1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 33 /* 34 * Object file dependent support for ELF objects. 35 */ 36 #include "_synonyms.h" 37 38 #include <stdio.h> 39 #include <sys/procfs.h> 40 #include <sys/mman.h> 41 #include <sys/debug.h> 42 #include <string.h> 43 #include <limits.h> 44 #include <dlfcn.h> 45 #include "conv.h" 46 #include "_rtld.h" 47 #include "_audit.h" 48 #include "_elf.h" 49 #include "msg.h" 50 #include "debug.h" 51 52 /* 53 * Default and secure dependency search paths. 54 */ 55 static Pnode elf_dflt_dirs[] = { 56 #if defined(_ELF64) 57 #ifndef SGS_PRE_UNIFIED_PROCESS 58 { MSG_ORIG(MSG_PTH_LIB_64), 0, MSG_PTH_LIB_64_SIZE, 59 LA_SER_DEFAULT, 0, &elf_dflt_dirs[1] }, 60 #endif 61 { MSG_ORIG(MSG_PTH_USRLIB_64), 0, MSG_PTH_USRLIB_64_SIZE, 62 LA_SER_DEFAULT, 0, 0 } 63 #else 64 #ifndef SGS_PRE_UNIFIED_PROCESS 65 { MSG_ORIG(MSG_PTH_LIB), 0, MSG_PTH_LIB_SIZE, 66 LA_SER_DEFAULT, 0, &elf_dflt_dirs[1] }, 67 #endif 68 { MSG_ORIG(MSG_PTH_USRLIB), 0, MSG_PTH_USRLIB_SIZE, 69 LA_SER_DEFAULT, 0, 0 } 70 #endif 71 }; 72 73 static Pnode elf_secure_dirs[] = { 74 #if defined(_ELF64) 75 #ifndef SGS_PRE_UNIFIED_PROCESS 76 { MSG_ORIG(MSG_PTH_LIBSE_64), 0, MSG_PTH_LIBSE_64_SIZE, 77 LA_SER_SECURE, 0, &elf_secure_dirs[1] }, 78 #endif 79 { MSG_ORIG(MSG_PTH_USRLIBSE_64), 0, 80 MSG_PTH_USRLIBSE_64_SIZE, 81 LA_SER_SECURE, 0, 0 } 82 #else 83 #ifndef SGS_PRE_UNIFIED_PROCESS 84 { MSG_ORIG(MSG_PTH_LIBSE), 0, MSG_PTH_LIBSE_SIZE, 85 LA_SER_SECURE, 0, &elf_secure_dirs[1] }, 86 #endif 87 { MSG_ORIG(MSG_PTH_USRLIBSE), 0, MSG_PTH_USRLIBSE_SIZE, 88 LA_SER_SECURE, 0, 0 } 89 #endif 90 }; 91 92 /* 93 * Defines for local functions. 94 */ 95 static Pnode *elf_fix_name(const char *, Rt_map *, uint_t); 96 static int elf_are_u(Rej_desc *); 97 static void elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int); 98 static ulong_t elf_entry_pt(void); 99 static char *elf_get_so(const char *, const char *); 100 static Rt_map *elf_map_so(Lm_list *, Aliste, const char *, const char *, int); 101 static int elf_needed(Lm_list *, Aliste, Rt_map *); 102 static void elf_unmap_so(Rt_map *); 103 static int elf_verify_vers(const char *, Rt_map *, Rt_map *); 104 105 /* 106 * Functions and data accessed through indirect pointers. 107 */ 108 Fct elf_fct = { 109 elf_are_u, 110 elf_entry_pt, 111 elf_map_so, 112 elf_unmap_so, 113 elf_needed, 114 lookup_sym, 115 elf_reloc, 116 elf_dflt_dirs, 117 elf_secure_dirs, 118 elf_fix_name, 119 elf_get_so, 120 elf_dladdr, 121 dlsym_handle, 122 elf_verify_vers, 123 elf_set_prot 124 }; 125 126 127 /* 128 * Redefine NEEDED name if necessary. 129 */ 130 static Pnode * 131 elf_fix_name(const char *name, Rt_map *clmp, uint_t orig) 132 { 133 /* 134 * For ABI compliance, if we are asked for ld.so.1, then really give 135 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1). 136 */ 137 if (((*name == '/') && 138 #if defined(_ELF64) 139 (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) || 140 #else 141 (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) || 142 #endif 143 (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) { 144 Pnode *pnp; 145 146 DBG_CALL(Dbg_file_fixname(name, MSG_ORIG(MSG_PTH_LIBSYS))); 147 if (((pnp = calloc(sizeof (Pnode), 1)) == 0) || 148 ((pnp->p_name = strdup(MSG_ORIG(MSG_PTH_LIBSYS))) == 0)) { 149 if (pnp) 150 free(pnp); 151 return (0); 152 } 153 pnp->p_len = MSG_PTH_LIBSYS_SIZE; 154 pnp->p_orig = (orig & PN_SER_MASK); 155 return (pnp); 156 } 157 158 return (expand_paths(clmp, name, orig, 0)); 159 } 160 161 /* 162 * Determine if we have been given an ELF file and if so determine if the file 163 * is compatible. Returns 1 if true, else 0 and sets the reject descriptor 164 * with associated error information. 165 */ 166 static int 167 elf_are_u(Rej_desc *rej) 168 { 169 Ehdr *ehdr; 170 171 /* 172 * Determine if we're an elf file. If not simply return, we don't set 173 * any rejection information as this test allows use to scroll through 174 * the objects we support (ELF, AOUT). 175 */ 176 if (fmap->fm_fsize < sizeof (Ehdr) || 177 fmap->fm_maddr[EI_MAG0] != ELFMAG0 || 178 fmap->fm_maddr[EI_MAG1] != ELFMAG1 || 179 fmap->fm_maddr[EI_MAG2] != ELFMAG2 || 180 fmap->fm_maddr[EI_MAG3] != ELFMAG3) { 181 return (0); 182 } 183 184 /* 185 * Check class and encoding. 186 */ 187 /* LINTED */ 188 ehdr = (Ehdr *)fmap->fm_maddr; 189 if (ehdr->e_ident[EI_CLASS] != M_CLASS) { 190 rej->rej_type = SGS_REJ_CLASS; 191 rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS]; 192 return (0); 193 } 194 if (ehdr->e_ident[EI_DATA] != M_DATA) { 195 rej->rej_type = SGS_REJ_DATA; 196 rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA]; 197 return (0); 198 } 199 if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) && 200 (ehdr->e_type != ET_DYN)) { 201 rej->rej_type = SGS_REJ_TYPE; 202 rej->rej_info = (uint_t)ehdr->e_type; 203 return (0); 204 } 205 206 /* 207 * Verify machine specific flags, and hardware capability requirements. 208 */ 209 if ((elf_mach_flags_check(rej, ehdr) == 0) || 210 ((rtld_flags2 & RT_FL2_HWCAP) && (hwcap_check(rej, ehdr) == 0))) 211 return (0); 212 213 /* 214 * Verify ELF version. ??? is this too restrictive ??? 215 */ 216 if (ehdr->e_version > EV_CURRENT) { 217 rej->rej_type = SGS_REJ_VERSION; 218 rej->rej_info = (uint_t)ehdr->e_version; 219 return (0); 220 } 221 return (1); 222 } 223 224 /* 225 * The runtime linker employs lazy loading to provide the libraries needed for 226 * debugging, preloading .o's and dldump(). As these are seldom used, the 227 * standard startup of ld.so.1 doesn't initialize all the information necessary 228 * to perform plt relocation on ld.so.1's link-map. The first time lazy loading 229 * is called we get here to perform these initializations: 230 * 231 * o elf_needed() is called to set up the DYNINFO() indexes for each lazy 232 * dependency. Typically, for all other objects, this is called during 233 * analyze_so(), but as ld.so.1 is set-contained we skip this processing. 234 * 235 * o For intel, ld.so.1's JMPSLOT relocations need relative updates. These 236 * are by default skipped thus delaying all relative relocation processing 237 * on every invocation of ld.so.1. 238 */ 239 int 240 elf_rtld_load() 241 { 242 Lm_list *lml = &lml_rtld; 243 Rt_map *lmp = lml->lm_head; 244 245 if (lml->lm_flags & LML_FLG_PLTREL) 246 return (1); 247 248 /* 249 * As we need to refer to the DYNINFO() information, insure that it has 250 * been initialized. 251 */ 252 if (elf_needed(lml, ALO_DATA, lmp) == 0) 253 return (0); 254 255 #if defined(i386) 256 /* 257 * This is a kludge to give ld.so.1 a performance benefit on i386. 258 * It's based around two factors. 259 * 260 * o JMPSLOT relocations (PLT's) actually need a relative relocation 261 * applied to the GOT entry so that they can find PLT0. 262 * 263 * o ld.so.1 does not exercise *any* PLT's before it has made a call 264 * to elf_lazy_load(). This is because all dynamic dependencies 265 * are recorded as lazy dependencies. 266 */ 267 (void) elf_reloc_relacount((ulong_t)JMPREL(lmp), 268 (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp), 269 (ulong_t)ADDR(lmp)); 270 #endif 271 272 lml->lm_flags |= LML_FLG_PLTREL; 273 return (1); 274 } 275 276 /* 277 * Lazy load an object. 278 */ 279 Rt_map * 280 elf_lazy_load(Rt_map *clmp, uint_t ndx, const char *sym) 281 { 282 Rt_map *nlmp, *hlmp; 283 Dyninfo *dip = &DYNINFO(clmp)[ndx]; 284 uint_t flags = 0; 285 Pnode *pnp; 286 const char *name; 287 Lm_list *lml = LIST(clmp); 288 Lm_cntl *lmc; 289 Aliste lmco; 290 291 /* 292 * If this dependency has already been processed, we're done. 293 */ 294 if (((nlmp = (Rt_map *)dip->di_info) != 0) || 295 (dip->di_flags & FLG_DI_PROCESSD)) 296 return (nlmp); 297 298 /* 299 * Determine the initial dependency name, and indicate that this 300 * dependencies processing has initiated. 301 */ 302 name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val; 303 DBG_CALL(Dbg_file_lazyload(name, NAME(clmp), sym)); 304 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 305 dip->di_flags |= FLG_DI_PROCESSD; 306 307 if (dip->di_flags & FLG_DI_GROUP) 308 flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE); 309 310 /* 311 * Expand the requested name if necessary. 312 */ 313 if ((pnp = elf_fix_name(name, clmp, PN_SER_NEEDED)) == 0) 314 return (0); 315 316 /* 317 * Provided the object on the head of the link-map has completed its 318 * relocation, create a new link-map control list for this request. 319 */ 320 hlmp = lml->lm_head; 321 if (FLAGS(hlmp) & FLG_RT_RELOCED) { 322 if ((lmc = alist_append(&(lml->lm_lists), 0, sizeof (Lm_cntl), 323 AL_CNT_LMLISTS)) == 0) { 324 remove_pnode(pnp); 325 return (0); 326 } 327 lmco = (Aliste)((char *)lmc - (char *)lml->lm_lists); 328 } else { 329 lmc = 0; 330 lmco = ALO_DATA; 331 } 332 333 /* 334 * Load the associated object. 335 */ 336 dip->di_info = nlmp = 337 load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0); 338 339 /* 340 * Remove any expanded pathname infrastructure. Reduce the pending lazy 341 * dependency count of the caller, together with the link-map lists 342 * count of objects that still have lazy dependencies pending. 343 */ 344 remove_pnode(pnp); 345 if (--LAZY(clmp) == 0) 346 LIST(clmp)->lm_lazy--; 347 348 /* 349 * Finish processing the objects associated with this request. 350 */ 351 if (nlmp && ((analyze_lmc(lml, lmco, nlmp) == 0) || 352 (relocate_lmc(lml, lmco, nlmp) == 0))) 353 dip->di_info = nlmp = 0; 354 355 /* 356 * If the dependency has been successfully processed, and it is part of 357 * a link-map control list that is equivalent, or less, that the callers 358 * control list, create an association between the caller and this 359 * dependency. If this dependency isn't yet apart of the callers 360 * link-map control list, then it is still apart of a list that is being 361 * relocated. As the relocation of an object on this list might still 362 * fail, we can't yet bind the caller to this object. To do so, would 363 * be locking the object so that it couldn't be deleted. Mark this 364 * object as free, and it will be reprocessed when this dependency is 365 * next referenced. 366 */ 367 if (nlmp) { 368 if (CNTL(nlmp) <= CNTL(clmp)) { 369 if (bind_one(clmp, nlmp, BND_NEEDED) == 0) 370 dip->di_info = nlmp = 0; 371 } else { 372 dip->di_info = 0; 373 dip->di_flags &= ~FLG_DI_PROCESSD; 374 if (LAZY(clmp)++ == 0) 375 LIST(clmp)->lm_lazy++; 376 } 377 } 378 379 /* 380 * After a successful load, any objects collected on the new link-map 381 * control list will have been moved to the callers link-map control 382 * list. This control list can now be deleted. 383 */ 384 if (lmc) { 385 if (nlmp == 0) 386 remove_incomplete(lml, lmco); 387 remove_cntl(lml, lmco); 388 } 389 390 return (nlmp); 391 } 392 393 394 /* 395 * Return the entry point of the ELF executable. 396 */ 397 static ulong_t 398 elf_entry_pt(void) 399 { 400 return (ENTRY(lml_main.lm_head)); 401 } 402 403 /* 404 * Unmap a given ELF shared object from the address space. 405 */ 406 static void 407 elf_unmap_so(Rt_map *lmp) 408 { 409 caddr_t addr; 410 size_t size; 411 Mmap *mmaps; 412 413 /* 414 * If this link map represents a relocatable object concatenation, then 415 * the image was simply generated in allocated memory. Free the memory. 416 * 417 * Note: the memory was originally allocated in the libelf:_elf_outmap 418 * routine and would normally have been free'd in elf_outsync(), but 419 * because we 'interpose' on that routine the memory wasn't free'd at 420 * that time. 421 */ 422 if (FLAGS(lmp) & FLG_RT_IMGALLOC) { 423 free((void *)ADDR(lmp)); 424 return; 425 } 426 427 /* 428 * If padding was enabled via rtld_db, then we have at least one page 429 * in front of the image - and possibly a trailing page. 430 * Unmap the front page first: 431 */ 432 if (PADSTART(lmp) != ADDR(lmp)) { 433 addr = (caddr_t)M_PTRUNC(PADSTART(lmp)); 434 size = ADDR(lmp) - (ulong_t)addr; 435 (void) munmap(addr, size); 436 } 437 438 /* 439 * Unmap any trailing padding. 440 */ 441 if (M_PROUND((PADSTART(lmp) + PADIMLEN(lmp))) > 442 M_PROUND(ADDR(lmp) + MSIZE(lmp))) { 443 addr = (caddr_t)M_PROUND(ADDR(lmp) + MSIZE(lmp)); 444 size = M_PROUND(PADSTART(lmp) + PADIMLEN(lmp)) - (ulong_t)addr; 445 (void) munmap(addr, size); 446 } 447 448 /* 449 * Unmmap all mapped segments. 450 */ 451 for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) 452 (void) munmap(mmaps->m_vaddr, mmaps->m_msize); 453 } 454 455 /* 456 * Determine if a dependency requires a particular version and if so verify 457 * that the version exists in the dependency. 458 */ 459 static int 460 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp) 461 { 462 Verneed *vnd = VERNEED(clmp); 463 int _num, num = VERNEEDNUM(clmp); 464 char *cstrs = (char *)STRTAB(clmp); 465 Lm_list *lml = LIST(clmp); 466 467 /* 468 * Traverse the callers version needed information and determine if any 469 * specific versions are required from the dependency. 470 */ 471 for (_num = 1; _num <= num; _num++, 472 vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) { 473 Half cnt = vnd->vn_cnt; 474 Vernaux *vnap; 475 char *nstrs, *need; 476 477 /* 478 * Determine if a needed entry matches this dependency. 479 */ 480 need = (char *)(cstrs + vnd->vn_file); 481 if (strcmp(name, need) != 0) 482 continue; 483 484 DBG_CALL(Dbg_ver_need_title(NAME(clmp))); 485 if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) && 486 ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0)) 487 (void) printf(MSG_INTL(MSG_LDD_VER_FIND), name); 488 489 /* 490 * Validate that each version required actually exists in the 491 * dependency. 492 */ 493 nstrs = (char *)STRTAB(nlmp); 494 495 for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt; 496 cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) { 497 char *version, *define; 498 Verdef *vdf = VERDEF(nlmp); 499 ulong_t _num, num = VERDEFNUM(nlmp); 500 int found = 0; 501 502 version = (char *)(cstrs + vnap->vna_name); 503 DBG_CALL(Dbg_ver_need_entry(0, need, version)); 504 505 for (_num = 1; _num <= num; _num++, 506 vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) { 507 Verdaux *vdap; 508 509 if (vnap->vna_hash != vdf->vd_hash) 510 continue; 511 512 vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux); 513 define = (char *)(nstrs + vdap->vda_name); 514 if (strcmp(version, define) != 0) 515 continue; 516 517 found++; 518 break; 519 } 520 521 /* 522 * If we're being traced print out any matched version 523 * when the verbose (-v) option is in effect. Always 524 * print any unmatched versions. 525 */ 526 if (lml->lm_flags & LML_FLG_TRC_ENABLE) { 527 if (found) { 528 if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE)) 529 continue; 530 531 (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND), 532 need, version, NAME(nlmp)); 533 } else { 534 if (rtld_flags & RT_FL_SILENCERR) 535 continue; 536 537 (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND), 538 need, version); 539 } 540 continue; 541 } 542 543 /* 544 * If the version hasn't been found then this is a 545 * candidate for a fatal error condition. Weak 546 * version definition requirements are silently 547 * ignored. Also, if the image inspected for a version 548 * definition has no versioning recorded at all then 549 * silently ignore this (this provides better backward 550 * compatibility to old images created prior to 551 * versioning being available). Both of these skipped 552 * diagnostics are available under tracing (see above). 553 */ 554 if ((found == 0) && (num != 0) && 555 (!(vnap->vna_flags & VER_FLG_WEAK))) { 556 eprintf(ERR_FATAL, MSG_INTL(MSG_VER_NFOUND), 557 need, version, NAME(clmp)); 558 return (0); 559 } 560 } 561 return (1); 562 } 563 return (1); 564 } 565 566 /* 567 * Search through the dynamic section for DT_NEEDED entries and perform one 568 * of two functions. If only the first argument is specified then load the 569 * defined shared object, otherwise add the link map representing the defined 570 * link map the the dlopen list. 571 */ 572 static int 573 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp) 574 { 575 Dyn *dyn; 576 ulong_t ndx = 0; 577 uint_t lazy = 0, flags = 0; 578 Word lmflags = lml->lm_flags; 579 Word lmtflags = lml->lm_tflags; 580 581 /* 582 * Process each shared object on needed list. 583 */ 584 if (DYN(clmp) == 0) 585 return (1); 586 587 for (dyn = (Dyn *)DYN(clmp); dyn->d_tag != DT_NULL; dyn++, ndx++) { 588 Dyninfo *dip = &DYNINFO(clmp)[ndx]; 589 Rt_map *nlmp = 0; 590 char *name; 591 int silent = 0; 592 Pnode *pnp; 593 594 switch (dyn->d_tag) { 595 case DT_POSFLAG_1: 596 if ((dyn->d_un.d_val & DF_P1_LAZYLOAD) && 597 !(lmtflags & LML_TFLG_NOLAZYLD)) 598 lazy = 1; 599 if (dyn->d_un.d_val & DF_P1_GROUPPERM) 600 flags = (FLG_RT_SETGROUP | FLG_RT_HANDLE); 601 continue; 602 case DT_NEEDED: 603 case DT_USED: 604 dip->di_flags |= FLG_DI_NEEDED; 605 if (flags) 606 dip->di_flags |= FLG_DI_GROUP; 607 608 name = (char *)STRTAB(clmp) + dyn->d_un.d_val; 609 610 /* 611 * NOTE, libc.so.1 can't be lazy loaded. Although a 612 * lazy position flag won't be produced when a RTLDINFO 613 * .dynamic entry is found (introduced with the UPM in 614 * Solaris 10), it was possible to mark libc for lazy 615 * loading on previous releases. To reduce the overhead 616 * of testing for this occurrence, only carry out this 617 * check for the first object on the link-map list 618 * (there aren't many applications built without libc). 619 */ 620 if (lazy && (lml->lm_head == clmp) && 621 (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0)) 622 lazy = 0; 623 624 /* 625 * Don't bring in lazy loaded objects yet unless we've 626 * been asked to attempt to load all available objects 627 * (crle(1) sets LD_FLAGS=loadavail). Even under 628 * RTLD_NOW we don't process this - RTLD_NOW will cause 629 * relocation processing which in turn might trigger 630 * lazy loading, but its possible that the object has a 631 * lazy loaded file with no bindings (i.e., it should 632 * never have been a dependency in the first place). 633 */ 634 if (lazy) { 635 if ((lmflags & LML_FLG_LOADAVAIL) == 0) { 636 LAZY(clmp)++; 637 lazy = flags = 0; 638 continue; 639 } 640 641 /* 642 * Silence any error messages - see description 643 * under elf_lookup_filtee(). 644 */ 645 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 646 rtld_flags |= RT_FL_SILENCERR; 647 silent = 1; 648 } 649 } 650 break; 651 case DT_AUXILIARY: 652 dip->di_flags |= FLG_DI_AUXFLTR; 653 lazy = flags = 0; 654 continue; 655 case DT_SUNW_AUXILIARY: 656 dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR); 657 lazy = flags = 0; 658 continue; 659 case DT_FILTER: 660 dip->di_flags |= FLG_DI_STDFLTR; 661 lazy = flags = 0; 662 continue; 663 case DT_SUNW_FILTER: 664 dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR); 665 lazy = flags = 0; 666 continue; 667 default: 668 lazy = flags = 0; 669 continue; 670 } 671 672 DBG_CALL(Dbg_file_needed(name, NAME(clmp))); 673 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 674 dip->di_flags |= FLG_DI_PROCESSD; 675 676 /* 677 * Establish the objects name, load it and establish a binding 678 * with the caller. 679 */ 680 if (((pnp = elf_fix_name(name, clmp, PN_SER_NEEDED)) == 0) || 681 ((nlmp = load_one(lml, lmco, pnp, clmp, MODE(clmp), 682 flags, 0)) == 0) || (bind_one(clmp, nlmp, BND_NEEDED) == 0)) 683 nlmp = 0; 684 685 /* 686 * Clean up any infrastructure, including the removal of the 687 * error suppression state, if it had been previously set in 688 * this routine. 689 */ 690 if (pnp) 691 remove_pnode(pnp); 692 if (silent) 693 rtld_flags &= ~RT_FL_SILENCERR; 694 lazy = flags = 0; 695 if ((dip->di_info = (void *)nlmp) == 0) { 696 /* 697 * If the object could not be mapped, continue if error 698 * suppression is established or we're here with ldd(1). 699 */ 700 if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags & 701 (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE))) 702 continue; 703 else 704 return (0); 705 } 706 } 707 708 if (LAZY(clmp)) 709 lml->lm_lazy++; 710 711 return (1); 712 } 713 714 static int 715 elf_map_check(const char *name, caddr_t vaddr, Off size) 716 { 717 prmap_t *maps, *_maps; 718 int pfd, num, _num; 719 caddr_t eaddr = vaddr + size; 720 int err; 721 722 /* 723 * If memory reservations have been established for alternative objects 724 * determine if this object falls within the reservation, if it does no 725 * further checking is required. 726 */ 727 if (rtld_flags & RT_FL_MEMRESV) { 728 Rtc_head *head = (Rtc_head *)config->c_bgn; 729 730 if ((vaddr >= (caddr_t)(uintptr_t)head->ch_resbgn) && 731 (eaddr <= (caddr_t)(uintptr_t)head->ch_resend)) 732 return (0); 733 } 734 735 /* 736 * Determine the mappings presently in use by this process. 737 */ 738 if ((pfd = pr_open()) == FD_UNAVAIL) 739 return (1); 740 741 if (ioctl(pfd, PIOCNMAP, (void *)&num) == -1) { 742 err = errno; 743 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_PROC), pr_name, 744 strerror(err)); 745 return (1); 746 } 747 748 if ((maps = malloc((num + 1) * sizeof (prmap_t))) == 0) 749 return (1); 750 751 if (ioctl(pfd, PIOCMAP, (void *)maps) == -1) { 752 err = errno; 753 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_PROC), pr_name, 754 strerror(err)); 755 free(maps); 756 return (1); 757 } 758 759 /* 760 * Determine if the supplied address clashes with any of the present 761 * process mappings. 762 */ 763 for (_num = 0, _maps = maps; _num < num; _num++, _maps++) { 764 caddr_t _eaddr = _maps->pr_vaddr + _maps->pr_size; 765 Rt_map *lmp; 766 const char *str; 767 768 if ((eaddr < _maps->pr_vaddr) || (vaddr >= _eaddr)) 769 continue; 770 771 /* 772 * We have a memory clash. See if one of the known dynamic 773 * dependency mappings represents this space so as to provide 774 * the user a more meaningful message. 775 */ 776 if ((lmp = _caller(vaddr, 0)) != 0) 777 str = NAME(lmp); 778 else 779 str = MSG_INTL(MSG_STR_UNKNOWN); 780 781 eprintf(ERR_FATAL, MSG_INTL(MSG_GEN_MAPINUSE), name, 782 EC_ADDR(vaddr), EC_OFF(size), str); 783 return (1); 784 } 785 free(maps); 786 return (0); 787 } 788 789 /* 790 * Obtain a memory reservation. On newer systems, both MAP_ANON and MAP_ALIGN 791 * are used to obtained an aligned reservation from anonymous memory. If 792 * MAP_ANON isn't available, then MAP_ALIGN isn't either, so obtain a standard 793 * reservation using the file as backing. 794 */ 795 static Am_ret 796 elf_map_reserve(const char *name, caddr_t *maddr, Off msize, int mperm, 797 int fd, Xword align) 798 { 799 Am_ret amret; 800 int mflag = MAP_PRIVATE | MAP_NORESERVE; 801 802 #if defined(MAP_ALIGN) 803 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 804 mflag |= MAP_ALIGN; 805 *maddr = (caddr_t)align; 806 } 807 #endif 808 if ((amret = anon_map(maddr, msize, PROT_NONE, mflag)) == AM_ERROR) 809 return (amret); 810 811 if (amret == AM_OK) 812 return (AM_OK); 813 814 /* 815 * If an anonymous memory request failed (which should only be the 816 * case if it is unsupported on the system we're running on), establish 817 * the initial mapping directly from the file. 818 */ 819 *maddr = 0; 820 if ((*maddr = mmap(*maddr, msize, mperm, MAP_PRIVATE, 821 fd, 0)) == MAP_FAILED) { 822 int err = errno; 823 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name, strerror(err)); 824 return (AM_ERROR); 825 } 826 return (AM_NOSUP); 827 } 828 829 static void * 830 elf_map_textdata(caddr_t addr, Off flen, int mperm, int phdr_mperm, int mflag, 831 int fd, Off foff) 832 { 833 #if defined(MAP_TEXT) && defined(MAP_INITDATA) 834 static int notd = 0; 835 836 /* 837 * If MAP_TEXT and MAP_INITDATA are available, select the appropriate 838 * flag. 839 */ 840 if (notd == 0) { 841 if ((phdr_mperm & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) 842 mflag |= MAP_TEXT; 843 else 844 mflag |= MAP_INITDATA; 845 } 846 #endif 847 if (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff) != MAP_FAILED) 848 return (0); 849 850 #if defined(MAP_TEXT) && defined(MAP_INITDATA) 851 if ((notd == 0) && (errno == EINVAL)) { 852 /* 853 * MAP_TEXT and MAP_INITDATA may not be supported on this 854 * platform, try again without. 855 */ 856 notd = 1; 857 mflag &= ~(MAP_TEXT | MAP_INITDATA); 858 859 return (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff)); 860 } 861 #endif 862 return (MAP_FAILED); 863 } 864 865 /* 866 * Map in a file. 867 */ 868 static caddr_t 869 elf_map_it( 870 const char *name, /* actual name stored for pathname */ 871 Off fsize, /* total mapping claim of the file */ 872 Ehdr *ehdr, /* ELF header of file */ 873 Phdr *fphdr, /* first loadable Phdr */ 874 Phdr *lphdr, /* last loadable Phdr */ 875 Phdr **rrphdr, /* return first Phdr in reservation */ 876 caddr_t *rraddr, /* return start of reservation */ 877 Off *rrsize, /* return total size of reservation */ 878 int fixed, /* image is resolved to a fixed addr */ 879 int fd, /* images file descriptor */ 880 Xword align, /* image segments maximum alignment */ 881 Mmap *mmaps, /* mmap information array and */ 882 uint_t *mmapcnt) /* mapping count */ 883 { 884 caddr_t raddr; /* reservation address */ 885 Off rsize; /* reservation size */ 886 Phdr *phdr; /* working program header poiner */ 887 caddr_t maddr; /* working mmap address */ 888 caddr_t faddr; /* working file address */ 889 size_t padsize; /* object padding requirement */ 890 size_t padpsize = 0; /* padding size rounded to next page */ 891 size_t padmsize = 0; /* padding size rounded for alignment */ 892 int skipfseg; /* skip mapping first segment */ 893 int mperm; /* segment permissions */ 894 Am_ret amret = AM_NOSUP; 895 896 /* 897 * If padding is required extend both the front and rear of the image. 898 * To insure the image itself is mapped at the correct alignment the 899 * initial padding is rounded up to the nearest page. Once the image is 900 * mapped the excess can be pruned to the nearest page required for the 901 * actual padding itself. 902 */ 903 if ((padsize = r_debug.rtd_objpad) != 0) { 904 padpsize = M_PROUND(padsize); 905 if (fixed) 906 padmsize = padpsize; 907 else 908 padmsize = S_ROUND(padsize, align); 909 } 910 911 /* 912 * Determine the initial permissions used to map in the first segment. 913 * If this segments memsz is greater that its filesz then the difference 914 * must be zeroed. Make sure this segment is writable. 915 */ 916 mperm = 0; 917 if (fphdr->p_flags & PF_R) 918 mperm |= PROT_READ; 919 if (fphdr->p_flags & PF_X) 920 mperm |= PROT_EXEC; 921 if ((fphdr->p_flags & PF_W) || (fphdr->p_memsz > fphdr->p_filesz)) 922 mperm |= PROT_WRITE; 923 924 /* 925 * Determine whether or not to let system reserve address space based on 926 * whether this is a dynamic executable (addresses in object are fixed) 927 * or a shared object (addresses in object are relative to the objects' 928 * base). 929 */ 930 if (fixed) { 931 /* 932 * Determine the reservation address and size, and insure that 933 * this reservation isn't already in use. 934 */ 935 faddr = maddr = (caddr_t)M_PTRUNC((ulong_t)fphdr->p_vaddr); 936 raddr = maddr - padpsize; 937 rsize = fsize + padpsize + padsize; 938 939 if (lml_main.lm_head) { 940 if (elf_map_check(name, raddr, rsize) != 0) 941 return (0); 942 } 943 944 /* 945 * As this is a fixed image, all segments must be individually 946 * mapped. 947 */ 948 skipfseg = 0; 949 950 } else { 951 size_t esize; 952 953 /* 954 * If this isn't a fixed image, reserve enough address space for 955 * the entire image to be mapped. The amount of reservation is 956 * the range between the beginning of the first, and end of the 957 * last loadable segment, together with any padding, plus the 958 * alignment of the first segment. 959 * 960 * The optimal reservation is made as a no-reserve mapping from 961 * anonymous memory. Each segment is then mapped into this 962 * reservation. If the anonymous mapping capability isn't 963 * available, the reservation is obtained from the file itself. 964 * In this case the first segment of the image is mapped as part 965 * of the reservation, thus only the following segments need to 966 * be remapped. 967 */ 968 rsize = fsize + padmsize + padsize; 969 if ((amret = elf_map_reserve(name, &raddr, rsize, mperm, 970 fd, align)) == AM_ERROR) 971 return (0); 972 maddr = raddr + padmsize; 973 faddr = (caddr_t)S_ROUND((Off)maddr, align); 974 975 /* 976 * If this reservation has been obtained from anonymous memory, 977 * then all segments must be individually mapped. Otherwise, 978 * the first segment heads the reservation. 979 */ 980 if (amret == AM_OK) 981 skipfseg = 0; 982 else 983 skipfseg = 1; 984 985 /* 986 * For backward compatibility (where MAP_ALIGN isn't available), 987 * insure the alignment of the reservation is adequate for this 988 * object, and if not remap the object to obtain the correct 989 * alignment. 990 */ 991 if (faddr != maddr) { 992 (void) munmap(raddr, rsize); 993 994 rsize += align; 995 if ((amret = elf_map_reserve(name, &raddr, rsize, mperm, 996 fd, align)) == AM_ERROR) 997 return (0); 998 999 maddr = faddr = (caddr_t)S_ROUND((Off)(raddr + 1000 padpsize), align); 1001 1002 esize = maddr - raddr + padpsize; 1003 1004 /* 1005 * As ths image has been realigned, the first segment 1006 * of the file needs to be remapped to its correct 1007 * location. 1008 */ 1009 skipfseg = 0; 1010 } else 1011 esize = padmsize - padpsize; 1012 1013 /* 1014 * If this reservation included padding, remove any excess for 1015 * the start of the image (the padding was adjusted to insure 1016 * the image was aligned appropriately). 1017 */ 1018 if (esize) { 1019 (void) munmap(raddr, esize); 1020 raddr += esize; 1021 rsize -= esize; 1022 } 1023 } 1024 1025 /* 1026 * At this point we know the initial location of the image, and its 1027 * size. Pass these back to the caller for inclusion in the link-map 1028 * that will eventually be created. 1029 */ 1030 *rraddr = raddr; 1031 *rrsize = rsize; 1032 1033 /* 1034 * The first loadable segment is now pointed to by maddr. This segment 1035 * will eventually contain the elf header and program headers, so reset 1036 * the program header. Pass this back to the caller for inclusion in 1037 * the link-map so it can be used for later unmapping operations. 1038 */ 1039 /* LINTED */ 1040 *rrphdr = (Phdr *)((char *)maddr + ehdr->e_phoff); 1041 1042 /* 1043 * If padding is required at the front of the image, obtain that now. 1044 * Note, if we've already obtained a reservation from anonymous memory 1045 * then this reservation will already include suitable padding. 1046 * Otherwise this reservation is backed by the file, or in the case of 1047 * a fixed image, doesn't yet exist. Map the padding so that it is 1048 * suitably protected (PROT_NONE), and insure the first segment of the 1049 * file is mapped to its correct location. 1050 */ 1051 if (padsize) { 1052 if (amret == AM_NOSUP) { 1053 if (dz_map(raddr, padpsize, PROT_NONE, (MAP_PRIVATE | 1054 MAP_FIXED | MAP_NORESERVE)) == MAP_FAILED) 1055 return (0); 1056 1057 skipfseg = 0; 1058 } 1059 rsize -= padpsize; 1060 } 1061 1062 /* 1063 * Map individual segments. For a fixed image, these will each be 1064 * unique mappings. For a reservation these will fill in the 1065 * reservation. 1066 */ 1067 for (phdr = fphdr; phdr <= lphdr; 1068 phdr = (Phdr *)((Off)phdr + ehdr->e_phentsize)) { 1069 caddr_t addr; 1070 Off mlen, flen; 1071 size_t size; 1072 1073 /* 1074 * Skip non-loadable segments or segments that don't occupy 1075 * any memory. 1076 */ 1077 if (((phdr->p_type != PT_LOAD) && 1078 (phdr->p_type != PT_SUNWBSS)) || (phdr->p_memsz == 0)) 1079 continue; 1080 1081 /* 1082 * Establish this segments address relative to our base. 1083 */ 1084 addr = (caddr_t)M_PTRUNC((ulong_t)(phdr->p_vaddr + 1085 (fixed ? 0 : faddr))); 1086 1087 /* 1088 * Determine the mapping protection from the segment attributes. 1089 * Also determine the etext address from the last loadable 1090 * segment which has permissions but no write access. 1091 */ 1092 mperm = 0; 1093 if (phdr->p_flags) { 1094 if (phdr->p_flags & PF_R) 1095 mperm |= PROT_READ; 1096 if (phdr->p_flags & PF_X) 1097 mperm |= PROT_EXEC; 1098 if (phdr->p_flags & PF_W) 1099 mperm |= PROT_WRITE; 1100 else 1101 fmap->fm_etext = phdr->p_vaddr + phdr->p_memsz + 1102 (ulong_t)(fixed ? 0 : faddr); 1103 } 1104 1105 /* 1106 * Determine the type of mapping required. 1107 */ 1108 if (phdr->p_type == PT_SUNWBSS) { 1109 /* 1110 * Potentially, we can defer the loading of any SUNWBSS 1111 * segment, depending on whether the symbols it provides 1112 * have been bound to. In this manner, large segments 1113 * that are interposed upon between shared libraries 1114 * may not require mapping. Note, that the mapping 1115 * information is recorded in our mapping descriptor at 1116 * this time. 1117 */ 1118 mlen = phdr->p_memsz; 1119 flen = 0; 1120 1121 } else if ((phdr->p_filesz == 0) && (phdr->p_flags == 0)) { 1122 /* 1123 * If this segment has no backing file and no flags 1124 * specified, then it defines a reservation. At this 1125 * point all standard loadable segments will have been 1126 * processed. The segment reservation is mapped 1127 * directly from /dev/null. 1128 */ 1129 if (nu_map((caddr_t)addr, phdr->p_memsz, PROT_NONE, 1130 MAP_FIXED | MAP_PRIVATE) == MAP_FAILED) 1131 return (0); 1132 1133 mlen = phdr->p_memsz; 1134 flen = 0; 1135 1136 } else if (phdr->p_filesz == 0) { 1137 /* 1138 * If this segment has no backing file then it defines a 1139 * nobits segment and is mapped directly from /dev/zero. 1140 */ 1141 if (dz_map((caddr_t)addr, phdr->p_memsz, mperm, 1142 MAP_FIXED | MAP_PRIVATE) == MAP_FAILED) 1143 return (0); 1144 1145 mlen = phdr->p_memsz; 1146 flen = 0; 1147 1148 } else { 1149 Off foff; 1150 1151 /* 1152 * This mapping originates from the file. Determine the 1153 * file offset to which the mapping will be directed 1154 * (must be aligned) and how much to map (might be more 1155 * than the file in the case of .bss). 1156 */ 1157 foff = M_PTRUNC((ulong_t)phdr->p_offset); 1158 mlen = phdr->p_memsz + (phdr->p_offset - foff); 1159 flen = phdr->p_filesz + (phdr->p_offset - foff); 1160 1161 /* 1162 * If this is a non-fixed, non-anonymous mapping, and no 1163 * padding is involved, then the first loadable segment 1164 * is already part of the initial reservation. In this 1165 * case there is no need to remap this segment. 1166 */ 1167 if ((skipfseg == 0) || (phdr != fphdr)) { 1168 int phdr_mperm = mperm; 1169 /* 1170 * If this segments memsz is greater that its 1171 * filesz then the difference must be zeroed. 1172 * Make sure this segment is writable. 1173 */ 1174 if (phdr->p_memsz > phdr->p_filesz) 1175 mperm |= PROT_WRITE; 1176 1177 if (elf_map_textdata((caddr_t)addr, flen, 1178 mperm, phdr_mperm, 1179 (MAP_FIXED | MAP_PRIVATE), fd, foff) == 1180 MAP_FAILED) { 1181 int err = errno; 1182 eprintf(ERR_FATAL, 1183 MSG_INTL(MSG_SYS_MMAP), name, 1184 strerror(err)); 1185 return (0); 1186 } 1187 } 1188 1189 /* 1190 * If the memory occupancy of the segment overflows the 1191 * definition in the file, we need to "zero out" the end 1192 * of the mapping we've established, and if necessary, 1193 * map some more space from /dev/zero. Note, zero'ed 1194 * memory must end on a double word boundary to satisfy 1195 * zero(). 1196 */ 1197 if (phdr->p_memsz > phdr->p_filesz) { 1198 caddr_t zaddr; 1199 size_t zlen, zplen; 1200 Off fend; 1201 1202 foff = (Off)(phdr->p_vaddr + phdr->p_filesz + 1203 (fixed ? 0 : faddr)); 1204 zaddr = (caddr_t)M_PROUND(foff); 1205 zplen = (size_t)(zaddr - foff); 1206 1207 fend = (Off)S_DROUND((size_t)(phdr->p_vaddr + 1208 phdr->p_memsz + (fixed ? 0 : faddr))); 1209 zlen = (size_t)(fend - foff); 1210 1211 /* 1212 * Determine whether the number of bytes that 1213 * must be zero'ed overflow to the next page. 1214 * If not, simply clear the exact bytes 1215 * (filesz to memsz) from this page. Otherwise, 1216 * clear the remaining bytes of this page, and 1217 * map an following pages from /dev/zero. 1218 */ 1219 if (zlen < zplen) 1220 zero((caddr_t)foff, (long)zlen); 1221 else { 1222 zero((caddr_t)foff, (long)zplen); 1223 1224 if ((zlen = (fend - (Off)zaddr)) > 0) { 1225 if (dz_map(zaddr, zlen, mperm, 1226 MAP_FIXED | MAP_PRIVATE) == 1227 MAP_FAILED) 1228 return (0); 1229 } 1230 } 1231 } 1232 } 1233 1234 /* 1235 * Unmap anything from the last mapping address to this one and 1236 * update the mapping claim pointer. 1237 */ 1238 if ((fixed == 0) && ((size = addr - maddr) != 0)) { 1239 (void) munmap(maddr, size); 1240 rsize -= size; 1241 } 1242 1243 /* 1244 * Retain this segments mapping information. 1245 */ 1246 mmaps[*mmapcnt].m_vaddr = addr; 1247 mmaps[*mmapcnt].m_msize = mlen; 1248 mmaps[*mmapcnt].m_fsize = flen; 1249 mmaps[*mmapcnt].m_perm = mperm; 1250 (*mmapcnt)++; 1251 1252 maddr = addr + M_PROUND(mlen); 1253 rsize -= M_PROUND(mlen); 1254 } 1255 1256 /* 1257 * If padding is required at the end of the image, obtain that now. 1258 * Note, if we've already obtained a reservation from anonymous memory 1259 * then this reservation will already include suitable padding. 1260 */ 1261 if (padsize) { 1262 if (amret == AM_NOSUP) { 1263 /* 1264 * maddr is currently page aligned from the last segment 1265 * mapping. 1266 */ 1267 if (dz_map(maddr, padsize, PROT_NONE, (MAP_PRIVATE | 1268 MAP_FIXED | MAP_NORESERVE)) == MAP_FAILED) 1269 return (0); 1270 } 1271 maddr += padsize; 1272 rsize -= padsize; 1273 } 1274 1275 /* 1276 * Unmap any final reservation. 1277 */ 1278 if ((fixed == 0) && (rsize != 0)) 1279 (void) munmap(maddr, rsize); 1280 1281 return (faddr); 1282 } 1283 1284 /* 1285 * A null symbol interpretor. Used if a filter has no associated filtees. 1286 */ 1287 /* ARGSUSED0 */ 1288 static Sym * 1289 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo) 1290 { 1291 return ((Sym *)0); 1292 } 1293 1294 /* 1295 * Disable filtee use. 1296 */ 1297 static void 1298 elf_disable_filtee(Rt_map * lmp, Dyninfo * dip) 1299 { 1300 dip->di_info = 0; 1301 1302 if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) { 1303 /* 1304 * If this is an object filter, free the filtee's duplication. 1305 */ 1306 if (OBJFLTRNDX(lmp) != FLTR_DISABLED) { 1307 free(REFNAME(lmp)); 1308 REFNAME(lmp) = (char *)0; 1309 OBJFLTRNDX(lmp) = FLTR_DISABLED; 1310 1311 /* 1312 * Indicate that this filtee is no longer available. 1313 */ 1314 if (dip->di_flags & FLG_DI_STDFLTR) 1315 SYMINTP(lmp) = elf_null_find_sym; 1316 1317 } 1318 } else if (dip->di_flags & FLG_DI_STDFLTR) { 1319 /* 1320 * Indicate that this standard filtee is no longer available. 1321 */ 1322 if (SYMSFLTRCNT(lmp)) 1323 SYMSFLTRCNT(lmp)--; 1324 } else { 1325 /* 1326 * Indicate that this auxiliary filtee is no longer available. 1327 */ 1328 if (SYMAFLTRCNT(lmp)) 1329 SYMAFLTRCNT(lmp)--; 1330 } 1331 dip->di_flags &= ~MSK_DI_FILTER; 1332 } 1333 1334 /* 1335 * Find symbol interpreter - filters. 1336 * This function is called when the symbols from a shared object should 1337 * be resolved from the shared objects filtees instead of from within itself. 1338 * 1339 * A symbol name of 0 is used to trigger filtee loading. 1340 */ 1341 static Sym * 1342 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx) 1343 { 1344 const char *name = slp->sl_name, *filtees; 1345 Rt_map *clmp = slp->sl_cmap; 1346 Rt_map *ilmp = slp->sl_imap; 1347 Pnode *pnp, **pnpp; 1348 int any; 1349 Dyninfo *dip = &DYNINFO(ilmp)[ndx]; 1350 Lm_list *lml = LIST(ilmp); 1351 Lm_cntl *lmc = 0; 1352 Aliste lmco; 1353 1354 /* 1355 * Indicate that the filter has been used. If a binding already exists 1356 * to the caller, indicate that this object is referenced. This insures 1357 * we don't generate false unreferenced diagnostics from ldd -u/U or 1358 * debugging. Don't create a binding regardless, as this filter may 1359 * have been dlopen()'ed. 1360 */ 1361 if (name && (ilmp != clmp)) { 1362 Word tracing = (LIST(clmp)->lm_flags & 1363 (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)); 1364 1365 if (tracing || dbg_mask) { 1366 Bnd_desc ** bdpp; 1367 Aliste off; 1368 1369 FLAGS1(ilmp) |= FL1_RT_USED; 1370 1371 if ((tracing & LML_FLG_TRC_UNREF) || dbg_mask) { 1372 for (ALIST_TRAVERSE(CALLERS(ilmp), off, bdpp)) { 1373 Bnd_desc * bdp = *bdpp; 1374 1375 if (bdp->b_caller == clmp) { 1376 bdp->b_flags |= BND_REFER; 1377 break; 1378 } 1379 } 1380 } 1381 } 1382 } 1383 1384 /* 1385 * If this is the first call to process this filter, establish the 1386 * filtee list. If a configuration file exists, determine if any 1387 * filtee associations for this filter, and its filtee reference, are 1388 * defined. Otherwise, process the filtee reference. Any token 1389 * expansion is also completed at this point (i.e., $PLATFORM). 1390 */ 1391 filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val; 1392 if (dip->di_info == 0) { 1393 if (rtld_flags2 & RT_FL2_FLTCFG) 1394 dip->di_info = elf_config_flt(PATHNAME(ilmp), filtees); 1395 1396 if (dip->di_info == 0) { 1397 DBG_CALL(Dbg_file_filter(NAME(ilmp), filtees, 0)); 1398 if ((lml->lm_flags & 1399 (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) && 1400 ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0)) 1401 (void) printf(MSG_INTL(MSG_LDD_FIL_FILTER), 1402 NAME(ilmp), filtees); 1403 1404 if ((dip->di_info = (void *)expand_paths(ilmp, 1405 filtees, PN_SER_FILTEE, 0)) == 0) { 1406 elf_disable_filtee(ilmp, dip); 1407 return ((Sym *)0); 1408 } 1409 } 1410 } 1411 1412 /* 1413 * Traverse the filtee list, dlopen()'ing any objects specified and 1414 * using their group handle to lookup the symbol. 1415 */ 1416 for (any = 0, pnpp = (Pnode **)&(dip->di_info), pnp = *pnpp; pnp; 1417 pnpp = &pnp->p_next, pnp = * pnpp) { 1418 int mode; 1419 Grp_hdl *ghp; 1420 Rt_map *nlmp = 0; 1421 1422 if (pnp->p_len == 0) 1423 continue; 1424 1425 /* 1426 * Establish the mode of the filtee from the filter. As filtees 1427 * are loaded via a dlopen(), make sure that RTLD_GROUP is set 1428 * and the filtees aren't global. It would be nice to have 1429 * RTLD_FIRST used here also, but as filters got out long before 1430 * RTLD_FIRST was introduced it's a little too late now. 1431 */ 1432 mode = MODE(ilmp) | RTLD_GROUP; 1433 mode &= ~RTLD_GLOBAL; 1434 1435 /* 1436 * Insure that any auxiliary filter can locate symbols from its 1437 * caller. 1438 */ 1439 if (dip->di_flags & FLG_DI_AUXFLTR) 1440 mode |= RTLD_PARENT; 1441 1442 /* 1443 * Process any hardware capability directory. Establish a new 1444 * link-map control list from which to analyze any newly added 1445 * objects. Note that an lmc may already be allocated from a 1446 * previous filtee dlopen() that failed. 1447 */ 1448 if ((pnp->p_info == 0) && (pnp->p_orig & PN_TKN_HWCAP)) { 1449 if ((lmc == 0) && 1450 (FLAGS(lml->lm_head) & FLG_RT_RELOCED) && 1451 ((lmc = alist_append(&(lml->lm_lists), 0, 1452 sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0)) 1453 return ((Sym *)0); 1454 1455 if (lmc) 1456 lmco = (Aliste)((char *)lmc - 1457 (char *)lml->lm_lists); 1458 else 1459 lmco = ALO_DATA; 1460 1461 pnp = hwcap_filtees(pnpp, lmco, dip, ilmp, filtees, 1462 mode, (FLG_RT_HANDLE | FLG_RT_HWCAP)); 1463 } 1464 1465 if (pnp->p_len == 0) 1466 continue; 1467 1468 /* 1469 * Process an individual filtee. 1470 */ 1471 if (pnp->p_info == 0) { 1472 const char *filtee = pnp->p_name; 1473 int audit = 0; 1474 1475 DBG_CALL(Dbg_file_filtee(NAME(ilmp), filtee, 0)); 1476 1477 ghp = 0; 1478 1479 /* 1480 * Determine if the reference link map is already 1481 * loaded. As an optimization compare the filtee with 1482 * our interpretor. The most common filter is 1483 * libdl.so.1, which is a filter on ld.so.1. 1484 */ 1485 #if defined(_ELF64) 1486 if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) { 1487 #else 1488 if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) { 1489 #endif 1490 /* 1491 * Create an association between ld.so.1 and 1492 * the filter. 1493 */ 1494 nlmp = lml_rtld.lm_head; 1495 if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp, 1496 (GPH_LDSO | GPH_FIRST | GPH_FILTEE))) == 0) 1497 nlmp = 0; 1498 1499 /* 1500 * Establish the filter handle to prevent any 1501 * recursion. 1502 */ 1503 if (nlmp && ghp) 1504 pnp->p_info = (void *)ghp; 1505 1506 /* 1507 * Audit the filter/filtee established. Ignore 1508 * any return from the auditor, as we can't 1509 * allow ignore filtering to ld.so.1, otherwise 1510 * nothing is going to work. 1511 */ 1512 if ((lml->lm_tflags | FLAGS1(ilmp)) & 1513 LML_TFLG_AUD_OBJFILTER) 1514 (void) audit_objfilter(ilmp, filtees, 1515 nlmp, 0); 1516 1517 } else { 1518 Rej_desc rej = { 0 }; 1519 1520 /* 1521 * Establish a new link-map control list from 1522 * which to analyze any newly added objects. 1523 * Note that an lmc may already be allocated 1524 * from a previous filtee dlopen() that failed. 1525 */ 1526 if ((lmc == 0) && 1527 (FLAGS(lml->lm_head) & FLG_RT_RELOCED) && 1528 ((lmc = alist_append(&(lml->lm_lists), 1529 0, sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0)) 1530 return ((Sym *)0); 1531 1532 if (lmc) 1533 lmco = (Aliste)((char *)lmc - 1534 (char *)lml->lm_lists); 1535 else 1536 lmco = ALO_DATA; 1537 1538 /* 1539 * Load the filtee. 1540 */ 1541 if ((nlmp = load_path(lml, lmco, filtee, ilmp, 1542 mode, FLG_RT_HANDLE, &ghp, 0, &rej)) == 0) { 1543 file_notfound(LIST(ilmp), filtee, ilmp, 1544 FLG_RT_HANDLE, &rej); 1545 remove_rej(&rej); 1546 } 1547 1548 /* 1549 * Establish the filter handle to prevent any 1550 * recursion. 1551 */ 1552 if (nlmp && ghp) { 1553 ghp->gh_flags |= GPH_FILTEE; 1554 pnp->p_info = (void *)ghp; 1555 } 1556 1557 /* 1558 * Audit the filter/filtee established. A 1559 * return of 0 indicates the auditor wishes to 1560 * ignore this filtee. 1561 */ 1562 if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) & 1563 LML_TFLG_AUD_OBJFILTER)) { 1564 if (audit_objfilter(ilmp, filtees, 1565 nlmp, 0) == 0) { 1566 audit = 1; 1567 nlmp = 0; 1568 } 1569 } 1570 1571 /* 1572 * Finish processing the objects associated with 1573 * this request. Create an association between 1574 * this object and the originating filter to 1575 * provide sufficient information to tear down 1576 * this filtee if necessary. 1577 */ 1578 if (nlmp && ghp && 1579 ((analyze_lmc(lml, lmco, nlmp) == 0) || 1580 (relocate_lmc(lml, lmco, nlmp) == 0))) 1581 nlmp = 0; 1582 1583 /* 1584 * If the filtee has been successfully 1585 * processed, and it is part of a link-map 1586 * control list that is equivalent, or less, 1587 * than the filter control list, create an 1588 * association between the filter and filtee. 1589 * This association provides sufficient 1590 * information to tear down the filter and 1591 * filtee if necessary. 1592 */ 1593 if (nlmp && ghp && (CNTL(nlmp) <= CNTL(ilmp)) && 1594 (hdl_add(ghp, ilmp, GPD_FILTER) == 0)) 1595 nlmp = 0; 1596 } 1597 1598 /* 1599 * Generate a diagnostic if the filtee couldn't be 1600 * loaded, null out the pnode entry, and continue 1601 * the search. Otherwise, retain this group handle 1602 * for future symbol searches. 1603 */ 1604 if (nlmp == 0) { 1605 pnp->p_info = 0; 1606 DBG_CALL(Dbg_file_filtee(0, filtee, audit)); 1607 1608 if (ghp) 1609 (void) dlclose_core(ghp, ilmp); 1610 1611 if (lmc) { 1612 (void) lm_salvage(lml, 0, lmco); 1613 lmc->lc_head = lmc->lc_tail = 0; 1614 } 1615 pnp->p_len = 0; 1616 continue; 1617 } 1618 } 1619 1620 ghp = (Grp_hdl *)pnp->p_info; 1621 1622 /* 1623 * If we're just here to trigger filtee loading skip the symbol 1624 * lookup so we'll continue looking for additional filtees. 1625 */ 1626 if (name) { 1627 Grp_desc *gdp; 1628 Sym *sym = 0; 1629 Aliste off; 1630 Slookup sl = *slp; 1631 1632 sl.sl_flags |= LKUP_FIRST; 1633 any++; 1634 1635 /* 1636 * Look for the symbol in the handles dependencies. 1637 */ 1638 for (ALIST_TRAVERSE(ghp->gh_depends, off, gdp)) { 1639 if ((gdp->gd_flags & GPD_AVAIL) == 0) 1640 continue; 1641 1642 /* 1643 * If our parent is a dependency don't look at 1644 * it (otherwise we are in a recursive loop). 1645 * This situation can occur with auxiliary 1646 * filters if the filtee has a dependency on the 1647 * filter. This dependency isn't necessary as 1648 * auxiliary filters are opened RTLD_PARENT, but 1649 * users may still unknowingly add an explicit 1650 * dependency to the parent. 1651 */ 1652 if ((sl.sl_imap = gdp->gd_depend) == ilmp) 1653 continue; 1654 1655 if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp, 1656 binfo)) != 0) || 1657 (ghp->gh_flags & GPH_FIRST)) 1658 break; 1659 } 1660 1661 /* 1662 * If this filtee has just been loaded (nlmp != 0), 1663 * determine whether the filtee was triggered by a 1664 * relocation from an object that is still being 1665 * relocated on a leaf link-map control list. As the 1666 * relocation of an object on this list might still 1667 * fail, we can't yet bind the filter to the filtee. 1668 * To do so, would be locking the filtee so that it 1669 * couldn't be deleted, and the filtee itself could have 1670 * bound to an object that must be torn down. Insure 1671 * the caller isn't bound to the handle at this time. 1672 * Any association will be reestablished when the filter 1673 * is later referenced and the filtee has propagated to 1674 * the same link-map control list. 1675 */ 1676 if (nlmp && (CNTL(nlmp) > CNTL(ilmp))) { 1677 remove_caller(ghp, ilmp); 1678 pnp->p_info = 0; 1679 } 1680 if (sym) { 1681 if (lmc) 1682 remove_cntl(lml, lmco); 1683 1684 *binfo |= DBG_BINFO_FILTEE; 1685 return (sym); 1686 } 1687 } 1688 1689 /* 1690 * If this object is tagged to terminate filtee processing we're 1691 * done. 1692 */ 1693 if (FLAGS1(ghp->gh_owner) & FL1_RT_ENDFILTE) 1694 break; 1695 } 1696 1697 if (lmc) 1698 remove_cntl(lml, lmco); 1699 1700 /* 1701 * If we're just here to trigger filtee loading then we're done. 1702 */ 1703 if (name == 0) 1704 return ((Sym *)0); 1705 1706 /* 1707 * If no filtees have been found for a filter, clean up any Pnode 1708 * structures and disable their search completely. For auxiliary 1709 * filters we can reselect the symbol search function so that we never 1710 * enter this routine again for this object. For standard filters we 1711 * use the null symbol routine. 1712 */ 1713 if (any == 0) { 1714 remove_pnode((Pnode *)dip->di_info); 1715 elf_disable_filtee(ilmp, dip); 1716 return ((Sym *)0); 1717 } 1718 1719 return ((Sym *)0); 1720 } 1721 1722 /* 1723 * Focal point for disabling error messages for auxiliary filters. As an 1724 * auxiliary filter allows for filtee use, but provides a fallback should a 1725 * filtee not exist (or fail to load), any errors generated as a consequence of 1726 * trying to load the filtees are typically suppressed. Setting RT_FL_SILENCERR 1727 * suppresses errors generated by eprint(), but insures a debug diagnostic is 1728 * produced. ldd(1) employs printf(), and here, the selection of whether to 1729 * print a diagnostic in regards to auxiliary filters is a little more complex. 1730 * 1731 * . The determination of whether to produce an ldd message, or a fatal 1732 * error message is driven by LML_FLG_TRC_ENABLE. 1733 * . More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN, 1734 * (ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s), 1735 * and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u). 1736 * 1737 * . If the calling object is lddstub, then several classes of message are 1738 * suppressed. The user isn't trying to diagnose lddstub, this is simply 1739 * a stub executable employed to preload a user specified library against. 1740 * 1741 * . If RT_FL_SILENCERR is in effect then any generic ldd() messages should 1742 * be suppressed. All detailed ldd messages should still be produced. 1743 */ 1744 Sym * 1745 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx) 1746 { 1747 Sym *sym; 1748 Dyninfo *dip = &DYNINFO(slp->sl_imap)[ndx]; 1749 int silent = 0; 1750 1751 /* 1752 * Make sure this entry is still acting as a filter. We may have tried 1753 * to process this previously, and disabled it if the filtee couldn't 1754 * be processed. However, other entries may provide different filtees 1755 * that are yet to be completed. 1756 */ 1757 if (dip->di_flags == 0) 1758 return ((Sym *)0); 1759 1760 /* 1761 * Indicate whether an error message is required should this filtee not 1762 * be found, based on the type of filter. 1763 */ 1764 if ((dip->di_flags & FLG_DI_AUXFLTR) && 1765 ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) { 1766 rtld_flags |= RT_FL_SILENCERR; 1767 silent = 1; 1768 } 1769 1770 sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx); 1771 1772 if (silent) 1773 rtld_flags &= ~RT_FL_SILENCERR; 1774 1775 return (sym); 1776 } 1777 1778 /* 1779 * Compute the elf hash value (as defined in the ELF access library). 1780 * The form of the hash table is: 1781 * 1782 * |--------------| 1783 * | # of buckets | 1784 * |--------------| 1785 * | # of chains | 1786 * |--------------| 1787 * | bucket[] | 1788 * |--------------| 1789 * | chain[] | 1790 * |--------------| 1791 */ 1792 ulong_t 1793 elf_hash(const char *name) 1794 { 1795 uint_t hval = 0; 1796 1797 while (*name) { 1798 uint_t g; 1799 hval = (hval << 4) + *name++; 1800 if ((g = (hval & 0xf0000000)) != 0) 1801 hval ^= g >> 24; 1802 hval &= ~g; 1803 } 1804 return ((ulong_t)hval); 1805 } 1806 1807 /* 1808 * If flag argument has LKUP_SPEC set, we treat undefined symbols of type 1809 * function specially in the executable - if they have a value, even though 1810 * undefined, we use that value. This allows us to associate all references 1811 * to a function's address to a single place in the process: the plt entry 1812 * for that function in the executable. Calls to lookup from plt binding 1813 * routines do NOT set LKUP_SPEC in the flag. 1814 */ 1815 Sym * 1816 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo) 1817 { 1818 const char *name = slp->sl_name; 1819 Rt_map *ilmp = slp->sl_imap; 1820 ulong_t hash = slp->sl_hash; 1821 uint_t ndx, htmp, buckets, *chainptr; 1822 Sym *sym, *symtabptr; 1823 char *strtabptr, *strtabname; 1824 uint_t flags1; 1825 Syminfo *sip; 1826 1827 DBG_CALL(Dbg_syms_lookup(name, NAME(ilmp), MSG_ORIG(MSG_STR_ELF))); 1828 1829 if (HASH(ilmp) == 0) 1830 return ((Sym *)0); 1831 1832 buckets = HASH(ilmp)[0]; 1833 /* LINTED */ 1834 htmp = (uint_t)hash % buckets; 1835 1836 /* 1837 * Get the first symbol on hash chain and initialize the string 1838 * and symbol table pointers. 1839 */ 1840 if ((ndx = HASH(ilmp)[htmp + 2]) == 0) 1841 return ((Sym *)0); 1842 1843 chainptr = HASH(ilmp) + 2 + buckets; 1844 strtabptr = STRTAB(ilmp); 1845 symtabptr = SYMTAB(ilmp); 1846 1847 while (ndx) { 1848 sym = symtabptr + ndx; 1849 strtabname = strtabptr + sym->st_name; 1850 1851 /* 1852 * Compare the symbol found with the name required. If the 1853 * names don't match continue with the next hash entry. 1854 */ 1855 if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) { 1856 if ((ndx = chainptr[ndx]) != 0) 1857 continue; 1858 return ((Sym *)0); 1859 } 1860 1861 /* 1862 * If we find a match and the symbol is defined, return the 1863 * symbol pointer and the link map in which it was found. 1864 */ 1865 if (sym->st_shndx != SHN_UNDEF) { 1866 *dlmp = ilmp; 1867 *binfo |= DBG_BINFO_FOUND; 1868 if (FLAGS(ilmp) & FLG_RT_INTRPOSE) 1869 *binfo |= DBG_BINFO_INTERPOSE; 1870 if (slp->sl_flags & LKUP_SELF) 1871 return (sym); 1872 break; 1873 1874 /* 1875 * If we find a match and the symbol is undefined, the 1876 * symbol type is a function, and the value of the symbol 1877 * is non zero, then this is a special case. This allows 1878 * the resolution of a function address to the plt[] entry. 1879 * See SPARC ABI, Dynamic Linking, Function Addresses for 1880 * more details. 1881 */ 1882 } else if ((slp->sl_flags & (LKUP_SPEC | LKUP_SELF)) && 1883 (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) && 1884 (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) { 1885 *dlmp = ilmp; 1886 *binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR); 1887 if (FLAGS(ilmp) & FLG_RT_INTRPOSE) 1888 *binfo |= DBG_BINFO_INTERPOSE; 1889 return (sym); 1890 } 1891 1892 /* 1893 * Undefined symbol. 1894 */ 1895 if (slp->sl_flags & LKUP_SELF) 1896 return (sym); 1897 1898 return ((Sym *)0); 1899 } 1900 1901 /* 1902 * We've found a match. Determine if the defining object contains 1903 * symbol binding information. 1904 */ 1905 if ((sip = SYMINFO(ilmp)) != 0) 1906 /* LINTED */ 1907 sip = (Syminfo *)((char *)sip + (ndx * SYMINENT(ilmp))); 1908 1909 /* 1910 * If this is a direct binding request, but the symbol definition has 1911 * disabled directly binding to it (presumably because the symbol 1912 * definition has been changed since the referring object was built), 1913 * indicate this failure so that the caller can fall back to a standard 1914 * symbol search. Clear any debug binding information for cleanliness. 1915 */ 1916 if (sip && (slp->sl_flags & LKUP_DIRECT) && 1917 (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) { 1918 *binfo |= BINFO_DIRECTDIS; 1919 *binfo &= ~DBG_BINFO_MSK; 1920 return ((Sym *)0); 1921 } 1922 1923 /* 1924 * Determine whether this object is acting as a filter. 1925 */ 1926 if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0) 1927 return (sym); 1928 1929 /* 1930 * Determine if this object offers per-symbol filtering, and if so, 1931 * whether this symbol references a filtee. 1932 */ 1933 if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) { 1934 /* 1935 * If this is a standard filter reference, and no standard 1936 * filtees remain to be inspected, we're done. If this is an 1937 * auxiliary filter reference, and no auxiliary filtees remain, 1938 * we'll fall through in case any object filtering is available. 1939 */ 1940 if ((sip->si_flags & SYMINFO_FLG_FILTER) && 1941 (SYMSFLTRCNT(ilmp) == 0)) 1942 return ((Sym *)0); 1943 1944 if ((sip->si_flags & SYMINFO_FLG_FILTER) || 1945 ((sip->si_flags & SYMINFO_FLG_AUXILIARY) && 1946 SYMAFLTRCNT(ilmp))) { 1947 Sym * fsym; 1948 1949 /* 1950 * This symbol has an associated filtee. Lookup the 1951 * symbol in the filtee, and if it is found return it. 1952 * If the symbol doesn't exist, and this is a standard 1953 * filter, return an error, otherwise fall through to 1954 * catch any object filtering that may be available. 1955 */ 1956 if ((fsym = elf_lookup_filtee(slp, dlmp, binfo, 1957 sip->si_boundto)) != 0) 1958 return (fsym); 1959 if (sip->si_flags & SYMINFO_FLG_FILTER) 1960 return ((Sym *)0); 1961 } 1962 } 1963 1964 /* 1965 * Determine if this object provides global filtering. 1966 */ 1967 if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) { 1968 Sym * fsym; 1969 1970 if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) { 1971 /* 1972 * This object has an associated filtee. Lookup the 1973 * symbol in the filtee, and if it is found return it. 1974 * If the symbol doesn't exist, and this is a standard 1975 * filter, return and error, otherwise return the symbol 1976 * within the filter itself. 1977 */ 1978 if ((fsym = elf_lookup_filtee(slp, dlmp, binfo, 1979 OBJFLTRNDX(ilmp))) != 0) 1980 return (fsym); 1981 } 1982 1983 if (flags1 & FL1_RT_OBJSFLTR) 1984 return ((Sym *)0); 1985 } 1986 return (sym); 1987 } 1988 1989 /* 1990 * Create a new Rt_map structure for an ELF object and initialize 1991 * all values. 1992 */ 1993 Rt_map * 1994 elf_new_lm(Lm_list *lml, const char *pname, const char *oname, Dyn *ld, 1995 ulong_t addr, ulong_t etext, Aliste lmco, ulong_t msize, ulong_t entry, 1996 ulong_t paddr, ulong_t padimsize, Mmap *mmaps, uint_t mmapcnt) 1997 { 1998 Rt_map *lmp; 1999 ulong_t base, fltr = 0, audit = 0, cfile = 0, crle = 0; 2000 Xword rpath = 0; 2001 Ehdr *ehdr = (Ehdr *)addr; 2002 2003 DBG_CALL(Dbg_file_elf(pname, (ulong_t)ld, addr, msize, entry, 2004 get_linkmap_id(lml), lmco)); 2005 2006 /* 2007 * Allocate space for the link-map and private elf information. Once 2008 * these are allocated and initialized, we can use remove_so(0, lmp) to 2009 * tear down the link-map should any failures occur. 2010 */ 2011 if ((lmp = calloc(sizeof (Rt_map), 1)) == 0) 2012 return (0); 2013 if ((ELFPRV(lmp) = calloc(sizeof (Rt_elfp), 1)) == 0) { 2014 free(lmp); 2015 return (0); 2016 } 2017 2018 /* 2019 * All fields not filled in were set to 0 by calloc. 2020 */ 2021 ORIGNAME(lmp) = PATHNAME(lmp) = NAME(lmp) = (char *)pname; 2022 DYN(lmp) = ld; 2023 ADDR(lmp) = addr; 2024 MSIZE(lmp) = msize; 2025 ENTRY(lmp) = (Addr)entry; 2026 SYMINTP(lmp) = elf_find_sym; 2027 ETEXT(lmp) = etext; 2028 FCT(lmp) = &elf_fct; 2029 LIST(lmp) = lml; 2030 PADSTART(lmp) = paddr; 2031 PADIMLEN(lmp) = padimsize; 2032 THREADID(lmp) = rt_thr_self(); 2033 OBJFLTRNDX(lmp) = FLTR_DISABLED; 2034 2035 MMAPS(lmp) = mmaps; 2036 MMAPCNT(lmp) = mmapcnt; 2037 ASSERT(mmapcnt != 0); 2038 2039 /* 2040 * If this is a shared object, add the base address to each address. 2041 * if this is an executable, use address as is. 2042 */ 2043 if (ehdr->e_type == ET_EXEC) { 2044 base = 0; 2045 FLAGS(lmp) |= FLG_RT_FIXED; 2046 } else 2047 base = addr; 2048 2049 /* 2050 * Fill in rest of the link map entries with information from the file's 2051 * dynamic structure. 2052 */ 2053 if (ld) { 2054 uint_t dyncnt = 0; 2055 Xword pltpadsz = 0; 2056 void *rtldinfo; 2057 2058 /* CSTYLED */ 2059 for ( ; ld->d_tag != DT_NULL; ++ld, dyncnt++) { 2060 switch ((Xword)ld->d_tag) { 2061 case DT_SYMTAB: 2062 SYMTAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2063 break; 2064 case DT_STRTAB: 2065 STRTAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2066 break; 2067 case DT_SYMENT: 2068 SYMENT(lmp) = ld->d_un.d_val; 2069 break; 2070 case DT_FEATURE_1: 2071 ld->d_un.d_val |= DTF_1_PARINIT; 2072 if (ld->d_un.d_val & DTF_1_CONFEXP) 2073 crle = 1; 2074 break; 2075 case DT_MOVESZ: 2076 MOVESZ(lmp) = ld->d_un.d_val; 2077 FLAGS(lmp) |= FLG_RT_MOVE; 2078 break; 2079 case DT_MOVEENT: 2080 MOVEENT(lmp) = ld->d_un.d_val; 2081 break; 2082 case DT_MOVETAB: 2083 MOVETAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2084 break; 2085 case DT_REL: 2086 case DT_RELA: 2087 /* 2088 * At this time we can only handle 1 type of 2089 * relocation per object. 2090 */ 2091 REL(lmp) = (void *)(ld->d_un.d_ptr + base); 2092 break; 2093 case DT_RELSZ: 2094 case DT_RELASZ: 2095 RELSZ(lmp) = ld->d_un.d_val; 2096 break; 2097 case DT_RELENT: 2098 case DT_RELAENT: 2099 RELENT(lmp) = ld->d_un.d_val; 2100 break; 2101 case DT_RELCOUNT: 2102 case DT_RELACOUNT: 2103 RELACOUNT(lmp) = (uint_t)ld->d_un.d_val; 2104 break; 2105 case DT_TEXTREL: 2106 FLAGS1(lmp) |= FL1_RT_TEXTREL; 2107 break; 2108 case DT_HASH: 2109 HASH(lmp) = (uint_t *)(ld->d_un.d_ptr + base); 2110 break; 2111 case DT_PLTGOT: 2112 PLTGOT(lmp) = (uint_t *)(ld->d_un.d_ptr + base); 2113 break; 2114 case DT_PLTRELSZ: 2115 PLTRELSZ(lmp) = ld->d_un.d_val; 2116 break; 2117 case DT_JMPREL: 2118 JMPREL(lmp) = (void *)(ld->d_un.d_ptr + base); 2119 break; 2120 case DT_INIT: 2121 INIT(lmp) = (void (*)())(ld->d_un.d_ptr + base); 2122 break; 2123 case DT_FINI: 2124 FINI(lmp) = (void (*)())(ld->d_un.d_ptr + base); 2125 break; 2126 case DT_INIT_ARRAY: 2127 INITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2128 base); 2129 break; 2130 case DT_INIT_ARRAYSZ: 2131 INITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2132 break; 2133 case DT_FINI_ARRAY: 2134 FINIARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2135 base); 2136 break; 2137 case DT_FINI_ARRAYSZ: 2138 FINIARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2139 break; 2140 case DT_PREINIT_ARRAY: 2141 PREINITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2142 base); 2143 break; 2144 case DT_PREINIT_ARRAYSZ: 2145 PREINITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2146 break; 2147 case DT_RPATH: 2148 case DT_RUNPATH: 2149 rpath = ld->d_un.d_val; 2150 break; 2151 case DT_FILTER: 2152 fltr = ld->d_un.d_val; 2153 OBJFLTRNDX(lmp) = dyncnt; 2154 FLAGS1(lmp) |= FL1_RT_OBJSFLTR; 2155 break; 2156 case DT_AUXILIARY: 2157 if (!(rtld_flags & RT_FL_NOAUXFLTR)) { 2158 fltr = ld->d_un.d_val; 2159 OBJFLTRNDX(lmp) = dyncnt; 2160 } 2161 FLAGS1(lmp) |= FL1_RT_OBJAFLTR; 2162 break; 2163 case DT_SUNW_FILTER: 2164 SYMSFLTRCNT(lmp)++; 2165 FLAGS1(lmp) |= FL1_RT_SYMSFLTR; 2166 break; 2167 case DT_SUNW_AUXILIARY: 2168 if (!(rtld_flags & RT_FL_NOAUXFLTR)) { 2169 SYMAFLTRCNT(lmp)++; 2170 } 2171 FLAGS1(lmp) |= FL1_RT_SYMAFLTR; 2172 break; 2173 case DT_DEPAUDIT: 2174 if (!(rtld_flags & RT_FL_NOAUDIT)) 2175 audit = ld->d_un.d_val; 2176 break; 2177 case DT_CONFIG: 2178 cfile = ld->d_un.d_val; 2179 break; 2180 case DT_DEBUG: 2181 /* 2182 * DT_DEBUG entries are only created in 2183 * dynamic objects that require an interpretor 2184 * (ie. all dynamic executables and some shared 2185 * objects), and provide for a hand-shake with 2186 * debuggers. This entry is initialized to 2187 * zero by the link-editor. If a debugger has 2188 * us and updated this entry set the debugger 2189 * flag, and finish initializing the debugging 2190 * structure (see setup() also). Switch off any 2191 * configuration object use as most debuggers 2192 * can't handle fixed dynamic executables as 2193 * dependencies, and we can't handle requests 2194 * like object padding for alternative objects. 2195 */ 2196 if (ld->d_un.d_ptr) 2197 rtld_flags |= 2198 (RT_FL_DEBUGGER | RT_FL_NOOBJALT); 2199 ld->d_un.d_ptr = (Addr)&r_debug; 2200 break; 2201 case DT_VERNEED: 2202 VERNEED(lmp) = (Verneed *)(ld->d_un.d_ptr + 2203 base); 2204 break; 2205 case DT_VERNEEDNUM: 2206 /* LINTED */ 2207 VERNEEDNUM(lmp) = (int)ld->d_un.d_val; 2208 break; 2209 case DT_VERDEF: 2210 VERDEF(lmp) = (Verdef *)(ld->d_un.d_ptr + base); 2211 break; 2212 case DT_VERDEFNUM: 2213 /* LINTED */ 2214 VERDEFNUM(lmp) = (int)ld->d_un.d_val; 2215 break; 2216 case DT_BIND_NOW: 2217 if (ld->d_un.d_val & DF_BIND_NOW) { 2218 MODE(lmp) |= RTLD_NOW; 2219 MODE(lmp) &= ~RTLD_LAZY; 2220 } 2221 break; 2222 case DT_FLAGS: 2223 if (ld->d_un.d_val & DF_SYMBOLIC) 2224 FLAGS1(lmp) |= FL1_RT_SYMBOLIC; 2225 if (ld->d_un.d_val & DF_TEXTREL) 2226 FLAGS1(lmp) |= FL1_RT_TEXTREL; 2227 if (ld->d_un.d_val & DF_BIND_NOW) { 2228 MODE(lmp) |= RTLD_NOW; 2229 MODE(lmp) &= ~RTLD_LAZY; 2230 } 2231 break; 2232 case DT_FLAGS_1: 2233 if (ld->d_un.d_val & DF_1_DISPRELPND) 2234 FLAGS1(lmp) |= FL1_RT_DISPREL; 2235 if (ld->d_un.d_val & DF_1_GROUP) 2236 FLAGS(lmp) |= 2237 (FLG_RT_SETGROUP | FLG_RT_HANDLE); 2238 if (ld->d_un.d_val & DF_1_NOW) { 2239 MODE(lmp) |= RTLD_NOW; 2240 MODE(lmp) &= ~RTLD_LAZY; 2241 } 2242 if (ld->d_un.d_val & DF_1_NODELETE) 2243 MODE(lmp) |= RTLD_NODELETE; 2244 if (ld->d_un.d_val & DF_1_INITFIRST) 2245 FLAGS(lmp) |= FLG_RT_INITFRST; 2246 if (ld->d_un.d_val & DF_1_NOOPEN) 2247 FLAGS(lmp) |= FLG_RT_NOOPEN; 2248 if (ld->d_un.d_val & DF_1_LOADFLTR) 2249 FLAGS(lmp) |= FLG_RT_LOADFLTR; 2250 if (ld->d_un.d_val & DF_1_NODUMP) 2251 FLAGS(lmp) |= FLG_RT_NODUMP; 2252 if (ld->d_un.d_val & DF_1_CONFALT) 2253 crle = 1; 2254 if (ld->d_un.d_val & DF_1_DIRECT) 2255 FLAGS(lmp) |= FLG_RT_DIRECT; 2256 if (ld->d_un.d_val & DF_1_NODEFLIB) 2257 FLAGS1(lmp) |= FL1_RT_NODEFLIB; 2258 if (ld->d_un.d_val & DF_1_ENDFILTEE) 2259 FLAGS1(lmp) |= FL1_RT_ENDFILTE; 2260 if (ld->d_un.d_val & DF_1_TRANS) 2261 FLAGS(lmp) |= FLG_RT_TRANS; 2262 #ifndef EXPAND_RELATIVE 2263 if (ld->d_un.d_val & DF_1_ORIGIN) 2264 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2265 #endif 2266 /* 2267 * If this object identifies itself as an 2268 * interposer, but relocation processing has 2269 * already started, then demote it. It's too 2270 * late to guarantee complete interposition. 2271 */ 2272 if (ld->d_un.d_val & DF_1_INTERPOSE) { 2273 if ((lml->lm_flags & LML_FLG_STARTREL) == 0) 2274 FLAGS(lmp) |= FLG_RT_INTRPOSE; 2275 else { 2276 DBG_CALL(Dbg_util_intoolate(NAME(lmp))); 2277 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 2278 (void) printf( 2279 MSG_INTL(MSG_LDD_REL_ERR2), 2280 NAME(lmp)); 2281 } 2282 } 2283 break; 2284 case DT_SYMINFO: 2285 SYMINFO(lmp) = (Syminfo *)(ld->d_un.d_ptr + 2286 base); 2287 break; 2288 case DT_SYMINENT: 2289 SYMINENT(lmp) = ld->d_un.d_val; 2290 break; 2291 case DT_PLTPAD: 2292 PLTPAD(lmp) = (void *)(ld->d_un.d_ptr + base); 2293 break; 2294 case DT_PLTPADSZ: 2295 pltpadsz = ld->d_un.d_val; 2296 break; 2297 case DT_SUNW_RTLDINF: 2298 if ((lml->lm_info_lmp != 0) && 2299 (lml->lm_info_lmp != lmp)) { 2300 DBG_CALL(Dbg_unused_rtldinfo( 2301 NAME(lmp), 2302 NAME(lml->lm_info_lmp))); 2303 break; 2304 } 2305 lml->lm_info_lmp = lmp; 2306 rtldinfo = (void *)(ld->d_un.d_ptr + base); 2307 2308 /* 2309 * We maintain a list of DT_SUNW_RTLDINFO 2310 * structures for a given object. This permits 2311 * the RTLDINFO structures to be grouped 2312 * functionly inside of a shared object. 2313 * 2314 * For example, we could have one for 2315 * thread_init, and another for atexit 2316 * reservations. 2317 */ 2318 if (alist_append(&lml->lm_rtldinfo, &rtldinfo, 2319 sizeof (void *), AL_CNT_RTLDINFO) == 0) { 2320 remove_so(0, lmp); 2321 return (0); 2322 } 2323 break; 2324 case DT_DEPRECATED_SPARC_REGISTER: 2325 case M_DT_REGISTER: 2326 FLAGS(lmp) |= FLG_RT_REGSYMS; 2327 break; 2328 case M_DT_PLTRESERVE: 2329 PLTRESERVE(lmp) = (void *)(ld->d_un.d_ptr + 2330 base); 2331 break; 2332 } 2333 } 2334 2335 2336 if (PLTPAD(lmp)) { 2337 if (pltpadsz == (Xword)0) 2338 PLTPAD(lmp) = 0; 2339 else 2340 PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) + 2341 pltpadsz); 2342 } 2343 2344 /* 2345 * Allocate Dynamic Info structure 2346 */ 2347 if ((DYNINFO(lmp) = calloc((size_t)dyncnt, 2348 sizeof (Dyninfo))) == 0) { 2349 remove_so(0, lmp); 2350 return (0); 2351 } 2352 DYNINFOCNT(lmp) = dyncnt; 2353 } 2354 2355 /* 2356 * If configuration file use hasn't been disabled, and a configuration 2357 * file hasn't already been set via an environment variable, see if any 2358 * application specific configuration file is specified. An LD_CONFIG 2359 * setting is used first, but if this image was generated via crle(1) 2360 * then a default configuration file is a fall-back. 2361 */ 2362 if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == 0)) { 2363 if (cfile) 2364 config->c_name = (const char *)(cfile + 2365 (char *)STRTAB(lmp)); 2366 else if (crle) { 2367 rtld_flags |= RT_FL_CONFAPP; 2368 #ifndef EXPAND_RELATIVE 2369 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2370 #endif 2371 } 2372 } 2373 2374 if (rpath) 2375 RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp)); 2376 if (fltr) { 2377 /* 2378 * If this object is a global filter, duplicate the filtee 2379 * string name(s) so that REFNAME() is available in core files. 2380 * This cludge was useful for debuggers at one point, but only 2381 * when the filtee name was an individual full path. 2382 */ 2383 if ((REFNAME(lmp) = strdup(fltr + (char *)STRTAB(lmp))) == 0) { 2384 remove_so(0, lmp); 2385 return (0); 2386 } 2387 } 2388 2389 if (rtld_flags & RT_FL_RELATIVE) 2390 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2391 2392 /* 2393 * For Intel ABI compatibility. It's possible that a JMPREL can be 2394 * specified without any other relocations (e.g. a dynamic executable 2395 * normally only contains .plt relocations). If this is the case then 2396 * no REL, RELSZ or RELENT will have been created. For us to be able 2397 * to traverse the .plt relocations under LD_BIND_NOW we need to know 2398 * the RELENT for these relocations. Refer to elf_reloc() for more 2399 * details. 2400 */ 2401 if (!RELENT(lmp) && JMPREL(lmp)) 2402 RELENT(lmp) = sizeof (Rel); 2403 2404 /* 2405 * Establish any per-object auditing. If we're establishing `main's 2406 * link-map its too early to go searching for audit objects so just 2407 * hold the object name for later (see setup()). 2408 */ 2409 if (audit) { 2410 char *cp = audit + (char *)STRTAB(lmp); 2411 2412 if (*cp) { 2413 if (((AUDITORS(lmp) = 2414 calloc(1, sizeof (Audit_desc))) == 0) || 2415 ((AUDITORS(lmp)->ad_name = strdup(cp)) == 0)) { 2416 remove_so(0, lmp); 2417 return (0); 2418 } 2419 if (NAME(lmp)) { 2420 if (audit_setup(lmp, AUDITORS(lmp)) == 0) { 2421 remove_so(0, lmp); 2422 return (0); 2423 } 2424 FLAGS1(lmp) |= AUDITORS(lmp)->ad_flags; 2425 lml->lm_flags |= LML_FLG_LOCAUDIT; 2426 } 2427 } 2428 } 2429 2430 if ((CONDVAR(lmp) = rt_cond_create()) == 0) { 2431 remove_so(0, lmp); 2432 return (0); 2433 } 2434 if (oname && ((append_alias(lmp, oname, 0)) == 0)) { 2435 remove_so(0, lmp); 2436 return (0); 2437 } 2438 2439 /* 2440 * Add the mapped object to the end of the link map list. 2441 */ 2442 lm_append(lml, lmco, lmp); 2443 return (lmp); 2444 } 2445 2446 /* 2447 * Assign hardware/software capabilities. 2448 */ 2449 void 2450 cap_assign(Cap *cap, Rt_map *lmp) 2451 { 2452 while (cap->c_tag != CA_SUNW_NULL) { 2453 switch (cap->c_tag) { 2454 case CA_SUNW_HW_1: 2455 HWCAP(lmp) = cap->c_un.c_val; 2456 break; 2457 case CA_SUNW_SF_1: 2458 SFCAP(lmp) = cap->c_un.c_val; 2459 } 2460 cap++; 2461 } 2462 } 2463 2464 /* 2465 * Map in an ELF object. 2466 * Takes an open file descriptor for the object to map and its pathname; returns 2467 * a pointer to a Rt_map structure for this object, or 0 on error. 2468 */ 2469 static Rt_map * 2470 elf_map_so(Lm_list *lml, Aliste lmco, const char *pname, const char *oname, 2471 int fd) 2472 { 2473 int i; /* general temporary */ 2474 Off memsize = 0; /* total memory size of pathname */ 2475 Off mentry; /* entry point */ 2476 Ehdr *ehdr; /* ELF header of ld.so */ 2477 Phdr *phdr; /* first Phdr in file */ 2478 Phdr *phdr0; /* Saved first Phdr in file */ 2479 Phdr *pptr; /* working Phdr */ 2480 Phdr *fph = 0; /* first loadable Phdr */ 2481 Phdr *lph; /* last loadable Phdr */ 2482 Phdr *lfph = 0; /* last loadable (filesz != 0) Phdr */ 2483 Phdr *lmph = 0; /* last loadable (memsz != 0) Phdr */ 2484 Phdr *swph = 0; /* program header for SUNWBSS */ 2485 Phdr *tlph = 0; /* program header for PT_TLS */ 2486 Phdr *unwindph = 0; /* program header for PT_SUNW_UNWIND */ 2487 Cap *cap = 0; /* program header for SUNWCAP */ 2488 Dyn *mld = 0; /* DYNAMIC structure for pathname */ 2489 size_t size; /* size of elf and program headers */ 2490 caddr_t faddr = 0; /* mapping address of pathname */ 2491 Rt_map *lmp; /* link map created */ 2492 caddr_t paddr; /* start of padded image */ 2493 Off plen; /* size of image including padding */ 2494 const char *name; 2495 Half etype; 2496 int fixed; 2497 Mmap *mmaps; 2498 uint_t mmapcnt = 0; 2499 Xword align = 0; 2500 2501 /* 2502 * Establish the objects name. 2503 */ 2504 if (pname == (char *)0) 2505 name = pr_name; 2506 else 2507 name = pname; 2508 2509 /* LINTED */ 2510 ehdr = (Ehdr *)fmap->fm_maddr; 2511 2512 /* 2513 * If this a relocatable object then special processing is required. 2514 */ 2515 if ((etype = ehdr->e_type) == ET_REL) 2516 return (elf_obj_file(lml, lmco, name, fd)); 2517 2518 /* 2519 * If this isn't a dynamic executable or shared object we can't process 2520 * it. If this is a dynamic executable then all addresses are fixed. 2521 */ 2522 if (etype == ET_EXEC) 2523 fixed = 1; 2524 else if (etype == ET_DYN) 2525 fixed = 0; 2526 else { 2527 eprintf(ERR_ELF, MSG_INTL(MSG_GEN_BADTYPE), name, 2528 conv_etype_str(etype)); 2529 return (0); 2530 } 2531 2532 /* 2533 * If our original mapped page was not large enough to hold all the 2534 * program headers remap them. 2535 */ 2536 size = (size_t)((char *)ehdr->e_phoff + 2537 (ehdr->e_phnum * ehdr->e_phentsize)); 2538 if (size > fmap->fm_fsize) { 2539 eprintf(ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), name); 2540 return (0); 2541 } 2542 if (size > fmap->fm_msize) { 2543 fmap_setup(); 2544 if ((fmap->fm_maddr = mmap(fmap->fm_maddr, size, PROT_READ, 2545 fmap->fm_mflags, fd, 0)) == MAP_FAILED) { 2546 int err = errno; 2547 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name, 2548 strerror(err)); 2549 return (0); 2550 } 2551 fmap->fm_msize = size; 2552 /* LINTED */ 2553 ehdr = (Ehdr *)fmap->fm_maddr; 2554 } 2555 /* LINTED */ 2556 phdr0 = phdr = (Phdr *)((char *)ehdr + ehdr->e_ehsize); 2557 2558 /* 2559 * Get entry point. 2560 */ 2561 mentry = ehdr->e_entry; 2562 2563 /* 2564 * Point at program headers and perform some basic validation. 2565 */ 2566 for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++, 2567 pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) { 2568 if ((pptr->p_type == PT_LOAD) || 2569 (pptr->p_type == PT_SUNWBSS)) { 2570 2571 if (fph == 0) { 2572 fph = pptr; 2573 /* LINTED argument lph is initialized in first pass */ 2574 } else if (pptr->p_vaddr <= lph->p_vaddr) { 2575 eprintf(ERR_ELF, MSG_INTL(MSG_GEN_INVPRGHDR), 2576 name); 2577 return (0); 2578 } 2579 2580 lph = pptr; 2581 2582 if (pptr->p_memsz) 2583 lmph = pptr; 2584 if (pptr->p_filesz) 2585 lfph = pptr; 2586 if (pptr->p_type == PT_SUNWBSS) 2587 swph = pptr; 2588 if (pptr->p_align > align) 2589 align = pptr->p_align; 2590 2591 } else if (pptr->p_type == PT_DYNAMIC) 2592 mld = (Dyn *)(pptr->p_vaddr); 2593 else if (pptr->p_type == PT_TLS) 2594 tlph = pptr; 2595 else if (pptr->p_type == PT_SUNWCAP) 2596 cap = (Cap *)(pptr->p_vaddr); 2597 else if (pptr->p_type == PT_SUNW_UNWIND) 2598 unwindph = pptr; 2599 } 2600 2601 #if defined(MAP_ALIGN) 2602 /* 2603 * Make sure the maximum page alignment is a power of 2 >= the system 2604 * page size, for use with MAP_ALIGN. 2605 */ 2606 align = M_PROUND(align); 2607 #endif 2608 2609 /* 2610 * We'd better have at least one loadable segment, together with some 2611 * specified file and memory size. 2612 */ 2613 if ((fph == 0) || (lmph == 0) || (lfph == 0)) { 2614 eprintf(ERR_ELF, MSG_INTL(MSG_GEN_NOLOADSEG), name); 2615 return (0); 2616 } 2617 2618 /* 2619 * Check that the files size accounts for the loadable sections 2620 * we're going to map in (failure to do this may cause spurious 2621 * bus errors if we're given a truncated file). 2622 */ 2623 if (fmap->fm_fsize < ((size_t)lfph->p_offset + lfph->p_filesz)) { 2624 eprintf(ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), name); 2625 return (0); 2626 } 2627 2628 /* 2629 * Memsize must be page rounded so that if we add object padding 2630 * at the end it will start at the beginning of a page. 2631 */ 2632 plen = memsize = M_PROUND((lmph->p_vaddr + lmph->p_memsz) - 2633 M_PTRUNC((ulong_t)fph->p_vaddr)); 2634 2635 /* 2636 * Determine if an existing mapping is acceptable. 2637 */ 2638 if (interp && (lml->lm_flags & LML_FLG_BASELM) && 2639 (strcmp(name, interp->i_name) == 0)) { 2640 /* 2641 * If this is the interpreter then it has already been mapped 2642 * and we have the address so don't map it again. Note that 2643 * the common occurrence of a reference to the interpretor 2644 * (libdl -> ld.so.1) will have been caught during filter 2645 * initialization (see elf_lookup_filtee()). However, some 2646 * ELF implementations are known to record libc.so.1 as the 2647 * interpretor, and thus this test catches this behavior. 2648 */ 2649 paddr = faddr = interp->i_faddr; 2650 2651 } else if ((fixed == 0) && (r_debug.rtd_objpad == 0) && 2652 (memsize <= fmap->fm_msize) && ((fph->p_flags & PF_W) == 0) && 2653 (fph->p_filesz == fph->p_memsz) && 2654 (((Xword)fmap->fm_maddr % align) == 0)) { 2655 /* 2656 * If the mapping required has already been established from 2657 * the initial page we don't need to do anything more. Reset 2658 * the fmap address so then any later files start a new fmap. 2659 * This is really an optimization for filters, such as libdl.so, 2660 * which should only require one page. 2661 */ 2662 paddr = faddr = fmap->fm_maddr; 2663 fmap->fm_maddr = 0; 2664 fmap_setup(); 2665 } 2666 2667 /* 2668 * Allocate a mapping array to retain mapped segment information. 2669 */ 2670 if ((mmaps = calloc(ehdr->e_phnum, sizeof (Mmap))) == 0) 2671 return (0); 2672 2673 /* 2674 * If we're reusing an existing mapping determine the objects etext 2675 * address. Otherwise map the file (which will calculate the etext 2676 * address as part of the mapping process). 2677 */ 2678 if (faddr) { 2679 caddr_t base; 2680 2681 if (fixed) 2682 base = 0; 2683 else 2684 base = faddr; 2685 2686 /* LINTED */ 2687 phdr0 = phdr = (Phdr *)((char *)faddr + ehdr->e_ehsize); 2688 2689 for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++, 2690 pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) { 2691 if (pptr->p_type != PT_LOAD) 2692 continue; 2693 2694 mmaps[mmapcnt].m_vaddr = (pptr->p_vaddr + base); 2695 mmaps[mmapcnt].m_msize = pptr->p_memsz; 2696 mmaps[mmapcnt].m_fsize = pptr->p_filesz; 2697 mmaps[mmapcnt].m_perm = (PROT_READ | PROT_EXEC); 2698 mmapcnt++; 2699 2700 if (!(pptr->p_flags & PF_W)) { 2701 fmap->fm_etext = (ulong_t)pptr->p_vaddr + 2702 (ulong_t)pptr->p_memsz + 2703 (ulong_t)(fixed ? 0 : faddr); 2704 } 2705 } 2706 } else { 2707 /* 2708 * Map the file. 2709 */ 2710 if (!(faddr = elf_map_it(name, memsize, ehdr, fph, lph, 2711 &phdr, &paddr, &plen, fixed, fd, align, mmaps, &mmapcnt))) 2712 return (0); 2713 } 2714 2715 /* 2716 * Calculate absolute base addresses and entry points. 2717 */ 2718 if (!fixed) { 2719 if (mld) 2720 /* LINTED */ 2721 mld = (Dyn *)((Off)mld + faddr); 2722 if (cap) 2723 /* LINTED */ 2724 cap = (Cap *)((Off)cap + faddr); 2725 mentry += (Off)faddr; 2726 } 2727 2728 /* 2729 * Create new link map structure for newly mapped shared object. 2730 */ 2731 if (!(lmp = elf_new_lm(lml, pname, oname, mld, (ulong_t)faddr, 2732 fmap->fm_etext, lmco, memsize, mentry, (ulong_t)paddr, plen, mmaps, 2733 mmapcnt))) { 2734 (void) munmap((caddr_t)faddr, memsize); 2735 return (0); 2736 } 2737 2738 /* 2739 * Start the system loading in the ELF information we'll be processing. 2740 */ 2741 if (REL(lmp)) { 2742 (void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) + 2743 (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp), 2744 MADV_WILLNEED); 2745 } 2746 2747 /* 2748 * If this shared object contains a any special segments, record them. 2749 */ 2750 if (swph) { 2751 FLAGS(lmp) |= FLG_RT_SUNWBSS; 2752 SUNWBSS(lmp) = phdr + (swph - phdr0); 2753 } 2754 if (tlph) { 2755 PTTLS(lmp) = phdr + (tlph - phdr0); 2756 tls_assign_soffset(lmp); 2757 } 2758 2759 if (unwindph) 2760 PTUNWIND(lmp) = phdr + (unwindph - phdr0); 2761 2762 if (cap) 2763 cap_assign(cap, lmp); 2764 2765 return (lmp); 2766 } 2767 2768 2769 /* 2770 * Function to correct protection settings. Segments are all mapped initially 2771 * with permissions as given in the segment header. We need to turn on write 2772 * permissions on a text segment if there are any relocations against that 2773 * segment, and them turn write permission back off again before returning 2774 * control to the user. This function turns the permission on or off depending 2775 * on the value of the argument. 2776 */ 2777 int 2778 elf_set_prot(Rt_map * lmp, int permission) 2779 { 2780 Mmap *mmaps; 2781 2782 /* 2783 * If this is an allocated image (ie. a relocatable object) we can't 2784 * mprotect() anything. 2785 */ 2786 if (FLAGS(lmp) & FLG_RT_IMGALLOC) 2787 return (1); 2788 2789 DBG_CALL(Dbg_file_prot(NAME(lmp), permission)); 2790 2791 for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) { 2792 if (mmaps->m_perm & PROT_WRITE) 2793 continue; 2794 2795 if (mprotect(mmaps->m_vaddr, mmaps->m_msize, 2796 (mmaps->m_perm | permission)) == -1) { 2797 int err = errno; 2798 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MPROT), 2799 NAME(lmp), strerror(err)); 2800 return (0); 2801 } 2802 } 2803 return (1); 2804 } 2805 2806 /* 2807 * Build full pathname of shared object from given directory name and filename. 2808 */ 2809 static char * 2810 elf_get_so(const char *dir, const char *file) 2811 { 2812 static char pname[PATH_MAX]; 2813 2814 (void) snprintf(pname, PATH_MAX, MSG_ORIG(MSG_FMT_PATH), dir, file); 2815 return (pname); 2816 } 2817 2818 /* 2819 * The copy relocation is recorded in a copy structure which will be applied 2820 * after all other relocations are carried out. This provides for copying data 2821 * that must be relocated itself (ie. pointers in shared objects). This 2822 * structure also provides a means of binding RTLD_GROUP dependencies to any 2823 * copy relocations that have been taken from any group members. 2824 * 2825 * If the size of the .bss area available for the copy information is not the 2826 * same as the source of the data inform the user if we're under ldd(1) control 2827 * (this checking was only established in 5.3, so by only issuing an error via 2828 * ldd(1) we maintain the standard set by previous releases). 2829 */ 2830 int 2831 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym, 2832 Rt_map *dlmp, const void *dadd) 2833 { 2834 Rel_copy rc; 2835 Lm_list *lml = LIST(rlmp); 2836 2837 rc.r_name = name; 2838 rc.r_rsym = rsym; /* the new reference symbol and its */ 2839 rc.r_rlmp = rlmp; /* associated link-map */ 2840 rc.r_dlmp = dlmp; /* the defining link-map */ 2841 rc.r_dsym = dsym; /* the original definition */ 2842 rc.r_radd = radd; 2843 rc.r_dadd = dadd; 2844 2845 if (rsym->st_size > dsym->st_size) 2846 rc.r_size = (size_t)dsym->st_size; 2847 else 2848 rc.r_size = (size_t)rsym->st_size; 2849 2850 if (alist_append(©(dlmp), &rc, sizeof (Rel_copy), 2851 AL_CNT_COPYREL) == 0) { 2852 if (!(lml->lm_flags & LML_FLG_TRC_WARN)) 2853 return (0); 2854 else 2855 return (1); 2856 } 2857 if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) { 2858 if (alist_append(©(rlmp), &dlmp, 2859 sizeof (Rt_map *), AL_CNT_COPYREL) == 0) { 2860 if (!(lml->lm_flags & LML_FLG_TRC_WARN)) 2861 return (0); 2862 else 2863 return (1); 2864 } 2865 FLAGS1(dlmp) |= FL1_RT_COPYTOOK; 2866 } 2867 2868 /* 2869 * If we are tracing (ldd), warn the user if 2870 * 1) the size from the reference symbol differs from the 2871 * copy definition. We can only copy as much data as the 2872 * reference (dynamic executables) entry allows. 2873 * 2) the copy definition has STV_PROTECTED visibility. 2874 */ 2875 if (lml->lm_flags & LML_FLG_TRC_WARN) { 2876 if (rsym->st_size != dsym->st_size) { 2877 (void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF), 2878 _conv_reloc_type_str(M_R_COPY), demangle(name), 2879 NAME(rlmp), EC_XWORD(rsym->st_size), 2880 NAME(dlmp), EC_XWORD(dsym->st_size)); 2881 if (rsym->st_size > dsym->st_size) 2882 (void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA), 2883 NAME(dlmp)); 2884 else 2885 (void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC), 2886 NAME(rlmp)); 2887 } 2888 2889 if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) { 2890 (void) printf(MSG_INTL(MSG_LDD_CPY_PROT), 2891 _conv_reloc_type_str(M_R_COPY), demangle(name), 2892 NAME(dlmp)); 2893 } 2894 } 2895 2896 DBG_CALL(Dbg_reloc_apply((Xword)radd, (Xword)rc.r_size)); 2897 return (1); 2898 } 2899 2900 /* 2901 * Determine the symbol location of an address within a link-map. Look for 2902 * the nearest symbol (whose value is less than or equal to the required 2903 * address). This is the object specific part of dladdr(). 2904 */ 2905 static void 2906 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags) 2907 { 2908 ulong_t ndx, cnt, base, _value; 2909 Sym *sym, *_sym; 2910 const char *str; 2911 2912 /* 2913 * If we don't have a .hash table there are no symbols to look at. 2914 */ 2915 if (HASH(lmp) == 0) 2916 return; 2917 2918 cnt = HASH(lmp)[1]; 2919 str = STRTAB(lmp); 2920 sym = SYMTAB(lmp); 2921 2922 if (FLAGS(lmp) & FLG_RT_FIXED) 2923 base = 0; 2924 else 2925 base = ADDR(lmp); 2926 2927 for (_sym = 0, _value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) { 2928 ulong_t value; 2929 2930 if (sym->st_shndx == SHN_UNDEF) 2931 continue; 2932 2933 value = sym->st_value + base; 2934 if (value > addr) 2935 continue; 2936 if (value < _value) 2937 continue; 2938 2939 _sym = sym; 2940 _value = value; 2941 2942 /* 2943 * Note, because we accept local and global symbols we could 2944 * find a section symbol that matches the associated address, 2945 * which means that the symbol name will be null. In this 2946 * case continue the search in case we can find a global 2947 * symbol of the same value. 2948 */ 2949 if ((value == addr) && 2950 (ELF_ST_TYPE(sym->st_info) != STT_SECTION)) 2951 break; 2952 } 2953 2954 if (_sym) { 2955 int _flags = flags & RTLD_DL_MASK; 2956 2957 if (_flags == RTLD_DL_SYMENT) 2958 *info = (void *)_sym; 2959 else if (_flags == RTLD_DL_LINKMAP) 2960 *info = (void *)lmp; 2961 2962 dlip->dli_sname = str + _sym->st_name; 2963 dlip->dli_saddr = (void *)_value; 2964 } 2965 } 2966 2967 static void 2968 elf_lazy_cleanup(Alist * alp) 2969 { 2970 Rt_map ** lmpp; 2971 Aliste off; 2972 2973 /* 2974 * Cleanup any link-maps added to this dynamic list and free it. 2975 */ 2976 for (ALIST_TRAVERSE(alp, off, lmpp)) 2977 FLAGS(*lmpp) &= ~FLG_RT_DLSYM; 2978 free(alp); 2979 } 2980 2981 /* 2982 * This routine is called upon to search for a symbol from the dependencies of 2983 * the initial link-map. To maintain lazy loadings goal of reducing the number 2984 * of objects mapped, any symbol search is first carried out using the objects 2985 * that already exist in the process (either on a link-map list or handle). 2986 * If a symbol can't be found, and lazy dependencies are still pending, this 2987 * routine loads the dependencies in an attempt to locate the symbol. 2988 * 2989 * Only new objects are inspected as we will have already inspected presently 2990 * loaded objects before calling this routine. However, a new object may not 2991 * be new - although the di_lmp might be zero, the object may have been mapped 2992 * as someone elses dependency. Thus there's a possibility of some symbol 2993 * search duplication. 2994 */ 2995 2996 Sym * 2997 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo) 2998 { 2999 Sym *sym = 0; 3000 Alist * alist = 0; 3001 Aliste off; 3002 Rt_map ** lmpp, * lmp = slp->sl_imap; 3003 const char *name = slp->sl_name; 3004 3005 if (alist_append(&alist, &lmp, sizeof (Rt_map *), AL_CNT_LAZYFIND) == 0) 3006 return (0); 3007 FLAGS(lmp) |= FLG_RT_DLSYM; 3008 3009 for (ALIST_TRAVERSE(alist, off, lmpp)) { 3010 uint_t cnt = 0; 3011 Slookup sl = *slp; 3012 Dyninfo *dip; 3013 3014 /* 3015 * Loop through the DT_NEEDED entries examining each object for 3016 * the symbol. If the symbol is not found the object is in turn 3017 * added to the alist, so that its DT_NEEDED entires may be 3018 * examined. 3019 */ 3020 lmp = *lmpp; 3021 for (dip = DYNINFO(lmp); cnt < DYNINFOCNT(lmp); cnt++, dip++) { 3022 Rt_map *nlmp; 3023 3024 if (((dip->di_flags & FLG_DI_NEEDED) == 0) || 3025 dip->di_info) 3026 continue; 3027 3028 /* 3029 * If this entry defines a lazy dependency try loading 3030 * it. If the file can't be loaded, consider this 3031 * non-fatal and continue the search (lazy loaded 3032 * dependencies need not exist and their loading should 3033 * only be fatal if called from a relocation). 3034 * 3035 * If the file is already loaded and relocated we must 3036 * still inspect it for symbols, even though it might 3037 * have already been searched. This lazy load operation 3038 * might have promoted the permissions of the object, 3039 * and thus made the object applicable for this symbol 3040 * search, whereas before the object might have been 3041 * skipped. 3042 */ 3043 if ((nlmp = elf_lazy_load(lmp, cnt, name)) == 0) 3044 continue; 3045 3046 /* 3047 * If this object isn't yet a part of the dynamic list 3048 * then inspect it for the symbol. If the symbol isn't 3049 * found add the object to the dynamic list so that we 3050 * can inspect its dependencies. 3051 */ 3052 if (FLAGS(nlmp) & FLG_RT_DLSYM) 3053 continue; 3054 3055 sl.sl_imap = nlmp; 3056 if (sym = LM_LOOKUP_SYM(sl.sl_cmap)(&sl, _lmp, binfo)) 3057 break; 3058 3059 /* 3060 * Some dlsym() operations are already traversing a 3061 * link-map (dlopen(0)), and thus there's no need to 3062 * build our own dynamic dependency list. 3063 */ 3064 if ((sl.sl_flags & LKUP_NODESCENT) == 0) { 3065 if (alist_append(&alist, &nlmp, 3066 sizeof (Rt_map *), AL_CNT_LAZYFIND) == 0) { 3067 elf_lazy_cleanup(alist); 3068 return (0); 3069 } 3070 FLAGS(nlmp) |= FLG_RT_DLSYM; 3071 } 3072 } 3073 if (sym) 3074 break; 3075 } 3076 3077 elf_lazy_cleanup(alist); 3078 return (sym); 3079 } 3080 3081 /* 3082 * Warning message for bad r_offset. 3083 */ 3084 void 3085 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset, 3086 ulong_t rsymndx) 3087 { 3088 const char *name = (char *)0; 3089 int trace; 3090 3091 if ((LIST(lmp)->lm_flags & LML_FLG_TRC_ENABLE) && 3092 (((rtld_flags & RT_FL_SILENCERR) == 0) || 3093 (LIST(lmp)->lm_flags & LML_FLG_TRC_VERBOSE))) 3094 trace = 1; 3095 else 3096 trace = 0; 3097 3098 if ((trace == 0) && (dbg_mask == 0)) 3099 return; 3100 3101 if (rsymndx) { 3102 Sym *symref = (Sym *)((ulong_t)SYMTAB(lmp) + 3103 (rsymndx * SYMENT(lmp))); 3104 3105 if (ELF_ST_BIND(symref->st_info) != STB_LOCAL) 3106 name = (char *)(STRTAB(lmp) + symref->st_name); 3107 } 3108 3109 if (name == 0) 3110 name = MSG_ORIG(MSG_STR_EMPTY); 3111 3112 if (trace) { 3113 const char *rstr; 3114 3115 rstr = _conv_reloc_type_str((uint_t)rtype); 3116 (void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name, 3117 EC_ADDR(roffset)); 3118 return; 3119 } 3120 3121 Dbg_reloc_error(M_MACH, M_REL_SHT_TYPE, rel, name, 3122 MSG_ORIG(MSG_REL_BADROFFSET)); 3123 } 3124