xref: /titanic_44/usr/src/cmd/sgs/rtld/common/setup.c (revision 22b4150905293d47fe86b81ac878f55e6080e1b6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *	Copyright (c) 1988 AT&T
29  *	  All Rights Reserved
30  */
31 
32 /*
33  * Run time linker common setup.
34  *
35  * Called from _setup to get the process going at startup.
36  */
37 
38 #include	<stdlib.h>
39 #include	<fcntl.h>
40 #include	<stdio.h>
41 #include	<sys/types.h>
42 #include	<sys/stat.h>
43 #include	<sys/mman.h>
44 #include	<string.h>
45 #include	<stdio.h>
46 #include	<unistd.h>
47 #include	<dlfcn.h>
48 #include	<sys/sysconfig.h>
49 #include	<sys/auxv.h>
50 #include	<debug.h>
51 #include	<conv.h>
52 #include	"_rtld.h"
53 #include	"_audit.h"
54 #include	"_elf.h"
55 #include	"_a.out.h"
56 #include	"msg.h"
57 
58 
59 extern int	_end, _edata, _etext;
60 extern void	_init(void);
61 extern int	_brk_unlocked(void *);
62 
63 #ifndef	SGS_PRE_UNIFIED_PROCESS
64 /* needed for _brk_unlocked() */
65 void *_nd = &_end;
66 #endif
67 
68 /*
69  * Counters that are incremented every time an object is mapped/unmapped.
70  *
71  * Note that exec() will usually map 2 objects before we receive control,
72  * but this can be 1 if ld.so.1 is executed directly. We count one of these
73  * here, and add another as necessary in setup().
74  */
75 u_longlong_t	cnt_map = 1;
76 u_longlong_t	cnt_unmap = 0;
77 
78 
79 /*
80  * Define for the executable's interpreter.
81  * Usually it is ld.so.1, but for the first release of ICL binaries
82  * it is libc.so.1.  We keep this information so that we don't end
83  * up mapping libc twice if it is the interpreter.
84  */
85 static Interp _interp;
86 
87 /*
88  * LD_PRELOAD objects.
89  */
90 static int
91 preload(const char *str, Rt_map *mlmp, Rt_map **clmp)
92 {
93 	Alist		*palp = NULL;
94 	char		*objs, *ptr, *next;
95 	Word		lmflags = lml_main.lm_flags;
96 	int		lddstub;
97 
98 	DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD));
99 
100 	if ((objs = strdup(str)) == NULL)
101 		return (0);
102 
103 	/*
104 	 * Determine if we've been called from lddstub.
105 	 */
106 	lddstub = (lmflags & LML_FLG_TRC_ENABLE) &&
107 	    (FLAGS1(*clmp) & FL1_RT_LDDSTUB);
108 
109 	ptr = strtok_r(objs, MSG_ORIG(MSG_STR_DELIMIT), &next);
110 	do {
111 		Rt_map	*nlmp = NULL;
112 		uint_t	flags;
113 
114 		DBG_CALL(Dbg_file_preload(&lml_main, ptr));
115 
116 		/*
117 		 * Establish the flags for loading each object.  If we're
118 		 * called via lddstub, then the first preloaded object is the
119 		 * object being inspected by ldd(1).  This object should not be
120 		 * marked as an interposer, as this object is intended to act
121 		 * as the target object of the process.
122 		 */
123 		if (lddstub)
124 			flags = FLG_RT_PRELOAD;
125 		else
126 			flags = (FLG_RT_PRELOAD | FLG_RT_OBJINTPO);
127 
128 		/*
129 		 * If this a secure application, then preload errors are
130 		 * reduced to warnings, as the errors are non-fatal.
131 		 */
132 		if (rtld_flags & RT_FL_SECURE)
133 			rtld_flags2 |= RT_FL2_FTL2WARN;
134 		if (expand_paths(*clmp, ptr, &palp, AL_CNT_NEEDED,
135 		    PD_FLG_EXTLOAD, 0) != 0)
136 			nlmp = load_one(&lml_main, ALIST_OFF_DATA, palp, *clmp,
137 			    MODE(mlmp), flags, 0, NULL);
138 		remove_plist(&palp, 0);
139 		if (rtld_flags & RT_FL_SECURE)
140 			rtld_flags2 &= ~RT_FL2_FTL2WARN;
141 		if (nlmp && (bind_one(*clmp, nlmp, BND_NEEDED) == 0))
142 			nlmp = NULL;
143 
144 		if (lddstub && nlmp) {
145 			lddstub = 0;
146 
147 			/*
148 			 * Fabricate a binding between the target shared object
149 			 * and lddstub so that the target object isn't called
150 			 * out from unused() processing.
151 			 */
152 			if (lmflags &
153 			    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)) {
154 				if (bind_one(*clmp, nlmp, BND_REFER) == 0)
155 					nlmp = NULL;
156 			}
157 
158 			/*
159 			 * By identifying lddstub as the caller, several
160 			 * confusing ldd() diagnostics get suppressed.  These
161 			 * diagnostics would reveal how the target shared object
162 			 * was found from lddstub.  Now that the real target is
163 			 * loaded, identify the target as the caller so that all
164 			 * ldd() diagnostics are enabled for subsequent objects.
165 			 */
166 			if (nlmp)
167 				*clmp = nlmp;
168 		}
169 
170 		/*
171 		 * If no error occurred with loading this object, indicate that
172 		 * this link-map list contains an interposer.
173 		 */
174 		if (nlmp == NULL) {
175 			if ((lmflags & LML_FLG_TRC_ENABLE) ||
176 			    (rtld_flags & RT_FL_SECURE))
177 				continue;
178 			else
179 				return (0);
180 		}
181 		if (flags & FLG_RT_OBJINTPO)
182 			lml_main.lm_flags |= LML_FLG_INTRPOSE;
183 
184 	} while ((ptr = strtok_r(NULL,
185 	    MSG_ORIG(MSG_STR_DELIMIT), &next)) != NULL);
186 
187 	free(palp);
188 	free(objs);
189 	return (1);
190 }
191 
192 Rt_map *
193 setup(char **envp, auxv_t *auxv, Word _flags, char *_platform, int _syspagsz,
194     char *_rtldname, ulong_t ld_base, ulong_t interp_base, int fd, Phdr *phdr,
195     char *execname, char **argv, uid_t uid, uid_t euid, gid_t gid, gid_t egid,
196     void *aoutdyn, int auxflags, uint_t hwcap_1)
197 {
198 	Rt_map			*rlmp, *mlmp, *clmp, **tobj = NULL;
199 	Ehdr			*ehdr;
200 	rtld_stat_t		status;
201 	int			features = 0, ldsoexec = 0;
202 	size_t			eaddr, esize;
203 	char			*str, *argvname;
204 	Word			lmflags;
205 	mmapobj_result_t	*mpp;
206 	Fdesc			fdr = { 0 }, fdm = { 0 };
207 	Rej_desc		rej = { 0 };
208 
209 	/*
210 	 * Now that ld.so has relocated itself, initialize our own 'environ' so
211 	 * as to establish an address suitable for any libc requirements.
212 	 */
213 	_environ = (char **)((ulong_t)auxv - sizeof (char *));
214 	_init();
215 	_environ = envp;
216 
217 	/*
218 	 * Establish a base time.  Total time diagnostics start from entering
219 	 * ld.so.1 here, however the base time is reset each time the ld.so.1
220 	 * is re-entered.  Note also, there will be a large time associated
221 	 * with the first diagnostic from ld.so.1, as bootstrapping ld.so.1
222 	 * and establishing the liblddbg infrastructure takes some time.
223 	 */
224 	(void) gettimeofday(&DBG_TOTALTIME, NULL);
225 	DBG_DELTATIME = DBG_TOTALTIME;
226 
227 	/*
228 	 * Determine how ld.so.1 has been executed.
229 	 */
230 	if ((fd == -1) && (phdr == NULL)) {
231 		/*
232 		 * If we received neither the AT_EXECFD nor the AT_PHDR aux
233 		 * vector, ld.so.1 must have been invoked directly from the
234 		 * command line.
235 		 */
236 		ldsoexec = 1;
237 
238 		/*
239 		 * AT_SUN_EXECNAME provides the most precise name, if it is
240 		 * available, otherwise fall back to argv[0].  At this time,
241 		 * there is no process name.
242 		 */
243 		if (execname)
244 			rtldname = execname;
245 		else if (argv[0])
246 			rtldname = argv[0];
247 		else
248 			rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
249 	} else {
250 		/*
251 		 * Otherwise, we have a standard process.  AT_SUN_EXECNAME
252 		 * provides the most precise name, if it is available,
253 		 * otherwise fall back to argv[0].  Provided the application
254 		 * is already mapped, the process is the application, so
255 		 * simplify the application name for use in any diagnostics.
256 		 */
257 		if (execname)
258 			argvname = execname;
259 		else if (argv[0])
260 			argvname = execname = argv[0];
261 		else
262 			argvname = execname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
263 
264 		if (fd == -1) {
265 			if ((str = strrchr(argvname, '/')) != NULL)
266 				procname = ++str;
267 			else
268 				procname = argvname;
269 		}
270 
271 		/*
272 		 * At this point, we don't know the runtime linkers full path
273 		 * name.  The _rtldname passed to us is the SONAME of the
274 		 * runtime linker, which is typically /lib/ld.so.1 no matter
275 		 * what the full path is.   Use this for now, we'll reset the
276 		 * runtime linkers name once the application is analyzed.
277 		 */
278 		if (_rtldname) {
279 			if ((str = strrchr(_rtldname, '/')) != NULL)
280 				rtldname = ++str;
281 			else
282 				rtldname = _rtldname;
283 		} else
284 			rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
285 
286 		/* exec() brought in two objects for us. Count the second one */
287 		cnt_map++;
288 	}
289 
290 	/*
291 	 * Initialize any global variables.
292 	 */
293 	at_flags = _flags;
294 	platform = _platform;
295 
296 	/*
297 	 * If pagesize is unspecified find its value.
298 	 */
299 	if ((syspagsz = _syspagsz) == 0)
300 		syspagsz = _sysconfig(_CONFIG_PAGESIZE);
301 
302 	/*
303 	 * Add the unused portion of the last data page to the free space list.
304 	 * The page size must be set before doing this.  Here, _end refers to
305 	 * the end of the runtime linkers bss.  Note that we do not use the
306 	 * unused data pages from any included .so's to supplement this free
307 	 * space as badly behaved .os's may corrupt this data space, and in so
308 	 * doing ruin our data.
309 	 */
310 	eaddr = S_DROUND((size_t)&_end);
311 	esize = eaddr % syspagsz;
312 	if (esize) {
313 		esize = syspagsz - esize;
314 		addfree((void *)eaddr, esize);
315 	}
316 
317 	/*
318 	 * Establish initial link-map list flags, and link-map list alists.
319 	 */
320 	if (alist_append(&lml_main.lm_lists, NULL, sizeof (Lm_cntl),
321 	    AL_CNT_LMLISTS) == NULL)
322 		return (0);
323 	lml_main.lm_flags |= LML_FLG_BASELM;
324 	lml_main.lm_lmid = LM_ID_BASE;
325 	lml_main.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_BASE);
326 
327 	if (alist_append(&lml_rtld.lm_lists, NULL, sizeof (Lm_cntl),
328 	    AL_CNT_LMLISTS) == NULL)
329 		return (0);
330 	lml_rtld.lm_flags |= (LML_FLG_RTLDLM | LML_FLG_NOAUDIT |
331 	    LML_FLG_HOLDLOCK);
332 	lml_rtld.lm_lmid = LM_ID_LDSO;
333 	lml_rtld.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_LDSO);
334 
335 	/*
336 	 * Determine whether we have a secure executable.
337 	 */
338 	security(uid, euid, gid, egid, auxflags);
339 
340 	/*
341 	 * Initialize a hardware capability descriptor for use in comparing
342 	 * each loaded object.
343 	 */
344 	if (auxflags & AF_SUN_HWCAPVERIFY) {
345 		rtld_flags2 |= RT_FL2_HWCAP;
346 		hwcap = (ulong_t)hwcap_1;
347 	}
348 
349 	/*
350 	 * Look for environment strings (allows things like LD_NOAUDIT to be
351 	 * established, although debugging isn't enabled until later).
352 	 */
353 	if ((readenv_user((const char **)envp, &(lml_main.lm_flags),
354 	    &(lml_main.lm_tflags), (aoutdyn != 0))) == 1)
355 		return (0);
356 
357 	/*
358 	 * Create a mapping descriptor for ld.so.1.  We can determine our
359 	 * two segments information from known symbols.
360 	 */
361 	if ((mpp = calloc(2, sizeof (mmapobj_result_t))) == NULL)
362 		return (0);
363 	mpp[0].mr_addr = (caddr_t)M_PTRUNC(ld_base);
364 	mpp[0].mr_msize = (caddr_t)&_etext - mpp[0].mr_addr;
365 	mpp[0].mr_fsize = mpp[0].mr_msize;
366 	mpp[0].mr_prot = (PROT_READ | PROT_EXEC);
367 
368 	mpp[1].mr_addr = (caddr_t)M_PTRUNC((uintptr_t)&r_debug);
369 	mpp[1].mr_msize = (caddr_t)&_end - mpp[1].mr_addr;
370 	mpp[1].mr_fsize = (caddr_t)&_edata - mpp[1].mr_addr;
371 	mpp[1].mr_prot = (PROT_READ | PROT_WRITE | PROT_EXEC);
372 
373 	if ((fdr.fd_nname = stravl_insert(_rtldname, 0, 0, 0)) == NULL)
374 		return (0);
375 	if ((rlmp = elf_new_lmp(&lml_rtld, ALIST_OFF_DATA, &fdr,
376 	    (Addr)mpp->mr_addr, (size_t)((uintptr_t)eaddr - (uintptr_t)ld_base),
377 	    NULL, NULL)) == NULL)
378 		return (0);
379 
380 	MMAPS(rlmp) = mpp;
381 	MMAPCNT(rlmp) = 2;
382 	PADSTART(rlmp) = (ulong_t)mpp[0].mr_addr;
383 	PADIMLEN(rlmp) = (ulong_t)mpp[0].mr_addr + (ulong_t)mpp[1].mr_addr +
384 	    (ulong_t)mpp[1].mr_msize;
385 
386 	MODE(rlmp) |= (RTLD_LAZY | RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD);
387 	FLAGS(rlmp) |= (FLG_RT_ANALYZED | FLG_RT_RELOCED | FLG_RT_INITDONE |
388 	    FLG_RT_INITCLCT | FLG_RT_FINICLCT | FLG_RT_MODESET);
389 
390 	/*
391 	 * Initialize the runtime linkers information.
392 	 */
393 	interp = &_interp;
394 	interp->i_name = (char *)rtldname;
395 	interp->i_faddr = (caddr_t)ADDR(rlmp);
396 	ldso_plt_init(rlmp);
397 
398 	/*
399 	 * If ld.so.1 has been invoked directly, process its arguments.
400 	 */
401 	if (ldsoexec) {
402 		/*
403 		 * Process any arguments that are specific to ld.so.1, and
404 		 * reorganize the process stack to effectively remove ld.so.1
405 		 * from it.  Reinitialize the environment pointer, as this may
406 		 * have been shifted after skipping ld.so.1's arguments.
407 		 */
408 		if (rtld_getopt(argv, &envp, &auxv, &(lml_main.lm_flags),
409 		    &(lml_main.lm_tflags), (aoutdyn != 0)) == 1) {
410 			eprintf(&lml_main, ERR_NONE, MSG_INTL(MSG_USG_BADOPT));
411 			return (0);
412 		}
413 		_environ = envp;
414 
415 		/*
416 		 * Open the object that ld.so.1 is to execute.
417 		 */
418 		argvname = execname = argv[0];
419 
420 		if ((fd = open(argvname, O_RDONLY)) == -1) {
421 			int	err = errno;
422 			eprintf(&lml_main, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
423 			    argvname, strerror(err));
424 			return (0);
425 		}
426 	}
427 
428 	/*
429 	 * Map in the file, if exec has not already done so, or if the file
430 	 * was passed as an argument to an explicit execution of ld.so.1 from
431 	 * the command line.
432 	 */
433 	if (fd != -1) {
434 		/*
435 		 * Map the file.  Once the object is mapped we no longer need
436 		 * the file descriptor.
437 		 */
438 		(void) rtld_fstat(fd, &status);
439 		fdm.fd_ftp = map_obj(&lml_main, &fdm, status.st_size, argvname,
440 		    fd, &rej);
441 		(void) close(fd);
442 
443 		if (fdm.fd_ftp == NULL) {
444 			Conv_reject_desc_buf_t rej_buf;
445 
446 			eprintf(&lml_main, ERR_FATAL,
447 			    MSG_INTL(err_reject[rej.rej_type]), argvname,
448 			    conv_reject_desc(&rej, &rej_buf, M_MACH));
449 			return (0);
450 		}
451 
452 		/*
453 		 * Finish processing the loading of the file.
454 		 */
455 		if ((fdm.fd_nname = stravl_insert(argvname, 0, 0, 0)) == NULL)
456 			return (0);
457 		fdm.fd_dev = status.st_dev;
458 		fdm.fd_ino = status.st_ino;
459 
460 		if ((mlmp = load_file(&lml_main, ALIST_OFF_DATA, &fdm,
461 		    NULL)) == NULL)
462 			return (0);
463 
464 		/*
465 		 * We now have a process name for error diagnostics.
466 		 */
467 		if ((str = strrchr(argvname, '/')) != NULL)
468 			procname = ++str;
469 		else
470 			procname = argvname;
471 
472 		if (ldsoexec) {
473 			mmapobj_result_t	*mpp = MMAPS(mlmp);
474 			uint_t			mnum, mapnum = MMAPCNT(mlmp);
475 			void			*brkbase = NULL;
476 
477 			/*
478 			 * Since ld.so.1 was the primary executed object - the
479 			 * brk() base has not yet been initialized, we need to
480 			 * initialize it.  For an executable, initialize it to
481 			 * the end of the object.  For a shared object (ET_DYN)
482 			 * initialize it to the first page in memory.
483 			 */
484 			for (mnum = 0; mnum < mapnum; mnum++, mpp++)
485 				brkbase = mpp->mr_addr + mpp->mr_msize;
486 
487 			if (brkbase == NULL)
488 				brkbase = (void *)syspagsz;
489 
490 			if (_brk_unlocked(brkbase) == -1) {
491 				int	err = errno;
492 
493 				eprintf(&lml_main, ERR_FATAL,
494 				    MSG_INTL(MSG_SYS_BRK), argvname,
495 				    strerror(err));
496 				return (0);
497 			}
498 		}
499 	} else {
500 		/*
501 		 * Set up function ptr and arguments according to the type
502 		 * of file class the executable is. (Currently only supported
503 		 * types are ELF and a.out format.)  Then create a link map
504 		 * for the executable.
505 		 */
506 		if (aoutdyn) {
507 #ifdef A_OUT
508 			mmapobj_result_t	*mpp;
509 
510 			/*
511 			 * Create a mapping structure sufficient to describe
512 			 * a single two segments.  The ADDR() of the a.out is
513 			 * established as 0, which is required but the AOUT
514 			 * relocation code.
515 			 */
516 			if ((mpp =
517 			    calloc(sizeof (mmapobj_result_t), 2)) == NULL)
518 				return (0);
519 
520 			if ((fdm.fd_nname =
521 			    stravl_insert(execname, 0, 0, 0)) == NULL)
522 				return (0);
523 			if ((mlmp = aout_new_lmp(&lml_main, ALIST_OFF_DATA,
524 			    &fdm, 0, 0, aoutdyn, NULL)) == NULL)
525 				return (0);
526 
527 			/*
528 			 * Establish the true mapping information for the a.out.
529 			 */
530 			if (aout_get_mmap(&lml_main, mpp)) {
531 				free(mpp);
532 				return (0);
533 			}
534 
535 			MSIZE(mlmp) =
536 			    (size_t)(mpp[1].mr_addr + mpp[1].mr_msize) -
537 			    S_ALIGN((size_t)mpp[0].mr_addr, syspagsz);
538 			MMAPS(mlmp) = mpp;
539 			MMAPCNT(mlmp) = 2;
540 			PADSTART(mlmp) = (ulong_t)mpp->mr_addr;
541 			PADIMLEN(mlmp) = mpp->mr_msize;
542 
543 			/*
544 			 * Disable any object configuration cache (BCP apps
545 			 * bring in sbcp which can benefit from any object
546 			 * cache, but both the app and sbcp can't use the same
547 			 * objects).
548 			 */
549 			rtld_flags |= RT_FL_NOOBJALT;
550 
551 			/*
552 			 * Make sure no-direct bindings are in effect.
553 			 */
554 			lml_main.lm_tflags |= LML_TFLG_NODIRECT;
555 #else
556 			eprintf(&lml_main, ERR_FATAL,
557 			    MSG_INTL(MSG_ERR_REJ_UNKFILE), argvname);
558 			return (0);
559 #endif
560 		} else if (phdr) {
561 			Phdr			*pptr;
562 			Off			i_offset = 0;
563 			Addr			base = 0;
564 			ulong_t			phsize;
565 			mmapobj_result_t	*mpp, *fmpp, *hmpp = NULL;
566 			uint_t			mapnum = 0;
567 			int			i;
568 			size_t			msize;
569 
570 			/*
571 			 * Using the executables phdr address determine the base
572 			 * address of the input file.  NOTE, this assumes the
573 			 * program headers and elf header are part of the same
574 			 * mapped segment.  Although this has held for many
575 			 * years now, it might be more flexible if the kernel
576 			 * gave use the ELF headers start address, rather than
577 			 * the Program headers.
578 			 *
579 			 * Determine from the ELF header if we're been called
580 			 * from a shared object or dynamic executable.  If the
581 			 * latter, then any addresses within the object are used
582 			 * as is.  Addresses within shared objects must be added
583 			 * to the process's base address.
584 			 */
585 			ehdr = (Ehdr *)((Addr)phdr - phdr->p_offset);
586 			phsize = ehdr->e_phentsize;
587 			if (ehdr->e_type == ET_DYN)
588 				base = (Addr)ehdr;
589 
590 			/*
591 			 * Allocate a mapping array to retain mapped segment
592 			 * information.
593 			 */
594 			if ((fmpp = mpp = calloc(ehdr->e_phnum,
595 			    sizeof (mmapobj_result_t))) == NULL)
596 				return (0);
597 
598 			/*
599 			 * Extract the needed information from the segment
600 			 * headers.
601 			 */
602 			for (i = 0, pptr = phdr; i < ehdr->e_phnum; i++) {
603 				if (pptr->p_type == PT_INTERP) {
604 					i_offset = pptr->p_offset;
605 					interp->i_faddr =
606 					    (caddr_t)interp_base;
607 				}
608 				if ((pptr->p_type == PT_LOAD) &&
609 				    (pptr->p_filesz || pptr->p_memsz)) {
610 					int	perm = (PROT_READ | PROT_EXEC);
611 					size_t	off;
612 
613 					if (i_offset && pptr->p_filesz &&
614 					    (i_offset >= pptr->p_offset) &&
615 					    (i_offset <=
616 					    (pptr->p_memsz + pptr->p_offset))) {
617 						interp->i_name = (char *)
618 						    pptr->p_vaddr + i_offset -
619 						    pptr->p_offset + base;
620 						i_offset = 0;
621 					}
622 
623 					if (pptr->p_flags & PF_W)
624 						perm |= PROT_WRITE;
625 
626 					/*
627 					 * Retain segments mapping info.  Round
628 					 * each segment to a page boundary, as
629 					 * this insures addresses are suitable
630 					 * for mprotect() if required.
631 					 */
632 					off = pptr->p_vaddr + base;
633 					if (hmpp == NULL) {
634 						hmpp = mpp;
635 						mpp->mr_addr = (caddr_t)ehdr;
636 					} else
637 						mpp->mr_addr = (caddr_t)off;
638 
639 					off -= (size_t)(uintptr_t)mpp->mr_addr;
640 					mpp->mr_msize = pptr->p_memsz + off;
641 					mpp->mr_fsize = pptr->p_filesz + off;
642 					mpp->mr_prot = perm;
643 
644 					mpp++, mapnum++;
645 				}
646 
647 				pptr = (Phdr *)((ulong_t)pptr + phsize);
648 			}
649 
650 			mpp--;
651 			msize = (size_t)(mpp->mr_addr + mpp->mr_msize) -
652 			    S_ALIGN((size_t)fmpp->mr_addr, syspagsz);
653 
654 			if ((fdm.fd_nname =
655 			    stravl_insert(execname, 0, 0, 0)) == NULL)
656 				return (0);
657 			if ((mlmp = elf_new_lmp(&lml_main, ALIST_OFF_DATA, &fdm,
658 			    (Addr)hmpp->mr_addr, msize, NULL, NULL)) == NULL)
659 				return (0);
660 
661 			MMAPS(mlmp) = fmpp;
662 			MMAPCNT(mlmp) = mapnum;
663 			PADSTART(mlmp) = (ulong_t)fmpp->mr_addr;
664 			PADIMLEN(mlmp) = (ulong_t)fmpp->mr_addr +
665 			    (ulong_t)mpp->mr_addr + (ulong_t)mpp->mr_msize;
666 		}
667 	}
668 
669 	/*
670 	 * Establish the interpretors name as that defined within the initial
671 	 * object (executable).  This provides for ORIGIN processing of ld.so.1
672 	 * dependencies.  Note, the NAME() of the object remains that which was
673 	 * passed to us as the SONAME on execution.
674 	 */
675 	if (ldsoexec == 0) {
676 		size_t	len = strlen(interp->i_name);
677 
678 		if (expand(&interp->i_name, &len, 0, 0,
679 		    (PD_TKN_ISALIST | PD_TKN_HWCAP), rlmp) & PD_TKN_RESOLVED)
680 			fdr.fd_flags |= FLG_FD_RESOLVED;
681 	}
682 	fdr.fd_pname = interp->i_name;
683 	(void) fullpath(rlmp, &fdr);
684 
685 	/*
686 	 * The runtime linker acts as a filtee for various dl*() functions that
687 	 * are defined in libc (and libdl).  Make sure this standard name for
688 	 * the runtime linker is also registered in the FullPathNode AVL tree.
689 	 */
690 	(void) fpavl_insert(&lml_rtld, rlmp, _rtldname, 0);
691 
692 	/*
693 	 * Having established the true runtime linkers name, simplify the name
694 	 * for error diagnostics.
695 	 */
696 	if ((str = strrchr(PATHNAME(rlmp), '/')) != NULL)
697 		rtldname = ++str;
698 	else
699 		rtldname = PATHNAME(rlmp);
700 
701 	/*
702 	 * Expand the fullpath name of the application.  This typically occurs
703 	 * as a part of loading an object, but as the kernel probably mapped
704 	 * it in, complete this processing now.
705 	 */
706 	(void) fullpath(mlmp, 0);
707 
708 	/*
709 	 * Some troublesome programs will change the value of argv[0].  Dupping
710 	 * the process string protects us, and insures the string is left in
711 	 * any core files.
712 	 */
713 	if ((str = (char *)strdup(procname)) == NULL)
714 		return (0);
715 	procname = str;
716 
717 #if	defined(_ELF64)
718 	/*
719 	 * If this is a 64-bit process, determine whether this process has
720 	 * restricted the process address space to 32-bits.  Any dependencies
721 	 * that are restricted to a 32-bit address space can only be loaded if
722 	 * the executable has established this requirement.
723 	 */
724 	if (SFCAP(mlmp) & SF1_SUNW_ADDR32)
725 		rtld_flags2 |= RT_FL2_ADDR32;
726 #endif
727 	/*
728 	 * Validate any hardware capabilities information.
729 	 */
730 	if (HWCAP(mlmp) && (hwcap_check(HWCAP(mlmp), &rej) == 0)) {
731 		if (lml_main.lm_flags & LML_FLG_TRC_ENABLE) {
732 			(void) printf(MSG_INTL(MSG_LDD_GEN_HWCAP_1),
733 			    NAME(mlmp), rej.rej_str);
734 		} else {
735 			eprintf(&lml_main, ERR_FATAL,
736 			    MSG_INTL(MSG_GEN_BADHWCAP_1), rej.rej_str);
737 			return (0);
738 		}
739 	}
740 
741 	/*
742 	 * Validate any software capabilities information, other than
743 	 * SF1_SUNW_ADDR32.  Only dependencies need check their SF1_SUNW_ADDR32
744 	 * use against the application enabling a 32-bit address space.
745 	 */
746 	if ((SFCAP(mlmp) & ~SF1_SUNW_ADDR32) &&
747 	    (sfcap_check(SFCAP(mlmp), &rej) == 0)) {
748 		if (lml_main.lm_flags & LML_FLG_TRC_ENABLE) {
749 			(void) printf(MSG_INTL(MSG_LDD_GEN_SFCAP_1),
750 			    NAME(mlmp), rej.rej_str);
751 		} else {
752 			eprintf(&lml_main, ERR_FATAL,
753 			    MSG_INTL(MSG_GEN_BADSFCAP_1), rej.rej_str);
754 			return (0);
755 		}
756 	}
757 
758 	FLAGS(mlmp) |= (FLG_RT_ISMAIN | FLG_RT_MODESET);
759 	FLAGS1(mlmp) |= FL1_RT_USED;
760 
761 	/*
762 	 * It's the responsibility of MAIN(crt0) to call it's _init and _fini
763 	 * section, therefore null out any INIT/FINI so that this object isn't
764 	 * collected during tsort processing.  And, if the application has no
765 	 * initarray or finiarray we can economize on establishing bindings.
766 	 */
767 	INIT(mlmp) = FINI(mlmp) = NULL;
768 	if ((INITARRAY(mlmp) == NULL) && (FINIARRAY(mlmp) == NULL))
769 		FLAGS1(mlmp) |= FL1_RT_NOINIFIN;
770 
771 	/*
772 	 * Identify lddstub if necessary.
773 	 */
774 	if (lml_main.lm_flags & LML_FLG_TRC_LDDSTUB)
775 		FLAGS1(mlmp) |= FL1_RT_LDDSTUB;
776 
777 	/*
778 	 * Retain our argument information for use in dlinfo.
779 	 */
780 	argsinfo.dla_argv = argv--;
781 	argsinfo.dla_argc = (long)*argv;
782 	argsinfo.dla_envp = envp;
783 	argsinfo.dla_auxv = auxv;
784 
785 	(void) enter(0);
786 
787 	/*
788 	 * Add our two main link-maps to the dynlm_list
789 	 */
790 	if (aplist_append(&dynlm_list, &lml_main, AL_CNT_DYNLIST) == NULL)
791 		return (0);
792 
793 	if (aplist_append(&dynlm_list, &lml_rtld, AL_CNT_DYNLIST) == NULL)
794 		return (0);
795 
796 	/*
797 	 * Reset the link-map counts for both lists.  The init count is used to
798 	 * track how many objects have pending init sections, this gets incre-
799 	 * mented each time an object is relocated.  Since ld.so.1 relocates
800 	 * itself, it's init count will remain zero.
801 	 * The object count is used to track how many objects have pending fini
802 	 * sections, as ld.so.1 handles its own fini we can zero its count.
803 	 */
804 	lml_main.lm_obj = 1;
805 	lml_rtld.lm_obj = 0;
806 
807 	/*
808 	 * Initialize debugger information structure.  Some parts of this
809 	 * structure were initialized statically.
810 	 */
811 	r_debug.rtd_rdebug.r_map = (Link_map *)lml_main.lm_head;
812 	r_debug.rtd_rdebug.r_ldsomap = (Link_map *)lml_rtld.lm_head;
813 	r_debug.rtd_rdebug.r_ldbase = r_debug.rtd_rdebug.r_ldsomap->l_addr;
814 	r_debug.rtd_dynlmlst = &dynlm_list;
815 
816 	if (platform)
817 		platform_sz = strlen(platform);
818 
819 	/*
820 	 * Determine the dev/inode information for the executable to complete
821 	 * load_so() checking for those who might dlopen(a.out).
822 	 */
823 	if (rtld_stat(PATHNAME(mlmp), &status) == 0) {
824 		STDEV(mlmp) = status.st_dev;
825 		STINO(mlmp) = status.st_ino;
826 	}
827 
828 	/*
829 	 * Initialize any configuration information.
830 	 */
831 	if (!(rtld_flags & RT_FL_NOCFG)) {
832 		if ((features = elf_config(mlmp, (aoutdyn != 0))) == -1)
833 			return (0);
834 	}
835 
836 	/*
837 	 * Establish the modes of the initial object.  These modes are
838 	 * propagated to any preloaded objects and explicit shared library
839 	 * dependencies.
840 	 *
841 	 * If we're generating a configuration file using crle(1), remove
842 	 * any RTLD_NOW use, as we don't want to trigger any relocation proc-
843 	 * essing during crle(1)'s first past (this would just be unnecessary
844 	 * overhead).  Any filters are explicitly loaded, and thus RTLD_NOW is
845 	 * not required to trigger filter loading.
846 	 *
847 	 * Note, RTLD_NOW may have been established during analysis of the
848 	 * application had the application been built -z now.
849 	 */
850 	MODE(mlmp) |= (RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD);
851 
852 	if (rtld_flags & RT_FL_CONFGEN) {
853 		MODE(mlmp) |= RTLD_CONFGEN;
854 		MODE(mlmp) &= ~RTLD_NOW;
855 		rtld_flags2 &= ~RT_FL2_BINDNOW;
856 	}
857 
858 	if ((MODE(mlmp) & RTLD_NOW) == 0) {
859 		if (rtld_flags2 & RT_FL2_BINDNOW)
860 			MODE(mlmp) |= RTLD_NOW;
861 		else
862 			MODE(mlmp) |= RTLD_LAZY;
863 	}
864 
865 	/*
866 	 * If debugging was requested initialize things now that any cache has
867 	 * been established.  A user can specify LD_DEBUG=help to discover the
868 	 * list of debugging tokens available without running the application.
869 	 * However, don't allow this setting from a configuration file.
870 	 *
871 	 * Note, to prevent recursion issues caused by loading and binding the
872 	 * debugging libraries themselves, a local debugging descriptor is
873 	 * initialized.  Once the debugging setup has completed, this local
874 	 * descriptor is copied to the global descriptor which effectively
875 	 * enables diagnostic output.
876 	 *
877 	 * Ignore any debugging request if we're being monitored by a process
878 	 * that expects the old getpid() initialization handshake.
879 	 */
880 	if ((rpl_debug || prm_debug) && ((rtld_flags & RT_FL_DEBUGGER) == 0)) {
881 		Dbg_desc	_dbg_desc = {0};
882 		struct timeval	total = DBG_TOTALTIME;
883 		struct timeval	delta = DBG_DELTATIME;
884 
885 		if (rpl_debug) {
886 			if (dbg_setup(rpl_debug, &_dbg_desc) == 0)
887 				return (0);
888 			if (_dbg_desc.d_extra & DBG_E_HELP_EXIT)
889 				rtldexit(&lml_main, 0);
890 		}
891 		if (prm_debug)
892 			(void) dbg_setup(prm_debug, &_dbg_desc);
893 
894 		*dbg_desc = _dbg_desc;
895 		DBG_TOTALTIME = total;
896 		DBG_DELTATIME = delta;
897 	}
898 
899 	/*
900 	 * Now that debugging is enabled generate any diagnostics from any
901 	 * previous events.
902 	 */
903 	if (hwcap)
904 		DBG_CALL(Dbg_cap_val_hw1(&lml_main, hwcap, M_MACH));
905 	if (features)
906 		DBG_CALL(Dbg_file_config_dis(&lml_main, config->c_name,
907 		    features));
908 
909 	if (DBG_ENABLED) {
910 		DBG_CALL(Dbg_file_ldso(rlmp, envp, auxv,
911 		    LIST(rlmp)->lm_lmidstr, ALIST_OFF_DATA));
912 
913 		if (THIS_IS_ELF(mlmp)) {
914 			DBG_CALL(Dbg_file_elf(&lml_main, PATHNAME(mlmp),
915 			    ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr,
916 			    ALIST_OFF_DATA));
917 		} else {
918 			DBG_CALL(Dbg_file_aout(&lml_main, PATHNAME(mlmp),
919 			    ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr,
920 			    ALIST_OFF_DATA));
921 		}
922 	}
923 
924 	/*
925 	 * Enable auditing.
926 	 */
927 	if (rpl_audit || prm_audit || profile_lib) {
928 		int		ndx;
929 		const char	*aud[3];
930 
931 		aud[0] = rpl_audit;
932 		aud[1] = prm_audit;
933 		aud[2] = profile_lib;
934 
935 		/*
936 		 * Any global auditing (set using LD_AUDIT or LD_PROFILE) that
937 		 * can't be established is non-fatal.
938 		 */
939 		if ((auditors = calloc(1, sizeof (Audit_desc))) == NULL)
940 			return (0);
941 
942 		for (ndx = 0; ndx < 3; ndx++) {
943 			if (aud[ndx]) {
944 				if ((auditors->ad_name =
945 				    strdup(aud[ndx])) == NULL)
946 					return (0);
947 				rtld_flags2 |= RT_FL2_FTL2WARN;
948 				(void) audit_setup(mlmp, auditors,
949 				    PD_FLG_EXTLOAD, NULL);
950 				rtld_flags2 &= ~RT_FL2_FTL2WARN;
951 			}
952 		}
953 		lml_main.lm_tflags |= auditors->ad_flags;
954 	}
955 	if (AUDITORS(mlmp)) {
956 		/*
957 		 * Any object required auditing (set with a DT_DEPAUDIT dynamic
958 		 * entry) that can't be established is fatal.
959 		 */
960 		if (FLAGS1(mlmp) & FL1_RT_GLOBAUD) {
961 			/*
962 			 * If this object requires global auditing, use the
963 			 * local auditing information to set the global
964 			 * auditing descriptor.  The effect is that a
965 			 * DT_DEPAUDIT act as an LD_AUDIT.
966 			 */
967 			if ((auditors == NULL) && ((auditors = calloc(1,
968 			    sizeof (Audit_desc))) == NULL))
969 				return (0);
970 
971 			auditors->ad_name = AUDITORS(mlmp)->ad_name;
972 			if (audit_setup(mlmp, auditors, 0, NULL) == 0)
973 				return (0);
974 			lml_main.lm_tflags |= auditors->ad_flags;
975 
976 			/*
977 			 * Clear the local auditor information.
978 			 */
979 			free((void *) AUDITORS(mlmp));
980 			AUDITORS(mlmp) = NULL;
981 
982 		} else {
983 			/*
984 			 * Establish any local auditing.
985 			 */
986 			if (audit_setup(mlmp, AUDITORS(mlmp), 0, NULL) == 0)
987 				return (0);
988 
989 			AFLAGS(mlmp) |= AUDITORS(mlmp)->ad_flags;
990 			lml_main.lm_flags |= LML_FLG_LOCAUDIT;
991 		}
992 	}
993 
994 	/*
995 	 * Explicitly add the initial object and ld.so.1 to those objects being
996 	 * audited.  Note, although the ld.so.1 link-map isn't auditable,
997 	 * establish a cookie for ld.so.1 as this may be bound to via the
998 	 * dl*() family.
999 	 */
1000 	if ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_MASK) {
1001 		if (((audit_objopen(mlmp, mlmp) == 0) ||
1002 		    (audit_objopen(mlmp, rlmp) == 0)) &&
1003 		    (AFLAGS(mlmp) & LML_TFLG_AUD_MASK))
1004 			return (0);
1005 	}
1006 
1007 	/*
1008 	 * Map in any preloadable shared objects.  Establish the caller as the
1009 	 * head of the main link-map list.  In the case of being exercised from
1010 	 * lddstub, the caller gets reassigned to the first target shared object
1011 	 * so as to provide intuitive diagnostics from ldd().
1012 	 *
1013 	 * Note, it is valid to preload a 4.x shared object with a 5.0
1014 	 * executable (or visa-versa), as this functionality is required by
1015 	 * ldd(1).
1016 	 */
1017 	clmp = mlmp;
1018 	if (rpl_preload && (preload(rpl_preload, mlmp, &clmp) == 0))
1019 		return (0);
1020 	if (prm_preload && (preload(prm_preload, mlmp, &clmp) == 0))
1021 		return (0);
1022 
1023 	/*
1024 	 * Load all dependent (needed) objects.
1025 	 */
1026 	if (analyze_lmc(&lml_main, ALIST_OFF_DATA, mlmp, NULL) == NULL)
1027 		return (0);
1028 
1029 	/*
1030 	 * Relocate all the dependencies we've just added.
1031 	 *
1032 	 * If this process has been established via crle(1), the environment
1033 	 * variable LD_CONFGEN will have been set.  crle(1) may create this
1034 	 * process twice.  The first time crle only needs to gather dependency
1035 	 * information.  The second time, is to dldump() the images.
1036 	 *
1037 	 * If we're only gathering dependencies, relocation is unnecessary.
1038 	 * As crle(1) may be building an arbitrary family of objects, they may
1039 	 * not fully relocate either.  Hence the relocation phase is not carried
1040 	 * out now, but will be called by crle(1) once all objects have been
1041 	 * loaded.
1042 	 */
1043 	if ((rtld_flags & RT_FL_CONFGEN) == 0) {
1044 
1045 		DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD));
1046 
1047 		if (relocate_lmc(&lml_main, ALIST_OFF_DATA, mlmp,
1048 		    mlmp, NULL) == 0)
1049 			return (0);
1050 
1051 		/*
1052 		 * Inform the debuggers that basic process initialization is
1053 		 * complete, and that the state of ld.so.1 (link-map lists,
1054 		 * etc.) is stable.  This handshake enables the debugger to
1055 		 * initialize themselves, and consequently allows the user to
1056 		 * set break points in .init code.
1057 		 *
1058 		 * Most new debuggers use librtld_db to monitor activity events.
1059 		 * Older debuggers indicated their presence by setting the
1060 		 * DT_DEBUG entry in the dynamic executable (see elf_new_lm()).
1061 		 * In this case, getpid() is called so that the debugger can
1062 		 * catch the system call.  This old mechanism has some
1063 		 * restrictions, as getpid() should not be called prior to
1064 		 * basic process initialization being completed.  This
1065 		 * restriction has become increasingly difficult to maintain,
1066 		 * as the use of auditors, LD_DEBUG, and the initialization
1067 		 * handshake with libc can result in "premature" getpid()
1068 		 * calls.  The use of this getpid() handshake is expected to
1069 		 * disappear at some point in the future, and there is intent
1070 		 * to work towards that goal.
1071 		 */
1072 		rd_event(&lml_main, RD_DLACTIVITY, RT_CONSISTENT);
1073 		rd_event(&lml_rtld, RD_DLACTIVITY, RT_CONSISTENT);
1074 
1075 		if (rtld_flags & RT_FL_DEBUGGER) {
1076 			r_debug.rtd_rdebug.r_flags |= RD_FL_ODBG;
1077 			(void) getpid();
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * Indicate preinit activity, and call any auditing routines.  These
1083 	 * routines are called before initializing any threads via libc, or
1084 	 * before collecting the complete set of .inits on the primary link-map.
1085 	 * Although most libc interfaces are encapsulated in local routines
1086 	 * within libc, they have been known to escape (ie. call a .plt).  As
1087 	 * the appcert auditor uses preinit as a trigger to establish some
1088 	 * external interfaces to the main link-maps libc, we need to activate
1089 	 * this trigger before exercising any code within libc.  Additionally,
1090 	 * I wouldn't put it past an auditor to add additional objects to the
1091 	 * primary link-map.  Hence, we collect .inits after the audit call.
1092 	 */
1093 	rd_event(&lml_main, RD_PREINIT, 0);
1094 
1095 	if ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_ACTIVITY)
1096 		audit_activity(mlmp, LA_ACT_CONSISTENT);
1097 	if ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_PREINIT)
1098 		audit_preinit(mlmp);
1099 
1100 	/*
1101 	 * If we're creating initial configuration information, we're done
1102 	 * now that the auditing step has been called.
1103 	 */
1104 	if (rtld_flags & RT_FL_CONFGEN) {
1105 		leave(LIST(mlmp), 0);
1106 		return (mlmp);
1107 	}
1108 
1109 	/*
1110 	 * Sort the .init sections of all objects we've added.  If we're
1111 	 * tracing we only need to execute this under ldd(1) with the -i or -u
1112 	 * options.
1113 	 */
1114 	lmflags = lml_main.lm_flags;
1115 	if (((lmflags & LML_FLG_TRC_ENABLE) == 0) ||
1116 	    (lmflags & (LML_FLG_TRC_INIT | LML_FLG_TRC_UNREF))) {
1117 		if ((tobj = tsort(mlmp, LIST(mlmp)->lm_init,
1118 		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
1119 			return (0);
1120 	}
1121 
1122 	/*
1123 	 * If we are tracing we're done.  This is the one legitimate use of a
1124 	 * direct call to rtldexit() rather than return, as we don't want to
1125 	 * return and jump to the application.
1126 	 */
1127 	if (lmflags & LML_FLG_TRC_ENABLE) {
1128 		unused(&lml_main);
1129 		rtldexit(&lml_main, 0);
1130 	}
1131 
1132 	/*
1133 	 * Check if this instance of the linker should have a primary link
1134 	 * map.  This flag allows multiple copies of the -same- -version-
1135 	 * of the linker (and libc) to run in the same address space.
1136 	 *
1137 	 * Without this flag we only support one copy of the linker in a
1138 	 * process because by default the linker will always try to
1139 	 * initialize at one primary link map  The copy of libc which is
1140 	 * initialized on a primary link map will initalize global TLS
1141 	 * data which can be shared with other copies of libc in the
1142 	 * process.  The problem is that if there is more than one copy
1143 	 * of the linker, only one copy should link libc onto a primary
1144 	 * link map, otherwise libc will attempt to re-initialize global
1145 	 * TLS data.  So when a copy of the linker is loaded with this
1146 	 * flag set, it will not initialize any primary link maps since
1147 	 * persumably another copy of the linker will do this.
1148 	 *
1149 	 * Note that this flag only allows multiple copies of the -same-
1150 	 * -version- of the linker (and libc) to coexist.  This approach
1151 	 * will not work if we are trying to load different versions of
1152 	 * the linker and libc into the same process.  The reason for
1153 	 * this is that the format of the global TLS data may not be
1154 	 * the same for different versions of libc.  In this case each
1155 	 * different version of libc must have it's own primary link map
1156 	 * and be able to maintain it's own TLS data.  The only way this
1157 	 * can be done is by carefully managing TLS pointers on transitions
1158 	 * between code associated with each of the different linkers.
1159 	 * Note that this is actually what is done for processes in lx
1160 	 * branded zones.  Although in the lx branded zone case, the
1161 	 * other linker and libc are actually gld and glibc.  But the
1162 	 * same general TLS management mechanism used by the lx brand
1163 	 * would apply to any attempts to run multiple versions of the
1164 	 * solaris linker and libc in a single process.
1165 	 */
1166 	if (auxflags & AF_SUN_NOPLM)
1167 		rtld_flags2 |= RT_FL2_NOPLM;
1168 
1169 	/*
1170 	 * Establish any static TLS for this primary link-map.  Note, regardless
1171 	 * of whether TLS is available, an initial handshake occurs with libc to
1172 	 * indicate we're processing the primary link-map.  Having identified
1173 	 * the primary link-map, initialize threads.
1174 	 */
1175 	if (rt_get_extern(&lml_main, mlmp) == 0)
1176 		return (0);
1177 
1178 	if ((rtld_flags2 & RT_FL2_NOPLM) == 0) {
1179 		if (tls_statmod(&lml_main, mlmp) == 0)
1180 			return (0);
1181 		rt_thr_init(&lml_main);
1182 		rtld_flags2 |= RT_FL2_PLMSETUP;
1183 	} else {
1184 		rt_thr_init(&lml_main);
1185 	}
1186 
1187 	rtld_flags |= RT_FL_APPLIC;
1188 
1189 	/*
1190 	 * Fire all dependencies .init sections.  Identify any unused
1191 	 * dependencies, and leave the runtime linker - effectively calling
1192 	 * the dynamic executables entry point.
1193 	 */
1194 	call_array(PREINITARRAY(mlmp), (uint_t)PREINITARRAYSZ(mlmp), mlmp,
1195 	    SHT_PREINIT_ARRAY);
1196 
1197 	if (tobj)
1198 		call_init(tobj, DBG_INIT_SORT);
1199 
1200 	rd_event(&lml_main, RD_POSTINIT, 0);
1201 
1202 	unused(&lml_main);
1203 
1204 	DBG_CALL(Dbg_util_call_main(mlmp));
1205 
1206 	rtld_flags |= RT_FL_OPERATION;
1207 	leave(LIST(mlmp), 0);
1208 
1209 	return (mlmp);
1210 }
1211