1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Object file dependent support for ELF objects. 33 */ 34 #include "_synonyms.h" 35 36 #include <stdio.h> 37 #include <sys/procfs.h> 38 #include <sys/mman.h> 39 #include <sys/debug.h> 40 #include <string.h> 41 #include <limits.h> 42 #include <dlfcn.h> 43 #include <debug.h> 44 #include <conv.h> 45 #include "_rtld.h" 46 #include "_audit.h" 47 #include "_elf.h" 48 #include "msg.h" 49 50 /* 51 * Default and secure dependency search paths. 52 */ 53 static Pnode elf_dflt_dirs[] = { 54 #if defined(_ELF64) 55 #ifndef SGS_PRE_UNIFIED_PROCESS 56 { MSG_ORIG(MSG_PTH_LIB_64), 0, MSG_PTH_LIB_64_SIZE, 57 LA_SER_DEFAULT, 0, &elf_dflt_dirs[1] }, 58 #endif 59 { MSG_ORIG(MSG_PTH_USRLIB_64), 0, MSG_PTH_USRLIB_64_SIZE, 60 LA_SER_DEFAULT, 0, 0 } 61 #else 62 #ifndef SGS_PRE_UNIFIED_PROCESS 63 { MSG_ORIG(MSG_PTH_LIB), 0, MSG_PTH_LIB_SIZE, 64 LA_SER_DEFAULT, 0, &elf_dflt_dirs[1] }, 65 #endif 66 { MSG_ORIG(MSG_PTH_USRLIB), 0, MSG_PTH_USRLIB_SIZE, 67 LA_SER_DEFAULT, 0, 0 } 68 #endif 69 }; 70 71 static Pnode elf_secure_dirs[] = { 72 #if defined(_ELF64) 73 #ifndef SGS_PRE_UNIFIED_PROCESS 74 { MSG_ORIG(MSG_PTH_LIBSE_64), 0, MSG_PTH_LIBSE_64_SIZE, 75 LA_SER_SECURE, 0, &elf_secure_dirs[1] }, 76 #endif 77 { MSG_ORIG(MSG_PTH_USRLIBSE_64), 0, 78 MSG_PTH_USRLIBSE_64_SIZE, 79 LA_SER_SECURE, 0, 0 } 80 #else 81 #ifndef SGS_PRE_UNIFIED_PROCESS 82 { MSG_ORIG(MSG_PTH_LIBSE), 0, MSG_PTH_LIBSE_SIZE, 83 LA_SER_SECURE, 0, &elf_secure_dirs[1] }, 84 #endif 85 { MSG_ORIG(MSG_PTH_USRLIBSE), 0, MSG_PTH_USRLIBSE_SIZE, 86 LA_SER_SECURE, 0, 0 } 87 #endif 88 }; 89 90 /* 91 * Defines for local functions. 92 */ 93 static Pnode *elf_fix_name(const char *, Rt_map *, uint_t); 94 static int elf_are_u(Rej_desc *); 95 static void elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int); 96 static ulong_t elf_entry_pt(void); 97 static char *elf_get_so(const char *, const char *); 98 static Rt_map *elf_map_so(Lm_list *, Aliste, const char *, const char *, 99 int, int *); 100 static int elf_needed(Lm_list *, Aliste, Rt_map *, int *); 101 static void elf_unmap_so(Rt_map *); 102 static int elf_verify_vers(const char *, Rt_map *, Rt_map *); 103 104 /* 105 * Functions and data accessed through indirect pointers. 106 */ 107 Fct elf_fct = { 108 elf_are_u, 109 elf_entry_pt, 110 elf_map_so, 111 elf_unmap_so, 112 elf_needed, 113 lookup_sym, 114 elf_reloc, 115 elf_dflt_dirs, 116 elf_secure_dirs, 117 elf_fix_name, 118 elf_get_so, 119 elf_dladdr, 120 dlsym_handle, 121 elf_verify_vers, 122 elf_set_prot 123 }; 124 125 126 /* 127 * Redefine NEEDED name if necessary. 128 */ 129 static Pnode * 130 elf_fix_name(const char *name, Rt_map *clmp, uint_t orig) 131 { 132 /* 133 * For ABI compliance, if we are asked for ld.so.1, then really give 134 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1). 135 */ 136 if (((*name == '/') && 137 /* BEGIN CSTYLED */ 138 #if defined(_ELF64) 139 (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) || 140 #else 141 (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) || 142 #endif 143 (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) { 144 /* END CSTYLED */ 145 Pnode *pnp; 146 147 DBG_CALL(Dbg_file_fixname(LIST(clmp), name, 148 MSG_ORIG(MSG_PTH_LIBSYS))); 149 if (((pnp = calloc(sizeof (Pnode), 1)) == 0) || 150 ((pnp->p_name = strdup(MSG_ORIG(MSG_PTH_LIBSYS))) == 0)) { 151 if (pnp) 152 free(pnp); 153 return (0); 154 } 155 pnp->p_len = MSG_PTH_LIBSYS_SIZE; 156 return (pnp); 157 } 158 159 return (expand_paths(clmp, name, orig, 0)); 160 } 161 162 /* 163 * Determine if we have been given an ELF file and if so determine if the file 164 * is compatible. Returns 1 if true, else 0 and sets the reject descriptor 165 * with associated error information. 166 */ 167 static int 168 elf_are_u(Rej_desc *rej) 169 { 170 Ehdr *ehdr; 171 172 /* 173 * Determine if we're an elf file. If not simply return, we don't set 174 * any rejection information as this test allows use to scroll through 175 * the objects we support (ELF, AOUT). 176 */ 177 if (fmap->fm_fsize < sizeof (Ehdr) || 178 fmap->fm_maddr[EI_MAG0] != ELFMAG0 || 179 fmap->fm_maddr[EI_MAG1] != ELFMAG1 || 180 fmap->fm_maddr[EI_MAG2] != ELFMAG2 || 181 fmap->fm_maddr[EI_MAG3] != ELFMAG3) { 182 return (0); 183 } 184 185 /* 186 * Check class and encoding. 187 */ 188 /* LINTED */ 189 ehdr = (Ehdr *)fmap->fm_maddr; 190 if (ehdr->e_ident[EI_CLASS] != M_CLASS) { 191 rej->rej_type = SGS_REJ_CLASS; 192 rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS]; 193 return (0); 194 } 195 if (ehdr->e_ident[EI_DATA] != M_DATA) { 196 rej->rej_type = SGS_REJ_DATA; 197 rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA]; 198 return (0); 199 } 200 if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) && 201 (ehdr->e_type != ET_DYN)) { 202 rej->rej_type = SGS_REJ_TYPE; 203 rej->rej_info = (uint_t)ehdr->e_type; 204 return (0); 205 } 206 207 /* 208 * Verify machine specific flags, and hardware capability requirements. 209 */ 210 if ((elf_mach_flags_check(rej, ehdr) == 0) || 211 ((rtld_flags2 & RT_FL2_HWCAP) && (hwcap_check(rej, ehdr) == 0))) 212 return (0); 213 214 /* 215 * Verify ELF version. ??? is this too restrictive ??? 216 */ 217 if (ehdr->e_version > EV_CURRENT) { 218 rej->rej_type = SGS_REJ_VERSION; 219 rej->rej_info = (uint_t)ehdr->e_version; 220 return (0); 221 } 222 return (1); 223 } 224 225 /* 226 * The runtime linker employs lazy loading to provide the libraries needed for 227 * debugging, preloading .o's and dldump(). As these are seldom used, the 228 * standard startup of ld.so.1 doesn't initialize all the information necessary 229 * to perform plt relocation on ld.so.1's link-map. The first time lazy loading 230 * is called we get here to perform these initializations: 231 * 232 * o elf_needed() is called to set up the DYNINFO() indexes for each lazy 233 * dependency. Typically, for all other objects, this is called during 234 * analyze_so(), but as ld.so.1 is set-contained we skip this processing. 235 * 236 * o For intel, ld.so.1's JMPSLOT relocations need relative updates. These 237 * are by default skipped thus delaying all relative relocation processing 238 * on every invocation of ld.so.1. 239 */ 240 int 241 elf_rtld_load() 242 { 243 Lm_list *lml = &lml_rtld; 244 Rt_map *lmp = lml->lm_head; 245 246 if (lml->lm_flags & LML_FLG_PLTREL) 247 return (1); 248 249 /* 250 * As we need to refer to the DYNINFO() information, insure that it has 251 * been initialized. 252 */ 253 if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0) 254 return (0); 255 256 #if defined(__i386) 257 /* 258 * This is a kludge to give ld.so.1 a performance benefit on i386. 259 * It's based around two factors. 260 * 261 * o JMPSLOT relocations (PLT's) actually need a relative relocation 262 * applied to the GOT entry so that they can find PLT0. 263 * 264 * o ld.so.1 does not exercise *any* PLT's before it has made a call 265 * to elf_lazy_load(). This is because all dynamic dependencies 266 * are recorded as lazy dependencies. 267 */ 268 (void) elf_reloc_relacount((ulong_t)JMPREL(lmp), 269 (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp), 270 (ulong_t)ADDR(lmp)); 271 #endif 272 273 lml->lm_flags |= LML_FLG_PLTREL; 274 return (1); 275 } 276 277 /* 278 * Lazy load an object. 279 */ 280 Rt_map * 281 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym, 282 int *in_nfavl) 283 { 284 Rt_map *nlmp, *hlmp; 285 Dyninfo *dip = &DYNINFO(clmp)[ndx], *pdip; 286 uint_t flags = 0; 287 Pnode *pnp; 288 const char *name; 289 Lm_list *lml = LIST(clmp); 290 Lm_cntl *lmc; 291 Aliste lmco; 292 293 /* 294 * If this dependency has already been processed, we're done. 295 */ 296 if (((nlmp = (Rt_map *)dip->di_info) != 0) || 297 (dip->di_flags & FLG_DI_LDD_DONE)) 298 return (nlmp); 299 300 /* 301 * If we're running under ldd(1), indicate that this dependency has been 302 * processed (see test above). It doesn't matter whether the object is 303 * successfully loaded or not, this flag simply ensures that we don't 304 * repeatedly attempt to load an object that has already failed to load. 305 * To do so would create multiple failure diagnostics for the same 306 * object under ldd(1). 307 */ 308 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 309 dip->di_flags |= FLG_DI_LDD_DONE; 310 311 /* 312 * Determine the initial dependency name. 313 */ 314 name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val; 315 DBG_CALL(Dbg_file_lazyload(clmp, name, sym)); 316 317 /* 318 * If this object needs to establish its own group, make sure a handle 319 * is created. 320 */ 321 if (dip->di_flags & FLG_DI_GROUP) 322 flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE); 323 324 /* 325 * Lazy dependencies are identified as DT_NEEDED entries with a 326 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element. The 327 * dynamic information element that corresponds to the DT_POSFLAG_1 328 * entry is free, and thus used to store the present entrance 329 * identifier. This identifier is used to prevent multiple attempts to 330 * load a failed lazy loadable dependency within the same runtime linker 331 * operation. However, future attempts to reload this dependency are 332 * still possible. 333 */ 334 if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1)) 335 pdip->di_info = (void *)slp->sl_id; 336 337 /* 338 * Expand the requested name if necessary. 339 */ 340 if ((pnp = elf_fix_name(name, clmp, 0)) == 0) 341 return (0); 342 343 /* 344 * Provided the object on the head of the link-map has completed its 345 * relocation, create a new link-map control list for this request. 346 */ 347 hlmp = lml->lm_head; 348 if (FLAGS(hlmp) & FLG_RT_RELOCED) { 349 if ((lmc = alist_append(&lml->lm_lists, 0, sizeof (Lm_cntl), 350 AL_CNT_LMLISTS)) == 0) { 351 remove_pnode(pnp); 352 return (0); 353 } 354 lmco = (Aliste)((char *)lmc - (char *)lml->lm_lists); 355 } else { 356 lmc = 0; 357 lmco = ALIST_OFF_DATA; 358 } 359 360 /* 361 * Load the associated object. 362 */ 363 dip->di_info = nlmp = 364 load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0, in_nfavl); 365 366 /* 367 * Remove any expanded pathname infrastructure. Reduce the pending lazy 368 * dependency count of the caller, together with the link-map lists 369 * count of objects that still have lazy dependencies pending. 370 */ 371 remove_pnode(pnp); 372 if (--LAZY(clmp) == 0) 373 LIST(clmp)->lm_lazy--; 374 375 /* 376 * Finish processing the objects associated with this request, and 377 * create an association between the caller and this dependency. 378 */ 379 if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) || 380 (analyze_lmc(lml, lmco, nlmp, in_nfavl) == 0) || 381 (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0))) 382 dip->di_info = nlmp = 0; 383 384 /* 385 * If this lazyload has failed, and we've created a new link-map 386 * control list to which this request has added objects, then remove 387 * all the objects that have been associated to this request. 388 */ 389 if ((nlmp == 0) && lmc && lmc->lc_head) 390 remove_lmc(lml, clmp, lmc, lmco, name); 391 392 /* 393 * Finally, remove any link-map control list that was created. 394 */ 395 if (lmc) 396 remove_cntl(lml, lmco); 397 398 /* 399 * If this lazy loading failed, record the fact, and bump the lazy 400 * counts. 401 */ 402 if (nlmp == 0) { 403 dip->di_flags |= FLG_DI_LAZYFAIL; 404 if (LAZY(clmp)++ == 0) 405 LIST(clmp)->lm_lazy++; 406 } 407 408 return (nlmp); 409 } 410 411 /* 412 * Return the entry point of the ELF executable. 413 */ 414 static ulong_t 415 elf_entry_pt(void) 416 { 417 return (ENTRY(lml_main.lm_head)); 418 } 419 420 /* 421 * Unmap a given ELF shared object from the address space. 422 */ 423 static void 424 elf_unmap_so(Rt_map *lmp) 425 { 426 caddr_t addr; 427 size_t size; 428 Mmap *mmaps; 429 430 /* 431 * If this link map represents a relocatable object concatenation, then 432 * the image was simply generated in allocated memory. Free the memory. 433 * 434 * Note: the memory was originally allocated in the libelf:_elf_outmap 435 * routine and would normally have been free'd in elf_outsync(), but 436 * because we 'interpose' on that routine the memory wasn't free'd at 437 * that time. 438 */ 439 if (FLAGS(lmp) & FLG_RT_IMGALLOC) { 440 free((void *)ADDR(lmp)); 441 return; 442 } 443 444 /* 445 * If padding was enabled via rtld_db, then we have at least one page 446 * in front of the image - and possibly a trailing page. 447 * Unmap the front page first: 448 */ 449 if (PADSTART(lmp) != ADDR(lmp)) { 450 addr = (caddr_t)M_PTRUNC(PADSTART(lmp)); 451 size = ADDR(lmp) - (ulong_t)addr; 452 (void) munmap(addr, size); 453 } 454 455 /* 456 * Unmap any trailing padding. 457 */ 458 if (M_PROUND((PADSTART(lmp) + PADIMLEN(lmp))) > 459 M_PROUND(ADDR(lmp) + MSIZE(lmp))) { 460 addr = (caddr_t)M_PROUND(ADDR(lmp) + MSIZE(lmp)); 461 size = M_PROUND(PADSTART(lmp) + PADIMLEN(lmp)) - (ulong_t)addr; 462 (void) munmap(addr, size); 463 } 464 465 /* 466 * Unmmap all mapped segments. 467 */ 468 for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) 469 (void) munmap(mmaps->m_vaddr, mmaps->m_msize); 470 } 471 472 /* 473 * Determine if a dependency requires a particular version and if so verify 474 * that the version exists in the dependency. 475 */ 476 static int 477 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp) 478 { 479 Verneed *vnd = VERNEED(clmp); 480 int _num, num = VERNEEDNUM(clmp); 481 char *cstrs = (char *)STRTAB(clmp); 482 Lm_list *lml = LIST(clmp); 483 484 /* 485 * Traverse the callers version needed information and determine if any 486 * specific versions are required from the dependency. 487 */ 488 DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp))); 489 for (_num = 1; _num <= num; _num++, 490 vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) { 491 Half cnt = vnd->vn_cnt; 492 Vernaux *vnap; 493 char *nstrs, *need; 494 495 /* 496 * Determine if a needed entry matches this dependency. 497 */ 498 need = (char *)(cstrs + vnd->vn_file); 499 if (strcmp(name, need) != 0) 500 continue; 501 502 if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) && 503 ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0)) 504 (void) printf(MSG_INTL(MSG_LDD_VER_FIND), name); 505 506 /* 507 * Validate that each version required actually exists in the 508 * dependency. 509 */ 510 nstrs = (char *)STRTAB(nlmp); 511 512 for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt; 513 cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) { 514 char *version, *define; 515 Verdef *vdf = VERDEF(nlmp); 516 ulong_t _num, num = VERDEFNUM(nlmp); 517 int found = 0; 518 519 version = (char *)(cstrs + vnap->vna_name); 520 DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version)); 521 522 for (_num = 1; _num <= num; _num++, 523 vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) { 524 Verdaux *vdap; 525 526 if (vnap->vna_hash != vdf->vd_hash) 527 continue; 528 529 vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux); 530 define = (char *)(nstrs + vdap->vda_name); 531 if (strcmp(version, define) != 0) 532 continue; 533 534 found++; 535 break; 536 } 537 538 /* 539 * If we're being traced print out any matched version 540 * when the verbose (-v) option is in effect. Always 541 * print any unmatched versions. 542 */ 543 if (lml->lm_flags & LML_FLG_TRC_ENABLE) { 544 /* BEGIN CSTYLED */ 545 if (found) { 546 if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE)) 547 continue; 548 549 (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND), 550 need, version, NAME(nlmp)); 551 } else { 552 if (rtld_flags & RT_FL_SILENCERR) 553 continue; 554 555 (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND), 556 need, version); 557 } 558 /* END CSTYLED */ 559 continue; 560 } 561 562 /* 563 * If the version hasn't been found then this is a 564 * candidate for a fatal error condition. Weak 565 * version definition requirements are silently 566 * ignored. Also, if the image inspected for a version 567 * definition has no versioning recorded at all then 568 * silently ignore this (this provides better backward 569 * compatibility to old images created prior to 570 * versioning being available). Both of these skipped 571 * diagnostics are available under tracing (see above). 572 */ 573 if ((found == 0) && (num != 0) && 574 (!(vnap->vna_flags & VER_FLG_WEAK))) { 575 eprintf(lml, ERR_FATAL, 576 MSG_INTL(MSG_VER_NFOUND), need, version, 577 NAME(clmp)); 578 return (0); 579 } 580 } 581 } 582 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 583 return (1); 584 } 585 586 /* 587 * Search through the dynamic section for DT_NEEDED entries and perform one 588 * of two functions. If only the first argument is specified then load the 589 * defined shared object, otherwise add the link map representing the defined 590 * link map the the dlopen list. 591 */ 592 static int 593 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl) 594 { 595 Dyn *dyn, *pdyn; 596 ulong_t ndx = 0; 597 uint_t lazy, flags; 598 Word lmflags = lml->lm_flags; 599 Word lmtflags = lml->lm_tflags; 600 601 /* 602 * Process each shared object on needed list. 603 */ 604 if (DYN(clmp) == 0) 605 return (1); 606 607 for (dyn = (Dyn *)DYN(clmp), pdyn = NULL; dyn->d_tag != DT_NULL; 608 pdyn = dyn++, ndx++) { 609 Dyninfo *dip = &DYNINFO(clmp)[ndx]; 610 Rt_map *nlmp = 0; 611 char *name; 612 int silent = 0; 613 Pnode *pnp; 614 615 switch (dyn->d_tag) { 616 case DT_POSFLAG_1: 617 dip->di_flags |= FLG_DI_POSFLAG1; 618 continue; 619 case DT_NEEDED: 620 case DT_USED: 621 lazy = flags = 0; 622 dip->di_flags |= FLG_DI_NEEDED; 623 624 if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) { 625 if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) && 626 ((lmtflags & LML_TFLG_NOLAZYLD) == 0)) { 627 dip->di_flags |= FLG_DI_LAZY; 628 lazy = 1; 629 } 630 if (pdyn->d_un.d_val & DF_P1_GROUPPERM) { 631 dip->di_flags |= FLG_DI_GROUP; 632 flags = 633 (FLG_RT_SETGROUP | FLG_RT_HANDLE); 634 } 635 } 636 637 name = (char *)STRTAB(clmp) + dyn->d_un.d_val; 638 639 /* 640 * NOTE, libc.so.1 can't be lazy loaded. Although a 641 * lazy position flag won't be produced when a RTLDINFO 642 * .dynamic entry is found (introduced with the UPM in 643 * Solaris 10), it was possible to mark libc for lazy 644 * loading on previous releases. To reduce the overhead 645 * of testing for this occurrence, only carry out this 646 * check for the first object on the link-map list 647 * (there aren't many applications built without libc). 648 */ 649 if (lazy && (lml->lm_head == clmp) && 650 (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0)) 651 lazy = 0; 652 653 /* 654 * Don't bring in lazy loaded objects yet unless we've 655 * been asked to attempt to load all available objects 656 * (crle(1) sets LD_FLAGS=loadavail). Even under 657 * RTLD_NOW we don't process this - RTLD_NOW will cause 658 * relocation processing which in turn might trigger 659 * lazy loading, but its possible that the object has a 660 * lazy loaded file with no bindings (i.e., it should 661 * never have been a dependency in the first place). 662 */ 663 if (lazy) { 664 if ((lmflags & LML_FLG_LOADAVAIL) == 0) { 665 LAZY(clmp)++; 666 lazy = flags = 0; 667 continue; 668 } 669 670 /* 671 * Silence any error messages - see description 672 * under elf_lookup_filtee(). 673 */ 674 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 675 rtld_flags |= RT_FL_SILENCERR; 676 silent = 1; 677 } 678 } 679 break; 680 case DT_AUXILIARY: 681 dip->di_flags |= FLG_DI_AUXFLTR; 682 continue; 683 case DT_SUNW_AUXILIARY: 684 dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR); 685 continue; 686 case DT_FILTER: 687 dip->di_flags |= FLG_DI_STDFLTR; 688 continue; 689 case DT_SUNW_FILTER: 690 dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR); 691 continue; 692 default: 693 continue; 694 } 695 696 DBG_CALL(Dbg_file_needed(clmp, name)); 697 698 /* 699 * If we're running under ldd(1), indicate that this dependency 700 * has been processed. It doesn't matter whether the object is 701 * successfully loaded or not, this flag simply ensures that we 702 * don't repeatedly attempt to load an object that has already 703 * failed to load. To do so would create multiple failure 704 * diagnostics for the same object under ldd(1). 705 */ 706 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 707 dip->di_flags |= FLG_DI_LDD_DONE; 708 709 /* 710 * Establish the objects name, load it and establish a binding 711 * with the caller. 712 */ 713 if (((pnp = elf_fix_name(name, clmp, 0)) == 0) || ((nlmp = 714 load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0, 715 in_nfavl)) == 0) || (bind_one(clmp, nlmp, BND_NEEDED) == 0)) 716 nlmp = 0; 717 718 /* 719 * Clean up any infrastructure, including the removal of the 720 * error suppression state, if it had been previously set in 721 * this routine. 722 */ 723 if (pnp) 724 remove_pnode(pnp); 725 if (silent) 726 rtld_flags &= ~RT_FL_SILENCERR; 727 728 if ((dip->di_info = (void *)nlmp) == 0) { 729 /* 730 * If the object could not be mapped, continue if error 731 * suppression is established or we're here with ldd(1). 732 */ 733 if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags & 734 (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE))) 735 continue; 736 else 737 return (0); 738 } 739 } 740 741 if (LAZY(clmp)) 742 lml->lm_lazy++; 743 744 return (1); 745 } 746 747 static int 748 elf_map_check(Lm_list *lml, const char *name, caddr_t vaddr, Off size) 749 { 750 prmap_t *maps, *_maps; 751 int pfd, num, _num; 752 caddr_t eaddr = vaddr + size; 753 int err; 754 755 /* 756 * If memory reservations have been established for alternative objects 757 * determine if this object falls within the reservation, if it does no 758 * further checking is required. 759 */ 760 if (rtld_flags & RT_FL_MEMRESV) { 761 Rtc_head *head = (Rtc_head *)config->c_bgn; 762 763 if ((vaddr >= (caddr_t)(uintptr_t)head->ch_resbgn) && 764 (eaddr <= (caddr_t)(uintptr_t)head->ch_resend)) 765 return (0); 766 } 767 768 /* 769 * Determine the mappings presently in use by this process. 770 */ 771 if ((pfd = pr_open(lml)) == FD_UNAVAIL) 772 return (1); 773 774 if (ioctl(pfd, PIOCNMAP, (void *)&num) == -1) { 775 err = errno; 776 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name, 777 strerror(err)); 778 return (1); 779 } 780 781 if ((maps = malloc((num + 1) * sizeof (prmap_t))) == 0) 782 return (1); 783 784 if (ioctl(pfd, PIOCMAP, (void *)maps) == -1) { 785 err = errno; 786 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name, 787 strerror(err)); 788 free(maps); 789 return (1); 790 } 791 792 /* 793 * Determine if the supplied address clashes with any of the present 794 * process mappings. 795 */ 796 for (_num = 0, _maps = maps; _num < num; _num++, _maps++) { 797 caddr_t _eaddr = _maps->pr_vaddr + _maps->pr_size; 798 Rt_map *lmp; 799 const char *str; 800 801 if ((eaddr < _maps->pr_vaddr) || (vaddr >= _eaddr)) 802 continue; 803 804 /* 805 * We have a memory clash. See if one of the known dynamic 806 * dependency mappings represents this space so as to provide 807 * the user a more meaningful message. 808 */ 809 if ((lmp = _caller(vaddr, 0)) != 0) 810 str = NAME(lmp); 811 else 812 str = MSG_INTL(MSG_STR_UNKNOWN); 813 814 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_MAPINUSE), name, 815 EC_NATPTR(vaddr), EC_OFF(size), str); 816 return (1); 817 } 818 free(maps); 819 return (0); 820 } 821 822 /* 823 * Obtain a memory reservation. On newer systems, both MAP_ANON and MAP_ALIGN 824 * are used to obtained an aligned reservation from anonymous memory. If 825 * MAP_ANON isn't available, then MAP_ALIGN isn't either, so obtain a standard 826 * reservation using the file as backing. 827 */ 828 static Am_ret 829 elf_map_reserve(Lm_list *lml, const char *name, caddr_t *maddr, Off msize, 830 int mperm, int fd, Xword align) 831 { 832 Am_ret amret; 833 int mflag = MAP_PRIVATE | MAP_NORESERVE; 834 835 #if defined(MAP_ALIGN) 836 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 837 mflag |= MAP_ALIGN; 838 *maddr = (caddr_t)align; 839 } 840 #endif 841 if ((amret = anon_map(lml, maddr, msize, PROT_NONE, mflag)) == AM_ERROR) 842 return (amret); 843 844 if (amret == AM_OK) 845 return (AM_OK); 846 847 /* 848 * If an anonymous memory request failed (which should only be the 849 * case if it is unsupported on the system we're running on), establish 850 * the initial mapping directly from the file. 851 */ 852 *maddr = 0; 853 if ((*maddr = mmap(*maddr, msize, mperm, MAP_PRIVATE, 854 fd, 0)) == MAP_FAILED) { 855 int err = errno; 856 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name, 857 strerror(err)); 858 return (AM_ERROR); 859 } 860 return (AM_NOSUP); 861 } 862 863 static void * 864 elf_map_textdata(caddr_t addr, Off flen, int mperm, int phdr_mperm, int mflag, 865 int fd, Off foff) 866 { 867 #if defined(MAP_TEXT) && defined(MAP_INITDATA) 868 static int notd = 0; 869 870 /* 871 * If MAP_TEXT and MAP_INITDATA are available, select the appropriate 872 * flag. 873 */ 874 if (notd == 0) { 875 if ((phdr_mperm & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) 876 mflag |= MAP_TEXT; 877 else 878 mflag |= MAP_INITDATA; 879 } 880 #endif 881 if (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff) != MAP_FAILED) 882 return (0); 883 884 #if defined(MAP_TEXT) && defined(MAP_INITDATA) 885 if ((notd == 0) && (errno == EINVAL)) { 886 /* 887 * MAP_TEXT and MAP_INITDATA may not be supported on this 888 * platform, try again without. 889 */ 890 notd = 1; 891 mflag &= ~(MAP_TEXT | MAP_INITDATA); 892 893 return (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff)); 894 } 895 #endif 896 return (MAP_FAILED); 897 } 898 899 /* 900 * Map in a file. 901 */ 902 static caddr_t 903 elf_map_it( 904 Lm_list *lml, /* link-map list */ 905 const char *name, /* actual name stored for pathname */ 906 Off fsize, /* total mapping claim of the file */ 907 Ehdr *ehdr, /* ELF header of file */ 908 Phdr *fphdr, /* first loadable Phdr */ 909 Phdr *lphdr, /* last loadable Phdr */ 910 Phdr **rrphdr, /* return first Phdr in reservation */ 911 caddr_t *rraddr, /* return start of reservation */ 912 Off *rrsize, /* return total size of reservation */ 913 int fixed, /* image is resolved to a fixed addr */ 914 int fd, /* images file descriptor */ 915 Xword align, /* image segments maximum alignment */ 916 Mmap *mmaps, /* mmap information array and */ 917 uint_t *mmapcnt) /* mapping count */ 918 { 919 caddr_t raddr; /* reservation address */ 920 Off rsize; /* reservation size */ 921 Phdr *phdr; /* working program header poiner */ 922 caddr_t maddr; /* working mmap address */ 923 caddr_t faddr; /* working file address */ 924 size_t padsize; /* object padding requirement */ 925 size_t padpsize = 0; /* padding size rounded to next page */ 926 size_t padmsize = 0; /* padding size rounded for alignment */ 927 int skipfseg; /* skip mapping first segment */ 928 int mperm; /* segment permissions */ 929 Am_ret amret = AM_NOSUP; 930 931 /* 932 * If padding is required extend both the front and rear of the image. 933 * To insure the image itself is mapped at the correct alignment the 934 * initial padding is rounded up to the nearest page. Once the image is 935 * mapped the excess can be pruned to the nearest page required for the 936 * actual padding itself. 937 */ 938 if ((padsize = r_debug.rtd_objpad) != 0) { 939 padpsize = M_PROUND(padsize); 940 if (fixed) 941 padmsize = padpsize; 942 else 943 padmsize = S_ROUND(padsize, align); 944 } 945 946 /* 947 * Determine the initial permissions used to map in the first segment. 948 * If this segments memsz is greater that its filesz then the difference 949 * must be zeroed. Make sure this segment is writable. 950 */ 951 mperm = 0; 952 if (fphdr->p_flags & PF_R) 953 mperm |= PROT_READ; 954 if (fphdr->p_flags & PF_X) 955 mperm |= PROT_EXEC; 956 if ((fphdr->p_flags & PF_W) || (fphdr->p_memsz > fphdr->p_filesz)) 957 mperm |= PROT_WRITE; 958 959 /* 960 * Determine whether or not to let system reserve address space based on 961 * whether this is a dynamic executable (addresses in object are fixed) 962 * or a shared object (addresses in object are relative to the objects' 963 * base). 964 */ 965 if (fixed) { 966 /* 967 * Determine the reservation address and size, and insure that 968 * this reservation isn't already in use. 969 */ 970 faddr = maddr = (caddr_t)M_PTRUNC((ulong_t)fphdr->p_vaddr); 971 raddr = maddr - padpsize; 972 rsize = fsize + padpsize + padsize; 973 974 if (lml_main.lm_head) { 975 if (elf_map_check(lml, name, raddr, rsize) != 0) 976 return (0); 977 } 978 979 /* 980 * As this is a fixed image, all segments must be individually 981 * mapped. 982 */ 983 skipfseg = 0; 984 985 } else { 986 size_t esize; 987 988 /* 989 * If this isn't a fixed image, reserve enough address space for 990 * the entire image to be mapped. The amount of reservation is 991 * the range between the beginning of the first, and end of the 992 * last loadable segment, together with any padding, plus the 993 * alignment of the first segment. 994 * 995 * The optimal reservation is made as a no-reserve mapping from 996 * anonymous memory. Each segment is then mapped into this 997 * reservation. If the anonymous mapping capability isn't 998 * available, the reservation is obtained from the file itself. 999 * In this case the first segment of the image is mapped as part 1000 * of the reservation, thus only the following segments need to 1001 * be remapped. 1002 */ 1003 rsize = fsize + padmsize + padsize; 1004 if ((amret = elf_map_reserve(lml, name, &raddr, rsize, mperm, 1005 fd, align)) == AM_ERROR) 1006 return (0); 1007 maddr = raddr + padmsize; 1008 faddr = (caddr_t)S_ROUND((Off)maddr, align); 1009 1010 /* 1011 * If this reservation has been obtained from anonymous memory, 1012 * then all segments must be individually mapped. Otherwise, 1013 * the first segment heads the reservation. 1014 */ 1015 if (amret == AM_OK) 1016 skipfseg = 0; 1017 else 1018 skipfseg = 1; 1019 1020 /* 1021 * For backward compatibility (where MAP_ALIGN isn't available), 1022 * insure the alignment of the reservation is adequate for this 1023 * object, and if not remap the object to obtain the correct 1024 * alignment. 1025 */ 1026 if (faddr != maddr) { 1027 (void) munmap(raddr, rsize); 1028 1029 rsize += align; 1030 if ((amret = elf_map_reserve(lml, name, &raddr, rsize, 1031 mperm, fd, align)) == AM_ERROR) 1032 return (0); 1033 1034 maddr = faddr = (caddr_t)S_ROUND((Off)(raddr + 1035 padpsize), align); 1036 1037 esize = maddr - raddr + padpsize; 1038 1039 /* 1040 * As ths image has been realigned, the first segment 1041 * of the file needs to be remapped to its correct 1042 * location. 1043 */ 1044 skipfseg = 0; 1045 } else 1046 esize = padmsize - padpsize; 1047 1048 /* 1049 * If this reservation included padding, remove any excess for 1050 * the start of the image (the padding was adjusted to insure 1051 * the image was aligned appropriately). 1052 */ 1053 if (esize) { 1054 (void) munmap(raddr, esize); 1055 raddr += esize; 1056 rsize -= esize; 1057 } 1058 } 1059 1060 /* 1061 * At this point we know the initial location of the image, and its 1062 * size. Pass these back to the caller for inclusion in the link-map 1063 * that will eventually be created. 1064 */ 1065 *rraddr = raddr; 1066 *rrsize = rsize; 1067 1068 /* 1069 * The first loadable segment is now pointed to by maddr. This segment 1070 * will eventually contain the elf header and program headers, so reset 1071 * the program header. Pass this back to the caller for inclusion in 1072 * the link-map so it can be used for later unmapping operations. 1073 */ 1074 /* LINTED */ 1075 *rrphdr = (Phdr *)((char *)maddr + ehdr->e_phoff); 1076 1077 /* 1078 * If padding is required at the front of the image, obtain that now. 1079 * Note, if we've already obtained a reservation from anonymous memory 1080 * then this reservation will already include suitable padding. 1081 * Otherwise this reservation is backed by the file, or in the case of 1082 * a fixed image, doesn't yet exist. Map the padding so that it is 1083 * suitably protected (PROT_NONE), and insure the first segment of the 1084 * file is mapped to its correct location. 1085 */ 1086 if (padsize) { 1087 if (amret == AM_NOSUP) { 1088 if (dz_map(lml, raddr, padpsize, PROT_NONE, 1089 (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) == 1090 MAP_FAILED) 1091 return (0); 1092 1093 skipfseg = 0; 1094 } 1095 rsize -= padpsize; 1096 } 1097 1098 /* 1099 * Map individual segments. For a fixed image, these will each be 1100 * unique mappings. For a reservation these will fill in the 1101 * reservation. 1102 */ 1103 for (phdr = fphdr; phdr <= lphdr; 1104 phdr = (Phdr *)((Off)phdr + ehdr->e_phentsize)) { 1105 caddr_t addr; 1106 Off mlen, flen; 1107 size_t size; 1108 1109 /* 1110 * Skip non-loadable segments or segments that don't occupy 1111 * any memory. 1112 */ 1113 if (((phdr->p_type != PT_LOAD) && 1114 (phdr->p_type != PT_SUNWBSS)) || (phdr->p_memsz == 0)) 1115 continue; 1116 1117 /* 1118 * Establish this segments address relative to our base. 1119 */ 1120 addr = (caddr_t)M_PTRUNC((ulong_t)(phdr->p_vaddr + 1121 (fixed ? 0 : faddr))); 1122 1123 /* 1124 * Determine the mapping protection from the segment attributes. 1125 * Also determine the etext address from the last loadable 1126 * segment which has permissions but no write access. 1127 */ 1128 mperm = 0; 1129 if (phdr->p_flags) { 1130 if (phdr->p_flags & PF_R) 1131 mperm |= PROT_READ; 1132 if (phdr->p_flags & PF_X) 1133 mperm |= PROT_EXEC; 1134 if (phdr->p_flags & PF_W) 1135 mperm |= PROT_WRITE; 1136 else 1137 fmap->fm_etext = phdr->p_vaddr + phdr->p_memsz + 1138 (ulong_t)(fixed ? 0 : faddr); 1139 } 1140 1141 /* 1142 * Determine the type of mapping required. 1143 */ 1144 if (phdr->p_type == PT_SUNWBSS) { 1145 /* 1146 * Potentially, we can defer the loading of any SUNWBSS 1147 * segment, depending on whether the symbols it provides 1148 * have been bound to. In this manner, large segments 1149 * that are interposed upon between shared libraries 1150 * may not require mapping. Note, that the mapping 1151 * information is recorded in our mapping descriptor at 1152 * this time. 1153 */ 1154 mlen = phdr->p_memsz; 1155 flen = 0; 1156 1157 } else if ((phdr->p_filesz == 0) && (phdr->p_flags == 0)) { 1158 /* 1159 * If this segment has no backing file and no flags 1160 * specified, then it defines a reservation. At this 1161 * point all standard loadable segments will have been 1162 * processed. The segment reservation is mapped 1163 * directly from /dev/null. 1164 */ 1165 if (nu_map(lml, (caddr_t)addr, phdr->p_memsz, PROT_NONE, 1166 MAP_FIXED | MAP_PRIVATE) == MAP_FAILED) 1167 return (0); 1168 1169 mlen = phdr->p_memsz; 1170 flen = 0; 1171 1172 } else if (phdr->p_filesz == 0) { 1173 /* 1174 * If this segment has no backing file then it defines a 1175 * nobits segment and is mapped directly from /dev/zero. 1176 */ 1177 if (dz_map(lml, (caddr_t)addr, phdr->p_memsz, mperm, 1178 MAP_FIXED | MAP_PRIVATE) == MAP_FAILED) 1179 return (0); 1180 1181 mlen = phdr->p_memsz; 1182 flen = 0; 1183 1184 } else { 1185 Off foff; 1186 1187 /* 1188 * This mapping originates from the file. Determine the 1189 * file offset to which the mapping will be directed 1190 * (must be aligned) and how much to map (might be more 1191 * than the file in the case of .bss). 1192 */ 1193 foff = M_PTRUNC((ulong_t)phdr->p_offset); 1194 mlen = phdr->p_memsz + (phdr->p_offset - foff); 1195 flen = phdr->p_filesz + (phdr->p_offset - foff); 1196 1197 /* 1198 * If this is a non-fixed, non-anonymous mapping, and no 1199 * padding is involved, then the first loadable segment 1200 * is already part of the initial reservation. In this 1201 * case there is no need to remap this segment. 1202 */ 1203 if ((skipfseg == 0) || (phdr != fphdr)) { 1204 int phdr_mperm = mperm; 1205 /* 1206 * If this segments memsz is greater that its 1207 * filesz then the difference must be zeroed. 1208 * Make sure this segment is writable. 1209 */ 1210 if (phdr->p_memsz > phdr->p_filesz) 1211 mperm |= PROT_WRITE; 1212 1213 if (elf_map_textdata((caddr_t)addr, flen, 1214 mperm, phdr_mperm, 1215 (MAP_FIXED | MAP_PRIVATE), fd, foff) == 1216 MAP_FAILED) { 1217 int err = errno; 1218 eprintf(lml, ERR_FATAL, 1219 MSG_INTL(MSG_SYS_MMAP), name, 1220 strerror(err)); 1221 return (0); 1222 } 1223 } 1224 1225 /* 1226 * If the memory occupancy of the segment overflows the 1227 * definition in the file, we need to "zero out" the end 1228 * of the mapping we've established, and if necessary, 1229 * map some more space from /dev/zero. Note, zero'ed 1230 * memory must end on a double word boundary to satisfy 1231 * zero(). 1232 */ 1233 if (phdr->p_memsz > phdr->p_filesz) { 1234 caddr_t zaddr; 1235 size_t zlen, zplen; 1236 Off fend; 1237 1238 foff = (Off)(phdr->p_vaddr + phdr->p_filesz + 1239 (fixed ? 0 : faddr)); 1240 zaddr = (caddr_t)M_PROUND(foff); 1241 zplen = (size_t)(zaddr - foff); 1242 1243 fend = (Off)S_DROUND((size_t)(phdr->p_vaddr + 1244 phdr->p_memsz + (fixed ? 0 : faddr))); 1245 zlen = (size_t)(fend - foff); 1246 1247 /* 1248 * Determine whether the number of bytes that 1249 * must be zero'ed overflow to the next page. 1250 * If not, simply clear the exact bytes 1251 * (filesz to memsz) from this page. Otherwise, 1252 * clear the remaining bytes of this page, and 1253 * map an following pages from /dev/zero. 1254 */ 1255 if (zlen < zplen) 1256 zero((caddr_t)foff, (long)zlen); 1257 else { 1258 zero((caddr_t)foff, (long)zplen); 1259 1260 if ((zlen = (fend - (Off)zaddr)) > 0) { 1261 if (dz_map(lml, zaddr, zlen, 1262 mperm, 1263 MAP_FIXED | MAP_PRIVATE) == 1264 MAP_FAILED) 1265 return (0); 1266 } 1267 } 1268 } 1269 } 1270 1271 /* 1272 * Unmap anything from the last mapping address to this one and 1273 * update the mapping claim pointer. 1274 */ 1275 if ((fixed == 0) && ((size = addr - maddr) != 0)) { 1276 (void) munmap(maddr, size); 1277 rsize -= size; 1278 } 1279 1280 /* 1281 * Retain this segments mapping information. 1282 */ 1283 mmaps[*mmapcnt].m_vaddr = addr; 1284 mmaps[*mmapcnt].m_msize = mlen; 1285 mmaps[*mmapcnt].m_fsize = flen; 1286 mmaps[*mmapcnt].m_perm = mperm; 1287 (*mmapcnt)++; 1288 1289 maddr = addr + M_PROUND(mlen); 1290 rsize -= M_PROUND(mlen); 1291 } 1292 1293 /* 1294 * If padding is required at the end of the image, obtain that now. 1295 * Note, if we've already obtained a reservation from anonymous memory 1296 * then this reservation will already include suitable padding. 1297 */ 1298 if (padsize) { 1299 if (amret == AM_NOSUP) { 1300 /* 1301 * maddr is currently page aligned from the last segment 1302 * mapping. 1303 */ 1304 if (dz_map(lml, maddr, padsize, PROT_NONE, 1305 (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) == 1306 MAP_FAILED) 1307 return (0); 1308 } 1309 maddr += padsize; 1310 rsize -= padsize; 1311 } 1312 1313 /* 1314 * Unmap any final reservation. 1315 */ 1316 if ((fixed == 0) && (rsize != 0)) 1317 (void) munmap(maddr, rsize); 1318 1319 return (faddr); 1320 } 1321 1322 /* 1323 * A null symbol interpretor. Used if a filter has no associated filtees. 1324 */ 1325 /* ARGSUSED0 */ 1326 static Sym * 1327 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl) 1328 { 1329 return ((Sym *)0); 1330 } 1331 1332 /* 1333 * Disable filtee use. 1334 */ 1335 static void 1336 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip) 1337 { 1338 dip->di_info = 0; 1339 1340 if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) { 1341 /* 1342 * If this is an object filter, free the filtee's duplication. 1343 */ 1344 if (OBJFLTRNDX(lmp) != FLTR_DISABLED) { 1345 free(REFNAME(lmp)); 1346 REFNAME(lmp) = (char *)0; 1347 OBJFLTRNDX(lmp) = FLTR_DISABLED; 1348 1349 /* 1350 * Indicate that this filtee is no longer available. 1351 */ 1352 if (dip->di_flags & FLG_DI_STDFLTR) 1353 SYMINTP(lmp) = elf_null_find_sym; 1354 1355 } 1356 } else if (dip->di_flags & FLG_DI_STDFLTR) { 1357 /* 1358 * Indicate that this standard filtee is no longer available. 1359 */ 1360 if (SYMSFLTRCNT(lmp)) 1361 SYMSFLTRCNT(lmp)--; 1362 } else { 1363 /* 1364 * Indicate that this auxiliary filtee is no longer available. 1365 */ 1366 if (SYMAFLTRCNT(lmp)) 1367 SYMAFLTRCNT(lmp)--; 1368 } 1369 dip->di_flags &= ~MSK_DI_FILTER; 1370 } 1371 1372 /* 1373 * Find symbol interpreter - filters. 1374 * This function is called when the symbols from a shared object should 1375 * be resolved from the shared objects filtees instead of from within itself. 1376 * 1377 * A symbol name of 0 is used to trigger filtee loading. 1378 */ 1379 static Sym * 1380 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx, 1381 int *in_nfavl) 1382 { 1383 const char *name = slp->sl_name, *filtees; 1384 Rt_map *clmp = slp->sl_cmap; 1385 Rt_map *ilmp = slp->sl_imap; 1386 Pnode *pnp, **pnpp; 1387 int any; 1388 Dyninfo *dip = &DYNINFO(ilmp)[ndx]; 1389 Lm_list *lml = LIST(ilmp); 1390 1391 /* 1392 * Indicate that the filter has been used. If a binding already exists 1393 * to the caller, indicate that this object is referenced. This insures 1394 * we don't generate false unreferenced diagnostics from ldd -u/U or 1395 * debugging. Don't create a binding regardless, as this filter may 1396 * have been dlopen()'ed. 1397 */ 1398 if (name && (ilmp != clmp)) { 1399 Word tracing = (LIST(clmp)->lm_flags & 1400 (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)); 1401 1402 if (tracing || DBG_ENABLED) { 1403 Bnd_desc *bdp; 1404 Aliste idx; 1405 1406 FLAGS1(ilmp) |= FL1_RT_USED; 1407 1408 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 1409 for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) { 1410 if (bdp->b_caller == clmp) { 1411 bdp->b_flags |= BND_REFER; 1412 break; 1413 } 1414 } 1415 } 1416 } 1417 } 1418 1419 /* 1420 * If this is the first call to process this filter, establish the 1421 * filtee list. If a configuration file exists, determine if any 1422 * filtee associations for this filter, and its filtee reference, are 1423 * defined. Otherwise, process the filtee reference. Any token 1424 * expansion is also completed at this point (i.e., $PLATFORM). 1425 */ 1426 filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val; 1427 if (dip->di_info == 0) { 1428 if (rtld_flags2 & RT_FL2_FLTCFG) 1429 dip->di_info = elf_config_flt(lml, PATHNAME(ilmp), 1430 filtees); 1431 1432 if (dip->di_info == 0) { 1433 DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0)); 1434 if ((lml->lm_flags & 1435 (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) && 1436 ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0)) 1437 (void) printf(MSG_INTL(MSG_LDD_FIL_FILTER), 1438 NAME(ilmp), filtees); 1439 1440 if ((dip->di_info = (void *)expand_paths(ilmp, 1441 filtees, 0, 0)) == 0) { 1442 elf_disable_filtee(ilmp, dip); 1443 return ((Sym *)0); 1444 } 1445 } 1446 } 1447 1448 /* 1449 * Traverse the filtee list, dlopen()'ing any objects specified and 1450 * using their group handle to lookup the symbol. 1451 */ 1452 for (any = 0, pnpp = (Pnode **)&(dip->di_info), pnp = *pnpp; pnp; 1453 pnpp = &pnp->p_next, pnp = *pnpp) { 1454 int mode; 1455 Grp_hdl *ghp; 1456 Rt_map *nlmp = 0; 1457 1458 if (pnp->p_len == 0) 1459 continue; 1460 1461 /* 1462 * Establish the mode of the filtee from the filter. As filtees 1463 * are loaded via a dlopen(), make sure that RTLD_GROUP is set 1464 * and the filtees aren't global. It would be nice to have 1465 * RTLD_FIRST used here also, but as filters got out long before 1466 * RTLD_FIRST was introduced it's a little too late now. 1467 */ 1468 mode = MODE(ilmp) | RTLD_GROUP; 1469 mode &= ~RTLD_GLOBAL; 1470 1471 /* 1472 * Insure that any auxiliary filter can locate symbols from its 1473 * caller. 1474 */ 1475 if (dip->di_flags & FLG_DI_AUXFLTR) 1476 mode |= RTLD_PARENT; 1477 1478 /* 1479 * Process any hardware capability directory. Establish a new 1480 * link-map control list from which to analyze any newly added 1481 * objects. 1482 */ 1483 if ((pnp->p_info == 0) && (pnp->p_orig & PN_TKN_HWCAP)) { 1484 Lm_cntl *lmc; 1485 Aliste lmco; 1486 1487 if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) { 1488 if ((lmc = alist_append(&lml->lm_lists, 0, 1489 sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0) 1490 return ((Sym *)0); 1491 lmco = (Aliste)((char *)lmc - 1492 (char *)lml->lm_lists); 1493 } else { 1494 lmc = 0; 1495 lmco = ALIST_OFF_DATA; 1496 } 1497 1498 pnp = hwcap_filtees(pnpp, lmco, lmc, dip, ilmp, filtees, 1499 mode, (FLG_RT_HANDLE | FLG_RT_HWCAP), in_nfavl); 1500 1501 /* 1502 * Now that any hardware capability objects have been 1503 * processed, remove any link-map control list. 1504 */ 1505 if (lmc) 1506 remove_cntl(lml, lmco); 1507 } 1508 1509 if (pnp->p_len == 0) 1510 continue; 1511 1512 /* 1513 * Process an individual filtee. 1514 */ 1515 if (pnp->p_info == 0) { 1516 const char *filtee = pnp->p_name; 1517 int audit = 0; 1518 1519 DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0)); 1520 1521 ghp = 0; 1522 1523 /* 1524 * Determine if the reference link map is already 1525 * loaded. As an optimization compare the filtee with 1526 * our interpretor. The most common filter is 1527 * libdl.so.1, which is a filter on ld.so.1. 1528 */ 1529 #if defined(_ELF64) 1530 if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) { 1531 #else 1532 if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) { 1533 #endif 1534 /* 1535 * Create an association between ld.so.1 and the 1536 * filter. As an optimization, a handle for 1537 * ld.so.1 itself (required for the dlopen() 1538 * family filtering mechanism) shouldn't search 1539 * any dependencies of ld.so.1. Omitting 1540 * GPD_ADDEPS prevents the addition of any 1541 * ld.so.1 dependencies to this handle. 1542 */ 1543 nlmp = lml_rtld.lm_head; 1544 if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp, 1545 (GPH_LDSO | GPH_FIRST | GPH_FILTEE), 1546 (GPD_DLSYM | GPD_RELOC), GPD_PARENT)) == 0) 1547 nlmp = 0; 1548 1549 /* 1550 * Establish the filter handle to prevent any 1551 * recursion. 1552 */ 1553 if (nlmp && ghp) 1554 pnp->p_info = (void *)ghp; 1555 1556 /* 1557 * Audit the filter/filtee established. Ignore 1558 * any return from the auditor, as we can't 1559 * allow ignore filtering to ld.so.1, otherwise 1560 * nothing is going to work. 1561 */ 1562 if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) & 1563 LML_TFLG_AUD_OBJFILTER)) 1564 (void) audit_objfilter(ilmp, filtees, 1565 nlmp, 0); 1566 1567 } else { 1568 Rej_desc rej = { 0 }; 1569 Lm_cntl *lmc; 1570 Aliste lmco; 1571 1572 /* 1573 * Establish a new link-map control list from 1574 * which to analyze any newly added objects. 1575 */ 1576 if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) { 1577 if ((lmc = 1578 alist_append(&lml->lm_lists, 0, 1579 sizeof (Lm_cntl), 1580 AL_CNT_LMLISTS)) == 0) 1581 return ((Sym *)0); 1582 lmco = (Aliste)((char *)lmc - 1583 (char *)lml->lm_lists); 1584 } else { 1585 lmc = 0; 1586 lmco = ALIST_OFF_DATA; 1587 } 1588 1589 /* 1590 * Load the filtee. Note, an auditor can 1591 * provide an alternative name. 1592 */ 1593 if ((nlmp = load_path(lml, lmco, &(pnp->p_name), 1594 ilmp, mode, FLG_RT_HANDLE, &ghp, 0, 1595 &rej, in_nfavl)) == 0) { 1596 file_notfound(LIST(ilmp), filtee, ilmp, 1597 FLG_RT_HANDLE, &rej); 1598 remove_rej(&rej); 1599 } 1600 filtee = pnp->p_name; 1601 1602 /* 1603 * Establish the filter handle to prevent any 1604 * recursion. 1605 */ 1606 if (nlmp && ghp) { 1607 ghp->gh_flags |= GPH_FILTEE; 1608 pnp->p_info = (void *)ghp; 1609 1610 FLAGS1(nlmp) |= FL1_RT_USED; 1611 } 1612 1613 /* 1614 * Audit the filter/filtee established. A 1615 * return of 0 indicates the auditor wishes to 1616 * ignore this filtee. 1617 */ 1618 if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) & 1619 LML_TFLG_AUD_OBJFILTER)) { 1620 if (audit_objfilter(ilmp, filtees, 1621 nlmp, 0) == 0) { 1622 audit = 1; 1623 nlmp = 0; 1624 } 1625 } 1626 1627 /* 1628 * Finish processing the objects associated with 1629 * this request. Create an association between 1630 * this object and the originating filter to 1631 * provide sufficient information to tear down 1632 * this filtee if necessary. 1633 */ 1634 if (nlmp && ghp && ((analyze_lmc(lml, lmco, 1635 nlmp, in_nfavl) == 0) || (relocate_lmc(lml, 1636 lmco, ilmp, nlmp, in_nfavl) == 0))) 1637 nlmp = 0; 1638 1639 /* 1640 * If the filtee has been successfully 1641 * processed, then create an association 1642 * between the filter and filtee. This 1643 * association provides sufficient information 1644 * to tear down the filter and filtee if 1645 * necessary. 1646 */ 1647 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD)); 1648 if (nlmp && ghp && 1649 (hdl_add(ghp, ilmp, GPD_FILTER) == 0)) 1650 nlmp = 0; 1651 1652 /* 1653 * If this filtee loading has failed, and we've 1654 * created a new link-map control list to which 1655 * this request has added objects, then remove 1656 * all the objects that have been associated to 1657 * this request. 1658 */ 1659 if ((nlmp == 0) && lmc && lmc->lc_head) 1660 remove_lmc(lml, clmp, lmc, lmco, name); 1661 1662 /* 1663 * Remove any link-map control list that was 1664 * created. 1665 */ 1666 if (lmc) 1667 remove_cntl(lml, lmco); 1668 } 1669 1670 /* 1671 * Generate a diagnostic if the filtee couldn't be 1672 * loaded, null out the pnode entry, and continue 1673 * the search. Otherwise, retain this group handle 1674 * for future symbol searches. 1675 */ 1676 if (nlmp == 0) { 1677 DBG_CALL(Dbg_file_filtee(lml, 0, filtee, 1678 audit)); 1679 1680 pnp->p_info = 0; 1681 pnp->p_len = 0; 1682 continue; 1683 } 1684 } 1685 1686 ghp = (Grp_hdl *)pnp->p_info; 1687 1688 /* 1689 * If we're just here to trigger filtee loading skip the symbol 1690 * lookup so we'll continue looking for additional filtees. 1691 */ 1692 if (name) { 1693 Grp_desc *gdp; 1694 Sym *sym = 0; 1695 Aliste idx; 1696 Slookup sl = *slp; 1697 1698 sl.sl_flags |= LKUP_FIRST; 1699 any++; 1700 1701 /* 1702 * Look for the symbol in the handles dependencies. 1703 */ 1704 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1705 if ((gdp->gd_flags & GPD_DLSYM) == 0) 1706 continue; 1707 1708 /* 1709 * If our parent is a dependency don't look at 1710 * it (otherwise we are in a recursive loop). 1711 * This situation can occur with auxiliary 1712 * filters if the filtee has a dependency on the 1713 * filter. This dependency isn't necessary as 1714 * auxiliary filters are opened RTLD_PARENT, but 1715 * users may still unknowingly add an explicit 1716 * dependency to the parent. 1717 */ 1718 if ((sl.sl_imap = gdp->gd_depend) == ilmp) 1719 continue; 1720 1721 if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp, 1722 binfo)) != 0) || 1723 (ghp->gh_flags & GPH_FIRST)) 1724 break; 1725 } 1726 1727 /* 1728 * If a symbol has been found, indicate the binding 1729 * and return the symbol. 1730 */ 1731 if (sym) { 1732 *binfo |= DBG_BINFO_FILTEE; 1733 return (sym); 1734 } 1735 } 1736 1737 /* 1738 * If this object is tagged to terminate filtee processing we're 1739 * done. 1740 */ 1741 if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE) 1742 break; 1743 } 1744 1745 /* 1746 * If we're just here to trigger filtee loading then we're done. 1747 */ 1748 if (name == 0) 1749 return ((Sym *)0); 1750 1751 /* 1752 * If no filtees have been found for a filter, clean up any Pnode 1753 * structures and disable their search completely. For auxiliary 1754 * filters we can reselect the symbol search function so that we never 1755 * enter this routine again for this object. For standard filters we 1756 * use the null symbol routine. 1757 */ 1758 if (any == 0) { 1759 remove_pnode((Pnode *)dip->di_info); 1760 elf_disable_filtee(ilmp, dip); 1761 return ((Sym *)0); 1762 } 1763 1764 return ((Sym *)0); 1765 } 1766 1767 /* 1768 * Focal point for disabling error messages for auxiliary filters. As an 1769 * auxiliary filter allows for filtee use, but provides a fallback should a 1770 * filtee not exist (or fail to load), any errors generated as a consequence of 1771 * trying to load the filtees are typically suppressed. Setting RT_FL_SILENCERR 1772 * suppresses errors generated by eprint(), but insures a debug diagnostic is 1773 * produced. ldd(1) employs printf(), and here, the selection of whether to 1774 * print a diagnostic in regards to auxiliary filters is a little more complex. 1775 * 1776 * . The determination of whether to produce an ldd message, or a fatal 1777 * error message is driven by LML_FLG_TRC_ENABLE. 1778 * . More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN, 1779 * (ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s), 1780 * and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u). 1781 * 1782 * . If the calling object is lddstub, then several classes of message are 1783 * suppressed. The user isn't trying to diagnose lddstub, this is simply 1784 * a stub executable employed to preload a user specified library against. 1785 * 1786 * . If RT_FL_SILENCERR is in effect then any generic ldd() messages should 1787 * be suppressed. All detailed ldd messages should still be produced. 1788 */ 1789 Sym * 1790 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx, 1791 int *in_nfavl) 1792 { 1793 Sym *sym; 1794 Dyninfo *dip = &DYNINFO(slp->sl_imap)[ndx]; 1795 int silent = 0; 1796 1797 /* 1798 * Make sure this entry is still acting as a filter. We may have tried 1799 * to process this previously, and disabled it if the filtee couldn't 1800 * be processed. However, other entries may provide different filtees 1801 * that are yet to be completed. 1802 */ 1803 if (dip->di_flags == 0) 1804 return ((Sym *)0); 1805 1806 /* 1807 * Indicate whether an error message is required should this filtee not 1808 * be found, based on the type of filter. 1809 */ 1810 if ((dip->di_flags & FLG_DI_AUXFLTR) && 1811 ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) { 1812 rtld_flags |= RT_FL_SILENCERR; 1813 silent = 1; 1814 } 1815 1816 sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx, in_nfavl); 1817 1818 if (silent) 1819 rtld_flags &= ~RT_FL_SILENCERR; 1820 1821 return (sym); 1822 } 1823 1824 /* 1825 * Compute the elf hash value (as defined in the ELF access library). 1826 * The form of the hash table is: 1827 * 1828 * |--------------| 1829 * | # of buckets | 1830 * |--------------| 1831 * | # of chains | 1832 * |--------------| 1833 * | bucket[] | 1834 * |--------------| 1835 * | chain[] | 1836 * |--------------| 1837 */ 1838 ulong_t 1839 elf_hash(const char *name) 1840 { 1841 uint_t hval = 0; 1842 1843 while (*name) { 1844 uint_t g; 1845 hval = (hval << 4) + *name++; 1846 if ((g = (hval & 0xf0000000)) != 0) 1847 hval ^= g >> 24; 1848 hval &= ~g; 1849 } 1850 return ((ulong_t)hval); 1851 } 1852 1853 /* 1854 * If flag argument has LKUP_SPEC set, we treat undefined symbols of type 1855 * function specially in the executable - if they have a value, even though 1856 * undefined, we use that value. This allows us to associate all references 1857 * to a function's address to a single place in the process: the plt entry 1858 * for that function in the executable. Calls to lookup from plt binding 1859 * routines do NOT set LKUP_SPEC in the flag. 1860 */ 1861 Sym * 1862 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl) 1863 { 1864 const char *name = slp->sl_name; 1865 Rt_map *ilmp = slp->sl_imap; 1866 ulong_t hash = slp->sl_hash; 1867 uint_t ndx, htmp, buckets, *chainptr; 1868 Sym *sym, *symtabptr; 1869 char *strtabptr, *strtabname; 1870 uint_t flags1; 1871 Syminfo *sip; 1872 1873 /* 1874 * If we're only here to establish a symbols index, skip the diagnostic 1875 * used to trace a symbol search. 1876 */ 1877 if ((slp->sl_flags & LKUP_SYMNDX) == 0) 1878 DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF))); 1879 1880 if (HASH(ilmp) == 0) 1881 return ((Sym *)0); 1882 1883 buckets = HASH(ilmp)[0]; 1884 /* LINTED */ 1885 htmp = (uint_t)hash % buckets; 1886 1887 /* 1888 * Get the first symbol on hash chain and initialize the string 1889 * and symbol table pointers. 1890 */ 1891 if ((ndx = HASH(ilmp)[htmp + 2]) == 0) 1892 return ((Sym *)0); 1893 1894 chainptr = HASH(ilmp) + 2 + buckets; 1895 strtabptr = STRTAB(ilmp); 1896 symtabptr = SYMTAB(ilmp); 1897 1898 while (ndx) { 1899 sym = symtabptr + ndx; 1900 strtabname = strtabptr + sym->st_name; 1901 1902 /* 1903 * Compare the symbol found with the name required. If the 1904 * names don't match continue with the next hash entry. 1905 */ 1906 if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) { 1907 if ((ndx = chainptr[ndx]) != 0) 1908 continue; 1909 return ((Sym *)0); 1910 } 1911 1912 /* 1913 * The Solaris ld does not put DT_VERSYM in the dynamic 1914 * section, but the GNU ld does. The GNU runtime linker 1915 * interprets the top bit of the 16-bit Versym value 1916 * (0x8000) as the "hidden" bit. If this bit is set, 1917 * the linker is supposed to act as if that symbol does 1918 * not exist. The hidden bit supports their versioning 1919 * scheme, which allows multiple incompatible functions 1920 * with the same name to exist at different versions 1921 * within an object. The Solaris linker does not support this 1922 * mechanism, or the model of interface evolution that 1923 * it allows, but we honor the hidden bit in GNU ld 1924 * produced objects in order to interoperate with them. 1925 */ 1926 if ((VERSYM(ilmp) != NULL) && 1927 ((VERSYM(ilmp)[ndx] & 0x8000) != 0)) { 1928 DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name, 1929 ndx, VERSYM(ilmp)[ndx])); 1930 if ((ndx = chainptr[ndx]) != 0) 1931 continue; 1932 return ((Sym *)0); 1933 } 1934 1935 /* 1936 * If we're only here to establish a symbols index, we're done. 1937 */ 1938 if (slp->sl_flags & LKUP_SYMNDX) 1939 return (sym); 1940 1941 /* 1942 * If we find a match and the symbol is defined, return the 1943 * symbol pointer and the link map in which it was found. 1944 */ 1945 if (sym->st_shndx != SHN_UNDEF) { 1946 *dlmp = ilmp; 1947 *binfo |= DBG_BINFO_FOUND; 1948 if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) || 1949 ((FLAGS(ilmp) & FLG_RT_SYMINTPO) && 1950 is_sym_interposer(ilmp, sym))) 1951 *binfo |= DBG_BINFO_INTERPOSE; 1952 break; 1953 1954 /* 1955 * If we find a match and the symbol is undefined, the 1956 * symbol type is a function, and the value of the symbol 1957 * is non zero, then this is a special case. This allows 1958 * the resolution of a function address to the plt[] entry. 1959 * See SPARC ABI, Dynamic Linking, Function Addresses for 1960 * more details. 1961 */ 1962 } else if ((slp->sl_flags & LKUP_SPEC) && 1963 (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) && 1964 (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) { 1965 *dlmp = ilmp; 1966 *binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR); 1967 if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) || 1968 ((FLAGS(ilmp) & FLG_RT_SYMINTPO) && 1969 is_sym_interposer(ilmp, sym))) 1970 *binfo |= DBG_BINFO_INTERPOSE; 1971 return (sym); 1972 } 1973 1974 /* 1975 * Undefined symbol. 1976 */ 1977 return ((Sym *)0); 1978 } 1979 1980 /* 1981 * We've found a match. Determine if the defining object contains 1982 * symbol binding information. 1983 */ 1984 if ((sip = SYMINFO(ilmp)) != 0) 1985 sip += ndx; 1986 1987 /* 1988 * If this definition is a singleton, and we haven't followed a default 1989 * symbol search knowing that we're looking for a singleton (presumably 1990 * because the symbol definition has been changed since the referring 1991 * object was built), then reject this binding so that the caller can 1992 * fall back to a standard symbol search. 1993 */ 1994 if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) && 1995 (((slp->sl_flags & LKUP_STANDARD) == 0) || 1996 (((slp->sl_flags & LKUP_SINGLETON) == 0) && 1997 (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) { 1998 DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name, 1999 DBG_BNDREJ_SINGLE)); 2000 *binfo |= BINFO_REJSINGLE; 2001 *binfo &= ~DBG_BINFO_MSK; 2002 return ((Sym *)0); 2003 } 2004 2005 /* 2006 * If this is a direct binding request, but the symbol definition has 2007 * disabled directly binding to it (presumably because the symbol 2008 * definition has been changed since the referring object was built), 2009 * indicate this failure so that the caller can fall back to a standard 2010 * symbol search. 2011 */ 2012 if (sip && (slp->sl_flags & LKUP_DIRECT) && 2013 (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) { 2014 DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name, 2015 DBG_BNDREJ_NODIR)); 2016 *binfo |= BINFO_REJDIRECT; 2017 *binfo &= ~DBG_BINFO_MSK; 2018 return ((Sym *)0); 2019 } 2020 2021 /* 2022 * Determine whether this object is acting as a filter. 2023 */ 2024 if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0) 2025 return (sym); 2026 2027 /* 2028 * Determine if this object offers per-symbol filtering, and if so, 2029 * whether this symbol references a filtee. 2030 */ 2031 if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) { 2032 /* 2033 * If this is a standard filter reference, and no standard 2034 * filtees remain to be inspected, we're done. If this is an 2035 * auxiliary filter reference, and no auxiliary filtees remain, 2036 * we'll fall through in case any object filtering is available. 2037 */ 2038 if ((sip->si_flags & SYMINFO_FLG_FILTER) && 2039 (SYMSFLTRCNT(ilmp) == 0)) 2040 return ((Sym *)0); 2041 2042 if ((sip->si_flags & SYMINFO_FLG_FILTER) || 2043 ((sip->si_flags & SYMINFO_FLG_AUXILIARY) && 2044 SYMAFLTRCNT(ilmp))) { 2045 Sym *fsym; 2046 2047 /* 2048 * This symbol has an associated filtee. Lookup the 2049 * symbol in the filtee, and if it is found return it. 2050 * If the symbol doesn't exist, and this is a standard 2051 * filter, return an error, otherwise fall through to 2052 * catch any object filtering that may be available. 2053 */ 2054 if ((fsym = elf_lookup_filtee(slp, dlmp, binfo, 2055 sip->si_boundto, in_nfavl)) != 0) 2056 return (fsym); 2057 if (sip->si_flags & SYMINFO_FLG_FILTER) 2058 return ((Sym *)0); 2059 } 2060 } 2061 2062 /* 2063 * Determine if this object provides global filtering. 2064 */ 2065 if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) { 2066 Sym *fsym; 2067 2068 if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) { 2069 /* 2070 * This object has an associated filtee. Lookup the 2071 * symbol in the filtee, and if it is found return it. 2072 * If the symbol doesn't exist, and this is a standard 2073 * filter, return and error, otherwise return the symbol 2074 * within the filter itself. 2075 */ 2076 if ((fsym = elf_lookup_filtee(slp, dlmp, binfo, 2077 OBJFLTRNDX(ilmp), in_nfavl)) != 0) 2078 return (fsym); 2079 } 2080 2081 if (flags1 & FL1_RT_OBJSFLTR) 2082 return ((Sym *)0); 2083 } 2084 return (sym); 2085 } 2086 2087 /* 2088 * Create a new Rt_map structure for an ELF object and initialize 2089 * all values. 2090 */ 2091 Rt_map * 2092 elf_new_lm(Lm_list *lml, const char *pname, const char *oname, Dyn *ld, 2093 ulong_t addr, ulong_t etext, Aliste lmco, ulong_t msize, ulong_t entry, 2094 ulong_t paddr, ulong_t padimsize, Mmap *mmaps, uint_t mmapcnt, 2095 int *in_nfavl) 2096 { 2097 Rt_map *lmp; 2098 ulong_t base, fltr = 0, audit = 0, cfile = 0, crle = 0; 2099 Xword rpath = 0; 2100 Ehdr *ehdr = (Ehdr *)addr; 2101 2102 DBG_CALL(Dbg_file_elf(lml, pname, (ulong_t)ld, addr, msize, entry, 2103 lml->lm_lmidstr, lmco)); 2104 2105 /* 2106 * Allocate space for the link-map and private elf information. Once 2107 * these are allocated and initialized, we can use remove_so(0, lmp) to 2108 * tear down the link-map should any failures occur. 2109 */ 2110 if ((lmp = calloc(sizeof (Rt_map), 1)) == 0) 2111 return (0); 2112 if ((ELFPRV(lmp) = calloc(sizeof (Rt_elfp), 1)) == 0) { 2113 free(lmp); 2114 return (0); 2115 } 2116 2117 /* 2118 * All fields not filled in were set to 0 by calloc. 2119 */ 2120 ORIGNAME(lmp) = PATHNAME(lmp) = NAME(lmp) = (char *)pname; 2121 DYN(lmp) = ld; 2122 ADDR(lmp) = addr; 2123 MSIZE(lmp) = msize; 2124 ENTRY(lmp) = (Addr)entry; 2125 SYMINTP(lmp) = elf_find_sym; 2126 ETEXT(lmp) = etext; 2127 FCT(lmp) = &elf_fct; 2128 LIST(lmp) = lml; 2129 PADSTART(lmp) = paddr; 2130 PADIMLEN(lmp) = padimsize; 2131 THREADID(lmp) = rt_thr_self(); 2132 OBJFLTRNDX(lmp) = FLTR_DISABLED; 2133 SORTVAL(lmp) = -1; 2134 2135 MMAPS(lmp) = mmaps; 2136 MMAPCNT(lmp) = mmapcnt; 2137 ASSERT(mmapcnt != 0); 2138 2139 /* 2140 * If this is a shared object, add the base address to each address. 2141 * if this is an executable, use address as is. 2142 */ 2143 if (ehdr->e_type == ET_EXEC) { 2144 base = 0; 2145 FLAGS(lmp) |= FLG_RT_FIXED; 2146 } else 2147 base = addr; 2148 2149 /* 2150 * Fill in rest of the link map entries with information from the file's 2151 * dynamic structure. 2152 */ 2153 if (ld) { 2154 uint_t dynndx = 0; 2155 Xword pltpadsz = 0; 2156 Rti_desc *rti; 2157 2158 /* CSTYLED */ 2159 for ( ; ld->d_tag != DT_NULL; ++ld, dynndx++) { 2160 switch ((Xword)ld->d_tag) { 2161 case DT_SYMTAB: 2162 SYMTAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2163 break; 2164 case DT_SUNW_SYMTAB: 2165 SUNWSYMTAB(lmp) = 2166 (void *)(ld->d_un.d_ptr + base); 2167 break; 2168 case DT_SUNW_SYMSZ: 2169 SUNWSYMSZ(lmp) = ld->d_un.d_val; 2170 break; 2171 case DT_STRTAB: 2172 STRTAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2173 break; 2174 case DT_SYMENT: 2175 SYMENT(lmp) = ld->d_un.d_val; 2176 break; 2177 case DT_FEATURE_1: 2178 ld->d_un.d_val |= DTF_1_PARINIT; 2179 if (ld->d_un.d_val & DTF_1_CONFEXP) 2180 crle = 1; 2181 break; 2182 case DT_MOVESZ: 2183 MOVESZ(lmp) = ld->d_un.d_val; 2184 FLAGS(lmp) |= FLG_RT_MOVE; 2185 break; 2186 case DT_MOVEENT: 2187 MOVEENT(lmp) = ld->d_un.d_val; 2188 break; 2189 case DT_MOVETAB: 2190 MOVETAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2191 break; 2192 case DT_REL: 2193 case DT_RELA: 2194 /* 2195 * At this time, ld.so. can only handle one 2196 * type of relocation per object. 2197 */ 2198 REL(lmp) = (void *)(ld->d_un.d_ptr + base); 2199 break; 2200 case DT_RELSZ: 2201 case DT_RELASZ: 2202 RELSZ(lmp) = ld->d_un.d_val; 2203 break; 2204 case DT_RELENT: 2205 case DT_RELAENT: 2206 RELENT(lmp) = ld->d_un.d_val; 2207 break; 2208 case DT_RELCOUNT: 2209 case DT_RELACOUNT: 2210 RELACOUNT(lmp) = (uint_t)ld->d_un.d_val; 2211 break; 2212 case DT_TEXTREL: 2213 FLAGS1(lmp) |= FL1_RT_TEXTREL; 2214 break; 2215 case DT_HASH: 2216 HASH(lmp) = (uint_t *)(ld->d_un.d_ptr + base); 2217 break; 2218 case DT_PLTGOT: 2219 PLTGOT(lmp) = (uint_t *)(ld->d_un.d_ptr + base); 2220 break; 2221 case DT_PLTRELSZ: 2222 PLTRELSZ(lmp) = ld->d_un.d_val; 2223 break; 2224 case DT_JMPREL: 2225 JMPREL(lmp) = (void *)(ld->d_un.d_ptr + base); 2226 break; 2227 case DT_INIT: 2228 if (ld->d_un.d_ptr != NULL) 2229 INIT(lmp) = 2230 (void (*)())(ld->d_un.d_ptr + base); 2231 break; 2232 case DT_FINI: 2233 if (ld->d_un.d_ptr != NULL) 2234 FINI(lmp) = 2235 (void (*)())(ld->d_un.d_ptr + base); 2236 break; 2237 case DT_INIT_ARRAY: 2238 INITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2239 base); 2240 break; 2241 case DT_INIT_ARRAYSZ: 2242 INITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2243 break; 2244 case DT_FINI_ARRAY: 2245 FINIARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2246 base); 2247 break; 2248 case DT_FINI_ARRAYSZ: 2249 FINIARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2250 break; 2251 case DT_PREINIT_ARRAY: 2252 PREINITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2253 base); 2254 break; 2255 case DT_PREINIT_ARRAYSZ: 2256 PREINITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2257 break; 2258 case DT_RPATH: 2259 case DT_RUNPATH: 2260 rpath = ld->d_un.d_val; 2261 break; 2262 case DT_FILTER: 2263 fltr = ld->d_un.d_val; 2264 OBJFLTRNDX(lmp) = dynndx; 2265 FLAGS1(lmp) |= FL1_RT_OBJSFLTR; 2266 break; 2267 case DT_AUXILIARY: 2268 if (!(rtld_flags & RT_FL_NOAUXFLTR)) { 2269 fltr = ld->d_un.d_val; 2270 OBJFLTRNDX(lmp) = dynndx; 2271 } 2272 FLAGS1(lmp) |= FL1_RT_OBJAFLTR; 2273 break; 2274 case DT_SUNW_FILTER: 2275 SYMSFLTRCNT(lmp)++; 2276 FLAGS1(lmp) |= FL1_RT_SYMSFLTR; 2277 break; 2278 case DT_SUNW_AUXILIARY: 2279 if (!(rtld_flags & RT_FL_NOAUXFLTR)) { 2280 SYMAFLTRCNT(lmp)++; 2281 } 2282 FLAGS1(lmp) |= FL1_RT_SYMAFLTR; 2283 break; 2284 case DT_DEPAUDIT: 2285 if (!(rtld_flags & RT_FL_NOAUDIT)) 2286 audit = ld->d_un.d_val; 2287 break; 2288 case DT_CONFIG: 2289 cfile = ld->d_un.d_val; 2290 break; 2291 case DT_DEBUG: 2292 /* 2293 * DT_DEBUG entries are only created in 2294 * dynamic objects that require an interpretor 2295 * (ie. all dynamic executables and some shared 2296 * objects), and provide for a hand-shake with 2297 * debuggers. This entry is initialized to 2298 * zero by the link-editor. If a debugger has 2299 * us and updated this entry set the debugger 2300 * flag, and finish initializing the debugging 2301 * structure (see setup() also). Switch off any 2302 * configuration object use as most debuggers 2303 * can't handle fixed dynamic executables as 2304 * dependencies, and we can't handle requests 2305 * like object padding for alternative objects. 2306 */ 2307 if (ld->d_un.d_ptr) 2308 rtld_flags |= 2309 (RT_FL_DEBUGGER | RT_FL_NOOBJALT); 2310 ld->d_un.d_ptr = (Addr)&r_debug; 2311 break; 2312 case DT_VERNEED: 2313 VERNEED(lmp) = (Verneed *)(ld->d_un.d_ptr + 2314 base); 2315 break; 2316 case DT_VERNEEDNUM: 2317 /* LINTED */ 2318 VERNEEDNUM(lmp) = (int)ld->d_un.d_val; 2319 break; 2320 case DT_VERDEF: 2321 VERDEF(lmp) = (Verdef *)(ld->d_un.d_ptr + base); 2322 break; 2323 case DT_VERDEFNUM: 2324 /* LINTED */ 2325 VERDEFNUM(lmp) = (int)ld->d_un.d_val; 2326 break; 2327 case DT_VERSYM: 2328 /* 2329 * The Solaris ld does not produce DT_VERSYM, 2330 * but the GNU ld does, in order to support 2331 * their style of versioning, which differs 2332 * from ours in some ways, while using the 2333 * same data structures. The presence of 2334 * DT_VERSYM therefore means that GNU 2335 * versioning rules apply to the given file. 2336 * If DT_VERSYM is not present, then Solaris 2337 * versioning rules apply. 2338 */ 2339 VERSYM(lmp) = (Versym *)(ld->d_un.d_ptr + base); 2340 break; 2341 case DT_BIND_NOW: 2342 if ((ld->d_un.d_val & DF_BIND_NOW) && 2343 ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) { 2344 MODE(lmp) |= RTLD_NOW; 2345 MODE(lmp) &= ~RTLD_LAZY; 2346 } 2347 break; 2348 case DT_FLAGS: 2349 FLAGS2(lmp) |= FL2_RT_DTFLAGS; 2350 if (ld->d_un.d_val & DF_SYMBOLIC) 2351 FLAGS1(lmp) |= FL1_RT_SYMBOLIC; 2352 if (ld->d_un.d_val & DF_TEXTREL) 2353 FLAGS1(lmp) |= FL1_RT_TEXTREL; 2354 if ((ld->d_un.d_val & DF_BIND_NOW) && 2355 ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) { 2356 MODE(lmp) |= RTLD_NOW; 2357 MODE(lmp) &= ~RTLD_LAZY; 2358 } 2359 /* 2360 * Capture any static TLS use, and enforce that 2361 * this object be non-deletable. 2362 */ 2363 if (ld->d_un.d_val & DF_STATIC_TLS) { 2364 FLAGS1(lmp) |= FL1_RT_TLSSTAT; 2365 MODE(lmp) |= RTLD_NODELETE; 2366 } 2367 break; 2368 case DT_FLAGS_1: 2369 if (ld->d_un.d_val & DF_1_DISPRELPND) 2370 FLAGS1(lmp) |= FL1_RT_DISPREL; 2371 if (ld->d_un.d_val & DF_1_GROUP) 2372 FLAGS(lmp) |= 2373 (FLG_RT_SETGROUP | FLG_RT_HANDLE); 2374 if ((ld->d_un.d_val & DF_1_NOW) && 2375 ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) { 2376 MODE(lmp) |= RTLD_NOW; 2377 MODE(lmp) &= ~RTLD_LAZY; 2378 } 2379 if (ld->d_un.d_val & DF_1_NODELETE) 2380 MODE(lmp) |= RTLD_NODELETE; 2381 if (ld->d_un.d_val & DF_1_INITFIRST) 2382 FLAGS(lmp) |= FLG_RT_INITFRST; 2383 if (ld->d_un.d_val & DF_1_NOOPEN) 2384 FLAGS(lmp) |= FLG_RT_NOOPEN; 2385 if (ld->d_un.d_val & DF_1_LOADFLTR) 2386 FLAGS(lmp) |= FLG_RT_LOADFLTR; 2387 if (ld->d_un.d_val & DF_1_NODUMP) 2388 FLAGS(lmp) |= FLG_RT_NODUMP; 2389 if (ld->d_un.d_val & DF_1_CONFALT) 2390 crle = 1; 2391 if (ld->d_un.d_val & DF_1_DIRECT) 2392 FLAGS1(lmp) |= FL1_RT_DIRECT; 2393 if (ld->d_un.d_val & DF_1_NODEFLIB) 2394 FLAGS1(lmp) |= FL1_RT_NODEFLIB; 2395 if (ld->d_un.d_val & DF_1_ENDFILTEE) 2396 FLAGS1(lmp) |= FL1_RT_ENDFILTE; 2397 if (ld->d_un.d_val & DF_1_TRANS) 2398 FLAGS(lmp) |= FLG_RT_TRANS; 2399 #ifndef EXPAND_RELATIVE 2400 if (ld->d_un.d_val & DF_1_ORIGIN) 2401 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2402 #endif 2403 /* 2404 * Global auditing is only meaningful when 2405 * specified by the initiating object of the 2406 * process - typically the dynamic executable. 2407 * If this is the initiaiting object, its link- 2408 * map will not yet have been added to the 2409 * link-map list, and consequently the link-map 2410 * list is empty. (see setup()). 2411 */ 2412 if (ld->d_un.d_val & DF_1_GLOBAUDIT) { 2413 if (lml_main.lm_head == 0) 2414 FLAGS1(lmp) |= FL1_RT_GLOBAUD; 2415 else 2416 DBG_CALL(Dbg_audit_ignore(lmp)); 2417 } 2418 2419 /* 2420 * If this object identifies itself as an 2421 * interposer, but relocation processing has 2422 * already started, then demote it. It's too 2423 * late to guarantee complete interposition. 2424 */ 2425 /* BEGIN CSTYLED */ 2426 if (ld->d_un.d_val & 2427 (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) { 2428 if (lml->lm_flags & LML_FLG_STARTREL) { 2429 DBG_CALL(Dbg_util_intoolate(lmp)); 2430 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 2431 (void) printf( 2432 MSG_INTL(MSG_LDD_REL_ERR2), 2433 NAME(lmp)); 2434 } else if (ld->d_un.d_val & DF_1_INTERPOSE) 2435 FLAGS(lmp) |= FLG_RT_OBJINTPO; 2436 else 2437 FLAGS(lmp) |= FLG_RT_SYMINTPO; 2438 } 2439 /* END CSTYLED */ 2440 break; 2441 case DT_SYMINFO: 2442 SYMINFO(lmp) = (Syminfo *)(ld->d_un.d_ptr + 2443 base); 2444 break; 2445 case DT_SYMINENT: 2446 SYMINENT(lmp) = ld->d_un.d_val; 2447 break; 2448 case DT_PLTPAD: 2449 PLTPAD(lmp) = (void *)(ld->d_un.d_ptr + base); 2450 break; 2451 case DT_PLTPADSZ: 2452 pltpadsz = ld->d_un.d_val; 2453 break; 2454 case DT_SUNW_RTLDINF: 2455 /* 2456 * Maintain a list of RTLDINFO structures. 2457 * Typically, libc is the only supplier, and 2458 * only one structure is provided. However, 2459 * multiple suppliers and multiple structures 2460 * are supported. For example, one structure 2461 * may provide thread_init, and another 2462 * structure may provide atexit reservations. 2463 */ 2464 if ((rti = alist_append(&lml->lm_rti, 0, 2465 sizeof (Rti_desc), AL_CNT_RTLDINFO)) == 0) { 2466 remove_so(0, lmp); 2467 return (0); 2468 } 2469 rti->rti_lmp = lmp; 2470 rti->rti_info = (void *)(ld->d_un.d_ptr + base); 2471 break; 2472 case DT_SUNW_SORTENT: 2473 SUNWSORTENT(lmp) = ld->d_un.d_val; 2474 break; 2475 case DT_SUNW_SYMSORT: 2476 SUNWSYMSORT(lmp) = 2477 (void *)(ld->d_un.d_ptr + base); 2478 break; 2479 case DT_SUNW_SYMSORTSZ: 2480 SUNWSYMSORTSZ(lmp) = ld->d_un.d_val; 2481 break; 2482 case DT_DEPRECATED_SPARC_REGISTER: 2483 case M_DT_REGISTER: 2484 FLAGS(lmp) |= FLG_RT_REGSYMS; 2485 break; 2486 case M_DT_PLTRESERVE: 2487 PLTRESERVE(lmp) = (void *)(ld->d_un.d_ptr + 2488 base); 2489 break; 2490 } 2491 } 2492 2493 if (PLTPAD(lmp)) { 2494 if (pltpadsz == (Xword)0) 2495 PLTPAD(lmp) = 0; 2496 else 2497 PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) + 2498 pltpadsz); 2499 } 2500 2501 /* 2502 * Allocate a Dynamic Info structure. 2503 */ 2504 if ((DYNINFO(lmp) = calloc((size_t)dynndx, 2505 sizeof (Dyninfo))) == 0) { 2506 remove_so(0, lmp); 2507 return (0); 2508 } 2509 DYNINFOCNT(lmp) = dynndx; 2510 } 2511 2512 /* 2513 * A dynsym contains only global functions. We want to have 2514 * a version of it that also includes local functions, so that 2515 * dladdr() will be able to report names for local functions 2516 * when used to generate a stack trace for a stripped file. 2517 * This version of the dynsym is provided via DT_SUNW_SYMTAB. 2518 * 2519 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick 2520 * in order to avoid having to have two copies of the global 2521 * symbols held in DT_SYMTAB: The local symbols are placed in 2522 * a separate section than the globals in the dynsym, but the 2523 * linker conspires to put the data for these two sections adjacent 2524 * to each other. DT_SUNW_SYMTAB points at the top of the local 2525 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables. 2526 * 2527 * If the two sections are not adjacent, then something went wrong 2528 * at link time. We use ASSERT to kill the process if this is 2529 * a debug build. In a production build, we will silently ignore 2530 * the presence of the .ldynsym and proceed. We can detect this 2531 * situation by checking to see that DT_SYMTAB lies in 2532 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ. 2533 */ 2534 if ((SUNWSYMTAB(lmp) != NULL) && 2535 (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) || 2536 (((char *)SYMTAB(lmp) >= 2537 (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) { 2538 ASSERT(0); 2539 SUNWSYMTAB(lmp) = NULL; 2540 SUNWSYMSZ(lmp) = 0; 2541 } 2542 2543 /* 2544 * If configuration file use hasn't been disabled, and a configuration 2545 * file hasn't already been set via an environment variable, see if any 2546 * application specific configuration file is specified. An LD_CONFIG 2547 * setting is used first, but if this image was generated via crle(1) 2548 * then a default configuration file is a fall-back. 2549 */ 2550 if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == 0)) { 2551 if (cfile) 2552 config->c_name = (const char *)(cfile + 2553 (char *)STRTAB(lmp)); 2554 else if (crle) { 2555 rtld_flags |= RT_FL_CONFAPP; 2556 #ifndef EXPAND_RELATIVE 2557 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2558 #endif 2559 } 2560 } 2561 2562 if (rpath) 2563 RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp)); 2564 if (fltr) { 2565 /* 2566 * If this object is a global filter, duplicate the filtee 2567 * string name(s) so that REFNAME() is available in core files. 2568 * This cludge was useful for debuggers at one point, but only 2569 * when the filtee name was an individual full path. 2570 */ 2571 if ((REFNAME(lmp) = strdup(fltr + (char *)STRTAB(lmp))) == 0) { 2572 remove_so(0, lmp); 2573 return (0); 2574 } 2575 } 2576 2577 if (rtld_flags & RT_FL_RELATIVE) 2578 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2579 2580 /* 2581 * For Intel ABI compatibility. It's possible that a JMPREL can be 2582 * specified without any other relocations (e.g. a dynamic executable 2583 * normally only contains .plt relocations). If this is the case then 2584 * no REL, RELSZ or RELENT will have been created. For us to be able 2585 * to traverse the .plt relocations under LD_BIND_NOW we need to know 2586 * the RELENT for these relocations. Refer to elf_reloc() for more 2587 * details. 2588 */ 2589 if (!RELENT(lmp) && JMPREL(lmp)) 2590 RELENT(lmp) = sizeof (Rel); 2591 2592 /* 2593 * Establish any per-object auditing. If we're establishing `main's 2594 * link-map its too early to go searching for audit objects so just 2595 * hold the object name for later (see setup()). 2596 */ 2597 if (audit) { 2598 char *cp = audit + (char *)STRTAB(lmp); 2599 2600 if (*cp) { 2601 if (((AUDITORS(lmp) = 2602 calloc(1, sizeof (Audit_desc))) == 0) || 2603 ((AUDITORS(lmp)->ad_name = strdup(cp)) == 0)) { 2604 remove_so(0, lmp); 2605 return (0); 2606 } 2607 if (lml_main.lm_head) { 2608 if (audit_setup(lmp, AUDITORS(lmp), 0, 2609 in_nfavl) == 0) { 2610 remove_so(0, lmp); 2611 return (0); 2612 } 2613 FLAGS1(lmp) |= AUDITORS(lmp)->ad_flags; 2614 lml->lm_flags |= LML_FLG_LOCAUDIT; 2615 } 2616 } 2617 } 2618 2619 if ((CONDVAR(lmp) = rt_cond_create()) == 0) { 2620 remove_so(0, lmp); 2621 return (0); 2622 } 2623 if (oname && ((append_alias(lmp, oname, 0)) == 0)) { 2624 remove_so(0, lmp); 2625 return (0); 2626 } 2627 2628 /* 2629 * Add the mapped object to the end of the link map list. 2630 */ 2631 lm_append(lml, lmco, lmp); 2632 return (lmp); 2633 } 2634 2635 /* 2636 * Assign hardware/software capabilities. 2637 */ 2638 void 2639 cap_assign(Cap *cap, Rt_map *lmp) 2640 { 2641 while (cap->c_tag != CA_SUNW_NULL) { 2642 switch (cap->c_tag) { 2643 case CA_SUNW_HW_1: 2644 HWCAP(lmp) = cap->c_un.c_val; 2645 break; 2646 case CA_SUNW_SF_1: 2647 SFCAP(lmp) = cap->c_un.c_val; 2648 } 2649 cap++; 2650 } 2651 } 2652 2653 /* 2654 * Map in an ELF object. 2655 * Takes an open file descriptor for the object to map and its pathname; returns 2656 * a pointer to a Rt_map structure for this object, or 0 on error. 2657 */ 2658 static Rt_map * 2659 elf_map_so(Lm_list *lml, Aliste lmco, const char *pname, const char *oname, 2660 int fd, int *in_nfavl) 2661 { 2662 int i; /* general temporary */ 2663 Off memsize = 0; /* total memory size of pathname */ 2664 Off mentry; /* entry point */ 2665 Ehdr *ehdr; /* ELF header of ld.so */ 2666 Phdr *phdr; /* first Phdr in file */ 2667 Phdr *phdr0; /* Saved first Phdr in file */ 2668 Phdr *pptr; /* working Phdr */ 2669 Phdr *fph = 0; /* first loadable Phdr */ 2670 Phdr *lph; /* last loadable Phdr */ 2671 Phdr *lfph = 0; /* last loadable (filesz != 0) Phdr */ 2672 Phdr *lmph = 0; /* last loadable (memsz != 0) Phdr */ 2673 Phdr *swph = 0; /* program header for SUNWBSS */ 2674 Phdr *tlph = 0; /* program header for PT_TLS */ 2675 Phdr *unwindph = 0; /* program header for PT_SUNW_UNWIND */ 2676 Cap *cap = 0; /* program header for SUNWCAP */ 2677 Dyn *mld = 0; /* DYNAMIC structure for pathname */ 2678 size_t size; /* size of elf and program headers */ 2679 caddr_t faddr = 0; /* mapping address of pathname */ 2680 Rt_map *lmp; /* link map created */ 2681 caddr_t paddr; /* start of padded image */ 2682 Off plen; /* size of image including padding */ 2683 Half etype; 2684 int fixed; 2685 Mmap *mmaps; 2686 uint_t mmapcnt = 0; 2687 Xword align = 0; 2688 2689 /* LINTED */ 2690 ehdr = (Ehdr *)fmap->fm_maddr; 2691 2692 /* 2693 * If this a relocatable object then special processing is required. 2694 */ 2695 if ((etype = ehdr->e_type) == ET_REL) 2696 return (elf_obj_file(lml, lmco, pname, fd)); 2697 2698 /* 2699 * If this isn't a dynamic executable or shared object we can't process 2700 * it. If this is a dynamic executable then all addresses are fixed. 2701 */ 2702 if (etype == ET_EXEC) { 2703 fixed = 1; 2704 } else if (etype == ET_DYN) { 2705 fixed = 0; 2706 } else { 2707 Conv_inv_buf_t inv_buf; 2708 2709 eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_BADTYPE), pname, 2710 conv_ehdr_type(etype, 0, &inv_buf)); 2711 return (0); 2712 } 2713 2714 /* 2715 * If our original mapped page was not large enough to hold all the 2716 * program headers remap them. 2717 */ 2718 size = (size_t)((char *)ehdr->e_phoff + 2719 (ehdr->e_phnum * ehdr->e_phentsize)); 2720 if (size > fmap->fm_fsize) { 2721 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname); 2722 return (0); 2723 } 2724 if (size > fmap->fm_msize) { 2725 fmap_setup(); 2726 if ((fmap->fm_maddr = mmap(fmap->fm_maddr, size, PROT_READ, 2727 fmap->fm_mflags, fd, 0)) == MAP_FAILED) { 2728 int err = errno; 2729 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), pname, 2730 strerror(err)); 2731 return (0); 2732 } 2733 fmap->fm_msize = size; 2734 /* LINTED */ 2735 ehdr = (Ehdr *)fmap->fm_maddr; 2736 } 2737 /* LINTED */ 2738 phdr0 = phdr = (Phdr *)((char *)ehdr + ehdr->e_ehsize); 2739 2740 /* 2741 * Get entry point. 2742 */ 2743 mentry = ehdr->e_entry; 2744 2745 /* 2746 * Point at program headers and perform some basic validation. 2747 */ 2748 for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++, 2749 pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) { 2750 if ((pptr->p_type == PT_LOAD) || 2751 (pptr->p_type == PT_SUNWBSS)) { 2752 2753 if (fph == 0) { 2754 fph = pptr; 2755 /* LINTED argument lph is initialized in first pass */ 2756 } else if (pptr->p_vaddr <= lph->p_vaddr) { 2757 eprintf(lml, ERR_ELF, 2758 MSG_INTL(MSG_GEN_INVPRGHDR), pname); 2759 return (0); 2760 } 2761 2762 lph = pptr; 2763 2764 if (pptr->p_memsz) 2765 lmph = pptr; 2766 if (pptr->p_filesz) 2767 lfph = pptr; 2768 if (pptr->p_type == PT_SUNWBSS) 2769 swph = pptr; 2770 if (pptr->p_align > align) 2771 align = pptr->p_align; 2772 2773 } else if (pptr->p_type == PT_DYNAMIC) { 2774 mld = (Dyn *)(pptr->p_vaddr); 2775 } else if ((pptr->p_type == PT_TLS) && pptr->p_memsz) { 2776 tlph = pptr; 2777 } else if (pptr->p_type == PT_SUNWCAP) { 2778 cap = (Cap *)(pptr->p_vaddr); 2779 } else if (pptr->p_type == PT_SUNW_UNWIND) { 2780 unwindph = pptr; 2781 } 2782 } 2783 2784 #if defined(MAP_ALIGN) 2785 /* 2786 * Make sure the maximum page alignment is a power of 2 >= the default 2787 * segment alignment, for use with MAP_ALIGN. 2788 */ 2789 align = S_ROUND(align, M_SEGM_ALIGN); 2790 #endif 2791 2792 /* 2793 * We'd better have at least one loadable segment, together with some 2794 * specified file and memory size. 2795 */ 2796 if ((fph == 0) || (lmph == 0) || (lfph == 0)) { 2797 eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_NOLOADSEG), pname); 2798 return (0); 2799 } 2800 2801 /* 2802 * Check that the files size accounts for the loadable sections 2803 * we're going to map in (failure to do this may cause spurious 2804 * bus errors if we're given a truncated file). 2805 */ 2806 if (fmap->fm_fsize < ((size_t)lfph->p_offset + lfph->p_filesz)) { 2807 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname); 2808 return (0); 2809 } 2810 2811 /* 2812 * Memsize must be page rounded so that if we add object padding 2813 * at the end it will start at the beginning of a page. 2814 */ 2815 plen = memsize = M_PROUND((lmph->p_vaddr + lmph->p_memsz) - 2816 M_PTRUNC((ulong_t)fph->p_vaddr)); 2817 2818 /* 2819 * Determine if an existing mapping is acceptable. 2820 */ 2821 if (interp && (lml->lm_flags & LML_FLG_BASELM) && 2822 (strcmp(pname, interp->i_name) == 0)) { 2823 /* 2824 * If this is the interpreter then it has already been mapped 2825 * and we have the address so don't map it again. Note that 2826 * the common occurrence of a reference to the interpretor 2827 * (libdl -> ld.so.1) will have been caught during filter 2828 * initialization (see elf_lookup_filtee()). However, some 2829 * ELF implementations are known to record libc.so.1 as the 2830 * interpretor, and thus this test catches this behavior. 2831 */ 2832 paddr = faddr = interp->i_faddr; 2833 2834 } else if ((fixed == 0) && (r_debug.rtd_objpad == 0) && 2835 (memsize <= fmap->fm_msize) && ((fph->p_flags & PF_W) == 0) && 2836 (fph == lph) && (fph->p_filesz == fph->p_memsz) && 2837 (((Xword)fmap->fm_maddr % align) == 0)) { 2838 size_t rsize; 2839 2840 /* 2841 * If the file contains a single segment, and the mapping 2842 * required has already been established from the initial fmap 2843 * mapping, then we don't need to do anything more. Reset the 2844 * fmap address so that any later files start a new fmap. This 2845 * is really an optimization for filters, such as libdl.so, 2846 * libthread, etc. that are constructed to be a single text 2847 * segment. 2848 */ 2849 paddr = faddr = fmap->fm_maddr; 2850 2851 /* 2852 * Free any unused mapping by assigning the fmap buffer to the 2853 * unused region. fmap_setup() will unmap this area and 2854 * establish defaults for future mappings. 2855 */ 2856 rsize = M_PROUND(fph->p_filesz); 2857 fmap->fm_maddr += rsize; 2858 fmap->fm_msize -= rsize; 2859 fmap_setup(); 2860 } 2861 2862 /* 2863 * Allocate a mapping array to retain mapped segment information. 2864 */ 2865 if ((mmaps = calloc(ehdr->e_phnum, sizeof (Mmap))) == 0) 2866 return (0); 2867 2868 /* 2869 * If we're reusing an existing mapping determine the objects etext 2870 * address. Otherwise map the file (which will calculate the etext 2871 * address as part of the mapping process). 2872 */ 2873 if (faddr) { 2874 caddr_t base; 2875 2876 if (fixed) 2877 base = 0; 2878 else 2879 base = faddr; 2880 2881 /* LINTED */ 2882 phdr0 = phdr = (Phdr *)((char *)faddr + ehdr->e_ehsize); 2883 2884 for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++, 2885 pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) { 2886 if (pptr->p_type != PT_LOAD) 2887 continue; 2888 2889 mmaps[mmapcnt].m_vaddr = (pptr->p_vaddr + base); 2890 mmaps[mmapcnt].m_msize = pptr->p_memsz; 2891 mmaps[mmapcnt].m_fsize = pptr->p_filesz; 2892 mmaps[mmapcnt].m_perm = (PROT_READ | PROT_EXEC); 2893 mmapcnt++; 2894 2895 if (!(pptr->p_flags & PF_W)) { 2896 fmap->fm_etext = (ulong_t)pptr->p_vaddr + 2897 (ulong_t)pptr->p_memsz + 2898 (ulong_t)(fixed ? 0 : faddr); 2899 } 2900 } 2901 } else { 2902 /* 2903 * Map the file. 2904 */ 2905 if (!(faddr = elf_map_it(lml, pname, memsize, ehdr, fph, lph, 2906 &phdr, &paddr, &plen, fixed, fd, align, mmaps, &mmapcnt))) 2907 return (0); 2908 } 2909 2910 /* 2911 * Calculate absolute base addresses and entry points. 2912 */ 2913 if (!fixed) { 2914 if (mld) 2915 /* LINTED */ 2916 mld = (Dyn *)((Off)mld + faddr); 2917 if (cap) 2918 /* LINTED */ 2919 cap = (Cap *)((Off)cap + faddr); 2920 mentry += (Off)faddr; 2921 } 2922 2923 /* 2924 * Create new link map structure for newly mapped shared object. 2925 */ 2926 if (!(lmp = elf_new_lm(lml, pname, oname, mld, (ulong_t)faddr, 2927 fmap->fm_etext, lmco, memsize, mentry, (ulong_t)paddr, plen, mmaps, 2928 mmapcnt, in_nfavl))) { 2929 (void) munmap((caddr_t)faddr, memsize); 2930 return (0); 2931 } 2932 2933 /* 2934 * Start the system loading in the ELF information we'll be processing. 2935 */ 2936 if (REL(lmp)) { 2937 (void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) + 2938 (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp), 2939 MADV_WILLNEED); 2940 } 2941 2942 /* 2943 * If this shared object contains any special segments, record them. 2944 */ 2945 if (swph) { 2946 FLAGS(lmp) |= FLG_RT_SUNWBSS; 2947 SUNWBSS(lmp) = phdr + (swph - phdr0); 2948 } 2949 if (tlph && (tls_assign(lml, lmp, (phdr + (tlph - phdr0))) == 0)) { 2950 remove_so(lml, lmp); 2951 return (0); 2952 } 2953 2954 if (unwindph) 2955 PTUNWIND(lmp) = phdr + (unwindph - phdr0); 2956 2957 if (cap) 2958 cap_assign(cap, lmp); 2959 2960 return (lmp); 2961 } 2962 2963 /* 2964 * Function to correct protection settings. Segments are all mapped initially 2965 * with permissions as given in the segment header. We need to turn on write 2966 * permissions on a text segment if there are any relocations against that 2967 * segment, and them turn write permission back off again before returning 2968 * control to the user. This function turns the permission on or off depending 2969 * on the value of the argument. 2970 */ 2971 int 2972 elf_set_prot(Rt_map *lmp, int permission) 2973 { 2974 Mmap *mmaps; 2975 2976 /* 2977 * If this is an allocated image (ie. a relocatable object) we can't 2978 * mprotect() anything. 2979 */ 2980 if (FLAGS(lmp) & FLG_RT_IMGALLOC) 2981 return (1); 2982 2983 DBG_CALL(Dbg_file_prot(lmp, permission)); 2984 2985 for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) { 2986 if (mmaps->m_perm & PROT_WRITE) 2987 continue; 2988 2989 if (mprotect(mmaps->m_vaddr, mmaps->m_msize, 2990 (mmaps->m_perm | permission)) == -1) { 2991 int err = errno; 2992 eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_SYS_MPROT), 2993 NAME(lmp), strerror(err)); 2994 return (0); 2995 } 2996 } 2997 return (1); 2998 } 2999 3000 /* 3001 * Build full pathname of shared object from given directory name and filename. 3002 */ 3003 static char * 3004 elf_get_so(const char *dir, const char *file) 3005 { 3006 static char pname[PATH_MAX]; 3007 3008 (void) snprintf(pname, PATH_MAX, MSG_ORIG(MSG_FMT_PATH), dir, file); 3009 return (pname); 3010 } 3011 3012 /* 3013 * The copy relocation is recorded in a copy structure which will be applied 3014 * after all other relocations are carried out. This provides for copying data 3015 * that must be relocated itself (ie. pointers in shared objects). This 3016 * structure also provides a means of binding RTLD_GROUP dependencies to any 3017 * copy relocations that have been taken from any group members. 3018 * 3019 * If the size of the .bss area available for the copy information is not the 3020 * same as the source of the data inform the user if we're under ldd(1) control 3021 * (this checking was only established in 5.3, so by only issuing an error via 3022 * ldd(1) we maintain the standard set by previous releases). 3023 */ 3024 int 3025 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym, 3026 Rt_map *dlmp, const void *dadd) 3027 { 3028 Rel_copy rc; 3029 Lm_list *lml = LIST(rlmp); 3030 3031 rc.r_name = name; 3032 rc.r_rsym = rsym; /* the new reference symbol and its */ 3033 rc.r_rlmp = rlmp; /* associated link-map */ 3034 rc.r_dlmp = dlmp; /* the defining link-map */ 3035 rc.r_dsym = dsym; /* the original definition */ 3036 rc.r_radd = radd; 3037 rc.r_dadd = dadd; 3038 3039 if (rsym->st_size > dsym->st_size) 3040 rc.r_size = (size_t)dsym->st_size; 3041 else 3042 rc.r_size = (size_t)rsym->st_size; 3043 3044 if (alist_append(©_R(dlmp), &rc, sizeof (Rel_copy), 3045 AL_CNT_COPYREL) == 0) { 3046 if (!(lml->lm_flags & LML_FLG_TRC_WARN)) 3047 return (0); 3048 else 3049 return (1); 3050 } 3051 if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) { 3052 if (aplist_append(©_S(rlmp), dlmp, 3053 AL_CNT_COPYREL) == NULL) { 3054 if (!(lml->lm_flags & LML_FLG_TRC_WARN)) 3055 return (0); 3056 else 3057 return (1); 3058 } 3059 FLAGS1(dlmp) |= FL1_RT_COPYTOOK; 3060 } 3061 3062 /* 3063 * If we are tracing (ldd), warn the user if 3064 * 1) the size from the reference symbol differs from the 3065 * copy definition. We can only copy as much data as the 3066 * reference (dynamic executables) entry allows. 3067 * 2) the copy definition has STV_PROTECTED visibility. 3068 */ 3069 if (lml->lm_flags & LML_FLG_TRC_WARN) { 3070 if (rsym->st_size != dsym->st_size) { 3071 (void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF), 3072 _conv_reloc_type(M_R_COPY), demangle(name), 3073 NAME(rlmp), EC_XWORD(rsym->st_size), 3074 NAME(dlmp), EC_XWORD(dsym->st_size)); 3075 if (rsym->st_size > dsym->st_size) 3076 (void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA), 3077 NAME(dlmp)); 3078 else 3079 (void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC), 3080 NAME(rlmp)); 3081 } 3082 3083 if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) { 3084 (void) printf(MSG_INTL(MSG_LDD_CPY_PROT), 3085 _conv_reloc_type(M_R_COPY), demangle(name), 3086 NAME(dlmp)); 3087 } 3088 } 3089 3090 DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd, 3091 (Xword)rc.r_size)); 3092 return (1); 3093 } 3094 3095 /* 3096 * Determine the symbol location of an address within a link-map. Look for 3097 * the nearest symbol (whose value is less than or equal to the required 3098 * address). This is the object specific part of dladdr(). 3099 */ 3100 static void 3101 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags) 3102 { 3103 ulong_t ndx, cnt, base, _value; 3104 Sym *sym, *_sym = NULL; 3105 const char *str; 3106 int _flags; 3107 uint_t *dynaddr_ndx; 3108 uint_t dynaddr_n = 0; 3109 ulong_t value; 3110 3111 /* 3112 * If SUNWSYMTAB() is non-NULL, then it sees a special version of 3113 * the dynsym that starts with any local function symbols that exist in 3114 * the library and then moves to the data held in SYMTAB(). In this 3115 * case, SUNWSYMSZ tells us how long the symbol table is. The 3116 * availability of local function symbols will enhance the results 3117 * we can provide. 3118 * 3119 * If SUNWSYMTAB() is non-NULL, then there might also be a 3120 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains 3121 * an array of indices into SUNWSYMTAB, sorted by increasing 3122 * address. We can use this to do an O(log N) search instead of a 3123 * brute force search. 3124 * 3125 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that 3126 * contains only global symbols. In that case, the length of 3127 * the symbol table comes from the nchain field of the related 3128 * symbol lookup hash table. 3129 */ 3130 str = STRTAB(lmp); 3131 if (SUNWSYMSZ(lmp) == NULL) { 3132 sym = SYMTAB(lmp); 3133 /* 3134 * If we don't have a .hash table there are no symbols 3135 * to look at. 3136 */ 3137 if (HASH(lmp) == 0) 3138 return; 3139 cnt = HASH(lmp)[1]; 3140 } else { 3141 sym = SUNWSYMTAB(lmp); 3142 cnt = SUNWSYMSZ(lmp) / SYMENT(lmp); 3143 dynaddr_ndx = SUNWSYMSORT(lmp); 3144 if (dynaddr_ndx != NULL) 3145 dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp); 3146 } 3147 3148 if (FLAGS(lmp) & FLG_RT_FIXED) 3149 base = 0; 3150 else 3151 base = ADDR(lmp); 3152 3153 if (dynaddr_n > 0) { /* Binary search */ 3154 long low = 0, low_bnd; 3155 long high = dynaddr_n - 1, high_bnd; 3156 long mid; 3157 Sym *mid_sym; 3158 3159 /* 3160 * Note that SUNWSYMSORT only contains symbols types that 3161 * supply memory addresses, so there's no need to check and 3162 * filter out any other types. 3163 */ 3164 low_bnd = low; 3165 high_bnd = high; 3166 while (low <= high) { 3167 mid = (low + high) / 2; 3168 mid_sym = &sym[dynaddr_ndx[mid]]; 3169 value = mid_sym->st_value + base; 3170 if (addr < value) { 3171 if ((sym[dynaddr_ndx[high]].st_value + base) >= 3172 addr) 3173 high_bnd = high; 3174 high = mid - 1; 3175 } else if (addr > value) { 3176 if ((sym[dynaddr_ndx[low]].st_value + base) <= 3177 addr) 3178 low_bnd = low; 3179 low = mid + 1; 3180 } else { 3181 _sym = mid_sym; 3182 _value = value; 3183 break; 3184 } 3185 } 3186 /* 3187 * If the above didn't find it exactly, then we must 3188 * return the closest symbol with a value that doesn't 3189 * exceed the one we are looking for. If that symbol exists, 3190 * it will lie in the range bounded by low_bnd and 3191 * high_bnd. This is a linear search, but a short one. 3192 */ 3193 if (_sym == NULL) { 3194 for (mid = low_bnd; mid <= high_bnd; mid++) { 3195 mid_sym = &sym[dynaddr_ndx[mid]]; 3196 value = mid_sym->st_value + base; 3197 if (addr >= value) { 3198 _sym = mid_sym; 3199 _value = value; 3200 } else { 3201 break; 3202 } 3203 } 3204 } 3205 } else { /* Linear search */ 3206 for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) { 3207 /* 3208 * Skip expected symbol types that are not functions 3209 * or data: 3210 * - A symbol table starts with an undefined symbol 3211 * in slot 0. If we are using SUNWSYMTAB(), 3212 * there will be a second undefined symbol 3213 * right before the globals. 3214 * - The local part of SUNWSYMTAB() contains a 3215 * series of function symbols. Each section 3216 * starts with an initial STT_FILE symbol. 3217 */ 3218 if ((sym->st_shndx == SHN_UNDEF) || 3219 (ELF_ST_TYPE(sym->st_info) == STT_FILE)) 3220 continue; 3221 3222 value = sym->st_value + base; 3223 if (value > addr) 3224 continue; 3225 if (value < _value) 3226 continue; 3227 3228 _sym = sym; 3229 _value = value; 3230 3231 /* 3232 * Note, because we accept local and global symbols 3233 * we could find a section symbol that matches the 3234 * associated address, which means that the symbol 3235 * name will be null. In this case continue the 3236 * search in case we can find a global symbol of 3237 * the same value. 3238 */ 3239 if ((value == addr) && 3240 (ELF_ST_TYPE(sym->st_info) != STT_SECTION)) 3241 break; 3242 } 3243 } 3244 3245 _flags = flags & RTLD_DL_MASK; 3246 if (_sym) { 3247 if (_flags == RTLD_DL_SYMENT) 3248 *info = (void *)_sym; 3249 else if (_flags == RTLD_DL_LINKMAP) 3250 *info = (void *)lmp; 3251 3252 dlip->dli_sname = str + _sym->st_name; 3253 dlip->dli_saddr = (void *)_value; 3254 } else { 3255 /* 3256 * addr lies between the beginning of the mapped segment and 3257 * the first global symbol. We have no symbol to return 3258 * and the caller requires one. We use _START_, the base 3259 * address of the mapping. 3260 */ 3261 3262 if (_flags == RTLD_DL_SYMENT) { 3263 /* 3264 * An actual symbol struct is needed, so we 3265 * construct one for _START_. To do this in a 3266 * fully accurate way requires a different symbol 3267 * for each mapped segment. This requires the 3268 * use of dynamic memory and a mutex. That's too much 3269 * plumbing for a fringe case of limited importance. 3270 * 3271 * Fortunately, we can simplify: 3272 * - Only the st_size and st_info fields are useful 3273 * outside of the linker internals. The others 3274 * reference things that outside code cannot see, 3275 * and can be set to 0. 3276 * - It's just a label and there is no size 3277 * to report. So, the size should be 0. 3278 * This means that only st_info needs a non-zero 3279 * (constant) value. A static struct will suffice. 3280 * It must be const (readonly) so the caller can't 3281 * change its meaning for subsequent callers. 3282 */ 3283 static const Sym fsym = { 0, 0, 0, 3284 ELF_ST_INFO(STB_LOCAL, STT_OBJECT) }; 3285 *info = (void *) &fsym; 3286 } 3287 3288 dlip->dli_sname = MSG_ORIG(MSG_SYM_START); 3289 dlip->dli_saddr = (void *) ADDR(lmp); 3290 } 3291 } 3292 3293 static void 3294 elf_lazy_cleanup(APlist *alp) 3295 { 3296 Rt_map *lmp; 3297 Aliste idx; 3298 3299 /* 3300 * Cleanup any link-maps added to this dynamic list and free it. 3301 */ 3302 for (APLIST_TRAVERSE(alp, idx, lmp)) 3303 FLAGS(lmp) &= ~FLG_RT_TMPLIST; 3304 free(alp); 3305 } 3306 3307 /* 3308 * This routine is called as a last fall-back to search for a symbol from a 3309 * standard relocation. To maintain lazy loadings goal of reducing the number 3310 * of objects mapped, any symbol search is first carried out using the objects 3311 * that already exist in the process (either on a link-map list or handle). 3312 * If a symbol can't be found, and lazy dependencies are still pending, this 3313 * routine loads the dependencies in an attempt to locate the symbol. 3314 * 3315 * Only new objects are inspected as we will have already inspected presently 3316 * loaded objects before calling this routine. However, a new object may not 3317 * be new - although the di_lmp might be zero, the object may have been mapped 3318 * as someone elses dependency. Thus there's a possibility of some symbol 3319 * search duplication. 3320 */ 3321 Sym * 3322 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo, int *in_nfavl) 3323 { 3324 Sym *sym = 0; 3325 APlist *alist = NULL; 3326 Aliste idx; 3327 Rt_map *lmp1, *lmp = slp->sl_imap; 3328 const char *name = slp->sl_name; 3329 3330 /* 3331 * Generate a local list of new objects to process. This list can grow 3332 * as each object supplies its own lazy dependencies. 3333 */ 3334 if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL) 3335 return (NULL); 3336 FLAGS(lmp) |= FLG_RT_TMPLIST; 3337 3338 for (APLIST_TRAVERSE(alist, idx, lmp1)) { 3339 uint_t cnt = 0; 3340 Slookup sl = *slp; 3341 Dyninfo *dip, *pdip; 3342 3343 /* 3344 * Discard any relocation index from further symbol searches. 3345 * This index will have already been used to trigger any 3346 * necessary lazy-loads, and it might be because one of these 3347 * lazy loads have failed that we're here performing this 3348 * fallback. By removing the relocation index we don't try 3349 * and perform the same failed lazy loading activity again. 3350 */ 3351 sl.sl_rsymndx = 0; 3352 3353 /* 3354 * Loop through the lazy DT_NEEDED entries examining each object 3355 * for the required symbol. If the symbol is not found, the 3356 * object is in turn added to the local alist, so that the 3357 * objects lazy DT_NEEDED entries can be examined. 3358 */ 3359 lmp = lmp1; 3360 for (dip = DYNINFO(lmp), pdip = NULL; cnt < DYNINFOCNT(lmp); 3361 cnt++, pdip = dip++) { 3362 Rt_map *nlmp; 3363 3364 if (((dip->di_flags & FLG_DI_LAZY) == 0) || 3365 dip->di_info) 3366 continue; 3367 3368 /* 3369 * If this object has already failed to lazy load, and 3370 * we're still processing the same runtime linker 3371 * operation that produced the failure, don't bother 3372 * to try and load the object again. 3373 */ 3374 if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip && 3375 (pdip->di_flags & FLG_DI_POSFLAG1)) { 3376 if (pdip->di_info == (void *)ld_entry_cnt) 3377 continue; 3378 3379 dip->di_flags &= ~FLG_DI_LAZYFAIL; 3380 pdip->di_info = NULL; 3381 } 3382 3383 /* 3384 * Try loading this lazy dependency. If the object 3385 * can't be loaded, consider this non-fatal and continue 3386 * the search. Lazy loaded dependencies need not exist 3387 * and their loading should only turn out to be fatal 3388 * if they are required to satisfy a relocation. 3389 * 3390 * If the file is already loaded and relocated we must 3391 * still inspect it for symbols, even though it might 3392 * have already been searched. This lazy load operation 3393 * might have promoted the permissions of the object, 3394 * and thus made the object applicable for this symbol 3395 * search, whereas before the object might have been 3396 * skipped. 3397 */ 3398 if ((nlmp = elf_lazy_load(lmp, &sl, cnt, 3399 name, in_nfavl)) == 0) 3400 continue; 3401 3402 /* 3403 * If this object isn't yet a part of the dynamic list 3404 * then inspect it for the symbol. If the symbol isn't 3405 * found add the object to the dynamic list so that we 3406 * can inspect its dependencies. 3407 */ 3408 if (FLAGS(nlmp) & FLG_RT_TMPLIST) 3409 continue; 3410 3411 sl.sl_imap = nlmp; 3412 if (sym = LM_LOOKUP_SYM(sl.sl_cmap)(&sl, _lmp, 3413 binfo, in_nfavl)) 3414 break; 3415 3416 /* 3417 * Some dlsym() operations are already traversing a 3418 * link-map (dlopen(0)), and thus there's no need to 3419 * build our own dynamic dependency list. 3420 */ 3421 if ((sl.sl_flags & LKUP_NODESCENT) == 0) { 3422 if (aplist_append(&alist, nlmp, 3423 AL_CNT_LAZYFIND) == 0) { 3424 elf_lazy_cleanup(alist); 3425 return (0); 3426 } 3427 FLAGS(nlmp) |= FLG_RT_TMPLIST; 3428 } 3429 } 3430 if (sym) 3431 break; 3432 } 3433 3434 elf_lazy_cleanup(alist); 3435 return (sym); 3436 } 3437 3438 /* 3439 * Warning message for bad r_offset. 3440 */ 3441 void 3442 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset, 3443 ulong_t rsymndx) 3444 { 3445 const char *name = (char *)0; 3446 Lm_list *lml = LIST(lmp); 3447 int trace; 3448 3449 if ((lml->lm_flags & LML_FLG_TRC_ENABLE) && 3450 (((rtld_flags & RT_FL_SILENCERR) == 0) || 3451 (lml->lm_flags & LML_FLG_TRC_VERBOSE))) 3452 trace = 1; 3453 else 3454 trace = 0; 3455 3456 if ((trace == 0) && (DBG_ENABLED == 0)) 3457 return; 3458 3459 if (rsymndx) { 3460 Sym *symref = (Sym *)((ulong_t)SYMTAB(lmp) + 3461 (rsymndx * SYMENT(lmp))); 3462 3463 if (ELF_ST_BIND(symref->st_info) != STB_LOCAL) 3464 name = (char *)(STRTAB(lmp) + symref->st_name); 3465 } 3466 3467 if (name == 0) 3468 name = MSG_ORIG(MSG_STR_EMPTY); 3469 3470 if (trace) { 3471 const char *rstr; 3472 3473 rstr = _conv_reloc_type((uint_t)rtype); 3474 (void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name, 3475 EC_ADDR(roffset)); 3476 return; 3477 } 3478 3479 Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name); 3480 } 3481 3482 /* 3483 * Resolve a static TLS relocation. 3484 */ 3485 long 3486 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name, 3487 ulong_t roffset, long value) 3488 { 3489 Lm_list *lml = LIST(lmp); 3490 3491 /* 3492 * Relocations against a static TLS block have limited support once 3493 * process initialization has completed. Any error condition should be 3494 * discovered by testing for DF_STATIC_TLS as part of loading an object, 3495 * however individual relocations are tested in case the dynamic flag 3496 * had not been set when this object was built. 3497 */ 3498 if (PTTLS(lmp) == 0) { 3499 DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, 3500 M_REL_SHT_TYPE, rel, NULL, name)); 3501 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS), 3502 _conv_reloc_type((uint_t)rtype), NAME(lmp), 3503 name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN)); 3504 return (0); 3505 } 3506 3507 /* 3508 * If no static TLS has been set aside for this object, determine if 3509 * any can be obtained. Enforce that any object using static TLS is 3510 * non-deletable. 3511 */ 3512 if (TLSSTATOFF(lmp) == 0) { 3513 FLAGS1(lmp) |= FL1_RT_TLSSTAT; 3514 MODE(lmp) |= RTLD_NODELETE; 3515 3516 if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) { 3517 DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, 3518 M_REL_SHT_TYPE, rel, NULL, name)); 3519 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS), 3520 _conv_reloc_type((uint_t)rtype), NAME(lmp), 3521 name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN)); 3522 return (0); 3523 } 3524 } 3525 3526 /* 3527 * Typically, a static TLS offset is maintained as a symbols value. 3528 * For local symbols that are not apart of the dynamic symbol table, 3529 * the TLS relocation points to a section symbol, and the static TLS 3530 * offset was deposited in the associated GOT table. Make sure the GOT 3531 * is cleared, so that the value isn't reused in do_reloc(). 3532 */ 3533 if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) { 3534 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) { 3535 value = *(long *)roffset; 3536 *(long *)roffset = 0; 3537 } else { 3538 value = sym->st_value; 3539 } 3540 } 3541 return (-(TLSSTATOFF(lmp) - value)); 3542 } 3543 3544 /* 3545 * If the symbol is not found and the reference was not to a weak symbol, report 3546 * an error. Weak references may be unresolved. 3547 */ 3548 int 3549 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo) 3550 { 3551 Lm_list *lml = LIST(lmp); 3552 3553 /* 3554 * Under crle(1), relocation failures are ignored. 3555 */ 3556 if (lml->lm_flags & LML_FLG_IGNRELERR) 3557 return (1); 3558 3559 /* 3560 * Under ldd(1), unresolved references are reported. However, if the 3561 * original reference is EXTERN or PARENT these references are ignored 3562 * unless ldd's -p option is in effect. 3563 */ 3564 if (lml->lm_flags & LML_FLG_TRC_WARN) { 3565 if (((binfo & DBG_BINFO_REF_MSK) == 0) || 3566 ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) { 3567 (void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND), 3568 demangle(name), NAME(lmp)); 3569 } 3570 return (1); 3571 } 3572 3573 /* 3574 * Otherwise, the unresolved references is fatal. 3575 */ 3576 DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, 3577 NULL, name)); 3578 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp), 3579 demangle(name)); 3580 3581 return (0); 3582 } 3583