 711 rtld_flags &= ~RT_FL_INITFIRST; 712 713 while ((lnp = pending.head) != NULL) { 714 if ((pending.head = lnp->next) == NULL) 715 pending.tail = NULL; 716 pobj = lnp->data; 717 free(lnp); 718 719 call_init(pobj, DBG_INIT_PEND); 720 } 721 } 722 } 723 free(tobj); 724 } 725 726 /* 727 * Function called by atexit(3C). Calls all .fini sections related with the 728 * mains dependent shared libraries in the order in which the shared libraries 729 * have been loaded. Skip any .fini defined in the main executable, as this 730 * will be called by crt0 (main was never marked as initdone). 731 */ 732 void 733 call_fini(Lm_list * lml, Rt_map ** tobj) 734 { 735 Rt_map **_tobj; 736 737 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 738 Rt_map * clmp, * lmp = *_tobj; 739 Aliste off; 740 Bnd_desc ** bdpp; 741 742 /* 743 * If concurrency checking isn't enabled only fire .fini if 744 * .init has completed. We collect all .fini sections of 745 * objects that had their .init collected, but that doesn't 746 * mean at the time that the .init had completed. 747 */ 748 if ((rtld_flags & RT_FL_CONCUR) || 749 (FLAGS(lmp) & FLG_RT_INITDONE)) { 750 void (*fptr)(void) = FINI(lmp); 751 752 if (FINIARRAY(lmp) || fptr) { 753 /* 754 * If concurrency checking is enabled make sure 755 * this object's .init is completed before 756 * calling any .fini. 757 */ 758 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 759 DBG_CALL(Dbg_util_call_fini(lmp)); 760 } 761 762 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 763 SHT_FINI_ARRAY); 764 765 if (fptr) { 766 leave(LIST(lmp)); 767 (*fptr)(); 768 (void) enter(); 769 } 770 } 771 772 /* 773 * Skip main, this is explicitly called last in atexit_fini(). 774 */ 775 if (FLAGS(lmp) & FLG_RT_ISMAIN) 776 continue; 777 778 /* 779 * Audit `close' operations at this point. The library has 780 * exercised its last instructions (regardless of whether it 781 * will be unmapped or not). 782 * 783 * First call any global auditing. 784 */ 785 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 786 _audit_objclose(&(auditors->ad_list), lmp); 787 788 /* 789 * Finally determine whether this object has local auditing 790 * requirements by inspecting itself and then its dependencies. 791 */ 792 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 793 continue; 794 795 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 796 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 797 798 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 799 Bnd_desc * bdp = *bdpp; 800 801 clmp = bdp->b_caller; 802 803 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 804 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 805 break; 806 } 807 } 808 } 809 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 810 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 811 812 free(tobj); 813 } 814 815 void 816 atexit_fini() 817 { 818 Rt_map ** tobj, * lmp; 819 Lm_list * lml; 820 Listnode * lnp; 821 822 (void) enter(); 823 824 rtld_flags |= RT_FL_ATEXIT; 825 826 lml = &lml_main; 827 lml->lm_flags |= LML_FLG_ATEXIT; 828 lmp = (Rt_map *)lml->lm_head; 829 830 /* 831 * Display any objects that haven't been referenced so far. 832 */ 833 unused(lml); 834 835 /* 836 * Reverse topologically sort the main link-map for .fini execution. 837 */ 838 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 839 (tobj != (Rt_map **)S_ERROR)) 840 call_fini(lml, tobj); 841 842 /* 843 * Add an explicit close to main and ld.so.1. Although main's .fini is 844 * collected in call_fini() to provide for FINITARRAY processing, its 845 * audit_objclose is explicitly skipped. This provides for it to be 846 * called last, here. This is the reverse of the explicit calls to 847 * audit_objopen() made in setup(). 848 */ 849 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 850 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 851 audit_objclose(lmp, lmp); 852 } 853 854 /* 855 * Now that all .fini code has been run, see what unreferenced objects 856 * remain. Any difference between this and the above unused() would 857 * indicate an object is only being used for .fini processing, which 858 * might be fine, but might also indicate an overhead whose removal 859 * would be worth considering. 860 */ 861 unused(lml); 862 863 /* 864 * Traverse any alternative link-map lists. 865 */ 866 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 867 /* 868 * Ignore the base-link-map list, which has already been 869 * processed, and the runtime linkers link-map list, which is 870 * typically processed last. 871 */ 872 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 873 continue; 874 875 if ((lmp = (Rt_map *)lml->lm_head) == 0) 876 continue; 877 878 lml->lm_flags |= LML_FLG_ATEXIT; 879 880 /* 881 * Reverse topologically sort the link-map for .fini execution. 882 */ 883 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 884 (tobj != (Rt_map **)S_ERROR)) 885 call_fini(lml, tobj); 886 887 unused(lml); 888 } 889 890 /* 891 * Finally reverse topologically sort the runtime linkers link-map for 892 * .fini execution. 893 */ 894 lml = &lml_rtld; 895 lml->lm_flags |= LML_FLG_ATEXIT; 896 lmp = (Rt_map *)lml->lm_head; 897 898 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 899 (tobj != (Rt_map **)S_ERROR)) 900 call_fini(lml, tobj); 901 902 leave(&lml_main); 903 } 904 905 906 /* 907 * This routine is called to complete any runtime linker activity which may have 908 * resulted in objects being loaded. This is called from all user entry points 909 * and from any internal dl*() requests. 910 */ 911 void 912 load_completion(Rt_map *nlmp, Rt_map *clmp) 913 { 914 Rt_map **tobj = 0; 915 Lm_list *nlml, *clml; 916 917 /* 918 * Establish any .init processing. Note, in a world of lazy loading, 919 * objects may have been loaded regardless of whether the users request 920 * was fulfilled (i.e., a dlsym() request may have failed to find a 921 * symbol but objects might have been loaded during its search). Thus, 922 * any tsorting starts from the nlmp (new link-maps) pointer and not 923 * necessarily from the link-map that may have satisfied the request. 924 * 925 * Note, the primary link-map has an initialization phase where dynamic 926 * .init firing is suppressed. This provides for a simple and clean 927 * handshake with the primary link-maps libc, which is important for 928 * establishing uberdata. In addition, auditors often obtain handles 929 * to primary link-map objects as the objects are loaded, so as to 930 * inspect the link-map for symbols. This inspection is allowed without 931 * running any code on the primary link-map, as running this code may 932 * reenter the auditor, who may not yet have finished its own 933 * initialization. 934 */ 935 if (nlmp) 936 nlml = LIST(nlmp); 937 if (clmp) 938 clml = LIST(clmp); 939 940 if (nlmp && nlml->lm_init && 941 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 942 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 943 RT_SORT_REV)) == (Rt_map **)S_ERROR) 944 tobj = 0; 945 } 946 947 /* 948 * Make sure any alternative link-map retrieves any external interfaces 949 * and initializes threads. 950 */ 951 if (nlmp && (nlml != &lml_main)) { 952 (void) rt_get_extern(nlml, nlmp); 953 rt_thr_init(nlml); 954 } 955 956 /* 957 * Traverse the list of new link-maps and register any dynamic TLS. 958 * This storage is established for any objects not on the primary 959 * link-map, and for any objects added to the primary link-map after 960 * static TLS has been registered. 961 */ 962 if (nlmp && nlml->lm_tls && 963 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 964 Rt_map *lmp; 965 966 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 967 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 968 tls_modaddrem(lmp, TM_FLG_MODADD); 969 } 970 nlml->lm_tls = 0; 971 } 972 973 /* 974 * Indicate the link-map list is consistent. 975 */ 976 if (clmp && ((clml->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 977 audit_activity(clmp, LA_ACT_CONSISTENT); 978 979 /* 980 * Fire any .init's. 981 */ 982 if (tobj) 983 call_init(tobj, DBG_INIT_SORT); 984 } 985 986 /* 987 * Append an item to the specified list, and return a pointer to the list 988 * node created. 989 */ 990 Listnode * 991 list_append(List *lst, const void *item) 992 { 993 Listnode * _lnp; 994 995 if ((_lnp = malloc(sizeof (Listnode))) == 0) 996 return (0); 997 998 _lnp->data = (void *)item; 999 _lnp->next = NULL; 1000 1001 if (lst->head == NULL) 1002 lst->tail = lst->head = _lnp; 1003 else { 1004 lst->tail->next = _lnp; 1005 lst->tail = lst->tail->next; 1006 } 1007 return (_lnp); 1008 } 1009 1010 1011 /* 1012 * Add an item after specified listnode, and return a pointer to the list 1013 * node created. 1014 */ 1015 Listnode * 1016 list_insert(List *lst, const void *item, Listnode *lnp) 1017 { 1018 Listnode * _lnp; 1019 1020 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1021 return (0); 1022 1023 _lnp->data = (void *)item; 1024 _lnp->next = lnp->next; 1025 if (_lnp->next == NULL) 1026 lst->tail = _lnp; 1027 lnp->next = _lnp; 1028 return (_lnp); 1029 } 1030 1031 /* 1032 * Prepend an item to the specified list, and return a pointer to the 1033 * list node created. 1034 */ 1035 Listnode * 1036 list_prepend(List * lst, const void * item) 1037 { 1038 Listnode * _lnp; 1039 1040 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1041 return (0); 1042 1043 _lnp->data = (void *)item; 1044 1045 if (lst->head == NULL) { 1046 _lnp->next = NULL; 1047 lst->tail = lst->head = _lnp; 1048 } else { 1049 _lnp->next = lst->head; 1050 lst->head = _lnp; 1051 } 1052 return (_lnp); 1053 } 1054 1055 1056 /* 1057 * Delete a 'listnode' from a list. 1058 */ 1059 void 1060 list_delete(List * lst, void * item) 1061 { 1062 Listnode * clnp, * plnp; 1063 1064 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1065 if (item == clnp->data) 1066 break; 1067 plnp = clnp; 1068 } 1069 1070 if (clnp == 0) 1071 return; 1072 1073 if (lst->head == clnp) 1074 lst->head = clnp->next; 1075 if (lst->tail == clnp) 1076 lst->tail = plnp; 1077 1078 if (plnp) 1079 plnp->next = clnp->next; 1080 1081 free(clnp); 1082 } 1083 1084 /* 1085 * Append an item to the specified link map control list. 1086 */ 1087 void 1088 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1089 { 1090 Lm_cntl *lmc; 1091 int add = 1; 1092 1093 /* 1094 * Indicate that this link-map list has a new object. 1095 */ 1096 (lml->lm_obj)++; 1097 1098 /* 1099 * If we're about to add a new object to the main link-map control list, 1100 * alert the debuggers that we are about to mess with this list. 1101 * Additions of individual objects to the main link-map control list 1102 * occur during initial setup as the applications immediate dependencies 1103 * are loaded. Individual objects are also loaded on the main link-map 1104 * control list of new alternative link-map control lists. 1105 */ 1106 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1107 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1108 1109 /* LINTED */ 1110 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1111 1112 /* 1113 * A link-map list header points to one of more link-map control lists 1114 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1115 * the list of relocated objects. Other lists maintain objects that 1116 * are still being analyzed or relocated. This list provides the core 1117 * link-map list information used by all ld.so.1 routines. 1118 */ 1119 if (lmc->lc_head == NULL) { 1120 /* 1121 * If this is the first link-map for the given control list, 1122 * initialize the list. 1123 */ 1124 lmc->lc_head = lmc->lc_tail = lmp; 1125 add = 0; 1126 1127 } else if (FLAGS(lmp) & FLG_RT_INTRPOSE) { 1128 Rt_map *tlmp; 1129 1130 /* 1131 * If this is an interposer then append the link-map following 1132 * any other interposers (these are objects that have been 1133 * previously preloaded, or were identified with -z interpose). 1134 * Interposers can only be inserted on the first link-map 1135 * control list, as once relocation has started, interposition 1136 * from new interposers can't be guaranteed. 1137 * 1138 * NOTE: We do not interpose on the head of a list. This model 1139 * evolved because dynamic executables have already been fully 1140 * relocated within themselves and thus can't be interposed on. 1141 * Nowadays it's possible to have shared objects at the head of 1142 * a list, which conceptually means they could be interposed on. 1143 * But, shared objects can be created via dldump() and may only 1144 * be partially relocated (just relatives), in which case they 1145 * are interposable, but are marked as fixed (ET_EXEC). 1146 * 1147 * Thus we really don't have a clear method of deciding when the 1148 * head of a link-map is interposable. So, to be consistent, 1149 * for now only add interposers after the link-map lists head 1150 * object. 1151 */ 1152 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1153 tlmp = (Rt_map *)NEXT(tlmp)) { 1154 1155 if (FLAGS(tlmp) & FLG_RT_INTRPOSE) 1156 continue; 1157 1158 /* 1159 * Insert the new link-map before this non-interposer, 1160 * and indicate an interposer is found. 1161 */ 1162 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1163 PREV(lmp) = PREV(tlmp); 1164 1165 NEXT(lmp) = (Link_map *)tlmp; 1166 PREV(tlmp) = (Link_map *)lmp; 1167 1168 lmc->lc_flags |= LMC_FLG_REANALYZE; 1169 add = 0; 1170 break; 1171 } 1172 } 1173 1174 /* 1175 * Fall through to appending the new link map to the tail of the list. 1176 * If we're processing the initial objects of this link-map list, add 1177 * them to the backward compatibility list. 1178 */ 1179 if (add) { 1180 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1181 PREV(lmp) = (Link_map *)lmc->lc_tail; 1182 lmc->lc_tail = lmp; 1183 } 1184 1185 /* 1186 * Having added this link-map to a control list, indicate which control 1187 * list the link-map belongs to. Note, control list information is 1188 * always maintained as an offset, as the Alist can be reallocated. 1189 */ 1190 CNTL(lmp) = lmco; 1191 1192 /* 1193 * Indicate if an interposer is found. Note that the first object on a 1194 * link-map can be explicitly defined as an interposer so that it can 1195 * provide interposition over direct binding requests. 1196 */ 1197 if (FLAGS(lmp) & FLG_RT_INTRPOSE) 1198 lml->lm_flags |= LML_FLG_INTRPOSE; 1199 1200 /* 1201 * For backward compatibility with debuggers, the link-map list contains 1202 * pointers to the main control list. 1203 */ 1204 if (lmco == ALO_DATA) { 1205 lml->lm_head = lmc->lc_head; 1206 lml->lm_tail = lmc->lc_tail; 1207 } 1208 } 1209 1210 /* 1211 * Delete an item from the specified link map control list. 1212 */ 1213 void 1214 lm_delete(Lm_list *lml, Rt_map *lmp) 1215 { 1216 Lm_cntl *lmc; 1217 1218 /* 1219 * If the control list pointer hasn't been initialized, this object 1220 * never got added to a link-map list. 1221 */ 1222 if (CNTL(lmp) == 0) 1223 return; 1224 1225 /* 1226 * If we're about to delete an object from the main link-map control 1227 * list, alert the debuggers that we are about to mess with this list. 1228 */ 1229 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1230 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1231 1232 /* LINTED */ 1233 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1234 1235 if (lmc->lc_head == lmp) 1236 lmc->lc_head = (Rt_map *)NEXT(lmp); 1237 else 1238 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1239 1240 if (lmc->lc_tail == lmp) 1241 lmc->lc_tail = (Rt_map *)PREV(lmp); 1242 else 1243 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1244 1245 /* 1246 * For backward compatibility with debuggers, the link-map list contains 1247 * pointers to the main control list. 1248 */ 1249 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1250 lml->lm_head = lmc->lc_head; 1251 lml->lm_tail = lmc->lc_tail; 1252 } 1253 1254 /* 1255 * Indicate we have one less object on this control list. 1256 */ 1257 (lml->lm_obj)--; 1258 } 1259 1260 /* 1261 * Move a link-map control list to another. Objects that are being relocated 1262 * are maintained on secondary control lists. Once their relocation is 1263 * complete, the entire list is appended to the previous control list, as this 1264 * list must have been the trigger for generating the new control list. 1265 */ 1266 void 1267 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1268 { 1269 Rt_map *lmp; 1270 1271 /* 1272 * If we're about to add a new family of objects to the main link-map 1273 * control list, alert the debuggers that we are about to mess with this 1274 * list. Additions of object families to the main link-map control 1275 * list occur during lazy loading, filtering and dlopen(). 1276 */ 1277 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1278 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1279 1280 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1281 1282 /* 1283 * Indicate each new link-map has been moved to the previous link-map 1284 * control list. 1285 */ 1286 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1287 CNTL(lmp) = plmco; 1288 1289 /* 1290 * Move the new link-map control list, to the callers link-map control 1291 * list. 1292 */ 1293 if (plmc->lc_head == 0) { 1294 plmc->lc_head = nlmc->lc_head; 1295 PREV(nlmc->lc_head) = 0; 1296 } else { 1297 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1298 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1299 } 1300 1301 plmc->lc_tail = nlmc->lc_tail; 1302 nlmc->lc_head = nlmc->lc_tail = 0; 1303 1304 /* 1305 * For backward compatibility with debuggers, the link-map list contains 1306 * pointers to the main control list. 1307 */ 1308 if (plmco == ALO_DATA) { 1309 lml->lm_head = plmc->lc_head; 1310 lml->lm_tail = plmc->lc_tail; 1311 } 1312 } 1313 1314 /* 1315 * Dlopening a family of objects occurs on a new link-map control list. If the 1316 * dlopen fails, then its handle is used to tear down the family (dlclose). 1317 * However, the relocation of this family may have triggered other objects to 1318 * be loaded, and after their relocation they will have been moved to the 1319 * dlopen families control list. After a dlopen() failure, see if there are 1320 * any objects that can be savaged before tearing down this control list. 1321 */ 1322 int 1323 lm_salvage(Lm_list *lml, int test, Aliste nlmco) 1324 { 1325 Lm_cntl *nlmc; 1326 1327 /* 1328 * If a dlopen occurred on a new link-map list, then its dlclose may 1329 * have completely torn down the link-map list. Check that the link-map 1330 * list still exists before proceeding. 1331 */ 1332 if (test) { 1333 Listnode *lnp; 1334 Lm_list *tlml; 1335 int found = 0; 1336 1337 for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) { 1338 if (tlml == lml) { 1339 found++; 1340 break; 1341 } 1342 } 1343 if (found == 0) 1344 return (0); 1345 } 1346 1347 /* LINTED */ 1348 nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco); 1349 1350 /* 1351 * If this link-map control list still contains objects, determine the 1352 * previous control list and move the objects. 1353 */ 1354 if (nlmc->lc_head) { 1355 Lm_cntl *plmc; 1356 Aliste plmco; 1357 1358 plmco = nlmco - lml->lm_lists->al_size; 1359 /* LINTED */ 1360 plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco); 1361 1362 lm_move(lml, nlmco, plmco, nlmc, plmc); 1363 } 1364 return (1); 1365 } 1366 1367 /* 1368 * Environment variables can have a variety of defined permutations, and thus 1369 * the following infrastructure exists to allow this variety and to select the 1370 * required definition. 1371 * 1372 * Environment variables can be defined as 32- or 64-bit specific, and if so 1373 * they will take precedence over any instruction set neutral form. Typically 1374 * this is only useful when the environment value is an informational string. 1375 * 1376 * Environment variables may be obtained from the standard user environment or 1377 * from a configuration file. The latter provides a fallback if no user 1378 * environment setting is found, and can take two forms: 1379 * 1380 * . a replaceable definition - this will be used if no user environment 1381 * setting has been seen, or 1382 * 1383 * . an permanent definition - this will be used no matter what user 1384 * environment setting is seen. In the case of list variables it will be 1385 * appended to any process environment setting seen. 1386 * 1387 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1388 * override any replaceable environment variables from a configuration file. 1389 */ 1390 static u_longlong_t rplgen; /* replaceable generic */ 1391 /* variables */ 1392 static u_longlong_t rplisa; /* replaceable ISA specific */ 1393 /* variables */ 1394 static u_longlong_t prmgen; /* permanent generic */ 1395 /* variables */ 1396 static u_longlong_t prmisa; /* permanent ISA specific */ 1397 /* variables */ 1398 1399 /* 1400 * Classify an environment variables type. 1401 */ 1402 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1403 /* the wrong ISA */ 1404 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1405 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1406 /* config file */ 1407 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1408 1409 /* 1410 * Identify all environment variables. 1411 */ 1412 #define ENV_FLG_AUDIT 0x0000000001ULL 1413 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1414 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1415 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1416 #define ENV_FLG_BINDINGS 0x0000000010ULL 1417 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1418 #define ENV_FLG_CONFGEN 0x0000000040ULL 1419 #define ENV_FLG_CONFIG 0x0000000080ULL 1420 #define ENV_FLG_DEBUG 0x0000000100ULL 1421 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1422 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1423 #define ENV_FLG_FLAGS 0x0000000800ULL 1424 #define ENV_FLG_INIT 0x0000001000ULL 1425 #define ENV_FLG_LIBPATH 0x0000002000ULL 1426 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1427 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1428 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1429 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1430 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1431 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1432 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1433 #define ENV_FLG_NODIRECT 0x0000200000ULL 1434 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1435 #define ENV_FLG_NOLAZY 0x0000800000ULL 1436 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1437 #define ENV_FLG_NOVERSION 0x0002000000ULL 1438 #define ENV_FLG_PRELOAD 0x0004000000ULL 1439 #define ENV_FLG_PROFILE 0x0008000000ULL 1440 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1441 #define ENV_FLG_SIGNAL 0x0020000000ULL 1442 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1443 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1444 #define ENV_FLG_UNREF 0x0100000000ULL 1445 #define ENV_FLG_UNUSED 0x0200000000ULL 1446 #define ENV_FLG_VERBOSE 0x0400000000ULL 1447 #define ENV_FLG_WARN 0x0800000000ULL 1448 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1449 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1450 1451 #ifdef SIEBEL_DISABLE 1452 #define ENV_FLG_FIX_1 0x8000000000ULL 1453 #endif 1454 1455 #define SEL_REPLACE 0x0001 1456 #define SEL_PERMANT 0x0002 1457 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1458 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1459 #define SEL_ACT_STR 0x0400 /* setting string value */ 1460 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1461 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1462 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1463 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1464 1465 /* 1466 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1467 * and len specifies its length (comparing a strings length before the string 1468 * itself speed things up). s2 points to the token itself which has already 1469 * had any leading white-space removed. 1470 */ 1471 static void 1472 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1473 Word *lmtflags, uint_t env_flags, int aout) 1474 { 1475 u_longlong_t variable = 0; 1476 ushort_t select = 0; 1477 const char **str; 1478 Word val = 0; 1479 1480 /* 1481 * Determine whether we're dealing with a replaceable or permanent 1482 * string. 1483 */ 1484 if (env_flags & ENV_TYP_PERMANT) { 1485 /* 1486 * If the string is from a configuration file and defined as 1487 * permanent, assign it as permanent. 1488 */ 1489 select |= SEL_PERMANT; 1490 } else 1491 select |= SEL_REPLACE; 1492 1493 /* 1494 * Parse the variable given. 1495 * 1496 * The LD_AUDIT family. 1497 */ 1498 if (*s1 == 'A') { 1499 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1500 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1501 /* 1502 * Replaceable and permanent audit objects can exist. 1503 */ 1504 select |= SEL_ACT_STR; 1505 if (select & SEL_REPLACE) 1506 str = &rpl_audit; 1507 else { 1508 str = &prm_audit; 1509 rpl_audit = 0; 1510 } 1511 variable = ENV_FLG_AUDIT; 1512 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1513 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1514 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1515 /* 1516 * A specialized variable for plt_exit() use, not 1517 * documented for general use. 1518 */ 1519 select |= SEL_ACT_SPEC_2; 1520 variable = ENV_FLG_AUDIT_ARGS; 1521 } 1522 } 1523 /* 1524 * The LD_BIND family and LD_BREADTH (historic). 1525 */ 1526 else if (*s1 == 'B') { 1527 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1528 MSG_ORIG(MSG_LD_BIND_LAZY), 1529 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1530 select |= SEL_ACT_RT2; 1531 val = RT_FL2_BINDLAZY; 1532 variable = ENV_FLG_BIND_LAZY; 1533 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1534 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1535 select |= SEL_ACT_RT2; 1536 val = RT_FL2_BINDNOW; 1537 variable = ENV_FLG_BIND_NOW; 1538 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1539 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1540 /* 1541 * Another trick, enabled to help debug AOUT 1542 * applications under BCP, but not documented for 1543 * general use. 1544 */ 1545 select |= SEL_ACT_RT; 1546 val = RT_FL_NOBIND; 1547 variable = ENV_FLG_BIND_NOT; 1548 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1549 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1550 /* 1551 * This variable is simply for backward compatibility. 1552 * If this and LD_DEBUG are both specified, only one of 1553 * the strings is going to get processed. 1554 */ 1555 select |= SEL_ACT_SPEC_2; 1556 variable = ENV_FLG_BINDINGS; 1557 #ifndef LD_BREADTH_DISABLED 1558 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1559 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1560 /* 1561 * Besides some old patches this is no longer available. 1562 */ 1563 rtld_flags |= RT_FL_BREADTH; 1564 return; 1565 #endif 1566 } 1567 } 1568 /* 1569 * LD_CONCURRENCY and LD_CONFIG family. 1570 */ 1571 else if (*s1 == 'C') { 1572 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1573 MSG_ORIG(MSG_LD_CONCURRENCY), 1574 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1575 /* 1576 * Waiting in the wings, as concurrency checking isn't 1577 * yet enabled. 1578 */ 1579 select |= SEL_ACT_SPEC_2; 1580 variable = ENV_FLG_CONCURRENCY; 1581 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1582 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1583 /* 1584 * Set by crle(1) to indicate it's building a 1585 * configuration file, not documented for general use. 1586 */ 1587 select |= SEL_ACT_SPEC_2; 1588 variable = ENV_FLG_CONFGEN; 1589 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1590 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1591 /* 1592 * Secure applications must use a default configuration 1593 * file. A setting from a configuration file doesn't 1594 * make sense (given we must be reading a configuration 1595 * file to have gotten this). 1596 */ 1597 if ((rtld_flags & RT_FL_SECURE) || 1598 (env_flags & ENV_TYP_CONFIG)) 1599 return; 1600 select |= SEL_ACT_STR; 1601 str = &config->c_name; 1602 variable = ENV_FLG_CONFIG; 1603 } 1604 } 1605 /* 1606 * The LD_DEBUG family and LD_DEMANGLE. 1607 */ 1608 else if (*s1 == 'D') { 1609 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1610 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1611 select |= SEL_ACT_STR; 1612 if (select & SEL_REPLACE) 1613 str = &rpl_debug; 1614 else { 1615 str = &prm_debug; 1616 rpl_debug = 0; 1617 } 1618 variable = ENV_FLG_DEBUG; 1619 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1620 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1621 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1622 select |= SEL_ACT_STR; 1623 str = &dbg_file; 1624 variable = ENV_FLG_DEBUG_OUTPUT; 1625 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1627 select |= SEL_ACT_RT; 1628 val = RT_FL_DEMANGLE; 1629 variable = ENV_FLG_DEMANGLE; 1630 } 1631 } 1632 /* 1633 * LD_FLAGS - collect the best variable definition. On completion of 1634 * environment variable processing pass the result to ld_flags_env() 1635 * where they'll be decomposed and passed back to this routine. 1636 */ 1637 else if (*s1 == 'F') { 1638 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1639 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1640 select |= SEL_ACT_SPEC_1; 1641 if (select & SEL_REPLACE) 1642 str = &rpl_ldflags; 1643 else { 1644 str = &prm_ldflags; 1645 rpl_ldflags = 0; 1646 } 1647 variable = ENV_FLG_FLAGS; 1648 } 1649 } 1650 /* 1651 * LD_INIT (internal, used by ldd(1)). 1652 */ 1653 else if (*s1 == 'I') { 1654 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1655 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1656 select |= SEL_ACT_LML; 1657 val = LML_FLG_TRC_INIT; 1658 variable = ENV_FLG_INIT; 1659 } 1660 } 1661 /* 1662 * The LD_LIBRARY_PATH and LD_LOAD families. 1663 */ 1664 else if (*s1 == 'L') { 1665 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1666 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1667 select |= SEL_ACT_SPEC_1; 1668 if (select & SEL_REPLACE) 1669 str = &rpl_libpath; 1670 else { 1671 str = &prm_libpath; 1672 rpl_libpath = 0; 1673 } 1674 variable = ENV_FLG_LIBPATH; 1675 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1677 /* 1678 * Internal use by crle(1), not documented for general 1679 * use. 1680 */ 1681 select |= SEL_ACT_LML; 1682 val = LML_FLG_LOADAVAIL; 1683 variable = ENV_FLG_LOADAVAIL; 1684 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1685 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1686 select |= SEL_ACT_SPEC_2; 1687 variable = ENV_FLG_LOADFLTR; 1688 } 1689 } 1690 /* 1691 * The LD_NO family. 1692 */ 1693 else if (*s1 == 'N') { 1694 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1695 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1696 select |= SEL_ACT_RT; 1697 val = RT_FL_NOAUDIT; 1698 variable = ENV_FLG_NOAUDIT; 1699 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1700 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1701 select |= SEL_ACT_RT; 1702 val = RT_FL_NOAUXFLTR; 1703 variable = ENV_FLG_NOAUXFLTR; 1704 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1705 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1706 select |= SEL_ACT_RT; 1707 val = RT_FL_NOBAPLT; 1708 variable = ENV_FLG_NOBAPLT; 1709 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1710 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1711 select |= SEL_ACT_RT; 1712 val = RT_FL_NOCFG; 1713 variable = ENV_FLG_NOCONFIG; 1714 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1715 MSG_ORIG(MSG_LD_NODIRCONFIG), 1716 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1717 select |= SEL_ACT_RT; 1718 val = RT_FL_NODIRCFG; 1719 variable = ENV_FLG_NODIRCONFIG; 1720 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1721 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1722 select |= SEL_ACT_LMLT; 1723 val = LML_TFLG_NODIRECT; 1724 variable = ENV_FLG_NODIRECT; 1725 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1726 MSG_ORIG(MSG_LD_NOENVCONFIG), 1727 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1728 select |= SEL_ACT_RT; 1729 val = RT_FL_NOENVCFG; 1730 variable = ENV_FLG_NOENVCONFIG; 1731 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1732 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1733 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1734 select |= SEL_ACT_RT2; 1735 val = RT_FL2_NOFLTCFG; 1736 variable = ENV_FLG_NOFLTCONFIG; 1737 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1738 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1739 select |= SEL_ACT_LMLT; 1740 val = LML_TFLG_NOLAZYLD; 1741 variable = ENV_FLG_NOLAZY; 1742 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1743 MSG_ORIG(MSG_LD_NOOBJALTER), 1744 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1745 select |= SEL_ACT_RT; 1746 val = RT_FL_NOOBJALT; 1747 variable = ENV_FLG_NOOBJALTER; 1748 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1749 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1750 select |= SEL_ACT_RT; 1751 val = RT_FL_NOVERSION; 1752 variable = ENV_FLG_NOVERSION; 1753 } 1754 } 1755 /* 1756 * LD_ORIGIN. 1757 */ 1758 else if (*s1 == 'O') { 1759 #ifndef EXPAND_RELATIVE 1760 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1761 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1762 /* 1763 * Besides some old patches this is no longer required. 1764 */ 1765 rtld_flags |= RT_FL_RELATIVE; 1766 } 1767 #endif 1768 return; 1769 } 1770 /* 1771 * LD_PRELOAD and LD_PROFILE family. 1772 */ 1773 else if (*s1 == 'P') { 1774 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1775 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1776 select |= SEL_ACT_STR; 1777 if (select & SEL_REPLACE) 1778 str = &rpl_preload; 1779 else { 1780 str = &prm_preload; 1781 rpl_preload = 0; 1782 } 1783 variable = ENV_FLG_PRELOAD; 1784 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1785 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1786 /* 1787 * Only one user library can be profiled at a time. 1788 */ 1789 select |= SEL_ACT_SPEC_2; 1790 variable = ENV_FLG_PROFILE; 1791 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1792 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1793 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1794 /* 1795 * Only one user library can be profiled at a time. 1796 */ 1797 select |= SEL_ACT_STR; 1798 str = &profile_out; 1799 variable = ENV_FLG_PROFILE_OUTPUT; 1800 } 1801 } 1802 /* 1803 * LD_SIGNAL. 1804 */ 1805 else if (*s1 == 'S') { 1806 if (rtld_flags & RT_FL_SECURE) 1807 return; 1808 if ((len == MSG_LD_SIGNAL_SIZE) && 1809 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1810 MSG_LD_SIGNAL_SIZE) == 0)) { 1811 select |= SEL_ACT_SPEC_2; 1812 variable = ENV_FLG_SIGNAL; 1813 } 1814 } 1815 /* 1816 * The LD_TRACE family (internal, used by ldd(1)). 1817 */ 1818 else if (*s1 == 'T') { 1819 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1820 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1821 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1822 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1823 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1824 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1825 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1826 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1827 select |= SEL_ACT_SPEC_2; 1828 variable = ENV_FLG_TRACE_OBJS; 1829 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1830 MSG_ORIG(MSG_LD_TRACE_PTHS), 1831 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1832 select |= SEL_ACT_LML; 1833 val = LML_FLG_TRC_SEARCH; 1834 variable = ENV_FLG_TRACE_PTHS; 1835 } 1836 } 1837 /* 1838 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1839 */ 1840 else if (*s1 == 'U') { 1841 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1842 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1843 select |= SEL_ACT_LML; 1844 val = LML_FLG_TRC_UNREF; 1845 variable = ENV_FLG_UNREF; 1846 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1847 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1848 select |= SEL_ACT_LML; 1849 val = LML_FLG_TRC_UNUSED; 1850 variable = ENV_FLG_UNUSED; 1851 } 1852 } 1853 /* 1854 * LD_VERBOSE (internal, used by ldd(1)). 1855 */ 1856 else if (*s1 == 'V') { 1857 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1858 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1859 select |= SEL_ACT_LML; 1860 val = LML_FLG_TRC_VERBOSE; 1861 variable = ENV_FLG_VERBOSE; 1862 } 1863 } 1864 /* 1865 * LD_WARN (internal, used by ldd(1)). 1866 */ 1867 else if (*s1 == 'W') { 1868 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1869 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1870 select |= SEL_ACT_LML; 1871 val = LML_FLG_TRC_WARN; 1872 variable = ENV_FLG_WARN; 1873 } 1874 #ifdef SIEBEL_DISABLE 1875 } 1876 /* 1877 * LD__FIX__ (undocumented, enable future technology that can't be 1878 * delivered in a patch release). 1879 */ 1880 else if (*s1 == '_') { 1881 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1882 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1883 select |= SEL_ACT_RT; 1884 val = RT_FL_DISFIX_1; 1885 variable = ENV_FLG_FIX_1; 1886 } 1887 #endif 1888 } 1889 if (variable == 0) 1890 return; 1891 1892 /* 1893 * If the variable is already processed with ISA specific variable, 1894 * no further processing needed. 1895 */ 1896 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1897 ((select & SEL_PERMANT) && (prmisa & variable))) 1898 return; 1899 1900 /* 1901 * Now mark the appropriate variables. 1902 * If the replaceable variable is already set, then the 1903 * process environment variable must be set. Any replaceable 1904 * variable specified in a configuration file can be ignored. 1905 */ 1906 if (env_flags & ENV_TYP_ISA) { 1907 /* 1908 * This is ISA setting. We do the setting 1909 * even if s2 is NULL. 1910 * If s2 is NULL, we might need to undo 1911 * the setting. 1912 */ 1913 if (select & SEL_REPLACE) { 1914 if (rplisa & variable) 1915 return; 1916 rplisa |= variable; 1917 } else { 1918 prmisa |= variable; 1919 } 1920 } else if (s2) { 1921 /* 1922 * This is non0-ISA setting 1923 */ 1924 if (select & SEL_REPLACE) { 1925 if (rplgen & variable) 1926 return; 1927 rplgen |= variable; 1928 } else 1929 prmgen |= variable; 1930 } else 1931 /* 1932 * This is non-ISA setting which 1933 * can be ignored. 1934 */ 1935 return; 1936 1937 /* 1938 * Now perform the setting. 1939 */ 1940 if (select & SEL_ACT_RT) { 1941 if (s2) 1942 rtld_flags |= val; 1943 else 1944 rtld_flags &= ~val; 1945 } else if (select & SEL_ACT_RT2) { 1946 if (s2) 1947 rtld_flags2 |= val; 1948 else 1949 rtld_flags2 &= ~val; 1950 } else if (select & SEL_ACT_STR) 1951 *str = s2; 1952 else if (select & SEL_ACT_LML) { 1953 if (s2) 1954 *lmflags |= val; 1955 else 1956 *lmflags &= ~val; 1957 } else if (select & SEL_ACT_LMLT) { 1958 if (s2) 1959 *lmtflags |= val; 1960 else 1961 *lmtflags &= ~val; 1962 } else if (select & SEL_ACT_SPEC_1) { 1963 /* 1964 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1965 */ 1966 *str = s2; 1967 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1968 if (s2) { 1969 if (variable == ENV_FLG_FLAGS) 1970 env_info |= ENV_INF_FLAGCFG; 1971 else 1972 env_info |= ENV_INF_PATHCFG; 1973 } else { 1974 if (variable == ENV_FLG_FLAGS) 1975 env_info &= ~ENV_INF_FLAGCFG; 1976 else 1977 env_info &= ~ENV_INF_PATHCFG; 1978 } 1979 } 1980 } else if (select & SEL_ACT_SPEC_2) { 1981 /* 1982 * variables can be: ENV_FLG_ 1983 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1984 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1985 */ 1986 if (variable == ENV_FLG_AUDIT_ARGS) { 1987 if (s2) { 1988 audit_argcnt = atoi(s2); 1989 audit_argcnt += audit_argcnt % 2; 1990 } else 1991 audit_argcnt = 0; 1992 } else if (variable == ENV_FLG_BINDINGS) { 1993 if (s2) 1994 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1995 else 1996 rpl_debug = 0; 1997 } else if (variable == ENV_FLG_CONCURRENCY) { 1998 if (s2) 1999 rtld_flags &= ~RT_FL_NOCONCUR; 2000 else 2001 rtld_flags |= RT_FL_NOCONCUR; 2002 } else if (variable == ENV_FLG_CONFGEN) { 2003 if (s2) { 2004 rtld_flags |= RT_FL_CONFGEN; 2005 *lmflags |= LML_FLG_IGNRELERR; 2006 } else { 2007 rtld_flags &= ~RT_FL_CONFGEN; 2008 *lmflags &= ~LML_FLG_IGNRELERR; 2009 } 2010 } else if (variable == ENV_FLG_LOADFLTR) { 2011 if (s2) { 2012 *lmtflags |= LML_TFLG_LOADFLTR; 2013 if (*s2 == '2') 2014 rtld_flags |= RT_FL_WARNFLTR; 2015 } else { 2016 *lmtflags &= ~LML_TFLG_LOADFLTR; 2017 rtld_flags &= ~RT_FL_WARNFLTR; 2018 } 2019 } else if (variable == ENV_FLG_PROFILE) { 2020 profile_name = s2; 2021 if (s2) { 2022 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2023 return; 2024 } 2025 if (rtld_flags & RT_FL_SECURE) { 2026 profile_lib = 2027 #if defined(_ELF64) 2028 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2029 #else 2030 MSG_ORIG(MSG_PTH_LDPROFSE); 2031 #endif 2032 } else { 2033 profile_lib = 2034 #if defined(_ELF64) 2035 MSG_ORIG(MSG_PTH_LDPROF_64); 2036 #else 2037 MSG_ORIG(MSG_PTH_LDPROF); 2038 #endif 2039 } 2040 } else 2041 profile_lib = 0; 2042 } else if (variable == ENV_FLG_SIGNAL) { 2043 killsig = s2 ? atoi(s2) : SIGKILL; 2044 } else if (variable == ENV_FLG_TRACE_OBJS) { 2045 if (s2) { 2046 *lmflags |= LML_FLG_TRC_ENABLE; 2047 if (*s2 == '2') 2048 *lmflags |= LML_FLG_TRC_LDDSTUB; 2049 } else 2050 *lmflags &= 2051 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2052 } 2053 } 2054 } 2055 2056 /* 2057 * Determine whether we have an architecture specific environment variable. 2058 * If we do, and we're the wrong architecture, it'll just get ignored. 2059 * Otherwise the variable is processed in it's architecture neutral form. 2060 */ 2061 static int 2062 ld_arch_env(const char *s1, size_t *len) 2063 { 2064 size_t _len = *len - 3; 2065 2066 if (s1[_len++] == '_') { 2067 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2068 #if defined(_ELF64) 2069 return (ENV_TYP_IGNORE); 2070 #else 2071 *len = *len - 3; 2072 return (ENV_TYP_ISA); 2073 #endif 2074 } 2075 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2076 #if defined(_ELF64) 2077 *len = *len - 3; 2078 return (ENV_TYP_ISA); 2079 #else 2080 return (ENV_TYP_IGNORE); 2081 #endif 2082 } 2083 } 2084 return (0); 2085 } 2086 2087 2088 /* 2089 * Process an LD_FLAGS environment variable. The value can be a comma 2090 * separated set of tokens, which are sent (in upper case) into the generic 2091 * LD_XXXX environment variable engine. For example: 2092 * 2093 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2094 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2095 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2096 * or 2097 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2098 */ 2099 static int 2100 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2101 uint_t env_flags, int aout) 2102 { 2103 char *nstr, *sstr, *estr = 0; 2104 size_t nlen, len; 2105 2106 if (str == 0) 2107 return (0); 2108 2109 /* 2110 * Create a new string as we're going to transform the token(s) into 2111 * uppercase and separate tokens with nulls. 2112 */ 2113 len = strlen(str); 2114 if ((nstr = malloc(len + 1)) == 0) 2115 return (1); 2116 (void) strcpy(nstr, str); 2117 2118 for (sstr = nstr; sstr; sstr++, len--) { 2119 int flags; 2120 2121 if ((*sstr != '\0') && (*sstr != ',')) { 2122 if (estr == 0) { 2123 if (*sstr == '=') 2124 estr = sstr; 2125 else { 2126 /* 2127 * Translate token to uppercase. Don't 2128 * use toupper(3C) as including this 2129 * code doubles the size of ld.so.1. 2130 */ 2131 if ((*sstr >= 'a') && (*sstr <= 'z')) 2132 *sstr = *sstr - ('a' - 'A'); 2133 } 2134 } 2135 continue; 2136 } 2137 2138 *sstr = '\0'; 2139 if (estr) { 2140 nlen = estr - nstr; 2141 if ((*++estr == '\0') || (*estr == ',')) 2142 estr = 0; 2143 } else 2144 nlen = sstr - nstr; 2145 2146 /* 2147 * Fabricate a boolean definition for any unqualified variable. 2148 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2149 * The value is sufficient to assert any boolean variables, plus 2150 * the term "(null)" is specifically chosen in case someone 2151 * mistakenly supplies something like LD_FLAGS=library_path. 2152 */ 2153 if (estr == 0) 2154 estr = (char *)MSG_INTL(MSG_STR_NULL); 2155 2156 /* 2157 * Determine whether the environment variable is 32- or 64-bit 2158 * specific. The length, len, will reflect the architecture 2159 * neutral portion of the string. 2160 */ 2161 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2162 ld_generic_env(nstr, nlen, estr, lmflags, 2163 lmtflags, (env_flags | flags), aout); 2164 } 2165 if (len == 0) 2166 return (0); 2167 2168 nstr = sstr + 1; 2169 estr = 0; 2170 } 2171 return (0); 2172 } 2173 2174 2175 /* 2176 * Process a single environment string. Only strings starting with `LD_' are 2177 * reserved for our use. By convention, all strings should be of the form 2178 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2179 * functionality is enabled. Also pick off applicable locale variables. 2180 */ 2181 #define LOC_LANG 1 2182 #define LOC_MESG 2 2183 #define LOC_ALL 3 2184 2185 static void 2186 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2187 int aout) 2188 { 2189 const char *s2; 2190 static size_t loc = 0; 2191 2192 if (*s1++ != 'L') 2193 return; 2194 2195 /* 2196 * See if we have any locale environment settings. These environment 2197 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2198 * is higher than LANG. 2199 */ 2200 s2 = s1; 2201 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2202 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2203 s2 += MSG_LC_ALL_SIZE; 2204 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2205 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2206 loc = LOC_ALL; 2207 } 2208 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2209 MSG_LC_MESSAGES_SIZE) == 0) { 2210 s2 += MSG_LC_MESSAGES_SIZE; 2211 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2212 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2213 loc = LOC_MESG; 2214 } 2215 } 2216 return; 2217 } 2218 2219 s2 = s1; 2220 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2221 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2222 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2223 loc = LOC_LANG; 2224 return; 2225 } 2226 2227 /* 2228 * Pick off any LD_XXXX environment variables. 2229 */ 2230 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2231 size_t len; 2232 int flags; 2233 2234 /* 2235 * Environment variables with no value (ie. LD_XXXX=) typically 2236 * have no impact, however if environment variables are defined 2237 * within a configuration file, these null user settings can be 2238 * used to disable any configuration replaceable definitions. 2239 */ 2240 if ((s2 = strchr(s1, '=')) == 0) { 2241 len = strlen(s1); 2242 s2 = 0; 2243 } else if (*++s2 == '\0') { 2244 len = strlen(s1) - 1; 2245 s2 = 0; 2246 } else { 2247 len = s2 - s1 - 1; 2248 while (isspace(*s2)) 2249 s2++; 2250 } 2251 2252 /* 2253 * Determine whether the environment variable is 32- or 64-bit 2254 * specific. The length, len, will reflect the architecture 2255 * neutral portion of the string. 2256 */ 2257 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2258 return; 2259 env_flags |= flags; 2260 2261 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2262 } 2263 } 2264 2265 /* 2266 * Internal getenv routine. Called immediately after ld.so.1 initializes 2267 * itself. 2268 */ 2269 int 2270 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2271 { 2272 char *locale; 2273 2274 if (envp == (const char **)0) 2275 return (0); 2276 2277 while (*envp != (const char *)0) 2278 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2279 2280 /* 2281 * Having collected the best representation of any LD_FLAGS, process 2282 * these strings. 2283 */ 2284 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2285 return (1); 2286 2287 /* 2288 * Don't allow environment controlled auditing when tracing or if 2289 * explicitly disabled. Trigger all tracing modes from 2290 * LML_FLG_TRC_ENABLE. 2291 */ 2292 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2293 rpl_audit = profile_lib = profile_name = 0; 2294 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2295 *lmflags &= ~LML_MSK_TRC; 2296 2297 /* 2298 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2299 */ 2300 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2301 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2302 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2303 2304 /* 2305 * If we have a locale setting make sure its worth processing further. 2306 * Duplicate the string so that new locale setting can generically 2307 * cleanup any previous locales. 2308 */ 2309 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2310 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2311 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0)) 2312 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2313 else 2314 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2315 } 2316 return (0); 2317 } 2318 2319 /* 2320 * Configuration environment processing. Called after the a.out has been 2321 * processed (as the a.out can specify its own configuration file). 2322 */ 2323 int 2324 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2325 { 2326 Word * lmflags = &(lml_main.lm_flags); 2327 Word * lmtflags = &(lml_main.lm_tflags); 2328 2329 if (envtbl == (Rtc_env *)0) 2330 return (0); 2331 2332 while (envtbl->env_str) { 2333 uint_t env_flags = ENV_TYP_CONFIG; 2334 2335 if (envtbl->env_flags & RTC_ENV_PERMANT) 2336 env_flags |= ENV_TYP_PERMANT; 2337 2338 ld_str_env((const char *)(envtbl->env_str + addr), 2339 lmflags, lmtflags, env_flags, 0); 2340 envtbl++; 2341 } 2342 2343 /* 2344 * Having collected the best representation of any LD_FLAGS, process 2345 * these strings. 2346 */ 2347 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2348 return (1); 2349 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2350 aout) == 1) 2351 return (1); 2352 2353 /* 2354 * Don't allow environment controlled auditing when tracing or if 2355 * explicitly disabled. Trigger all tracing modes from 2356 * LML_FLG_TRC_ENABLE. 2357 */ 2358 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2359 prm_audit = profile_lib = profile_name = 0; 2360 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2361 *lmflags &= ~LML_MSK_TRC; 2362 2363 return (0); 2364 } 2365 2366 int 2367 dowrite(Prfbuf * prf) 2368 { 2369 /* 2370 * We do not have a valid file descriptor, so we are unable 2371 * to flush the buffer. 2372 */ 2373 if (prf->pr_fd == -1) 2374 return (0); 2375 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2376 prf->pr_cur = prf->pr_buf; 2377 return (1); 2378 } 2379 2380 /* 2381 * Simplified printing. The following conversion specifications are supported: 2382 * 2383 * % [#] [-] [min field width] [. precision] s|d|x|c 2384 * 2385 * 2386 * dorprf takes the output buffer in the form of Prfbuf which permits 2387 * the verification of the output buffer size and the concatenation 2388 * of data to an already existing output buffer. The Prfbuf 2389 * structure contains the following: 2390 * 2391 * pr_buf pointer to the beginning of the output buffer. 2392 * pr_cur pointer to the next available byte in the output buffer. By 2393 * setting pr_cur ahead of pr_buf you can append to an already 2394 * existing buffer. 2395 * pr_len the size of the output buffer. By setting pr_len to '0' you 2396 * disable protection from overflows in the output buffer. 2397 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2398 * output to. If pr_fd is set to '-1' then it's assumed there is 2399 * no output buffer and doprf() will return with an error if the 2400 * output buffer is overflowed. If pr_fd is > -1 then when the 2401 * output buffer is filled it will be flushed to pr_fd and then 2402 * the available for additional data. 2403 */ 2404 #define FLG_UT_MINUS 0x0001 /* - */ 2405 #define FLG_UT_SHARP 0x0002 /* # */ 2406 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2407 2408 /* 2409 * This macro is for use from within doprf only. It is to be used for checking 2410 * the output buffer size and placing characters into the buffer. 2411 */ 2412 #define PUTC(c) \ 2413 { \ 2414 char tmpc; \ 2415 \ 2416 tmpc = (c); \ 2417 if (bufsiz && (bp >= bufend)) { \ 2418 prf->pr_cur = bp; \ 2419 if (dowrite(prf) == 0) \ 2420 return (0); \ 2421 bp = prf->pr_cur; \ 2422 } \ 2423 *bp++ = tmpc; \ 2424 } 2425 2426 size_t 2427 doprf(const char *format, va_list args, Prfbuf *prf) 2428 { 2429 char c; 2430 char *bp = prf->pr_cur; 2431 char *bufend = prf->pr_buf + prf->pr_len; 2432 size_t bufsiz = prf->pr_len; 2433 2434 while ((c = *format++) != '\0') { 2435 if (c != '%') { 2436 PUTC(c); 2437 } else { 2438 int base = 0, flag = 0, width = 0, prec = 0; 2439 size_t _i; 2440 int _c, _n; 2441 char *_s; 2442 int ls = 0; 2443 again: 2444 c = *format++; 2445 switch (c) { 2446 case '-': 2447 flag |= FLG_UT_MINUS; 2448 goto again; 2449 case '#': 2450 flag |= FLG_UT_SHARP; 2451 goto again; 2452 case '.': 2453 flag |= FLG_UT_DOTSEEN; 2454 goto again; 2455 case '0': 2456 case '1': 2457 case '2': 2458 case '3': 2459 case '4': 2460 case '5': 2461 case '6': 2462 case '7': 2463 case '8': 2464 case '9': 2465 if (flag & FLG_UT_DOTSEEN) 2466 prec = (prec * 10) + c - '0'; 2467 else 2468 width = (width * 10) + c - '0'; 2469 goto again; 2470 case 'x': 2471 case 'X': 2472 base = 16; 2473 break; 2474 case 'd': 2475 case 'D': 2476 case 'u': 2477 base = 10; 2478 flag &= ~FLG_UT_SHARP; 2479 break; 2480 case 'l': 2481 base = 10; 2482 ls++; /* number of l's (long or long long) */ 2483 if ((*format == 'l') || 2484 (*format == 'd') || (*format == 'D') || 2485 (*format == 'x') || (*format == 'X') || 2486 (*format == 'o') || (*format == 'O')) 2487 goto again; 2488 break; 2489 case 'o': 2490 case 'O': 2491 base = 8; 2492 break; 2493 case 'c': 2494 _c = va_arg(args, int); 2495 2496 for (_i = 24; _i > 0; _i -= 8) { 2497 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2498 PUTC(c); 2499 } 2500 } 2501 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2502 PUTC(c); 2503 } 2504 break; 2505 case 's': 2506 _s = va_arg(args, char *); 2507 _i = strlen(_s); 2508 /* LINTED */ 2509 _n = (int)(width - _i); 2510 if (!prec) 2511 /* LINTED */ 2512 prec = (int)_i; 2513 2514 if (width && !(flag & FLG_UT_MINUS)) { 2515 while (_n-- > 0) 2516 PUTC(' '); 2517 } 2518 while (((c = *_s++) != 0) && prec--) { 2519 PUTC(c); 2520 } 2521 if (width && (flag & FLG_UT_MINUS)) { 2522 while (_n-- > 0) 2523 PUTC(' '); 2524 } 2525 break; 2526 case '%': 2527 PUTC('%'); 2528 break; 2529 default: 2530 break; 2531 } 2532 2533 /* 2534 * Numeric processing 2535 */ 2536 if (base) { 2537 char local[20]; 2538 const char *string = 2539 MSG_ORIG(MSG_STR_HEXNUM); 2540 size_t ssize = 0, psize = 0; 2541 const char *prefix = 2542 MSG_ORIG(MSG_STR_EMPTY); 2543 u_longlong_t num; 2544 2545 switch (ls) { 2546 case 0: /* int */ 2547 num = (u_longlong_t) 2548 va_arg(args, uint_t); 2549 break; 2550 case 1: /* long */ 2551 num = (u_longlong_t) 2552 va_arg(args, ulong_t); 2553 break; 2554 case 2: /* long long */ 2555 num = va_arg(args, u_longlong_t); 2556 break; 2557 } 2558 2559 if (flag & FLG_UT_SHARP) { 2560 if (base == 16) { 2561 prefix = MSG_ORIG(MSG_STR_HEX); 2562 psize = 2; 2563 } else { 2564 prefix = MSG_ORIG(MSG_STR_ZERO); 2565 psize = 1; 2566 } 2567 } 2568 if ((base == 10) && (long)num < 0) { 2569 prefix = MSG_ORIG(MSG_STR_NEGATE); 2570 psize = MSG_STR_NEGATE_SIZE; 2571 num = (u_longlong_t)(-(longlong_t)num); 2572 } 2573 2574 /* 2575 * Convert the numeric value into a local 2576 * string (stored in reverse order). 2577 */ 2578 _s = local; 2579 do { 2580 *_s++ = string[num % base]; 2581 num /= base; 2582 ssize++; 2583 } while (num); 2584 2585 /* 2586 * Provide any precision or width padding. 2587 */ 2588 if (prec) { 2589 /* LINTED */ 2590 _n = (int)(prec - ssize); 2591 while (_n-- > 0) { 2592 *_s++ = '0'; 2593 ssize++; 2594 } 2595 } 2596 if (width && !(flag & FLG_UT_MINUS)) { 2597 /* LINTED */ 2598 _n = (int)(width - ssize - psize); 2599 while (_n-- > 0) { 2600 PUTC(' '); 2601 } 2602 } 2603 2604 /* 2605 * Print any prefix and the numeric string 2606 */ 2607 while (*prefix) 2608 PUTC(*prefix++); 2609 do { 2610 PUTC(*--_s); 2611 } while (_s > local); 2612 2613 /* 2614 * Provide any width padding. 2615 */ 2616 if (width && (flag & FLG_UT_MINUS)) { 2617 /* LINTED */ 2618 _n = (int)(width - ssize - psize); 2619 while (_n-- > 0) 2620 PUTC(' '); 2621 } 2622 } 2623 } 2624 } 2625 2626 PUTC('\0'); 2627 prf->pr_cur = bp; 2628 return (1); 2629 } 2630 2631 static int 2632 doprintf(const char *format, va_list args, Prfbuf *prf) 2633 { 2634 char *ocur = prf->pr_cur; 2635 2636 if (doprf(format, args, prf) == 0) 2637 return (0); 2638 /* LINTED */ 2639 return ((int)(prf->pr_cur - ocur)); 2640 } 2641 2642 /* VARARGS2 */ 2643 int 2644 sprintf(char *buf, const char *format, ...) 2645 { 2646 va_list args; 2647 int len; 2648 Prfbuf prf; 2649 2650 va_start(args, format); 2651 prf.pr_buf = prf.pr_cur = buf; 2652 prf.pr_len = 0; 2653 prf.pr_fd = -1; 2654 len = doprintf(format, args, &prf); 2655 va_end(args); 2656 2657 /* 2658 * sprintf() return value excludes the terminating null byte. 2659 */ 2660 return (len - 1); 2661 } 2662 2663 /* VARARGS3 */ 2664 int 2665 snprintf(char *buf, size_t n, const char *format, ...) 2666 { 2667 va_list args; 2668 int len; 2669 Prfbuf prf; 2670 2671 va_start(args, format); 2672 prf.pr_buf = prf.pr_cur = buf; 2673 prf.pr_len = n; 2674 prf.pr_fd = -1; 2675 len = doprintf(format, args, &prf); 2676 va_end(args); 2677 2678 return (len); 2679 } 2680 2681 /* VARARGS2 */ 2682 int 2683 bufprint(Prfbuf *prf, const char *format, ...) 2684 { 2685 va_list args; 2686 int len; 2687 2688 va_start(args, format); 2689 len = doprintf(format, args, prf); 2690 va_end(args); 2691 2692 return (len); 2693 } 2694 2695 /*PRINTFLIKE1*/ 2696 int 2697 printf(const char *format, ...) 2698 { 2699 va_list args; 2700 char buffer[ERRSIZE]; 2701 Prfbuf prf; 2702 2703 va_start(args, format); 2704 prf.pr_buf = prf.pr_cur = buffer; 2705 prf.pr_len = ERRSIZE; 2706 prf.pr_fd = 1; 2707 (void) doprf(format, args, &prf); 2708 va_end(args); 2709 /* 2710 * Trim trailing '\0' form buffer 2711 */ 2712 prf.pr_cur--; 2713 return (dowrite(&prf)); 2714 } 2715 2716 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2717 2718 /*PRINTFLIKE3*/ 2719 void 2720 eprintf(Lm_list *lml, Error error, const char *format, ...) 2721 { 2722 va_list args; 2723 int overflow = 0; 2724 static int lock = 0; 2725 Prfbuf prf; 2726 2727 if (lock || (nextptr == (errbuf + ERRSIZE))) 2728 return; 2729 2730 /* 2731 * Note: this lock is here to prevent the same thread from recursively 2732 * entering itself during a eprintf. ie: during eprintf malloc() fails 2733 * and we try and call eprintf ... and then malloc() fails .... 2734 */ 2735 lock = 1; 2736 2737 /* 2738 * If we have completed startup initialization, all error messages 2739 * must be saved. These are reported through dlerror(). If we're 2740 * still in the initialization stage, output the error directly and 2741 * add a newline. 2742 */ 2743 va_start(args, format); 2744 2745 prf.pr_buf = prf.pr_cur = nextptr; 2746 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2747 2748 if (!(rtld_flags & RT_FL_APPLIC)) 2749 prf.pr_fd = 2; 2750 else 2751 prf.pr_fd = -1; 2752 2753 if (error > ERR_NONE) { 2754 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2755 error = ERR_WARNING; 2756 if (error == ERR_WARNING) { 2757 if (err_strs[ERR_WARNING] == 0) 2758 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2759 } else if (error == ERR_FATAL) { 2760 if (err_strs[ERR_FATAL] == 0) 2761 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2762 } else if (error == ERR_ELF) { 2763 if (err_strs[ERR_ELF] == 0) 2764 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2765 } 2766 if (procname) { 2767 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2768 rtldname, procname, err_strs[error]) == 0) 2769 overflow = 1; 2770 } else { 2771 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2772 rtldname, err_strs[error]) == 0) 2773 overflow = 1; 2774 } 2775 if (overflow == 0) { 2776 /* 2777 * Remove the terminating '\0'. 2778 */ 2779 prf.pr_cur--; 2780 } 2781 } 2782 2783 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2784 overflow = 1; 2785 2786 /* 2787 * If this is an ELF error, it will have been generated by a support 2788 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2789 * ELF error messages as it doesn't interact with libelf. Determine the 2790 * ELF error string. 2791 */ 2792 if ((overflow == 0) && (error == ERR_ELF)) { 2793 static int (*elfeno)() = 0; 2794 static const char *(*elfemg)(); 2795 const char *emsg; 2796 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2797 2798 if (NEXT(lmp) && (elfeno == 0)) { 2799 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2800 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2801 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2802 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2803 elfeno = 0; 2804 } 2805 2806 /* 2807 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2808 */ 2809 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2810 prf.pr_cur--; 2811 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2812 emsg) == 0) 2813 overflow = 1; 2814 } 2815 } 2816 2817 /* 2818 * Push out any message that's been built. Note, in the case of an 2819 * overflow condition, this message may be incomplete, in which case 2820 * make sure any partial string is null terminated. 2821 */ 2822 if (overflow) 2823 *(prf.pr_cur) = '\0'; 2824 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2825 *(prf.pr_cur - 1) = '\n'; 2826 (void) dowrite(&prf); 2827 } 2828 2829 DBG_CALL(Dbg_util_str(lml, nextptr)); 2830 va_end(args); 2831 2832 /* 2833 * Determine if there was insufficient space left in the buffer to 2834 * complete the message. If so, we'll have printed out as much as had 2835 * been processed if we're not yet executing the application. 2836 * Otherwise, there will be some debugging diagnostic indicating 2837 * as much of the error message as possible. Write out a final buffer 2838 * overflow diagnostic - unlocalized, so we don't chance more errors. 2839 */ 2840 if (overflow) { 2841 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2842 2843 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2844 lasterr = str; 2845 2846 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2847 (void) write(2, str, strlen(str)); 2848 (void) write(2, MSG_ORIG(MSG_STR_NL), 2849 MSG_STR_NL_SIZE); 2850 } 2851 } 2852 DBG_CALL(Dbg_util_str(lml, str)); 2853 2854 lock = 0; 2855 nextptr = errbuf + ERRSIZE; 2856 return; 2857 } 2858 2859 /* 2860 * If the application has started, then error messages are being saved 2861 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2862 * the case of a fatal error. In this case, establish the next error 2863 * pointer. If we haven't started the application, the whole message 2864 * buffer can be reused. 2865 */ 2866 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2867 lasterr = nextptr; 2868 2869 /* 2870 * Note, should we encounter an error such as ENOMEM, there may 2871 * be a number of the same error messages (ie. an operation 2872 * fails with ENOMEM, and then the attempts to construct the 2873 * error message itself, which incurs additional ENOMEM errors). 2874 * Compare any previous error message with the one we've just 2875 * created to prevent any duplication clutter. 2876 */ 2877 if ((rtld_flags & RT_FL_APPLIC) && 2878 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2879 prevptr = nextptr; 2880 nextptr = prf.pr_cur; 2881 *nextptr = '\0'; 2882 } 2883 } 2884 lock = 0; 2885 } 2886 2887 2888 #if DEBUG 2889 /* 2890 * Provide assfail() for ASSERT() statements, 2891 * see <sys/debug.h> for further details. 2892 */ 2893 int 2894 assfail(const char *a, const char *f, int l) 2895 { 2896 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2897 (void) _lwp_kill(_lwp_self(), SIGABRT); 2898 return (0); 2899 } 2900 #endif 2901 2902 /* 2903 * Exit. If we arrive here with a non zero status it's because of a fatal 2904 * error condition (most commonly a relocation error). If the application has 2905 * already had control, then the actual fatal error message will have been 2906 * recorded in the dlerror() message buffer. Print the message before really 2907 * exiting. 2908 */ 2909 void 2910 rtldexit(Lm_list * lml, int status) 2911 { 2912 if (status) { 2913 if (rtld_flags & RT_FL_APPLIC) { 2914 /* 2915 * If the error buffer has been used, write out all 2916 * pending messages - lasterr is simply a pointer to 2917 * the last message in this buffer. However, if the 2918 * buffer couldn't be created at all, lasterr points 2919 * to a constant error message string. 2920 */ 2921 if (*errbuf) { 2922 char *errptr = errbuf; 2923 char *errend = errbuf + ERRSIZE; 2924 2925 while ((errptr < errend) && *errptr) { 2926 size_t size = strlen(errptr); 2927 (void) write(2, errptr, size); 2928 (void) write(2, MSG_ORIG(MSG_STR_NL), 2929 MSG_STR_NL_SIZE); 2930 errptr += (size + 1); 2931 } 2932 } 2933 if (lasterr && ((lasterr < errbuf) || 2934 (lasterr > (errbuf + ERRSIZE)))) { 2935 (void) write(2, lasterr, strlen(lasterr)); 2936 (void) write(2, MSG_ORIG(MSG_STR_NL), 2937 MSG_STR_NL_SIZE); 2938 } 2939 } 2940 leave(lml); 2941 (void) _lwp_kill(_lwp_self(), killsig); 2942 } 2943 _exit(status); 2944 } 2945 2946 /* 2947 * Routines to co-ordinate the opening of /dev/zero and /proc. 2948 * dz_fd is exported for possible use by libld.so, and to insure it gets 2949 * closed on leaving ld.so.1. 2950 */ 2951 int dz_fd = FD_UNAVAIL; 2952 2953 void 2954 dz_init(int fd) 2955 { 2956 dz_fd = fd; 2957 } 2958 2959 2960 /* 2961 * mmap() a page from MAP_ANON 2962 * 2963 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2964 * not only mmap(MAP_ANON) but to also probe if it is available 2965 * on the current OS. 2966 */ 2967 Am_ret 2968 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 2969 { 2970 #if defined(MAP_ANON) 2971 static int noanon = 0; 2972 caddr_t va; 2973 2974 if (noanon == 0) { 2975 if ((va = (caddr_t)mmap(*addr, len, prot, 2976 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2977 *addr = va; 2978 return (AM_OK); 2979 } 2980 2981 if ((errno != EBADF) && (errno != EINVAL)) { 2982 int err = errno; 2983 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2984 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2985 return (AM_ERROR); 2986 } else 2987 noanon = 1; 2988 } 2989 #endif 2990 return (AM_NOSUP); 2991 } 2992 2993 /* 2994 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2995 * 2996 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2997 * behavior for older systems.) 2998 */ 2999 caddr_t 3000 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3001 { 3002 caddr_t va; 3003 int err; 3004 Am_ret amret; 3005 3006 amret = anon_map(lml, &addr, len, prot, flags); 3007 3008 if (amret == AM_OK) 3009 return (addr); 3010 if (amret == AM_ERROR) 3011 return (MAP_FAILED); 3012 3013 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3014 3015 if (dz_fd == FD_UNAVAIL) { 3016 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3017 O_RDONLY)) == FD_UNAVAIL) { 3018 err = errno; 3019 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3020 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3021 return (MAP_FAILED); 3022 } 3023 } 3024 3025 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3026 err = errno; 3027 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3028 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3029 } 3030 return (va); 3031 } 3032 3033 static int pr_fd = FD_UNAVAIL; 3034 3035 int 3036 pr_open(Lm_list *lml) 3037 { 3038 char proc[16]; 3039 3040 if (pr_fd == FD_UNAVAIL) { 3041 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3042 (int)getpid()); 3043 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3044 int err = errno; 3045 3046 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3047 strerror(err)); 3048 } 3049 } 3050 return (pr_fd); 3051 } 3052 3053 static int nu_fd = FD_UNAVAIL; 3054 3055 caddr_t 3056 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3057 { 3058 caddr_t va; 3059 int err; 3060 3061 if (nu_fd == FD_UNAVAIL) { 3062 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3063 O_RDONLY)) == FD_UNAVAIL) { 3064 err = errno; 3065 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3066 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3067 return (MAP_FAILED); 3068 } 3069 } 3070 3071 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3072 MAP_FAILED) { 3073 err = errno; 3074 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3075 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3076 } 3077 return (va); 3078 } 3079 3080 /* 3081 * Generic entry point from user code - simply grabs a lock. 3082 */ 3083 int 3084 enter(void) 3085 { 3086 if (rt_bind_guard(THR_FLG_RTLD)) { 3087 (void) rt_mutex_lock(&rtldlock); 3088 return (1); 3089 } 3090 return (0); 3091 } 3092 3093 /* 3094 * Generate diagnostics as to whether an object has been used. A symbolic 3095 * reference that gets bound to an object marks it as used. Dependencies that 3096 * are unused when RTLD_NOW is in effect should be removed from future builds 3097 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3098 * candidates for lazy-loading. 3099 * Unreferenced objects identify objects that are defined as dependencies but 3100 * are unreferenced by the caller (they may however be referenced by other 3101 * objects within the process, and therefore don't qualify as completely unused. 3102 */ 3103 void 3104 unused(Lm_list *lml) 3105 { 3106 Rt_map *lmp; 3107 int nl = 0; 3108 Word tracing; 3109 3110 /* 3111 * If we're not tracing unused references or dependencies, or debugging 3112 * there's nothing to do. 3113 */ 3114 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3115 3116 if ((tracing == 0) && (DBG_ENABLED == 0)) 3117 return; 3118 3119 /* 3120 * Traverse the link-maps looking for unreferenced or unused 3121 * dependencies. Ignore the first object on a link-map list, as this 3122 * is effectively always used. 3123 */ 3124 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3125 lmp = (Rt_map *)NEXT(lmp)) { 3126 /* 3127 * If tracing unreferenced objects, or under debugging, 3128 * determine whether any of this objects callers haven't 3129 * referenced it. 3130 */ 3131 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 3132 Bnd_desc ** bdpp; 3133 Aliste off; 3134 3135 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3136 Bnd_desc * bdp = *bdpp; 3137 Rt_map * clmp; 3138 3139 if (bdp->b_flags & BND_REFER) 3140 continue; 3141 3142 clmp = bdp->b_caller; 3143 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3144 continue; 3145 3146 if (nl++ == 0) { 3147 if (tracing & LML_FLG_TRC_UNREF) 3148 (void) printf(MSG_ORIG(MSG_STR_NL)); 3149 else 3150 DBG_CALL(Dbg_util_nl(lml, 3151 DBG_NL_STD)); 3152 } 3153 3154 if (tracing & LML_FLG_TRC_UNREF) 3155 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3156 NAME(lmp), NAME(clmp)); 3157 else 3158 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3159 } 3160 } 3161 3162 /* 3163 * If tracing unused objects simply display those objects that 3164 * haven't been referenced by anyone. 3165 */ 3166 if (FLAGS1(lmp) & FL1_RT_USED) 3167 continue; 3168 3169 if (nl++ == 0) { 3170 if (tracing) 3171 (void) printf(MSG_ORIG(MSG_STR_NL)); 3172 else 3173 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3174 } 3175 if (CYCGROUP(lmp)) { 3176 if (tracing) 3177 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3178 NAME(lmp), CYCGROUP(lmp)); 3179 else 3180 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3181 CYCGROUP(lmp))); 3182 } else { 3183 if (tracing) 3184 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3185 NAME(lmp)); 3186 else 3187 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3188 } 3189 } 3190 3191 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3192 } 3193 3194 /* 3195 * Initialization routine for the Fmap structure. If the fmap structure is 3196 * already in use, any mapping is released. The structure is then initialized 3197 * in preparation for further use. 3198 */ 3199 void 3200 fmap_setup() 3201 { 3202 #if defined(MAP_ALIGN) 3203 /* 3204 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3205 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3206 * should now be freed. 3207 */ 3208 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3209 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3210 3211 /* 3212 * Providing we haven't determined that this system doesn't support 3213 * MAP_ALIGN, initialize the mapping address with the default segment 3214 * alignment. 3215 */ 3216 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3217 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3218 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3219 } else { 3220 fmap->fm_maddr = 0; 3221 fmap->fm_mflags = MAP_PRIVATE; 3222 } 3223 #else 3224 if (fmap->fm_maddr) 3225 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3226 3227 fmap->fm_maddr = 0; 3228 fmap->fm_mflags = MAP_PRIVATE; 3229 #endif 3230 3231 fmap->fm_msize = syspagsz; 3232 fmap->fm_hwptr = 0; 3233 } 3234 3235 /* 3236 * Generic cleanup routine called prior to returning control to the user. 3237 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3238 * released, and any locks dropped. 3239 */ 3240 void 3241 leave(Lm_list *lml) 3242 { 3243 Lm_list *elml = lml; 3244 3245 /* 3246 * Alert the debuggers that the link-maps are consistent. Note, in the 3247 * case of tearing down a whole link-map list, lml will be null. In 3248 * this case use the main link-map list to test for a notification. 3249 */ 3250 if (elml == 0) 3251 elml = &lml_main; 3252 if (elml->lm_flags & LML_FLG_DBNOTIF) 3253 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3254 3255 if (dz_fd != FD_UNAVAIL) { 3256 (void) close(dz_fd); 3257 dz_fd = FD_UNAVAIL; 3258 } 3259 3260 if (pr_fd != FD_UNAVAIL) { 3261 (void) close(pr_fd); 3262 pr_fd = FD_UNAVAIL; 3263 } 3264 3265 if (nu_fd != FD_UNAVAIL) { 3266 (void) close(nu_fd); 3267 nu_fd = FD_UNAVAIL; 3268 } 3269 3270 fmap_setup(); 3271 3272 /* 3273 * Reinitialize error message pointer, and any overflow indication. 3274 */ 3275 nextptr = errbuf; 3276 prevptr = 0; 3277 3278 /* 3279 * Don't drop our lock if we are running on our link-map list as 3280 * there's little point in doing so since we are single-threaded. 3281 * 3282 * LML_FLG_HOLDLOCK is set for: 3283 * *) The ld.so.1's link-map list. 3284 * *) The auditor's link-map if the environment is 3285 * libc/libthread un-unified. 3286 */ 3287 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3288 return; 3289 3290 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3291 (void) rt_mutex_unlock(&rtldlock); 3292 (void) rt_bind_clear(THR_FLG_RTLD); 3293 } 3294 } 3295 3296 int 3297 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3298 { 3299 Alist * calp, * dalp; 3300 Aliste cnt1, cnt2; 3301 Grp_hdl ** ghpp1, ** ghpp2; 3302 3303 /* 3304 * An object can always find symbols within itself. 3305 */ 3306 if (clmp == dlmp) 3307 return (1); 3308 3309 /* 3310 * Don't allow an object to bind to an object that is being deleted 3311 * unless the binder is also being deleted. 3312 */ 3313 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3314 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3315 return (0); 3316 3317 /* 3318 * An object with world access can always bind to an object with global 3319 * visibility. 3320 */ 3321 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3322 return (1); 3323 3324 /* 3325 * An object with local access can only bind to an object that is a 3326 * member of the same group. 3327 */ 3328 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3329 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3330 return (0); 3331 3332 /* 3333 * Traverse the list of groups the caller is a part of. 3334 */ 3335 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3336 /* 3337 * If we're testing for the ability of two objects to bind to 3338 * each other regardless of a specific group, ignore that group. 3339 */ 3340 if (ghp && (*ghpp1 == ghp)) 3341 continue; 3342 3343 /* 3344 * Traverse the list of groups the destination is a part of. 3345 */ 3346 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3347 if (*ghpp1 == *ghpp2) 3348 return (1); 3349 } 3350 } 3351 return (0); 3352 } 3353 3354 /* 3355 * Initialize the environ symbol. Traditionally this is carried out by the crt 3356 * code prior to jumping to main. However, init sections get fired before this 3357 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3358 * information. In addition, a process may have multiple link-maps (ld.so.1's 3359 * debugging and preloading objects), and link auditing, and each may need an 3360 * environ variable set. 3361 * 3362 * This routine is called after a relocation() pass, and thus provides for: 3363 * 3364 * o setting environ on the main link-map after the initial application and 3365 * its dependencies have been established. Typically environ lives in the 3366 * application (provided by its crt), but in older applications it might 3367 * be in libc. Who knows what's expected of applications not built on 3368 * Solaris. 3369 * 3370 * o after loading a new shared object. We can add shared objects to various 3371 * link-maps, and any link-map dependencies requiring getopt() require 3372 * their own environ. In addition, lazy loading might bring in the 3373 * supplier of environ (libc used to be a lazy loading candidate) after 3374 * the link-map has been established and other objects are present. 3375 * 3376 * This routine handles all these scenarios, without adding unnecessary overhead 3377 * to ld.so.1. 3378 */ 3379 void 3380 set_environ(Lm_list *lml) 3381 { 3382 Rt_map * dlmp; 3383 Sym * sym; 3384 Slookup sl; 3385 uint_t binfo; 3386 3387 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3388 sl.sl_cmap = lml->lm_head; 3389 sl.sl_imap = lml->lm_head; 3390 sl.sl_hash = 0; 3391 sl.sl_rsymndx = 0; 3392 sl.sl_flags = LKUP_WEAK; 3393 3394 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3395 lml->lm_environ = (char ***)sym->st_value; 3396 3397 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3398 lml->lm_environ = 3399 (char ***)((uintptr_t)lml->lm_environ + 3400 (uintptr_t)ADDR(dlmp)); 3401 *(lml->lm_environ) = (char **)environ; 3402 lml->lm_flags |= LML_FLG_ENVIRON; 3403 } 3404 } 3405 3406 /* 3407 * Determine whether we have a secure executable. Uid and gid information 3408 * can be passed to us via the aux vector, however if these values are -1 3409 * then use the appropriate system call to obtain them. 3410 * 3411 * o If the user is the root they can do anything 3412 * 3413 * o If the real and effective uid's don't match, or the real and 3414 * effective gid's don't match then this is determined to be a `secure' 3415 * application. 3416 * 3417 * This function is called prior to any dependency processing (see _setup.c). 3418 * Any secure setting will remain in effect for the life of the process. 3419 */ 3420 void 3421 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3422 { 3423 #ifdef AT_SUN_AUXFLAGS 3424 if (auxflags != -1) { 3425 if ((auxflags & AF_SUN_SETUGID) != 0) 3426 rtld_flags |= RT_FL_SECURE; 3427 return; 3428 } 3429 #endif 3430 if (uid == -1) 3431 uid = getuid(); 3432 if (uid) { 3433 if (euid == -1) 3434 euid = geteuid(); 3435 if (uid != euid) 3436 rtld_flags |= RT_FL_SECURE; 3437 else { 3438 if (gid == -1) 3439 gid = getgid(); 3440 if (egid == -1) 3441 egid = getegid(); 3442 if (gid != egid) 3443 rtld_flags |= RT_FL_SECURE; 3444 } 3445 } 3446 } 3447 3448 /* 3449 * _REENTRANT code gets errno redefined to a function so provide for return 3450 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3451 * is basically singled threaded. Provide the interface for our dependencies. 3452 */ 3453 #undef errno 3454 #pragma weak _private___errno = ___errno 3455 int * 3456 ___errno() 3457 { 3458 extern int errno; 3459 3460 return (&errno); 3461 } 3462 3463 /* 3464 * The interface with the c library which is supplied through libdl.so.1. 3465 * A non-null argument allows a function pointer array to be passed to us which 3466 * is used to re-initialize the linker libc table. 3467 */ 3468 void 3469 _ld_libc(void * ptr) 3470 { 3471 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3472 } 3473 3474 /* 3475 * Determine whether a symbol name should be demangled. 3476 */ 3477 const char * 3478 demangle(const char *name) 3479 { 3480 if (rtld_flags & RT_FL_DEMANGLE) 3481 return (conv_demangle_name(name)); 3482 else 3483 return (name); 3484 } 3485