xref: /titanic_44/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision e61f9225a04b4fd585d00a48ef90f7948290b900)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<sys/elf_386.h>
31 #include	<sys/elf_amd64.h>
32 #include	<sys/elf_SPARC.h>
33 #include	<_libelf.h>
34 #include	<dwarf.h>
35 #include	<stdio.h>
36 #include	<unistd.h>
37 #include	<errno.h>
38 #include	<strings.h>
39 #include	<debug.h>
40 #include	<conv.h>
41 #include	<msg.h>
42 #include	<_elfdump.h>
43 
44 
45 /*
46  * VERSYM_STATE is used to maintain information about the VERSYM section
47  * in the object being analyzed. It is filled in by versions(), and used
48  * by init_symtbl_state() when displaying symbol information.
49  *
50  * There are three forms of symbol versioning known to us:
51  *
52  * 1) The original form, introduced with Solaris 2.5, in which
53  *	the Versym contains indexes to Verdef records, and the
54  *	Versym values for UNDEF symbols resolved by other objects
55  *	are all set to 0.
56  * 2) The GNU form, which is backward compatible with the original
57  *	Solaris form, but which adds several extensions:
58  *	- The Versym also contains indexes to Verneed records, recording
59  *		which object/version contributed the external symbol at
60  *		link time. These indexes start with the next value following
61  *		the final Verdef index. The index is written to the previously
62  *		reserved vna_other field of the ELF Vernaux structure.
63  *	- The top bit of the Versym value is no longer part of the index,
64  *		but is used as a "hidden bit" to prevent binding to the symbol.
65  *	- Multiple implementations of a given symbol, contained in varying
66  *		versions are allowed, using special assembler pseudo ops,
67  *		and encoded in the symbol name using '@' characters.
68  * 3) Modified Solaris form, in which we adopt the first GNU extension
69  *	(Versym indexes to Verneed records), but not the others.
70  *
71  * elfdump can handle any of these cases. The presence of a DT_VERSYM
72  * dynamic element indicates a full GNU object. An object that lacks
73  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
74  * structures is a modified Solaris object. An object that has neither of
75  * these uses the original form.
76  *
77  * max_verndx contains the largest version index that can appear
78  * in a Versym entry. This can never be less than 1: In the case where
79  * there is no verdef/verneed sections, the [0] index is reserved
80  * for local symbols, and the [1] index for globals. If the original
81  * Solaris versioning rules are in effect and there is a verdef section,
82  * then max_verndex is the number of defined versions. If one of the
83  * other versioning forms is in effect, then:
84  *	1) If there is no verneed section, it is the same as for
85  *		original Solaris versioning.
86  *	2) If there is a verneed section, the vna_other field of the
87  *		Vernaux structs contain versions, and max_verndx is the
88  *		largest such index.
89  *
90  * If gnu_full is True, the object uses the full GNU form of versioning.
91  * The value of the gnu_full field is based on the presence of
92  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
93  * Solaris ld does not.
94  *
95  * The gnu_needed field is True if the Versym contains indexes to
96  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
97  * section. If gnu_full is True, then gnu_needed will always be true.
98  * However, gnu_needed can be true without gnu_full. This is the modified
99  * Solaris form.
100  */
101 typedef struct {
102 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
103 	Versym	*data;		/* Pointer to versym array */
104 	int	gnu_full;	/* True if object uses GNU versioning rules */
105 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
106 				/*	VERNEED (subset of gnu_full) */
107 	int	max_verndx;	/* largest versym index value */
108 } VERSYM_STATE;
109 
110 /*
111  * SYMTBL_STATE is used to maintain information about a single symbol
112  * table section, for use by the routines that display symbol information.
113  */
114 typedef struct {
115 	const char	*file;		/* Name of file */
116 	Ehdr		*ehdr;		/* ELF header for file */
117 	Cache		*cache;		/* Cache of all section headers */
118 	Word		shnum;		/* # of sections in cache */
119 	Cache		*seccache;	/* Cache of symbol table section hdr */
120 	Word		secndx;		/* Index of symbol table section hdr */
121 	const char	*secname;	/* Name of section */
122 	uint_t		flags;		/* Command line option flags */
123 	struct {			/* Extended section index data */
124 		int	checked;	/* TRUE if already checked for shxndx */
125 		Word	*data;		/* NULL, or extended section index */
126 					/*	used for symbol table entries */
127 		uint_t	n;		/* # items in shxndx.data */
128 	} shxndx;
129 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
130 	Sym 		*sym;		/* Array of symbols */
131 	Word		symn;		/* # of symbols */
132 } SYMTBL_STATE;
133 
134 
135 
136 /*
137  * Focal point for verifying symbol names.
138  */
139 static const char *
140 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
141 {
142 	/*
143 	 * If an error in this routine is due to a property of the string
144 	 * section, as opposed to a bad offset into the section (a property of
145 	 * the referencing section), then we will detect the same error on
146 	 * every call involving those sections. We use these static variables
147 	 * to retain the information needed to only issue each such error once.
148 	 */
149 	static Cache	*last_refsec;	/* Last referencing section seen */
150 	static int	strsec_err;	/* True if error issued */
151 
152 	const char	*strs;
153 	Word		strn;
154 
155 	if (strsec->c_data == NULL)
156 		return (NULL);
157 
158 	strs = (char *)strsec->c_data->d_buf;
159 	strn = strsec->c_data->d_size;
160 
161 	/*
162 	 * We only print a diagnostic regarding a bad string table once per
163 	 * input section being processed. If the refsec has changed, reset
164 	 * our retained error state.
165 	 */
166 	if (last_refsec != refsec) {
167 		last_refsec = refsec;
168 		strsec_err = 0;
169 	}
170 
171 	/* Verify that strsec really is a string table */
172 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
173 		if (!strsec_err) {
174 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
175 			    file, strsec->c_ndx, refsec->c_ndx);
176 			strsec_err = 1;
177 		}
178 		return (MSG_INTL(MSG_STR_UNKNOWN));
179 	}
180 
181 	/*
182 	 * Is the string table offset within range of the available strings?
183 	 */
184 	if (name >= strn) {
185 		/*
186 		 * Do we have a empty string table?
187 		 */
188 		if (strs == 0) {
189 			if (!strsec_err) {
190 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
191 				    file, strsec->c_name);
192 				strsec_err = 1;
193 			}
194 		} else {
195 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
196 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
197 			    EC_WORD(name), EC_WORD(strn - 1));
198 		}
199 
200 		/*
201 		 * Return the empty string so that the calling function can
202 		 * continue it's output diagnostics.
203 		 */
204 		return (MSG_INTL(MSG_STR_UNKNOWN));
205 	}
206 	return (strs + name);
207 }
208 
209 /*
210  * Relocations can reference section symbols and standard symbols.  If the
211  * former, establish the section name.
212  */
213 static const char *
214 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
215     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
216 {
217 	Sym		*sym;
218 	const char	*name;
219 
220 	if (symndx >= symnum) {
221 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
222 		    file, EC_WORD(symndx), EC_WORD(relndx));
223 		return (MSG_INTL(MSG_STR_UNKNOWN));
224 	}
225 
226 	sym = (Sym *)(syms + symndx);
227 	name = string(csec, symndx, strsec, file, sym->st_name);
228 
229 	/*
230 	 * If the symbol represents a section offset construct an appropriate
231 	 * string.  Note, although section symbol table entries typically have
232 	 * a NULL name pointer, entries do exist that point into the string
233 	 * table to their own NULL strings.
234 	 */
235 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
236 	    ((sym->st_name == 0) || (*name == '\0'))) {
237 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
238 		    cache[sym->st_shndx].c_name);
239 		return ((const char *)secstr);
240 	}
241 
242 	return (name);
243 }
244 
245 /*
246  * Focal point for establishing a string table section.  Data such as the
247  * dynamic information simply points to a string table.  Data such as
248  * relocations, reference a symbol table, which in turn is associated with a
249  * string table.
250  */
251 static int
252 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
253     Word *symnum, Cache **symsec, Cache **strsec)
254 {
255 	Shdr	*shdr = cache[ndx].c_shdr;
256 
257 	if (symtab) {
258 		/*
259 		 * Validate the symbol table section.
260 		 */
261 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
262 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
263 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
264 			return (0);
265 		}
266 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
267 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
268 			    file, cache[ndx].c_name);
269 			return (0);
270 		}
271 
272 		/*
273 		 * Obtain, and verify the symbol table data.
274 		 */
275 		if ((cache[ndx].c_data == NULL) ||
276 		    (cache[ndx].c_data->d_buf == NULL)) {
277 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
278 			    file, cache[ndx].c_name);
279 			return (0);
280 		}
281 
282 		/*
283 		 * Establish the string table index.
284 		 */
285 		ndx = shdr->sh_link;
286 		shdr = cache[ndx].c_shdr;
287 
288 		/*
289 		 * Return symbol table information.
290 		 */
291 		if (symnum)
292 			*symnum = (shdr->sh_size / shdr->sh_entsize);
293 		if (symsec)
294 			*symsec = &cache[ndx];
295 	}
296 
297 	/*
298 	 * Validate the associated string table section.
299 	 */
300 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
301 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
302 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
303 		return (0);
304 	}
305 
306 	if (strsec)
307 		*strsec = &cache[shdr->sh_link];
308 
309 	return (1);
310 }
311 
312 /*
313  * Lookup a symbol and set Sym accordingly.
314  */
315 static int
316 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
317     Cache *symtab, const char *file)
318 {
319 	Shdr	*shdr;
320 	Word	symn, cnt;
321 	Sym	*syms;
322 
323 	if (symtab == 0)
324 		return (0);
325 
326 	shdr = symtab->c_shdr;
327 
328 	/*
329 	 * Determine the symbol data and number.
330 	 */
331 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
332 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
333 		    file, symtab->c_name);
334 		return (0);
335 	}
336 	if (symtab->c_data == NULL)
337 		return (0);
338 
339 	/* LINTED */
340 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
341 	syms = (Sym *)symtab->c_data->d_buf;
342 
343 	/*
344 	 * Get the associated string table section.
345 	 */
346 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
347 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
348 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
349 		return (0);
350 	}
351 
352 	/*
353 	 * Loop through the symbol table to find a match.
354 	 */
355 	for (cnt = 0; cnt < symn; syms++, cnt++) {
356 		const char	*symname;
357 
358 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
359 		    syms->st_name);
360 
361 		if (symname && (strcmp(name, symname) == 0)) {
362 			*sym = syms;
363 			return (1);
364 		}
365 	}
366 	return (0);
367 }
368 
369 /*
370  * Print section headers.
371  */
372 static void
373 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
374 {
375 	size_t	seccnt;
376 
377 	for (seccnt = 1; seccnt < shnum; seccnt++) {
378 		Cache		*_cache = &cache[seccnt];
379 		Shdr		*shdr = _cache->c_shdr;
380 		const char	*secname = _cache->c_name;
381 
382 		/*
383 		 * Although numerous section header entries can be zero, it's
384 		 * usually a sign of trouble if the type is zero.
385 		 */
386 		if (shdr->sh_type == 0) {
387 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
388 			    file, secname, EC_WORD(shdr->sh_type));
389 		}
390 
391 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
392 			continue;
393 
394 		/*
395 		 * Identify any sections that are suspicious.  A .got section
396 		 * shouldn't exist in a relocatable object.
397 		 */
398 		if (ehdr->e_type == ET_REL) {
399 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
400 			    MSG_ELF_GOT_SIZE) == 0) {
401 				(void) fprintf(stderr,
402 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
403 				    secname);
404 			}
405 		}
406 
407 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
408 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
409 		Elf_shdr(0, ehdr->e_machine, shdr);
410 	}
411 }
412 
413 /*
414  * A couple of instances of unwind data are printed as tables of 8 data items
415  * expressed as 0x?? integers.
416  */
417 #define	UNWINDTBLSZ	10 + (8 * 5) + 1
418 
419 static void
420 unwindtbl(uint64_t *ndx, uint_t len, uchar_t *data, uint64_t doff,
421     const char *msg, const char *pre, size_t plen)
422 {
423 	char	buffer[UNWINDTBLSZ];
424 	uint_t	boff = plen, cnt = 0;
425 
426 	dbg_print(0, msg);
427 	(void) strncpy(buffer, pre, UNWINDTBLSZ);
428 
429 	while (*ndx < (len + 4)) {
430 		if (cnt == 8) {
431 			dbg_print(0, buffer);
432 			boff = plen;
433 			cnt = 0;
434 		}
435 		(void) snprintf(&buffer[boff], UNWINDTBLSZ - boff,
436 		    MSG_ORIG(MSG_UNW_TBLENTRY), data[doff + (*ndx)++]);
437 		boff += 5;
438 		cnt++;
439 	}
440 	if (cnt)
441 		dbg_print(0, buffer);
442 }
443 
444 /*
445  * Obtain a specified Phdr entry.
446  */
447 static Phdr *
448 getphdr(Word phnum, Word type, const char *file, Elf *elf)
449 {
450 	Word	cnt;
451 	Phdr	*phdr;
452 
453 	if ((phdr = elf_getphdr(elf)) == NULL) {
454 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
455 		return (0);
456 	}
457 
458 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
459 		if (phdr->p_type == type)
460 			return (phdr);
461 	}
462 	return (0);
463 }
464 
465 static void
466 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
467     Elf *elf)
468 {
469 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
470 	Word	cnt;
471 	Phdr	*uphdr = 0;
472 
473 	/*
474 	 * For the moment - UNWIND is only relevant for a AMD64 object.
475 	 */
476 	if (ehdr->e_machine != EM_AMD64)
477 		return;
478 
479 	if (phnum)
480 		uphdr = getphdr(phnum, PT_SUNW_UNWIND, file, elf);
481 
482 	for (cnt = 1; cnt < shnum; cnt++) {
483 		Cache		*_cache = &cache[cnt];
484 		Shdr		*shdr = _cache->c_shdr;
485 		uchar_t		*data;
486 		size_t		datasize;
487 		uint64_t	off, ndx, frame_ptr, fde_cnt, tabndx;
488 		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
489 
490 		/*
491 		 * AMD64 - this is a strmcp() just to find the gcc produced
492 		 * sections.  Soon gcc should be setting the section type - and
493 		 * we'll not need this strcmp().
494 		 */
495 		if ((shdr->sh_type != SHT_AMD64_UNWIND) &&
496 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
497 		    MSG_SCN_FRM_SIZE) != 0) &&
498 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
499 		    MSG_SCN_FRMHDR_SIZE) != 0))
500 			continue;
501 
502 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
503 			continue;
504 
505 		if (_cache->c_data == NULL)
506 			continue;
507 
508 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
509 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
510 
511 		data = (uchar_t *)(_cache->c_data->d_buf);
512 		datasize = _cache->c_data->d_size;
513 		off = 0;
514 
515 		/*
516 		 * Is this a .eh_frame_hdr
517 		 */
518 		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
519 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
520 		    MSG_SCN_FRMHDR_SIZE) == 0)) {
521 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
522 			ndx = 0;
523 
524 			vers = data[ndx++];
525 			frame_ptr_enc = data[ndx++];
526 			fde_cnt_enc = data[ndx++];
527 			table_enc = data[ndx++];
528 
529 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
530 
531 			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
532 			    ehdr->e_ident, shdr->sh_addr + ndx);
533 
534 			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
535 			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
536 			    EC_XWORD(frame_ptr));
537 
538 			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
539 			    ehdr->e_ident, shdr->sh_addr + ndx);
540 
541 			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
542 			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
543 			    EC_XWORD(fde_cnt));
544 			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
545 			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
546 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
547 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
548 
549 			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
550 				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
551 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
552 				    table_enc, ehdr->e_ident, shdr->sh_addr)),
553 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
554 				    table_enc, ehdr->e_ident, shdr->sh_addr)));
555 			}
556 			continue;
557 		}
558 
559 		/*
560 		 * Walk the Eh_frame's
561 		 */
562 		while (off < datasize) {
563 			uint_t		cieid, cielength, cieversion;
564 			uint_t		cieretaddr;
565 			int		cieRflag, cieLflag, ciePflag, cieZflag;
566 			uint_t		cieaugndx, length, id;
567 			uint64_t	ciecalign, ciedalign;
568 			char		*cieaugstr;
569 
570 			ndx = 0;
571 			/*
572 			 * Extract length in lsb format.  A zero length
573 			 * indicates that this CIE is a terminator and that
574 			 * processing for this unwind information should end.
575 			 * However, skip this entry and keep processing, just
576 			 * in case there is any other information remaining in
577 			 * this section.  Note, ld(1) will terminate the
578 			 * processing of the .eh_frame contents for this file
579 			 * after a zero length CIE, thus any information that
580 			 * does follow is ignored by ld(1), and is therefore
581 			 * questionable.
582 			 */
583 			if ((length = LSB32EXTRACT(data + off + ndx)) == 0) {
584 				dbg_print(0, MSG_ORIG(MSG_UNW_ZEROTERM));
585 				off += 4;
586 				continue;
587 			}
588 			ndx += 4;
589 
590 			/*
591 			 * extract CIE id in lsb format
592 			 */
593 			id = LSB32EXTRACT(data + off + ndx);
594 			ndx += 4;
595 
596 			/*
597 			 * A CIE record has a id of '0', otherwise this is a
598 			 * FDE entry and the 'id' is the CIE pointer.
599 			 */
600 			if (id == 0) {
601 				uint64_t    persVal;
602 
603 				cielength = length;
604 				cieid = id;
605 				cieLflag = ciePflag = cieRflag = cieZflag = 0;
606 
607 				dbg_print(0, MSG_ORIG(MSG_UNW_CIE),
608 				    EC_XWORD(shdr->sh_addr + off));
609 				dbg_print(0, MSG_ORIG(MSG_UNW_CIELNGTH),
610 				    cielength, cieid);
611 
612 				cieversion = data[off + ndx];
613 				ndx += 1;
614 				cieaugstr = (char *)(&data[off + ndx]);
615 				ndx += strlen(cieaugstr) + 1;
616 
617 				dbg_print(0, MSG_ORIG(MSG_UNW_CIEVERS),
618 				    cieversion, cieaugstr);
619 
620 				ciecalign = uleb_extract(&data[off], &ndx);
621 				ciedalign = sleb_extract(&data[off], &ndx);
622 				cieretaddr = data[off + ndx];
623 				ndx += 1;
624 
625 				dbg_print(0, MSG_ORIG(MSG_UNW_CIECALGN),
626 				    EC_XWORD(ciecalign), EC_XWORD(ciedalign),
627 				    cieretaddr);
628 
629 				if (cieaugstr[0])
630 					dbg_print(0,
631 					    MSG_ORIG(MSG_UNW_CIEAXVAL));
632 
633 				for (cieaugndx = 0; cieaugstr[cieaugndx];
634 				    cieaugndx++) {
635 					uint_t	val;
636 
637 					switch (cieaugstr[cieaugndx]) {
638 					case 'z':
639 						val = uleb_extract(&data[off],
640 						    &ndx);
641 						dbg_print(0,
642 						    MSG_ORIG(MSG_UNW_CIEAXSIZ),
643 						    val);
644 						cieZflag = 1;
645 						break;
646 					case 'P':
647 						ciePflag = data[off + ndx];
648 						ndx += 1;
649 
650 						persVal = dwarf_ehe_extract(
651 						    &data[off], &ndx, ciePflag,
652 						    ehdr->e_ident,
653 						    shdr->sh_addr + off + ndx);
654 						dbg_print(0,
655 						    MSG_ORIG(MSG_UNW_CIEAXPERS),
656 						    ciePflag,
657 						    conv_dwarf_ehe(ciePflag,
658 						    &dwarf_ehe_buf),
659 						    EC_XWORD(persVal));
660 						break;
661 					case 'R':
662 						val = data[off + ndx];
663 						ndx += 1;
664 						dbg_print(0,
665 						    MSG_ORIG(MSG_UNW_CIEAXCENC),
666 						    val, conv_dwarf_ehe(val,
667 						    &dwarf_ehe_buf));
668 						cieRflag = val;
669 						break;
670 					case 'L':
671 						val = data[off + ndx];
672 						ndx += 1;
673 						dbg_print(0,
674 						    MSG_ORIG(MSG_UNW_CIEAXLSDA),
675 						    val, conv_dwarf_ehe(val,
676 						    &dwarf_ehe_buf));
677 						cieLflag = val;
678 						break;
679 					default:
680 						dbg_print(0,
681 						    MSG_ORIG(MSG_UNW_CIEAXUNEC),
682 						    cieaugstr[cieaugndx]);
683 						break;
684 					}
685 				}
686 				if ((cielength + 4) > ndx)
687 					unwindtbl(&ndx, cielength, data, off,
688 					    MSG_ORIG(MSG_UNW_CIECFI),
689 					    MSG_ORIG(MSG_UNW_CIEPRE),
690 					    MSG_UNW_CIEPRE_SIZE);
691 				off += cielength + 4;
692 
693 			} else {
694 				uint_t	    fdelength = length;
695 				int	    fdecieptr = id;
696 				uint64_t    fdeinitloc, fdeaddrrange;
697 
698 				dbg_print(0, MSG_ORIG(MSG_UNW_FDE),
699 				    EC_XWORD(shdr->sh_addr + off));
700 				dbg_print(0, MSG_ORIG(MSG_UNW_FDELNGTH),
701 				    fdelength, fdecieptr);
702 
703 				fdeinitloc = dwarf_ehe_extract(&data[off],
704 				    &ndx, cieRflag, ehdr->e_ident,
705 				    shdr->sh_addr + off + ndx);
706 				fdeaddrrange = dwarf_ehe_extract(&data[off],
707 				    &ndx, (cieRflag & ~DW_EH_PE_pcrel),
708 				    ehdr->e_ident,
709 				    shdr->sh_addr + off + ndx);
710 
711 				dbg_print(0, MSG_ORIG(MSG_UNW_FDEINITLOC),
712 				    EC_XWORD(fdeinitloc),
713 				    EC_XWORD(fdeaddrrange));
714 
715 				if (cieaugstr[0])
716 					dbg_print(0,
717 					    MSG_ORIG(MSG_UNW_FDEAXVAL));
718 				if (cieZflag) {
719 					uint64_t    val;
720 					val = uleb_extract(&data[off], &ndx);
721 					dbg_print(0,
722 					    MSG_ORIG(MSG_UNW_FDEAXSIZE),
723 					    EC_XWORD(val));
724 					if (val & cieLflag) {
725 						fdeinitloc = dwarf_ehe_extract(
726 						    &data[off], &ndx, cieLflag,
727 						    ehdr->e_ident,
728 						    shdr->sh_addr + off + ndx);
729 						dbg_print(0,
730 						    MSG_ORIG(MSG_UNW_FDEAXLSDA),
731 						    EC_XWORD(val));
732 					}
733 				}
734 				if ((fdelength + 4) > ndx)
735 					unwindtbl(&ndx, fdelength, data, off,
736 					    MSG_ORIG(MSG_UNW_FDECFI),
737 					    MSG_ORIG(MSG_UNW_FDEPRE),
738 					    MSG_UNW_FDEPRE_SIZE);
739 				off += fdelength + 4;
740 			}
741 		}
742 	}
743 }
744 
745 /*
746  * Print the hardware/software capabilities.  For executables and shared objects
747  * this should be accompanied with a program header.
748  */
749 static void
750 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
751     Elf *elf)
752 {
753 	Word		cnt;
754 	Shdr		*cshdr = NULL;
755 	Cache		*ccache;
756 	Off		cphdr_off = 0;
757 	Xword		cphdr_sz;
758 
759 	/*
760 	 * Determine if a hardware/software capabilities header exists.
761 	 */
762 	if (phnum) {
763 		Phdr	*phdr;
764 
765 		if ((phdr = elf_getphdr(elf)) == NULL) {
766 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
767 			return;
768 		}
769 
770 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
771 			if (phdr->p_type == PT_SUNWCAP) {
772 				cphdr_off = phdr->p_offset;
773 				cphdr_sz = phdr->p_filesz;
774 				break;
775 			}
776 		}
777 	}
778 
779 	/*
780 	 * Determine if a hardware/software capabilities section exists.
781 	 */
782 	for (cnt = 1; cnt < shnum; cnt++) {
783 		Cache	*_cache = &cache[cnt];
784 		Shdr	*shdr = _cache->c_shdr;
785 
786 		if (shdr->sh_type != SHT_SUNW_cap)
787 			continue;
788 
789 		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
790 		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
791 			continue;
792 
793 		if (_cache->c_data == NULL)
794 			continue;
795 
796 		ccache = _cache;
797 		cshdr = shdr;
798 		break;
799 	}
800 
801 	if ((cshdr == NULL) && (cphdr_off == 0))
802 		return;
803 
804 	/*
805 	 * Print the hardware/software capabilities section.
806 	 */
807 	if (cshdr) {
808 		Word	ndx, capn;
809 		Cap	*cap = (Cap *)ccache->c_data->d_buf;
810 
811 		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
812 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
813 			    file, ccache->c_name);
814 			return;
815 		}
816 
817 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
818 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
819 
820 		Elf_cap_title(0);
821 
822 		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
823 
824 		for (ndx = 0; ndx < capn; cap++, ndx++) {
825 			if (cap->c_tag == CA_SUNW_NULL)
826 				continue;
827 
828 			Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
829 
830 			/*
831 			 * An SF1_SUNW_ADDR32 software capability in a 32-bit
832 			 * object is suspicious as it has no effect.
833 			 */
834 			if ((cap->c_tag == CA_SUNW_SF_1) &&
835 			    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
836 			    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
837 				(void) fprintf(stderr,
838 				    MSG_INTL(MSG_WARN_INADDR32SF1),
839 				    file, ccache->c_name);
840 			}
841 		}
842 	} else
843 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
844 
845 	/*
846 	 * If this object is an executable or shared object, then the
847 	 * hardware/software capabilities section should have an accompanying
848 	 * program header.
849 	 */
850 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
851 		if (cphdr_off == 0)
852 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
853 			    file, ccache->c_name);
854 		else if ((cphdr_off != cshdr->sh_offset) ||
855 		    (cphdr_sz != cshdr->sh_size))
856 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
857 			    file, ccache->c_name);
858 	}
859 }
860 
861 /*
862  * Print the interpretor.
863  */
864 static void
865 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
866 {
867 	Word	cnt;
868 	Shdr	*ishdr = 0;
869 	Cache	*icache;
870 	Off	iphdr_off = 0;
871 	Xword	iphdr_fsz;
872 
873 	/*
874 	 * Determine if an interp header exists.
875 	 */
876 	if (phnum) {
877 		Phdr	*phdr;
878 
879 		if ((phdr = getphdr(phnum, PT_INTERP, file, elf)) != 0) {
880 			iphdr_off = phdr->p_offset;
881 			iphdr_fsz = phdr->p_filesz;
882 		}
883 	}
884 
885 	if (iphdr_off == 0)
886 		return;
887 
888 	/*
889 	 * Determine if an interp section exists.
890 	 */
891 	for (cnt = 1; cnt < shnum; cnt++) {
892 		Cache	*_cache = &cache[cnt];
893 		Shdr	*shdr = _cache->c_shdr;
894 
895 		/*
896 		 * Scan sections to find a section which contains the PT_INTERP
897 		 * string.  The target section can't be in a NOBITS section.
898 		 */
899 		if ((shdr->sh_type == SHT_NOBITS) ||
900 		    (iphdr_off < shdr->sh_offset) ||
901 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
902 			continue;
903 
904 		icache = _cache;
905 		ishdr = shdr;
906 		break;
907 	}
908 
909 	/*
910 	 * Print the interpreter string based on the offset defined in the
911 	 * program header, as this is the offset used by the kernel.
912 	 */
913 	if (ishdr && icache->c_data) {
914 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
915 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
916 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
917 		    (char *)icache->c_data->d_buf +
918 		    (iphdr_off - ishdr->sh_offset));
919 	} else
920 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
921 
922 	/*
923 	 * If there are any inconsistences between the program header and
924 	 * section information, flag them.
925 	 */
926 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
927 	    (iphdr_fsz != ishdr->sh_size))) {
928 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
929 		    icache->c_name);
930 	}
931 }
932 
933 /*
934  * Print the syminfo section.
935  */
936 static void
937 syminfo(Cache *cache, Word shnum, const char *file)
938 {
939 	Shdr		*infoshdr;
940 	Syminfo		*info;
941 	Sym		*syms;
942 	Dyn		*dyns;
943 	Word		infonum, cnt, ndx, symnum;
944 	Cache		*infocache = 0, *symsec, *strsec;
945 
946 	for (cnt = 1; cnt < shnum; cnt++) {
947 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
948 			infocache = &cache[cnt];
949 			break;
950 		}
951 	}
952 	if (infocache == 0)
953 		return;
954 
955 	infoshdr = infocache->c_shdr;
956 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
957 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
958 		    file, infocache->c_name);
959 		return;
960 	}
961 	if (infocache->c_data == NULL)
962 		return;
963 
964 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
965 	info = (Syminfo *)infocache->c_data->d_buf;
966 
967 	/*
968 	 * Get the data buffer of the associated dynamic section.
969 	 */
970 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
971 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
972 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
973 		return;
974 	}
975 	if (cache[infoshdr->sh_info].c_data == NULL)
976 		return;
977 
978 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
979 	if (dyns == 0) {
980 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
981 		    file, cache[infoshdr->sh_info].c_name);
982 		return;
983 	}
984 
985 	/*
986 	 * Get the data buffer for the associated symbol table and string table.
987 	 */
988 	if (stringtbl(cache, 1, cnt, shnum, file,
989 	    &symnum, &symsec, &strsec) == 0)
990 		return;
991 
992 	syms = symsec->c_data->d_buf;
993 
994 	/*
995 	 * Loop through the syminfo entries.
996 	 */
997 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
998 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
999 	Elf_syminfo_title(0);
1000 
1001 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1002 		Sym 		*sym;
1003 		const char	*needed = 0, *name;
1004 
1005 		if ((info->si_flags == 0) && (info->si_boundto == 0))
1006 			continue;
1007 
1008 		sym = &syms[ndx];
1009 		name = string(infocache, ndx, strsec, file, sym->st_name);
1010 
1011 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
1012 			Dyn	*dyn = &dyns[info->si_boundto];
1013 
1014 			needed = string(infocache, info->si_boundto,
1015 			    strsec, file, dyn->d_un.d_val);
1016 		}
1017 		Elf_syminfo_entry(0, ndx, info, name, needed);
1018 	}
1019 }
1020 
1021 /*
1022  * Print version definition section entries.
1023  */
1024 static void
1025 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1026     const char *file)
1027 {
1028 	Word	cnt;
1029 	char	index[MAXNDXSIZE];
1030 
1031 	Elf_ver_def_title(0);
1032 
1033 	for (cnt = 1; cnt <= vdf_num; cnt++,
1034 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
1035 		Conv_ver_flags_buf_t	ver_flags_buf;
1036 		const char		*name, *dep;
1037 		Half			vcnt = vdf->vd_cnt - 1;
1038 		Half			ndx = vdf->vd_ndx;
1039 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
1040 
1041 		/*
1042 		 * Obtain the name and first dependency (if any).
1043 		 */
1044 		name = string(vcache, cnt, scache, file, vdap->vda_name);
1045 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1046 		if (vcnt)
1047 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
1048 		else
1049 			dep = MSG_ORIG(MSG_STR_EMPTY);
1050 
1051 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
1052 		    EC_XWORD(ndx));
1053 		Elf_ver_line_1(0, index, name, dep,
1054 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
1055 
1056 		/*
1057 		 * Print any additional dependencies.
1058 		 */
1059 		if (vcnt) {
1060 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1061 			for (vcnt--; vcnt; vcnt--,
1062 			    vdap = (Verdaux *)((uintptr_t)vdap +
1063 			    vdap->vda_next)) {
1064 				dep = string(vcache, cnt, scache, file,
1065 				    vdap->vda_name);
1066 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1067 			}
1068 		}
1069 	}
1070 }
1071 
1072 /*
1073  * Print version needed section entries.
1074  *
1075  * entry:
1076  *	vnd - Address of verneed data
1077  *	vnd_num - # of Verneed entries
1078  *	vcache - Cache of verneed section being processed
1079  *	scache - Cache of associated string table section
1080  *	file - Name of object being processed.
1081  *	versym - Information about versym section
1082  *
1083  * exit:
1084  *	The versions have been printed. If GNU style versioning
1085  *	is in effect, versym->max_verndx has been updated to
1086  *	contain the largest version index seen.
1087  *
1088  * note:
1089  * 	The versym section of an object that follows the original
1090  *	Solaris versioning rules only contains indexes into the verdef
1091  *	section. Symbols defined in other objects (UNDEF) are given
1092  *	a version of 0, indicating that they are not defined by
1093  *	this file, and the Verneed entries do not have associated version
1094  *	indexes. For these reasons, we do not display a version index
1095  *	for original-style Verneed sections.
1096  *
1097  *	The GNU versioning extensions alter this: Symbols defined in other
1098  *	objects receive a version index in the range above those defined
1099  *	by the Verdef section, and the vna_other field of the Vernaux
1100  *	structs inside the Verneed section contain the version index for
1101  *	that item. We therefore  display the index when showing the
1102  *	contents of a GNU style Verneed section. You should not
1103  *	necessarily expect these indexes to appear in sorted
1104  *	order --- it seems that the GNU ld assigns the versions as
1105  *	symbols are encountered during linking, and then the results
1106  *	are assembled into the Verneed section afterwards.
1107  */
1108 static void
1109 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1110     const char *file, VERSYM_STATE *versym)
1111 {
1112 	Word		cnt;
1113 	char		index[MAXNDXSIZE];
1114 	const char	*index_str;
1115 
1116 	Elf_ver_need_title(0, versym->gnu_needed);
1117 
1118 	for (cnt = 1; cnt <= vnd_num; cnt++,
1119 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1120 		Conv_ver_flags_buf_t	ver_flags_buf;
1121 		const char		*name, *dep;
1122 		Half			vcnt = vnd->vn_cnt;
1123 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1124 
1125 		/*
1126 		 * Obtain the name of the needed file and the version name
1127 		 * within it that we're dependent on.  Note that the count
1128 		 * should be at least one, otherwise this is a pretty bogus
1129 		 * entry.
1130 		 */
1131 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1132 		if (vcnt)
1133 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1134 		else
1135 			dep = MSG_INTL(MSG_STR_NULL);
1136 
1137 		if (vnap->vna_other == 0) {	/* Traditional form */
1138 			index_str = MSG_ORIG(MSG_STR_EMPTY);
1139 		} else {			/* GNU form */
1140 			index_str = index;
1141 			/* Format the version index value */
1142 			(void) snprintf(index, MAXNDXSIZE,
1143 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1144 			if (vnap->vna_other > versym->max_verndx)
1145 				versym->max_verndx = vnap->vna_other;
1146 		}
1147 		Elf_ver_line_1(0, index_str, name, dep,
1148 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
1149 
1150 		/*
1151 		 * Print any additional version dependencies.
1152 		 */
1153 		if (vcnt) {
1154 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1155 			for (vcnt--; vcnt; vcnt--,
1156 			    vnap = (Vernaux *)((uintptr_t)vnap +
1157 			    vnap->vna_next)) {
1158 				dep = string(vcache, cnt, scache, file,
1159 				    vnap->vna_name);
1160 				if (vnap->vna_other > 0) {
1161 					/* Format the next index value */
1162 					(void) snprintf(index, MAXNDXSIZE,
1163 					    MSG_ORIG(MSG_FMT_INDEX),
1164 					    EC_XWORD(vnap->vna_other));
1165 					Elf_ver_line_1(0, index,
1166 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1167 					    conv_ver_flags(vnap->vna_flags,
1168 					    0, &ver_flags_buf));
1169 					if (vnap->vna_other >
1170 					    versym->max_verndx)
1171 						versym->max_verndx =
1172 						    vnap->vna_other;
1173 				} else {
1174 					Elf_ver_line_3(0,
1175 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1176 					    conv_ver_flags(vnap->vna_flags,
1177 					    0, &ver_flags_buf));
1178 				}
1179 			}
1180 		}
1181 	}
1182 }
1183 
1184 /*
1185  * Examine the Verneed section for information related to GNU
1186  * style Versym indexing:
1187  *	- A non-zero vna_other field indicates that Versym indexes can
1188  *		reference Verneed records.
1189  *	- If the object uses GNU style Versym indexing, the
1190  *	  maximum index value is needed to detect bad Versym entries.
1191  *
1192  * entry:
1193  *	vnd - Address of verneed data
1194  *	vnd_num - # of Verneed entries
1195  *	versym - Information about versym section
1196  *
1197  * exit:
1198  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
1199  *
1200  *	versym->max_verndx has been updated to contain the largest
1201  *	version index seen.
1202  */
1203 static void
1204 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1205 {
1206 	Word		cnt;
1207 
1208 	for (cnt = 1; cnt <= vnd_num; cnt++,
1209 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1210 		Half	vcnt = vnd->vn_cnt;
1211 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1212 
1213 		/*
1214 		 * A non-zero value of vna_other indicates that this
1215 		 * object references VERNEED items from the VERSYM
1216 		 * array.
1217 		 */
1218 		if (vnap->vna_other != 0) {
1219 			versym->gnu_needed = 1;
1220 			if (vnap->vna_other > versym->max_verndx)
1221 				versym->max_verndx = vnap->vna_other;
1222 		}
1223 
1224 		/*
1225 		 * Check any additional version dependencies.
1226 		 */
1227 		if (vcnt) {
1228 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1229 			for (vcnt--; vcnt; vcnt--,
1230 			    vnap = (Vernaux *)((uintptr_t)vnap +
1231 			    vnap->vna_next)) {
1232 				if (vnap->vna_other == 0)
1233 					continue;
1234 
1235 				versym->gnu_needed = 1;
1236 				if (vnap->vna_other > versym->max_verndx)
1237 					versym->max_verndx = vnap->vna_other;
1238 			}
1239 		}
1240 	}
1241 }
1242 
1243 /*
1244  * Display version section information if the flags require it.
1245  * Return version information needed by other output.
1246  *
1247  * entry:
1248  *	cache - Cache of all section headers
1249  *	shnum - # of sections in cache
1250  *	file - Name of file
1251  *	flags - Command line option flags
1252  *	versym - VERSYM_STATE block to be filled in.
1253  */
1254 static void
1255 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1256     VERSYM_STATE *versym)
1257 {
1258 	GElf_Word	cnt;
1259 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1260 
1261 
1262 	/* Gather information about the version sections */
1263 	bzero(versym, sizeof (*versym));
1264 	versym->max_verndx = 1;
1265 	for (cnt = 1; cnt < shnum; cnt++) {
1266 		Cache		*_cache = &cache[cnt];
1267 		Shdr		*shdr = _cache->c_shdr;
1268 		Dyn		*dyn;
1269 		ulong_t		numdyn;
1270 
1271 		switch (shdr->sh_type) {
1272 		case SHT_DYNAMIC:
1273 			/*
1274 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1275 			 * section so that the runtime linker can use it to
1276 			 * implement their versioning rules. They allow multiple
1277 			 * incompatible functions with the same name to exist
1278 			 * in different versions. The Solaris ld does not
1279 			 * support this mechanism, and as such, does not
1280 			 * produce DT_VERSYM. We use this fact to determine
1281 			 * which ld produced this object, and how to interpret
1282 			 * the version values.
1283 			 */
1284 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1285 			    (_cache->c_data == NULL))
1286 				continue;
1287 			numdyn = shdr->sh_size / shdr->sh_entsize;
1288 			dyn = (Dyn *)_cache->c_data->d_buf;
1289 			for (; numdyn-- > 0; dyn++)
1290 				if (dyn->d_tag == DT_VERSYM) {
1291 					versym->gnu_full =
1292 					    versym->gnu_needed = 1;
1293 					break;
1294 				}
1295 			break;
1296 
1297 		case SHT_SUNW_versym:
1298 			/* Record data address for later symbol processing */
1299 			if (_cache->c_data != NULL) {
1300 				versym->cache = _cache;
1301 				versym->data = _cache->c_data->d_buf;
1302 				continue;
1303 			}
1304 			break;
1305 
1306 		case SHT_SUNW_verdef:
1307 		case SHT_SUNW_verneed:
1308 			/*
1309 			 * Ensure the data is non-NULL and the number
1310 			 * of items is non-zero. Otherwise, we don't
1311 			 * understand the section, and will not use it.
1312 			 */
1313 			if ((_cache->c_data == NULL) ||
1314 			    (_cache->c_data->d_buf == NULL)) {
1315 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1316 				    file, _cache->c_name);
1317 				continue;
1318 			}
1319 			if (shdr->sh_info == 0) {
1320 				(void) fprintf(stderr,
1321 				    MSG_INTL(MSG_ERR_BADSHINFO),
1322 				    file, _cache->c_name,
1323 				    EC_WORD(shdr->sh_info));
1324 				continue;
1325 			}
1326 
1327 			/* Make sure the string table index is in range */
1328 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1329 				(void) fprintf(stderr,
1330 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1331 				    _cache->c_name, EC_WORD(shdr->sh_link));
1332 				continue;
1333 			}
1334 
1335 			/*
1336 			 * The section is usable. Save the cache entry.
1337 			 */
1338 			if (shdr->sh_type == SHT_SUNW_verdef) {
1339 				verdef_cache = _cache;
1340 				/*
1341 				 * Under Solaris rules, if there is a verdef
1342 				 * section, the max versym index is number
1343 				 * of version definitions it supplies.
1344 				 */
1345 				versym->max_verndx = shdr->sh_info;
1346 			} else {
1347 				verneed_cache = _cache;
1348 			}
1349 			break;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * If there is a Verneed section, examine it for information
1355 	 * related to GNU style versioning.
1356 	 */
1357 	if (verneed_cache != NULL)
1358 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
1359 		    verneed_cache->c_shdr->sh_info, versym);
1360 
1361 	/*
1362 	 * Now that all the information is available, display the
1363 	 * Verdef and Verneed section contents, if requested.
1364 	 */
1365 	if ((flags & FLG_SHOW_VERSIONS) == 0)
1366 		return;
1367 	if (verdef_cache != NULL) {
1368 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1369 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1370 		    verdef_cache->c_name);
1371 		version_def((Verdef *)verdef_cache->c_data->d_buf,
1372 		    verdef_cache->c_shdr->sh_info, verdef_cache,
1373 		    &cache[verdef_cache->c_shdr->sh_link], file);
1374 	}
1375 	if (verneed_cache != NULL) {
1376 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1377 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1378 		    verneed_cache->c_name);
1379 		/*
1380 		 * If GNU versioning applies to this object, version_need()
1381 		 * will update versym->max_verndx, and it is not
1382 		 * necessary to call update_gnu_verndx().
1383 		 */
1384 		version_need((Verneed *)verneed_cache->c_data->d_buf,
1385 		    verneed_cache->c_shdr->sh_info, verneed_cache,
1386 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1387 	}
1388 }
1389 
1390 /*
1391  * Initialize a symbol table state structure
1392  *
1393  * entry:
1394  *	state - State structure to be initialized
1395  *	cache - Cache of all section headers
1396  *	shnum - # of sections in cache
1397  *	secndx - Index of symbol table section
1398  *	ehdr - ELF header for file
1399  *	versym - Information about versym section
1400  *	file - Name of file
1401  *	flags - Command line option flags
1402  */
1403 static int
1404 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1405     Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1406 {
1407 	Shdr *shdr;
1408 
1409 	state->file = file;
1410 	state->ehdr = ehdr;
1411 	state->cache = cache;
1412 	state->shnum = shnum;
1413 	state->seccache = &cache[secndx];
1414 	state->secndx = secndx;
1415 	state->secname = state->seccache->c_name;
1416 	state->flags = flags;
1417 	state->shxndx.checked = 0;
1418 	state->shxndx.data = NULL;
1419 	state->shxndx.n = 0;
1420 
1421 	shdr = state->seccache->c_shdr;
1422 
1423 	/*
1424 	 * Check the symbol data and per-item size.
1425 	 */
1426 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1427 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1428 		    file, state->secname);
1429 		return (0);
1430 	}
1431 	if (state->seccache->c_data == NULL)
1432 		return (0);
1433 
1434 	/* LINTED */
1435 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1436 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1437 
1438 	/*
1439 	 * Check associated string table section.
1440 	 */
1441 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1442 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1443 		    file, state->secname, EC_WORD(shdr->sh_link));
1444 		return (0);
1445 	}
1446 
1447 	/*
1448 	 * Determine if there is a associated Versym section
1449 	 * with this Symbol Table.
1450 	 */
1451 	if (versym->cache &&
1452 	    (versym->cache->c_shdr->sh_link == state->secndx))
1453 		state->versym = versym;
1454 	else
1455 		state->versym = NULL;
1456 
1457 
1458 	return (1);
1459 }
1460 
1461 /*
1462  * Determine the extended section index used for symbol tables entries.
1463  */
1464 static void
1465 symbols_getxindex(SYMTBL_STATE *state)
1466 {
1467 	uint_t	symn;
1468 	Word	symcnt;
1469 
1470 	state->shxndx.checked = 1;   /* Note that we've been called */
1471 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1472 		Cache	*_cache = &state->cache[symcnt];
1473 		Shdr	*shdr = _cache->c_shdr;
1474 
1475 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1476 		    (shdr->sh_link != state->secndx))
1477 			continue;
1478 
1479 		if ((shdr->sh_entsize) &&
1480 		    /* LINTED */
1481 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1482 			continue;
1483 
1484 		if (_cache->c_data == NULL)
1485 			continue;
1486 
1487 		state->shxndx.data = _cache->c_data->d_buf;
1488 		state->shxndx.n = symn;
1489 		return;
1490 	}
1491 }
1492 
1493 /*
1494  * Produce a line of output for the given symbol
1495  *
1496  * entry:
1497  *	state - Symbol table state
1498  *	symndx - Index of symbol within the table
1499  *	info - Value of st_info (indicates local/global range)
1500  *	symndx_disp - Index to display. This may not be the same
1501  *		as symndx if the display is relative to the logical
1502  *		combination of the SUNW_ldynsym/dynsym tables.
1503  *	sym - Symbol to display
1504  */
1505 static void
1506 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1507     Sym *sym)
1508 {
1509 	/*
1510 	 * Symbol types for which we check that the specified
1511 	 * address/size land inside the target section.
1512 	 */
1513 	static const int addr_symtype[STT_NUM] = {
1514 		0,			/* STT_NOTYPE */
1515 		1,			/* STT_OBJECT */
1516 		1,			/* STT_FUNC */
1517 		0,			/* STT_SECTION */
1518 		0,			/* STT_FILE */
1519 		1,			/* STT_COMMON */
1520 		0,			/* STT_TLS */
1521 	};
1522 #if STT_NUM != (STT_TLS + 1)
1523 #error "STT_NUM has grown. Update addr_symtype[]"
1524 #endif
1525 
1526 	char		index[MAXNDXSIZE];
1527 	const char	*symname, *sec;
1528 	Versym		verndx;
1529 	int		gnuver;
1530 	uchar_t		type;
1531 	Shdr		*tshdr;
1532 	Word		shndx;
1533 	Conv_inv_buf_t	inv_buf;
1534 
1535 	/* Ensure symbol index is in range */
1536 	if (symndx >= state->symn) {
1537 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1538 		    state->file, state->secname, EC_WORD(symndx));
1539 		return;
1540 	}
1541 
1542 	/*
1543 	 * If we are using extended symbol indexes, find the
1544 	 * corresponding SHN_SYMTAB_SHNDX table.
1545 	 */
1546 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1547 		symbols_getxindex(state);
1548 
1549 	/* LINTED */
1550 	symname = string(state->seccache, symndx,
1551 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1552 	    sym->st_name);
1553 
1554 	tshdr = 0;
1555 	sec = NULL;
1556 
1557 	if (state->ehdr->e_type == ET_CORE) {
1558 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1559 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1560 		/*
1561 		 * If we are using fake section headers derived from
1562 		 * the program headers, then the section indexes
1563 		 * in the symbols do not correspond to these headers.
1564 		 * The section names are not available, so all we can
1565 		 * do is to display them in numeric form.
1566 		 */
1567 		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1568 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1569 	    (sym->st_shndx < state->shnum)) {
1570 		shndx = sym->st_shndx;
1571 		tshdr = state->cache[shndx].c_shdr;
1572 		sec = state->cache[shndx].c_name;
1573 	} else if (sym->st_shndx == SHN_XINDEX) {
1574 		if (state->shxndx.data) {
1575 			Word	_shxndx;
1576 
1577 			if (symndx > state->shxndx.n) {
1578 				(void) fprintf(stderr,
1579 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1580 				    state->file, state->secname,
1581 				    EC_WORD(symndx));
1582 			} else if ((_shxndx =
1583 			    state->shxndx.data[symndx]) > state->shnum) {
1584 				(void) fprintf(stderr,
1585 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1586 				    state->file, state->secname,
1587 				    EC_WORD(symndx), EC_WORD(_shxndx));
1588 			} else {
1589 				shndx = _shxndx;
1590 				tshdr = state->cache[shndx].c_shdr;
1591 				sec = state->cache[shndx].c_name;
1592 			}
1593 		} else {
1594 			(void) fprintf(stderr,
1595 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1596 			    state->file, state->secname, EC_WORD(symndx));
1597 		}
1598 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1599 	    (sym->st_shndx >= state->shnum)) {
1600 		(void) fprintf(stderr,
1601 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1602 		    state->secname, EC_WORD(symndx),
1603 		    demangle(symname, state->flags), sym->st_shndx);
1604 	}
1605 
1606 	/*
1607 	 * If versioning is available display the
1608 	 * version index. If not, then use 0.
1609 	 */
1610 	if (state->versym) {
1611 		Versym test_verndx;
1612 
1613 		verndx = test_verndx = state->versym->data[symndx];
1614 		gnuver = state->versym->gnu_full;
1615 
1616 		/*
1617 		 * Check to see if this is a defined symbol with a
1618 		 * version index that is outside the valid range for
1619 		 * the file. The interpretation of this depends on
1620 		 * the style of versioning used by the object.
1621 		 *
1622 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1623 		 * and are exempt from this checking.
1624 		 *
1625 		 * GNU style version indexes use the top bit of the
1626 		 * 16-bit index value (0x8000) as the "hidden bit".
1627 		 * We must mask off this bit in order to compare
1628 		 * the version against the maximum value.
1629 		 */
1630 		if (gnuver)
1631 			test_verndx &= ~0x8000;
1632 
1633 		if ((test_verndx > state->versym->max_verndx) &&
1634 		    (verndx < VER_NDX_LORESERVE))
1635 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1636 			    state->file, state->secname, EC_WORD(symndx),
1637 			    EC_HALF(test_verndx), state->versym->max_verndx);
1638 	} else {
1639 		verndx = 0;
1640 		gnuver = 0;
1641 	}
1642 
1643 	/*
1644 	 * Error checking for TLS.
1645 	 */
1646 	type = ELF_ST_TYPE(sym->st_info);
1647 	if (type == STT_TLS) {
1648 		if (tshdr &&
1649 		    (sym->st_shndx != SHN_UNDEF) &&
1650 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1651 			(void) fprintf(stderr,
1652 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1653 			    state->secname, EC_WORD(symndx),
1654 			    demangle(symname, state->flags));
1655 		}
1656 	} else if ((type != STT_SECTION) && sym->st_size &&
1657 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1658 		(void) fprintf(stderr,
1659 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1660 		    state->secname, EC_WORD(symndx),
1661 		    demangle(symname, state->flags));
1662 	}
1663 
1664 	/*
1665 	 * If a symbol with non-zero size has a type that
1666 	 * specifies an address, then make sure the location
1667 	 * it references is actually contained within the
1668 	 * section.  UNDEF symbols don't count in this case,
1669 	 * so we ignore them.
1670 	 *
1671 	 * The meaning of the st_value field in a symbol
1672 	 * depends on the type of object. For a relocatable
1673 	 * object, it is the offset within the section.
1674 	 * For sharable objects, it is the offset relative to
1675 	 * the base of the object, and for other types, it is
1676 	 * the virtual address. To get an offset within the
1677 	 * section for non-ET_REL files, we subtract the
1678 	 * base address of the section.
1679 	 */
1680 	if (addr_symtype[type] && (sym->st_size > 0) &&
1681 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1682 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1683 		Word v = sym->st_value;
1684 			if (state->ehdr->e_type != ET_REL)
1685 				v -= tshdr->sh_addr;
1686 		if (((v + sym->st_size) > tshdr->sh_size)) {
1687 			(void) fprintf(stderr,
1688 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1689 			    state->secname, EC_WORD(symndx),
1690 			    demangle(symname, state->flags),
1691 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1692 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * A typical symbol table uses the sh_info field to indicate one greater
1698 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1699 	 * Therefore, symbol indexes less than sh_info should have local
1700 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1701 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1702 	 * value and size, as these symbols may be the result of an mcs(1)
1703 	 * section deletion.
1704 	 */
1705 	if (info) {
1706 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1707 
1708 		if ((symndx < info) && (bind != STB_LOCAL)) {
1709 			(void) fprintf(stderr,
1710 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1711 			    state->secname, EC_WORD(symndx),
1712 			    demangle(symname, state->flags), EC_XWORD(info));
1713 
1714 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1715 		    ((sym->st_shndx != SHN_UNDEF) ||
1716 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1717 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1718 			(void) fprintf(stderr,
1719 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1720 			    state->secname, EC_WORD(symndx),
1721 			    demangle(symname, state->flags), EC_XWORD(info));
1722 		}
1723 	}
1724 
1725 	(void) snprintf(index, MAXNDXSIZE,
1726 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1727 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1728 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1729 }
1730 
1731 /*
1732  * Search for and process any symbol tables.
1733  */
1734 void
1735 symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1736     const char *file, uint_t flags)
1737 {
1738 	SYMTBL_STATE state;
1739 	Cache *_cache;
1740 	Word secndx;
1741 
1742 	for (secndx = 1; secndx < shnum; secndx++) {
1743 		Word		symcnt;
1744 		Shdr		*shdr;
1745 
1746 		_cache = &cache[secndx];
1747 		shdr = _cache->c_shdr;
1748 
1749 		if ((shdr->sh_type != SHT_SYMTAB) &&
1750 		    (shdr->sh_type != SHT_DYNSYM) &&
1751 		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1752 			continue;
1753 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
1754 			continue;
1755 
1756 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1757 		    versym, file, flags))
1758 			continue;
1759 		/*
1760 		 * Loop through the symbol tables entries.
1761 		 */
1762 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1763 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1764 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1765 
1766 		for (symcnt = 0; symcnt < state.symn; symcnt++)
1767 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1768 			    state.sym + symcnt);
1769 	}
1770 }
1771 
1772 /*
1773  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1774  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1775  */
1776 static void
1777 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1778     const char *file, uint_t flags)
1779 {
1780 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1781 	Cache		*sortcache,	*symcache;
1782 	Shdr		*sortshdr,	*symshdr;
1783 	Word		sortsecndx,	symsecndx;
1784 	Word		ldynsym_cnt;
1785 	Word		*ndx;
1786 	Word		ndxn;
1787 	int		output_cnt = 0;
1788 	Conv_inv_buf_t	inv_buf;
1789 
1790 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1791 
1792 		sortcache = &cache[sortsecndx];
1793 		sortshdr = sortcache->c_shdr;
1794 
1795 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1796 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1797 			continue;
1798 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
1799 		    sortshdr->sh_type))
1800 			continue;
1801 
1802 		/*
1803 		 * If the section references a SUNW_ldynsym, then we
1804 		 * expect to see the associated .dynsym immediately
1805 		 * following. If it references a .dynsym, there is no
1806 		 * SUNW_ldynsym. If it is any other type, then we don't
1807 		 * know what to do with it.
1808 		 */
1809 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1810 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1811 			    file, sortcache->c_name,
1812 			    EC_WORD(sortshdr->sh_link));
1813 			continue;
1814 		}
1815 		symcache = &cache[sortshdr->sh_link];
1816 		symshdr = symcache->c_shdr;
1817 		symsecndx = sortshdr->sh_link;
1818 		ldynsym_cnt = 0;
1819 		switch (symshdr->sh_type) {
1820 		case SHT_SUNW_LDYNSYM:
1821 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1822 			    symsecndx, ehdr, versym, file, flags))
1823 				continue;
1824 			ldynsym_cnt = ldynsym_state.symn;
1825 			/*
1826 			 * We know that the dynsym follows immediately
1827 			 * after the SUNW_ldynsym, and so, should be at
1828 			 * (sortshdr->sh_link + 1). However, elfdump is a
1829 			 * diagnostic tool, so we do the full paranoid
1830 			 * search instead.
1831 			 */
1832 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1833 				symcache = &cache[symsecndx];
1834 				symshdr = symcache->c_shdr;
1835 				if (symshdr->sh_type == SHT_DYNSYM)
1836 					break;
1837 			}
1838 			if (symsecndx >= shnum) {	/* Dynsym not found! */
1839 				(void) fprintf(stderr,
1840 				    MSG_INTL(MSG_ERR_NODYNSYM),
1841 				    file, sortcache->c_name);
1842 				continue;
1843 			}
1844 			/* Fallthrough to process associated dynsym */
1845 			/* FALLTHROUGH */
1846 		case SHT_DYNSYM:
1847 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1848 			    symsecndx, ehdr, versym, file, flags))
1849 				continue;
1850 			break;
1851 		default:
1852 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1853 			    file, sortcache->c_name, conv_sec_type(
1854 			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1855 			continue;
1856 		}
1857 
1858 		/*
1859 		 * Output header
1860 		 */
1861 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1862 		if (ldynsym_cnt > 0) {
1863 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1864 			    sortcache->c_name, ldynsym_state.secname,
1865 			    dynsym_state.secname);
1866 			/*
1867 			 * The data for .SUNW_ldynsym and dynsym sections
1868 			 * is supposed to be adjacent with SUNW_ldynsym coming
1869 			 * first. Check, and issue a warning if it isn't so.
1870 			 */
1871 			if (((ldynsym_state.sym + ldynsym_state.symn)
1872 			    != dynsym_state.sym) &&
1873 			    ((flags & FLG_CTL_FAKESHDR) == 0))
1874 				(void) fprintf(stderr,
1875 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1876 				    ldynsym_state.secname,
1877 				    dynsym_state.secname);
1878 		} else {
1879 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1880 			    sortcache->c_name, dynsym_state.secname);
1881 		}
1882 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1883 
1884 		/* If not first one, insert a line of whitespace */
1885 		if (output_cnt++ > 0)
1886 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1887 
1888 		/*
1889 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1890 		 * symbol indices. Iterate over the array entries,
1891 		 * dispaying the referenced symbols.
1892 		 */
1893 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1894 		ndx = (Word *)sortcache->c_data->d_buf;
1895 		for (; ndxn-- > 0; ndx++) {
1896 			if (*ndx >= ldynsym_cnt) {
1897 				Word sec_ndx = *ndx - ldynsym_cnt;
1898 
1899 				output_symbol(&dynsym_state, sec_ndx, 0,
1900 				    *ndx, dynsym_state.sym + sec_ndx);
1901 			} else {
1902 				output_symbol(&ldynsym_state, *ndx, 0,
1903 				    *ndx, ldynsym_state.sym + *ndx);
1904 			}
1905 		}
1906 	}
1907 }
1908 
1909 /*
1910  * Search for and process any relocation sections.
1911  */
1912 static void
1913 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
1914 {
1915 	Word	cnt;
1916 
1917 	for (cnt = 1; cnt < shnum; cnt++) {
1918 		Word		type, symnum;
1919 		Xword		relndx, relnum, relsize;
1920 		void		*rels;
1921 		Sym		*syms;
1922 		Cache		*symsec, *strsec;
1923 		Cache		*_cache = &cache[cnt];
1924 		Shdr		*shdr = _cache->c_shdr;
1925 		char		*relname = _cache->c_name;
1926 		Conv_inv_buf_t	inv_buf;
1927 
1928 		if (((type = shdr->sh_type) != SHT_RELA) &&
1929 		    (type != SHT_REL))
1930 			continue;
1931 		if (!match(MATCH_F_ALL, relname, cnt, type))
1932 			continue;
1933 
1934 		/*
1935 		 * Decide entry size.
1936 		 */
1937 		if (((relsize = shdr->sh_entsize) == 0) ||
1938 		    (relsize > shdr->sh_size)) {
1939 			if (type == SHT_RELA)
1940 				relsize = sizeof (Rela);
1941 			else
1942 				relsize = sizeof (Rel);
1943 		}
1944 
1945 		/*
1946 		 * Determine the number of relocations available.
1947 		 */
1948 		if (shdr->sh_size == 0) {
1949 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1950 			    file, relname);
1951 			continue;
1952 		}
1953 		if (_cache->c_data == NULL)
1954 			continue;
1955 
1956 		rels = _cache->c_data->d_buf;
1957 		relnum = shdr->sh_size / relsize;
1958 
1959 		/*
1960 		 * Get the data buffer for the associated symbol table and
1961 		 * string table.
1962 		 */
1963 		if (stringtbl(cache, 1, cnt, shnum, file,
1964 		    &symnum, &symsec, &strsec) == 0)
1965 			continue;
1966 
1967 		syms = symsec->c_data->d_buf;
1968 
1969 		/*
1970 		 * Loop through the relocation entries.
1971 		 */
1972 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1973 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1974 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1975 
1976 		for (relndx = 0; relndx < relnum; relndx++,
1977 		    rels = (void *)((char *)rels + relsize)) {
1978 			Half		mach = ehdr->e_machine;
1979 			char		section[BUFSIZ];
1980 			const char	*symname;
1981 			Word		symndx, reltype;
1982 			Rela		*rela;
1983 			Rel		*rel;
1984 
1985 			/*
1986 			 * Unravel the relocation and determine the symbol with
1987 			 * which this relocation is associated.
1988 			 */
1989 			if (type == SHT_RELA) {
1990 				rela = (Rela *)rels;
1991 				symndx = ELF_R_SYM(rela->r_info);
1992 				reltype = ELF_R_TYPE(rela->r_info, mach);
1993 			} else {
1994 				rel = (Rel *)rels;
1995 				symndx = ELF_R_SYM(rel->r_info);
1996 				reltype = ELF_R_TYPE(rel->r_info, mach);
1997 			}
1998 
1999 			symname = relsymname(cache, _cache, strsec, symndx,
2000 			    symnum, relndx, syms, section, BUFSIZ, file);
2001 
2002 			/*
2003 			 * A zero symbol index is only valid for a few
2004 			 * relocations.
2005 			 */
2006 			if (symndx == 0) {
2007 				int	badrel = 0;
2008 
2009 				if ((mach == EM_SPARC) ||
2010 				    (mach == EM_SPARC32PLUS) ||
2011 				    (mach == EM_SPARCV9)) {
2012 					if ((reltype != R_SPARC_NONE) &&
2013 					    (reltype != R_SPARC_REGISTER) &&
2014 					    (reltype != R_SPARC_RELATIVE))
2015 						badrel++;
2016 				} else if (mach == EM_386) {
2017 					if ((reltype != R_386_NONE) &&
2018 					    (reltype != R_386_RELATIVE))
2019 						badrel++;
2020 				} else if (mach == EM_AMD64) {
2021 					if ((reltype != R_AMD64_NONE) &&
2022 					    (reltype != R_AMD64_RELATIVE))
2023 						badrel++;
2024 				}
2025 
2026 				if (badrel) {
2027 					(void) fprintf(stderr,
2028 					    MSG_INTL(MSG_ERR_BADREL1), file,
2029 					    conv_reloc_type(mach, reltype,
2030 					    0, &inv_buf));
2031 				}
2032 			}
2033 
2034 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2035 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2036 			    rels, relname, symname, 0);
2037 		}
2038 	}
2039 }
2040 
2041 
2042 /*
2043  * This value controls which test dyn_test() performs.
2044  */
2045 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2046 
2047 /*
2048  * Used by dynamic() to compare the value of a dynamic element against
2049  * the starting address of the section it references.
2050  *
2051  * entry:
2052  *	test_type - Specify which dyn item is being tested.
2053  *	sh_type - SHT_* type value for required section.
2054  *	sec_cache - Cache entry for section, or NULL if the object lacks
2055  *		a section of this type.
2056  *	dyn - Dyn entry to be tested
2057  *	dynsec_cnt - # of dynamic section being examined. The first
2058  *		dynamic section is 1, the next is 2, and so on...
2059  *	ehdr - ELF header for file
2060  *	file - Name of file
2061  */
2062 static void
2063 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2064     Word dynsec_cnt, Ehdr *ehdr, const char *file)
2065 {
2066 	Conv_inv_buf_t	buf1, buf2;
2067 
2068 	/*
2069 	 * These tests are based around the implicit assumption that
2070 	 * there is only one dynamic section in an object, and also only
2071 	 * one of the sections it references. We have therefore gathered
2072 	 * all of the necessary information to test this in a single pass
2073 	 * over the section headers, which is very efficient. We are not
2074 	 * aware of any case where more than one dynamic section would
2075 	 * be meaningful in an ELF object, so this is a reasonable solution.
2076 	 *
2077 	 * To test multiple dynamic sections correctly would be more
2078 	 * expensive in code and time. We would have to build a data structure
2079 	 * containing all the dynamic elements. Then, we would use the address
2080 	 * to locate the section it references and ensure the section is of
2081 	 * the right type and that the address in the dynamic element is
2082 	 * to the start of the section. Then, we could check the size and
2083 	 * entsize values against those same sections. This is O(n^2), and
2084 	 * also complicated.
2085 	 *
2086 	 * In the highly unlikely case that there is more than one dynamic
2087 	 * section, we only test the first one, and simply allow the values
2088 	 * of the subsequent one to be displayed unchallenged.
2089 	 */
2090 	if (dynsec_cnt != 1)
2091 		return;
2092 
2093 	/*
2094 	 * A DT_ item that references a section address should always find
2095 	 * the section in the file.
2096 	 */
2097 	if (sec_cache == NULL) {
2098 		const char *name;
2099 
2100 		/*
2101 		 * Supply section names instead of section types for
2102 		 * things that reference progbits so that the error
2103 		 * message will make more sense.
2104 		 */
2105 		switch (dyn->d_tag) {
2106 		case DT_INIT:
2107 			name = MSG_ORIG(MSG_ELF_INIT);
2108 			break;
2109 		case DT_FINI:
2110 			name = MSG_ORIG(MSG_ELF_FINI);
2111 			break;
2112 		default:
2113 			name = conv_sec_type(ehdr->e_machine, sh_type,
2114 			    0, &buf1);
2115 			break;
2116 		}
2117 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2118 		    name, conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf2));
2119 		return;
2120 	}
2121 
2122 
2123 	switch (test_type) {
2124 	case DYN_TEST_ADDR:
2125 		/* The section address should match the DT_ item value */
2126 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2127 			(void) fprintf(stderr,
2128 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2129 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2130 			    EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx,
2131 			    sec_cache->c_name,
2132 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2133 		break;
2134 
2135 	case DYN_TEST_SIZE:
2136 		/* The section size should match the DT_ item value */
2137 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2138 			(void) fprintf(stderr,
2139 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2140 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2141 			    EC_XWORD(dyn->d_un.d_val),
2142 			    sec_cache->c_ndx, sec_cache->c_name,
2143 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2144 		break;
2145 
2146 	case DYN_TEST_ENTSIZE:
2147 		/* The sh_entsize value should match the DT_ item value */
2148 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2149 			(void) fprintf(stderr,
2150 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2151 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2152 			    EC_XWORD(dyn->d_un.d_val),
2153 			    sec_cache->c_ndx, sec_cache->c_name,
2154 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2155 		break;
2156 	}
2157 }
2158 
2159 
2160 /*
2161  * There are some DT_ entries that have corresponding symbols
2162  * (e.g. DT_INIT and _init). It is expected that these items will
2163  * both have the same value if both are present. This routine
2164  * examines the well known symbol tables for such symbols and
2165  * issues warnings for any that don't match.
2166  *
2167  * entry:
2168  *	dyn - Dyn entry to be tested
2169  *	symname - Name of symbol that corresponds to dyn
2170  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2171  *	cache - Cache of all section headers
2172  *	shnum - # of sections in cache
2173  *	ehdr - ELF header for file
2174  *	file - Name of file
2175  */
2176 static void
2177 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2178     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *cache,
2179     Word shnum, Ehdr *ehdr, const char *file)
2180 {
2181 	Conv_inv_buf_t	buf;
2182 	int		i;
2183 	Sym		*sym;
2184 	Cache		*_cache;
2185 
2186 	for (i = 0; i < 3; i++) {
2187 		switch (i) {
2188 		case 0:
2189 			_cache = symtab_cache;
2190 			break;
2191 		case 1:
2192 			_cache = dynsym_cache;
2193 			break;
2194 		case 2:
2195 			_cache = ldynsym_cache;
2196 			break;
2197 		}
2198 
2199 		if ((_cache != NULL) &&
2200 		    symlookup(symname, cache, shnum, &sym, _cache, file) &&
2201 		    (sym->st_value != dyn->d_un.d_val))
2202 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2203 			    file, _cache->c_name,
2204 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf),
2205 			    symname, EC_ADDR(sym->st_value));
2206 	}
2207 }
2208 
2209 
2210 /*
2211  * Search for and process a .dynamic section.
2212  */
2213 static void
2214 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2215 {
2216 	struct {
2217 		Cache	*symtab;
2218 		Cache	*dynstr;
2219 		Cache	*dynsym;
2220 		Cache	*hash;
2221 		Cache	*fini;
2222 		Cache	*fini_array;
2223 		Cache	*init;
2224 		Cache	*init_array;
2225 		Cache	*preinit_array;
2226 		Cache	*rel;
2227 		Cache	*rela;
2228 		Cache	*sunw_cap;
2229 		Cache	*sunw_ldynsym;
2230 		Cache	*sunw_move;
2231 		Cache	*sunw_syminfo;
2232 		Cache	*sunw_symsort;
2233 		Cache	*sunw_tlssort;
2234 		Cache	*sunw_verdef;
2235 		Cache	*sunw_verneed;
2236 		Cache	*sunw_versym;
2237 	} sec;
2238 	Word	dynsec_ndx;
2239 	Word	dynsec_num;
2240 	int	dynsec_cnt;
2241 	Word	cnt;
2242 
2243 	/*
2244 	 * Make a pass over all the sections, gathering section information
2245 	 * we'll need below.
2246 	 */
2247 	dynsec_num = 0;
2248 	bzero(&sec, sizeof (sec));
2249 	for (cnt = 1; cnt < shnum; cnt++) {
2250 		Cache	*_cache = &cache[cnt];
2251 
2252 		switch (_cache->c_shdr->sh_type) {
2253 		case SHT_DYNAMIC:
2254 			if (dynsec_num == 0) {
2255 				dynsec_ndx = cnt;
2256 
2257 				/* Does it have a valid string table? */
2258 				(void) stringtbl(cache, 0, cnt, shnum, file,
2259 				    0, 0, &sec.dynstr);
2260 			}
2261 			dynsec_num++;
2262 			break;
2263 
2264 
2265 		case SHT_PROGBITS:
2266 			/*
2267 			 * We want to detect the .init and .fini sections,
2268 			 * if present. These are SHT_PROGBITS, so all we
2269 			 * have to go on is the section name. Normally comparing
2270 			 * names is a bad idea, but there are some special
2271 			 * names (i.e. .init/.fini/.interp) that are very
2272 			 * difficult to use in any other context, and for
2273 			 * these symbols, we do the heuristic match.
2274 			 */
2275 			if (strcmp(_cache->c_name,
2276 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2277 				if (sec.init == NULL)
2278 					sec.init = _cache;
2279 			} else if (strcmp(_cache->c_name,
2280 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2281 				if (sec.fini == NULL)
2282 					sec.fini = _cache;
2283 			}
2284 			break;
2285 
2286 		case SHT_REL:
2287 			/*
2288 			 * We want the SHT_REL section with the lowest
2289 			 * offset. The linker gathers them together,
2290 			 * and puts the address of the first one
2291 			 * into the DT_REL dynamic element.
2292 			 */
2293 			if ((sec.rel == NULL) ||
2294 			    (_cache->c_shdr->sh_offset <
2295 			    sec.rel->c_shdr->sh_offset))
2296 				sec.rel = _cache;
2297 			break;
2298 
2299 		case SHT_RELA:
2300 			/* RELA is handled just like RELA above */
2301 			if ((sec.rela == NULL) ||
2302 			    (_cache->c_shdr->sh_offset <
2303 			    sec.rela->c_shdr->sh_offset))
2304 				sec.rela = _cache;
2305 			break;
2306 
2307 		/*
2308 		 * The GRAB macro is used for the simple case in which
2309 		 * we simply grab the first section of the desired type.
2310 		 */
2311 #define	GRAB(_sec_type, _sec_field) \
2312 		case _sec_type: \
2313 			if (sec._sec_field == NULL) \
2314 				sec._sec_field = _cache; \
2315 				break
2316 		GRAB(SHT_SYMTAB,	symtab);
2317 		GRAB(SHT_DYNSYM,	dynsym);
2318 		GRAB(SHT_FINI_ARRAY,	fini_array);
2319 		GRAB(SHT_HASH,		hash);
2320 		GRAB(SHT_INIT_ARRAY,	init_array);
2321 		GRAB(SHT_SUNW_move,	sunw_move);
2322 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2323 		GRAB(SHT_SUNW_cap,	sunw_cap);
2324 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2325 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2326 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2327 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2328 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2329 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2330 		GRAB(SHT_SUNW_versym,	sunw_versym);
2331 #undef GRAB
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * If no dynamic section, return immediately. If more than one
2337 	 * dynamic section, then something odd is going on and an error
2338 	 * is in order, but then continue on and display them all.
2339 	 */
2340 	if (dynsec_num == 0)
2341 		return;
2342 	if (dynsec_num > 1)
2343 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2344 		    file, EC_WORD(dynsec_num));
2345 
2346 
2347 	dynsec_cnt = 0;
2348 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2349 	    cnt++) {
2350 		Dyn	*dyn;
2351 		ulong_t	numdyn;
2352 		int	ndx, end_ndx;
2353 		Cache	*_cache = &cache[cnt], *strsec;
2354 		Shdr	*shdr = _cache->c_shdr;
2355 		int	dumped = 0;
2356 
2357 		if (shdr->sh_type != SHT_DYNAMIC)
2358 			continue;
2359 		dynsec_cnt++;
2360 
2361 		/*
2362 		 * Verify the associated string table section.
2363 		 */
2364 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2365 			continue;
2366 
2367 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2368 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2369 			    file, _cache->c_name);
2370 			continue;
2371 		}
2372 		if (_cache->c_data == NULL)
2373 			continue;
2374 
2375 		numdyn = shdr->sh_size / shdr->sh_entsize;
2376 		dyn = (Dyn *)_cache->c_data->d_buf;
2377 
2378 		/*
2379 		 * We expect the REL/RELA entries to reference the reloc
2380 		 * section with the lowest address. However, this is
2381 		 * not true for dumped objects. Detect if this object has
2382 		 * been dumped so that we can skip the reloc address test
2383 		 * in that case.
2384 		 */
2385 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2386 			if (dyn->d_tag == DT_FLAGS_1) {
2387 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2388 				break;
2389 			}
2390 		}
2391 		dyn = (Dyn *)_cache->c_data->d_buf;
2392 
2393 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2394 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2395 
2396 		Elf_dyn_title(0);
2397 
2398 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2399 			union {
2400 				Conv_inv_buf_t		inv;
2401 				Conv_dyn_flag_buf_t	flag;
2402 				Conv_dyn_flag1_buf_t	flag1;
2403 				Conv_dyn_posflag1_buf_t	posflag1;
2404 				Conv_dyn_feature1_buf_t	feature1;
2405 			} c_buf;
2406 			const char	*name = NULL;
2407 
2408 			/*
2409 			 * Print the information numerically, and if possible
2410 			 * as a string. If a string is available, name is
2411 			 * set to reference it.
2412 			 *
2413 			 * Also, take this opportunity to sanity check
2414 			 * the values of DT elements. In the code above,
2415 			 * we gathered information on sections that are
2416 			 * referenced by the dynamic section. Here, we
2417 			 * compare the attributes of those sections to
2418 			 * the DT_ items that reference them and report
2419 			 * on inconsistencies.
2420 			 *
2421 			 * Things not currently tested that could be improved
2422 			 * in later revisions include:
2423 			 *	- We don't check PLT or GOT related items
2424 			 *	- We don't handle computing the lengths of
2425 			 *		relocation arrays. To handle this
2426 			 *		requires examining data that spans
2427 			 *		across sections, in a contiguous span
2428 			 *		within a single segment.
2429 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2430 			 *		verified without parsing the sections.
2431 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2432 			 *		be the sum of the lengths of .dynsym and
2433 			 *		.SUNW_ldynsym
2434 			 *	- DT_SUNW_STRPAD can't be verified other than
2435 			 *		to check that it's not larger than
2436 			 *		the string table.
2437 			 *	- Some items come in "all or none" clusters
2438 			 *		that give an address, element size,
2439 			 *		and data length in bytes. We don't
2440 			 *		verify that there are no missing items
2441 			 *		in such groups.
2442 			 */
2443 			switch (dyn->d_tag) {
2444 			case DT_NULL:
2445 				/*
2446 				 * Special case: DT_NULLs can come in groups
2447 				 * that we prefer to reduce to a single line.
2448 				 */
2449 				end_ndx = ndx;
2450 				while ((end_ndx < (numdyn - 1)) &&
2451 				    ((dyn + 1)->d_tag == DT_NULL)) {
2452 					dyn++;
2453 					end_ndx++;
2454 				}
2455 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2456 				ndx = end_ndx;
2457 				continue;
2458 
2459 			/*
2460 			 * String items all reference the dynstr. The string()
2461 			 * function does the necessary sanity checking.
2462 			 */
2463 			case DT_NEEDED:
2464 			case DT_SONAME:
2465 			case DT_FILTER:
2466 			case DT_AUXILIARY:
2467 			case DT_CONFIG:
2468 			case DT_RPATH:
2469 			case DT_RUNPATH:
2470 			case DT_USED:
2471 			case DT_DEPAUDIT:
2472 			case DT_AUDIT:
2473 			case DT_SUNW_AUXILIARY:
2474 			case DT_SUNW_FILTER:
2475 				name = string(_cache, ndx, strsec,
2476 				    file, dyn->d_un.d_ptr);
2477 				break;
2478 
2479 			case DT_FLAGS:
2480 				name = conv_dyn_flag(dyn->d_un.d_val,
2481 				    0, &c_buf.flag);
2482 				break;
2483 			case DT_FLAGS_1:
2484 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2485 				    &c_buf.flag1);
2486 				break;
2487 			case DT_POSFLAG_1:
2488 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2489 				    &c_buf.posflag1);
2490 				break;
2491 			case DT_FEATURE_1:
2492 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2493 				    &c_buf.feature1);
2494 				break;
2495 			case DT_DEPRECATED_SPARC_REGISTER:
2496 				name = MSG_INTL(MSG_STR_DEPRECATED);
2497 				break;
2498 
2499 			case DT_SUNW_LDMACH:
2500 				name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0,
2501 				    &c_buf.inv);
2502 				break;
2503 
2504 			/*
2505 			 * Cases below this point are strictly sanity checking,
2506 			 * and do not generate a name string. The TEST_ macros
2507 			 * are used to hide the boilerplate arguments neeeded
2508 			 * by dyn_test().
2509 			 */
2510 #define	TEST_ADDR(_sh_type, _sec_field) \
2511 				dyn_test(DYN_TEST_ADDR, _sh_type, \
2512 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2513 #define	TEST_SIZE(_sh_type, _sec_field) \
2514 				dyn_test(DYN_TEST_SIZE, _sh_type, \
2515 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2516 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
2517 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
2518 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2519 
2520 			case DT_FINI:
2521 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
2522 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2523 				    cache, shnum, ehdr, file);
2524 				TEST_ADDR(SHT_PROGBITS, fini);
2525 				break;
2526 
2527 			case DT_FINI_ARRAY:
2528 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
2529 				break;
2530 
2531 			case DT_FINI_ARRAYSZ:
2532 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
2533 				break;
2534 
2535 			case DT_HASH:
2536 				TEST_ADDR(SHT_HASH, hash);
2537 				break;
2538 
2539 			case DT_INIT:
2540 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
2541 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2542 				    cache, shnum, ehdr, file);
2543 				TEST_ADDR(SHT_PROGBITS, init);
2544 				break;
2545 
2546 			case DT_INIT_ARRAY:
2547 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
2548 				break;
2549 
2550 			case DT_INIT_ARRAYSZ:
2551 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
2552 				break;
2553 
2554 			case DT_MOVEENT:
2555 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
2556 				break;
2557 
2558 			case DT_MOVESZ:
2559 				TEST_SIZE(SHT_SUNW_move, sunw_move);
2560 				break;
2561 
2562 			case DT_MOVETAB:
2563 				TEST_ADDR(SHT_SUNW_move, sunw_move);
2564 				break;
2565 
2566 			case DT_PREINIT_ARRAY:
2567 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
2568 				break;
2569 
2570 			case DT_PREINIT_ARRAYSZ:
2571 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
2572 				break;
2573 
2574 			case DT_REL:
2575 				if (!dumped)
2576 					TEST_ADDR(SHT_REL, rel);
2577 				break;
2578 
2579 			case DT_RELENT:
2580 				TEST_ENTSIZE(SHT_REL, rel);
2581 				break;
2582 
2583 			case DT_RELA:
2584 				if (!dumped)
2585 					TEST_ADDR(SHT_RELA, rela);
2586 				break;
2587 
2588 			case DT_RELAENT:
2589 				TEST_ENTSIZE(SHT_RELA, rela);
2590 				break;
2591 
2592 			case DT_STRTAB:
2593 				TEST_ADDR(SHT_STRTAB, dynstr);
2594 				break;
2595 
2596 			case DT_STRSZ:
2597 				TEST_SIZE(SHT_STRTAB, dynstr);
2598 				break;
2599 
2600 			case DT_SUNW_CAP:
2601 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
2602 				break;
2603 
2604 			case DT_SUNW_SYMTAB:
2605 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2606 				break;
2607 
2608 			case DT_SYMENT:
2609 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
2610 				break;
2611 
2612 			case DT_SYMINENT:
2613 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
2614 				break;
2615 
2616 			case DT_SYMINFO:
2617 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
2618 				break;
2619 
2620 			case DT_SYMINSZ:
2621 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
2622 				break;
2623 
2624 			case DT_SYMTAB:
2625 				TEST_ADDR(SHT_DYNSYM, dynsym);
2626 				break;
2627 
2628 			case DT_SUNW_SORTENT:
2629 				/*
2630 				 * This entry is related to both the symsort and
2631 				 * tlssort sections.
2632 				 */
2633 				{
2634 					int test_tls =
2635 					    (sec.sunw_tlssort != NULL);
2636 					int test_sym =
2637 					    (sec.sunw_symsort != NULL) ||
2638 					    !test_tls;
2639 					if (test_sym)
2640 						TEST_ENTSIZE(SHT_SUNW_symsort,
2641 						    sunw_symsort);
2642 					if (test_tls)
2643 						TEST_ENTSIZE(SHT_SUNW_tlssort,
2644 						    sunw_tlssort);
2645 				}
2646 				break;
2647 
2648 
2649 			case DT_SUNW_SYMSORT:
2650 				TEST_ADDR(SHT_SUNW_symsort, sunw_symsort);
2651 				break;
2652 
2653 			case DT_SUNW_SYMSORTSZ:
2654 				TEST_SIZE(SHT_SUNW_symsort, sunw_symsort);
2655 				break;
2656 
2657 			case DT_SUNW_TLSSORT:
2658 				TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort);
2659 				break;
2660 
2661 			case DT_SUNW_TLSSORTSZ:
2662 				TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort);
2663 				break;
2664 
2665 			case DT_VERDEF:
2666 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
2667 				break;
2668 
2669 			case DT_VERNEED:
2670 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
2671 				break;
2672 
2673 			case DT_VERSYM:
2674 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
2675 				break;
2676 #undef TEST_ADDR
2677 #undef TEST_SIZE
2678 #undef TEST_ENTSIZE
2679 			}
2680 
2681 			if (name == NULL)
2682 				name = MSG_ORIG(MSG_STR_EMPTY);
2683 			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2684 		}
2685 	}
2686 }
2687 
2688 /*
2689  * Search for and process a MOVE section.
2690  */
2691 static void
2692 move(Cache *cache, Word shnum, const char *file, uint_t flags)
2693 {
2694 	Word		cnt;
2695 	const char	*fmt = 0;
2696 
2697 	for (cnt = 1; cnt < shnum; cnt++) {
2698 		Word	movenum, symnum, ndx;
2699 		Sym	*syms;
2700 		Cache	*_cache = &cache[cnt];
2701 		Shdr	*shdr = _cache->c_shdr;
2702 		Cache	*symsec, *strsec;
2703 		Move	*move;
2704 
2705 		if (shdr->sh_type != SHT_SUNW_move)
2706 			continue;
2707 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2708 			continue;
2709 
2710 		/*
2711 		 * Determine the move data and number.
2712 		 */
2713 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2714 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2715 			    file, _cache->c_name);
2716 			continue;
2717 		}
2718 		if (_cache->c_data == NULL)
2719 			continue;
2720 
2721 		move = (Move *)_cache->c_data->d_buf;
2722 		movenum = shdr->sh_size / shdr->sh_entsize;
2723 
2724 		/*
2725 		 * Get the data buffer for the associated symbol table and
2726 		 * string table.
2727 		 */
2728 		if (stringtbl(cache, 1, cnt, shnum, file,
2729 		    &symnum, &symsec, &strsec) == 0)
2730 			return;
2731 
2732 		syms = (Sym *)symsec->c_data->d_buf;
2733 
2734 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2735 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2736 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2737 
2738 		if (fmt == 0)
2739 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2740 
2741 		for (ndx = 0; ndx < movenum; move++, ndx++) {
2742 			const char	*symname;
2743 			char		index[MAXNDXSIZE], section[BUFSIZ];
2744 			Word		symndx, shndx;
2745 			Sym		*sym;
2746 
2747 			/*
2748 			 * Check for null entries
2749 			 */
2750 			if ((move->m_info == 0) && (move->m_value == 0) &&
2751 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2752 			    (move->m_stride == 0)) {
2753 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2754 				    EC_XWORD(move->m_poffset), 0, 0, 0,
2755 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2756 				continue;
2757 			}
2758 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2759 			    (symndx >= symnum)) {
2760 				(void) fprintf(stderr,
2761 				    MSG_INTL(MSG_ERR_BADMINFO), file,
2762 				    _cache->c_name, EC_XWORD(move->m_info));
2763 
2764 				(void) snprintf(index, MAXNDXSIZE,
2765 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2766 				dbg_print(0, fmt, index,
2767 				    EC_XWORD(move->m_poffset),
2768 				    ELF_M_SIZE(move->m_info), move->m_repeat,
2769 				    move->m_stride, move->m_value,
2770 				    MSG_INTL(MSG_STR_UNKNOWN));
2771 				continue;
2772 			}
2773 
2774 			symname = relsymname(cache, _cache, strsec,
2775 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
2776 			sym = (Sym *)(syms + symndx);
2777 
2778 			/*
2779 			 * Additional sanity check.
2780 			 */
2781 			shndx = sym->st_shndx;
2782 			if (!((shndx == SHN_COMMON) ||
2783 			    (((shndx >= 1) && (shndx <= shnum)) &&
2784 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2785 				(void) fprintf(stderr,
2786 				    MSG_INTL(MSG_ERR_BADSYM2), file,
2787 				    _cache->c_name, EC_WORD(symndx),
2788 				    demangle(symname, flags));
2789 			}
2790 
2791 			(void) snprintf(index, MAXNDXSIZE,
2792 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2793 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2794 			    ELF_M_SIZE(move->m_info), move->m_repeat,
2795 			    move->m_stride, move->m_value,
2796 			    demangle(symname, flags));
2797 		}
2798 	}
2799 }
2800 
2801 /*
2802  * Callback function for use with conv_str_to_c_literal() below.
2803  */
2804 /*ARGSUSED2*/
2805 static void
2806 c_literal_cb(const void *ptr, size_t size, void *uvalue)
2807 {
2808 	(void) fwrite(ptr, size, 1, stdout);
2809 }
2810 
2811 /*
2812  * Traverse a note section analyzing each note information block.
2813  * The data buffers size is used to validate references before they are made,
2814  * and is decremented as each element is processed.
2815  */
2816 void
2817 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
2818 {
2819 	size_t		bsize = size;
2820 	int		cnt = 0;
2821 	int		is_corenote;
2822 	int		do_swap;
2823 	Conv_inv_buf_t	inv_buf;
2824 
2825 	do_swap =  _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
2826 
2827 	/*
2828 	 * Print out a single `note' information block.
2829 	 */
2830 	while (size > 0) {
2831 		size_t	namesz, descsz, type, pad, noteoff;
2832 
2833 		noteoff = bsize - size;
2834 		/*
2835 		 * Make sure we can at least reference the 3 initial entries
2836 		 * (4-byte words) of the note information block.
2837 		 */
2838 		if (size >= (sizeof (Word) * 3))
2839 			size -= (sizeof (Word) * 3);
2840 		else {
2841 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2842 			    file, cache->c_name, EC_WORD(noteoff));
2843 			return;
2844 		}
2845 
2846 		/*
2847 		 * Make sure any specified name string can be referenced.
2848 		 */
2849 		if ((namesz = *data++) != 0) {
2850 			if (size >= namesz)
2851 				size -= namesz;
2852 			else {
2853 				(void) fprintf(stderr,
2854 				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2855 				    cache->c_name, EC_WORD(noteoff),
2856 				    EC_WORD(namesz));
2857 				return;
2858 			}
2859 		}
2860 
2861 		/*
2862 		 * Make sure any specified descriptor can be referenced.
2863 		 */
2864 		if ((descsz = *data++) != 0) {
2865 			/*
2866 			 * If namesz isn't a 4-byte multiple, account for any
2867 			 * padding that must exist before the descriptor.
2868 			 */
2869 			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2870 				pad = sizeof (Word) - pad;
2871 				size -= pad;
2872 			}
2873 			if (size >= descsz)
2874 				size -= descsz;
2875 			else {
2876 				(void) fprintf(stderr,
2877 				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2878 				    cache->c_name, EC_WORD(noteoff),
2879 				    EC_WORD(namesz));
2880 				return;
2881 			}
2882 		}
2883 
2884 		type = *data++;
2885 
2886 		/*
2887 		 * Is this a Solaris core note? Such notes all have
2888 		 * the name "CORE".
2889 		 */
2890 		is_corenote = (ehdr->e_type == ET_CORE) &&
2891 		    (namesz == (MSG_STR_CORE_SIZE + 1)) &&
2892 		    (strncmp(MSG_ORIG(MSG_STR_CORE), (char *)data,
2893 		    MSG_STR_CORE_SIZE + 1) == 0);
2894 
2895 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2896 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
2897 		cnt++;
2898 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2899 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2900 
2901 		if (is_corenote)
2902 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
2903 			    conv_cnote_type(type, 0, &inv_buf));
2904 		else
2905 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2906 		if (namesz) {
2907 			char	*name = (char *)data;
2908 
2909 
2910 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
2911 			/*
2912 			 * The name string can contain embedded 'null'
2913 			 * bytes and/or unprintable characters. Also,
2914 			 * the final NULL is documented in the ELF ABI
2915 			 * as being included in the namesz. So, display
2916 			 * the name using C literal string notation, and
2917 			 * include the terminating NULL in the output.
2918 			 * We don't show surrounding double quotes, as
2919 			 * that implies the termination that we are showing
2920 			 * explicitly.
2921 			 */
2922 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
2923 			    MSG_STR_8SP_SIZE, 1, stdout);
2924 			conv_str_to_c_literal(name, namesz, c_literal_cb, NULL);
2925 			name = name + ((namesz + (sizeof (Word) - 1)) &
2926 			    ~(sizeof (Word) - 1));
2927 			/* LINTED */
2928 			data = (Word *)name;
2929 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2930 		}
2931 
2932 		/*
2933 		 * If multiple information blocks exist within a .note section
2934 		 * account for any padding that must exist before the next
2935 		 * information block.
2936 		 */
2937 		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2938 			pad = sizeof (Word) - pad;
2939 			if (size > pad)
2940 				size -= pad;
2941 		}
2942 
2943 		if (descsz) {
2944 			int		hexdump = 1;
2945 			const char	*desc = (const char *)data;
2946 
2947 			/*
2948 			 * If this is a core note, let the corenote()
2949 			 * function handle it.
2950 			 */
2951 			if (is_corenote) {
2952 				/* We only issue the bad arch error once */
2953 				static int	badnote_done = 0;
2954 				corenote_ret_t	corenote_ret;
2955 
2956 				corenote_ret = corenote(ehdr->e_machine,
2957 				    do_swap, type, desc, descsz);
2958 				switch (corenote_ret) {
2959 				case CORENOTE_R_OK:
2960 					hexdump = 0;
2961 					break;
2962 				case CORENOTE_R_BADDATA:
2963 					(void) fprintf(stderr,
2964 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
2965 					    file);
2966 					break;
2967 				case CORENOTE_R_BADARCH:
2968 					if (badnote_done)
2969 						break;
2970 					(void) fprintf(stderr,
2971 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
2972 					    file,
2973 					    conv_ehdr_mach(ehdr->e_machine,
2974 					    0, &inv_buf));
2975 					break;
2976 				}
2977 			}
2978 
2979 			/*
2980 			 * The default thing when we don't understand
2981 			 * the note data is to display it as hex bytes.
2982 			 */
2983 			if (hexdump) {
2984 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
2985 				dump_hex_bytes(desc, descsz, 8, 4, 4);
2986 			}
2987 			desc += descsz + pad;
2988 
2989 			/* LINTED */
2990 			data = (Word *)desc;
2991 		}
2992 	}
2993 }
2994 
2995 /*
2996  * Search for and process .note sections.
2997  *
2998  * Returns the number of note sections seen.
2999  */
3000 static Word
3001 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3002 {
3003 	Word	cnt, note_cnt = 0;
3004 
3005 	/*
3006 	 * Otherwise look for any .note sections.
3007 	 */
3008 	for (cnt = 1; cnt < shnum; cnt++) {
3009 		Cache	*_cache = &cache[cnt];
3010 		Shdr	*shdr = _cache->c_shdr;
3011 
3012 		if (shdr->sh_type != SHT_NOTE)
3013 			continue;
3014 		note_cnt++;
3015 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3016 			continue;
3017 
3018 		/*
3019 		 * As these sections are often hand rolled, make sure they're
3020 		 * properly aligned before proceeding, and issue an error
3021 		 * as necessary.
3022 		 *
3023 		 * Note that we will continue on to display the note even
3024 		 * if it has bad alignment. We can do this safely, because
3025 		 * libelf knows the alignment required for SHT_NOTE, and
3026 		 * takes steps to deliver a properly aligned buffer to us
3027 		 * even if the actual file is misaligned.
3028 		 */
3029 		if (shdr->sh_offset & (sizeof (Word) - 1))
3030 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3031 			    file, _cache->c_name);
3032 
3033 		if (_cache->c_data == NULL)
3034 			continue;
3035 
3036 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3037 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3038 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
3039 		/* LINTED */
3040 		    (Word)_cache->c_data->d_size, ehdr, file);
3041 	}
3042 
3043 	return (note_cnt);
3044 }
3045 
3046 /*
3047  * Determine an individual hash entry.  This may be the initial hash entry,
3048  * or an associated chain entry.
3049  */
3050 static void
3051 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3052     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3053     uint_t flags, int chain)
3054 {
3055 	Sym		*sym;
3056 	const char	*symname, *str;
3057 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3058 	ulong_t		nbkt, nhash;
3059 
3060 	if (symndx > symn) {
3061 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3062 		    EC_WORD(symndx), EC_WORD(hashndx));
3063 		symname = MSG_INTL(MSG_STR_UNKNOWN);
3064 	} else {
3065 		sym = (Sym *)(syms + symndx);
3066 		symname = string(refsec, symndx, strsec, file, sym->st_name);
3067 	}
3068 
3069 	if (chain == 0) {
3070 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3071 		    hashndx);
3072 		str = (const char *)_bucket;
3073 	} else
3074 		str = MSG_ORIG(MSG_STR_EMPTY);
3075 
3076 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3077 	    EC_WORD(symndx));
3078 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3079 	    demangle(symname, flags));
3080 
3081 	/*
3082 	 * Determine if this string is in the correct bucket.
3083 	 */
3084 	nhash = elf_hash(symname);
3085 	nbkt = nhash % bkts;
3086 
3087 	if (nbkt != hashndx) {
3088 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3089 		    hsecname, symname, EC_WORD(hashndx), nbkt);
3090 	}
3091 }
3092 
3093 #define	MAXCOUNT	500
3094 
3095 static void
3096 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3097 {
3098 	static int	count[MAXCOUNT];
3099 	Word		cnt;
3100 	ulong_t		ndx, bkts;
3101 	char		number[MAXNDXSIZE];
3102 
3103 	for (cnt = 1; cnt < shnum; cnt++) {
3104 		uint_t		*hash, *chain;
3105 		Cache		*_cache = &cache[cnt];
3106 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
3107 		char		*ssecname, *hsecname = _cache->c_name;
3108 		Sym		*syms;
3109 		Word		symn;
3110 
3111 		if (hshdr->sh_type != SHT_HASH)
3112 			continue;
3113 
3114 		/*
3115 		 * Determine the hash table data and size.
3116 		 */
3117 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3118 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3119 			    file, hsecname);
3120 			continue;
3121 		}
3122 		if (_cache->c_data == NULL)
3123 			continue;
3124 
3125 		hash = (uint_t *)_cache->c_data->d_buf;
3126 		bkts = *hash;
3127 		chain = hash + 2 + bkts;
3128 		hash += 2;
3129 
3130 		/*
3131 		 * Get the data buffer for the associated symbol table.
3132 		 */
3133 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3134 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3135 			    file, hsecname, EC_WORD(hshdr->sh_link));
3136 			continue;
3137 		}
3138 
3139 		_cache = &cache[hshdr->sh_link];
3140 		ssecname = _cache->c_name;
3141 
3142 		if (_cache->c_data == NULL)
3143 			continue;
3144 
3145 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3146 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3147 			    file, ssecname);
3148 			continue;
3149 		}
3150 
3151 		sshdr = _cache->c_shdr;
3152 		/* LINTED */
3153 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3154 
3155 		/*
3156 		 * Get the associated string table section.
3157 		 */
3158 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3159 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3160 			    file, ssecname, EC_WORD(sshdr->sh_link));
3161 			continue;
3162 		}
3163 
3164 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3165 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3166 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3167 
3168 		/*
3169 		 * Loop through the hash buckets, printing the appropriate
3170 		 * symbols.
3171 		 */
3172 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3173 			Word	_ndx, _cnt;
3174 
3175 			if (*hash == 0) {
3176 				count[0]++;
3177 				continue;
3178 			}
3179 
3180 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3181 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3182 
3183 			/*
3184 			 * Determine if any other symbols are chained to this
3185 			 * bucket.
3186 			 */
3187 			_ndx = chain[*hash];
3188 			_cnt = 1;
3189 			while (_ndx) {
3190 				hash_entry(_cache, &cache[sshdr->sh_link],
3191 				    hsecname, ndx, _ndx, symn, syms, file,
3192 				    bkts, flags, 1);
3193 				_ndx = chain[_ndx];
3194 				_cnt++;
3195 			}
3196 
3197 			if (_cnt >= MAXCOUNT) {
3198 				(void) fprintf(stderr,
3199 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3200 				    _cache->c_name, EC_WORD(ndx),
3201 				    EC_WORD(_cnt));
3202 			} else
3203 				count[_cnt]++;
3204 		}
3205 		break;
3206 	}
3207 
3208 	/*
3209 	 * Print out the count information.
3210 	 */
3211 	bkts = cnt = 0;
3212 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3213 
3214 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3215 		Word	_cnt;
3216 
3217 		if ((_cnt = count[ndx]) == 0)
3218 			continue;
3219 
3220 		(void) snprintf(number, MAXNDXSIZE,
3221 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3222 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3223 		    EC_WORD(ndx));
3224 		bkts += _cnt;
3225 		cnt += (Word)(ndx * _cnt);
3226 	}
3227 	if (cnt) {
3228 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3229 		    bkts);
3230 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3231 		    EC_WORD(cnt));
3232 	}
3233 }
3234 
3235 static void
3236 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3237 {
3238 	Word	scnt;
3239 
3240 	for (scnt = 1; scnt < shnum; scnt++) {
3241 		Cache	*_cache = &cache[scnt];
3242 		Shdr	*shdr = _cache->c_shdr;
3243 		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
3244 		Cache	*symsec, *strsec;
3245 		Sym	*syms, *sym;
3246 		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3247 
3248 		if (shdr->sh_type != SHT_GROUP)
3249 			continue;
3250 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3251 			continue;
3252 		if ((_cache->c_data == NULL) ||
3253 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3254 			continue;
3255 		grpcnt = shdr->sh_size / sizeof (Word);
3256 
3257 		/*
3258 		 * Get the data buffer for the associated symbol table and
3259 		 * string table.
3260 		 */
3261 		if (stringtbl(cache, 1, scnt, shnum, file,
3262 		    &symnum, &symsec, &strsec) == 0)
3263 			return;
3264 
3265 		syms = symsec->c_data->d_buf;
3266 
3267 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3268 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3269 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3270 
3271 		/*
3272 		 * The first element of the group defines the group.  The
3273 		 * associated symbol is defined by the sh_link field.
3274 		 */
3275 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3276 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3277 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3278 			return;
3279 		}
3280 
3281 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3282 		if (grpdata[0] & GRP_COMDAT) {
3283 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3284 		}
3285 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3286 			size_t	len = strlen(flgstrbuf);
3287 
3288 			(void) snprintf(&flgstrbuf[len],
3289 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3290 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3291 		}
3292 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3293 		sym = (Sym *)(syms + shdr->sh_info);
3294 
3295 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3296 		    demangle(string(_cache, 0, strsec, file, sym->st_name),
3297 		    flags));
3298 
3299 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3300 			char		index[MAXNDXSIZE];
3301 			const char	*name;
3302 
3303 			(void) snprintf(index, MAXNDXSIZE,
3304 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3305 
3306 			if (grpdata[gcnt] >= shnum)
3307 				name = MSG_INTL(MSG_GRP_INVALSCN);
3308 			else
3309 				name = cache[grpdata[gcnt]].c_name;
3310 
3311 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3312 			    EC_XWORD(grpdata[gcnt]));
3313 		}
3314 	}
3315 }
3316 
3317 static void
3318 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3319 {
3320 	Cache		*gotcache = NULL, *symtab = NULL;
3321 	Addr		gotbgn, gotend;
3322 	Shdr		*gotshdr;
3323 	Word		cnt, gotents, gotndx;
3324 	size_t		gentsize;
3325 	Got_info	*gottable;
3326 	char		*gotdata;
3327 	Sym		*gotsym;
3328 	Xword		gotsymaddr;
3329 	uint_t		sys_encoding;
3330 
3331 	/*
3332 	 * First, find the got.
3333 	 */
3334 	for (cnt = 1; cnt < shnum; cnt++) {
3335 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
3336 		    MSG_ELF_GOT_SIZE) == 0) {
3337 			gotcache = &cache[cnt];
3338 			break;
3339 		}
3340 	}
3341 	if (gotcache == NULL)
3342 		return;
3343 
3344 	/*
3345 	 * A got section within a relocatable object is suspicious.
3346 	 */
3347 	if (ehdr->e_type == ET_REL) {
3348 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
3349 		    gotcache->c_name);
3350 	}
3351 
3352 	gotshdr = gotcache->c_shdr;
3353 	if (gotshdr->sh_size == 0) {
3354 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3355 		    file, gotcache->c_name);
3356 		return;
3357 	}
3358 
3359 	gotbgn = gotshdr->sh_addr;
3360 	gotend = gotbgn + gotshdr->sh_size;
3361 
3362 	/*
3363 	 * Some architectures don't properly set the sh_entsize for the GOT
3364 	 * table.  If it's not set, default to a size of a pointer.
3365 	 */
3366 	if ((gentsize = gotshdr->sh_entsize) == 0)
3367 		gentsize = sizeof (Xword);
3368 
3369 	if (gotcache->c_data == NULL)
3370 		return;
3371 
3372 	/* LINTED */
3373 	gotents = (Word)(gotshdr->sh_size / gentsize);
3374 	gotdata = gotcache->c_data->d_buf;
3375 
3376 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
3377 		int err = errno;
3378 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
3379 		    strerror(err));
3380 		return;
3381 	}
3382 
3383 	/*
3384 	 * Now we scan through all the sections looking for any relocations
3385 	 * that may be against the GOT.  Since these may not be isolated to a
3386 	 * .rel[a].got section we check them all.
3387 	 * While scanning sections save the symbol table entry (a symtab
3388 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
3389 	 */
3390 	for (cnt = 1; cnt < shnum; cnt++) {
3391 		Word		type, symnum;
3392 		Xword		relndx, relnum, relsize;
3393 		void		*rels;
3394 		Sym		*syms;
3395 		Cache		*symsec, *strsec;
3396 		Cache		*_cache = &cache[cnt];
3397 		Shdr		*shdr;
3398 
3399 		shdr = _cache->c_shdr;
3400 		type = shdr->sh_type;
3401 
3402 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
3403 			symtab = _cache;
3404 			continue;
3405 		}
3406 		if (type == SHT_SYMTAB) {
3407 			symtab = _cache;
3408 			continue;
3409 		}
3410 		if ((type != SHT_RELA) && (type != SHT_REL))
3411 			continue;
3412 
3413 		/*
3414 		 * Decide entry size.
3415 		 */
3416 		if (((relsize = shdr->sh_entsize) == 0) ||
3417 		    (relsize > shdr->sh_size)) {
3418 			if (type == SHT_RELA)
3419 				relsize = sizeof (Rela);
3420 			else
3421 				relsize = sizeof (Rel);
3422 		}
3423 
3424 		/*
3425 		 * Determine the number of relocations available.
3426 		 */
3427 		if (shdr->sh_size == 0) {
3428 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3429 			    file, _cache->c_name);
3430 			continue;
3431 		}
3432 		if (_cache->c_data == NULL)
3433 			continue;
3434 
3435 		rels = _cache->c_data->d_buf;
3436 		relnum = shdr->sh_size / relsize;
3437 
3438 		/*
3439 		 * Get the data buffer for the associated symbol table and
3440 		 * string table.
3441 		 */
3442 		if (stringtbl(cache, 1, cnt, shnum, file,
3443 		    &symnum, &symsec, &strsec) == 0)
3444 			continue;
3445 
3446 		syms = symsec->c_data->d_buf;
3447 
3448 		/*
3449 		 * Loop through the relocation entries.
3450 		 */
3451 		for (relndx = 0; relndx < relnum; relndx++,
3452 		    rels = (void *)((char *)rels + relsize)) {
3453 			char		section[BUFSIZ];
3454 			Addr		offset;
3455 			Got_info	*gip;
3456 			Word		symndx, reltype;
3457 			Rela		*rela;
3458 			Rel		*rel;
3459 
3460 			/*
3461 			 * Unravel the relocation.
3462 			 */
3463 			if (type == SHT_RELA) {
3464 				rela = (Rela *)rels;
3465 				symndx = ELF_R_SYM(rela->r_info);
3466 				reltype = ELF_R_TYPE(rela->r_info,
3467 				    ehdr->e_machine);
3468 				offset = rela->r_offset;
3469 			} else {
3470 				rel = (Rel *)rels;
3471 				symndx = ELF_R_SYM(rel->r_info);
3472 				reltype = ELF_R_TYPE(rel->r_info,
3473 				    ehdr->e_machine);
3474 				offset = rel->r_offset;
3475 			}
3476 
3477 			/*
3478 			 * Only pay attention to relocations against the GOT.
3479 			 */
3480 			if ((offset < gotbgn) || (offset >= gotend))
3481 				continue;
3482 
3483 			/* LINTED */
3484 			gotndx = (Word)((offset - gotbgn) /
3485 			    gotshdr->sh_entsize);
3486 			gip = &gottable[gotndx];
3487 
3488 			if (gip->g_reltype != 0) {
3489 				(void) fprintf(stderr,
3490 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
3491 				    EC_WORD(gotndx), EC_ADDR(offset));
3492 				continue;
3493 			}
3494 
3495 			if (symndx)
3496 				gip->g_symname = relsymname(cache, _cache,
3497 				    strsec, symndx, symnum, relndx, syms,
3498 				    section, BUFSIZ, file);
3499 			gip->g_reltype = reltype;
3500 			gip->g_rel = rels;
3501 		}
3502 	}
3503 
3504 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, symtab,
3505 	    file))
3506 		gotsymaddr = gotsym->st_value;
3507 	else
3508 		gotsymaddr = gotbgn;
3509 
3510 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3511 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
3512 	Elf_got_title(0);
3513 
3514 	sys_encoding = _elf_sys_encoding();
3515 	for (gotndx = 0; gotndx < gotents; gotndx++) {
3516 		Got_info	*gip;
3517 		Sword		gindex;
3518 		Addr		gaddr;
3519 		Xword		gotentry;
3520 
3521 		gip = &gottable[gotndx];
3522 
3523 		gaddr = gotbgn + (gotndx * gentsize);
3524 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
3525 
3526 		if (gentsize == sizeof (Word))
3527 			/* LINTED */
3528 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
3529 		else
3530 			/* LINTED */
3531 			gotentry = *((Xword *)(gotdata) + gotndx);
3532 
3533 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
3534 		    ehdr->e_ident[EI_DATA], sys_encoding,
3535 		    gip->g_reltype, gip->g_rel, gip->g_symname);
3536 	}
3537 	free(gottable);
3538 }
3539 
3540 void
3541 checksum(Elf *elf)
3542 {
3543 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3544 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
3545 }
3546 
3547 /*
3548  * This variable is used by regular() to communicate the address of
3549  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
3550  * the qsort() interface does not include a userdata argument by which
3551  * such arbitrary data can be passed, so we are stuck using global data.
3552  */
3553 static Cache *sort_shdr_ndx_arr_cache;
3554 
3555 
3556 /*
3557  * Used with qsort() to sort the section indices so that they can be
3558  * used to access the section headers in order of increasing data offset.
3559  *
3560  * entry:
3561  *	sort_shdr_ndx_arr_cache - Contains address of
3562  *		section header cache.
3563  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
3564  *
3565  * exit:
3566  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
3567  */
3568 static int
3569 sort_shdr_ndx_arr(const void *v1, const void *v2)
3570 {
3571 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
3572 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
3573 
3574 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
3575 		return (-1);
3576 
3577 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
3578 		return (1);
3579 
3580 	return (0);
3581 }
3582 
3583 
3584 static int
3585 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
3586     size_t shnum, Cache **cache_ret, Word flags)
3587 {
3588 	Elf_Scn		*scn;
3589 	Elf_Data	*data;
3590 	size_t		ndx;
3591 	Shdr		*nameshdr;
3592 	char		*names = 0;
3593 	Cache		*cache, *_cache;
3594 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
3595 
3596 
3597 	/*
3598 	 * Obtain the .shstrtab data buffer to provide the required section
3599 	 * name strings.
3600 	 */
3601 	if (shstrndx == SHN_UNDEF) {
3602 		/*
3603 		 * It is rare, but legal, for an object to lack a
3604 		 * header string table section.
3605 		 */
3606 		names = NULL;
3607 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
3608 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
3609 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
3610 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
3611 		    EC_XWORD(shstrndx));
3612 
3613 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
3614 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3615 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
3616 		    EC_XWORD(shstrndx));
3617 
3618 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
3619 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3620 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3621 		    EC_WORD(elf_ndxscn(scn)));
3622 
3623 	} else if ((names = data->d_buf) == 0)
3624 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
3625 
3626 	/*
3627 	 * Allocate a cache to maintain a descriptor for each section.
3628 	 */
3629 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
3630 		int err = errno;
3631 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3632 		    file, strerror(err));
3633 		return (0);
3634 	}
3635 
3636 	*cache = cache_init;
3637 	_cache = cache;
3638 	_cache++;
3639 
3640 	/*
3641 	 * Allocate an array that will hold the section index for
3642 	 * each section that has data in the ELF file:
3643 	 *
3644 	 *	- Is not a NOBITS section
3645 	 *	- Data has non-zero length
3646 	 *
3647 	 * Note that shnum is an upper bound on the size required. It
3648 	 * is likely that we won't use a few of these array elements.
3649 	 * Allocating a modest amount of extra memory in this case means
3650 	 * that we can avoid an extra loop to count the number of needed
3651 	 * items, and can fill this array immediately in the first loop
3652 	 * below.
3653 	 */
3654 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
3655 		int err = errno;
3656 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3657 		    file, strerror(err));
3658 		return (0);
3659 	}
3660 	shdr_ndx_arr_cnt = 0;
3661 
3662 	/*
3663 	 * Traverse the sections of the file.  This gathering of data is
3664 	 * carried out in two passes.  First, the section headers are captured
3665 	 * and the section header names are evaluated.  A verification pass is
3666 	 * then carried out over the section information.  Files have been
3667 	 * known to exhibit overlapping (and hence erroneous) section header
3668 	 * information.
3669 	 *
3670 	 * Finally, the data for each section is obtained.  This processing is
3671 	 * carried out after section verification because should any section
3672 	 * header overlap occur, and a file needs translating (ie. xlate'ing
3673 	 * information from a non-native architecture file), then the process
3674 	 * of translation can corrupt the section header information.  Of
3675 	 * course, if there is any section overlap, the data related to the
3676 	 * sections is going to be compromised.  However, it is the translation
3677 	 * of this data that has caused problems with elfdump()'s ability to
3678 	 * extract the data.
3679 	 */
3680 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3681 	    ndx++, _cache++) {
3682 		char	scnndxnm[100];
3683 
3684 		_cache->c_ndx = ndx;
3685 		_cache->c_scn = scn;
3686 
3687 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3688 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3689 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3690 			    EC_WORD(elf_ndxscn(scn)));
3691 		}
3692 
3693 		/*
3694 		 * If this section has data in the file, include it in
3695 		 * the array of sections to check for address overlap.
3696 		 */
3697 		if ((_cache->c_shdr->sh_size != 0) &&
3698 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3699 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3700 
3701 		/*
3702 		 * If a shstrtab exists, assign the section name.
3703 		 */
3704 		if (names && _cache->c_shdr) {
3705 			if (_cache->c_shdr->sh_name &&
3706 			    /* LINTED */
3707 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3708 				const char	*symname;
3709 				char		*secname;
3710 
3711 				secname = names + _cache->c_shdr->sh_name;
3712 
3713 				/*
3714 				 * A SUN naming convention employs a "%" within
3715 				 * a section name to indicate a section/symbol
3716 				 * name.  This originated from the compilers
3717 				 * -xF option, that places functions into their
3718 				 * own sections.  This convention (which has no
3719 				 * formal standard) has also been followed for
3720 				 * COMDAT sections.  To demangle the symbol
3721 				 * name, the name must be separated from the
3722 				 * section name.
3723 				 */
3724 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
3725 				    ((symname = strchr(secname, '%')) == NULL))
3726 					_cache->c_name = secname;
3727 				else {
3728 					size_t	secsz = ++symname - secname;
3729 					size_t	strsz;
3730 
3731 					symname = demangle(symname, flags);
3732 					strsz = secsz + strlen(symname) + 1;
3733 
3734 					if ((_cache->c_name =
3735 					    malloc(strsz)) == NULL) {
3736 						int err = errno;
3737 						(void) fprintf(stderr,
3738 						    MSG_INTL(MSG_ERR_MALLOC),
3739 						    file, strerror(err));
3740 						return (0);
3741 					}
3742 					(void) snprintf(_cache->c_name, strsz,
3743 					    MSG_ORIG(MSG_FMT_SECSYM),
3744 					    EC_WORD(secsz), secname, symname);
3745 				}
3746 				continue;
3747 			}
3748 
3749 			/*
3750 			 * Generate an error if the section name index is zero
3751 			 * or exceeds the shstrtab data.  Fall through to
3752 			 * fabricate a section name.
3753 			 */
3754 			if ((_cache->c_shdr->sh_name == 0) ||
3755 			    /* LINTED */
3756 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3757 				(void) fprintf(stderr,
3758 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3759 				    EC_WORD(ndx),
3760 				    EC_XWORD(_cache->c_shdr->sh_name));
3761 			}
3762 		}
3763 
3764 		/*
3765 		 * If there exists no shstrtab data, or a section header has no
3766 		 * name (an invalid index of 0), then compose a name for the
3767 		 * section.
3768 		 */
3769 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3770 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3771 
3772 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3773 			int err = errno;
3774 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3775 			    file, strerror(err));
3776 			return (0);
3777 		}
3778 		(void) strcpy(_cache->c_name, scnndxnm);
3779 	}
3780 
3781 	/*
3782 	 * Having collected all the sections, validate their address range.
3783 	 * Cases have existed where the section information has been invalid.
3784 	 * This can lead to all sorts of other, hard to diagnose errors, as
3785 	 * each section is processed individually (ie. with elf_getdata()).
3786 	 * Here, we carry out some address comparisons to catch a family of
3787 	 * overlapping memory issues we have observed (likely, there are others
3788 	 * that we have yet to discover).
3789 	 *
3790 	 * Note, should any memory overlap occur, obtaining any additional
3791 	 * data from the file is questionable.  However, it might still be
3792 	 * possible to inspect the ELF header, Programs headers, or individual
3793 	 * sections, so rather than bailing on an error condition, continue
3794 	 * processing to see if any data can be salvaged.
3795 	 */
3796 	if (shdr_ndx_arr_cnt > 1) {
3797 		sort_shdr_ndx_arr_cache = cache;
3798 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3799 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3800 	}
3801 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3802 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3803 		Shdr	*shdr = _cache->c_shdr;
3804 		Off	bgn1, bgn = shdr->sh_offset;
3805 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3806 		size_t	ndx1;
3807 
3808 		/*
3809 		 * Check the section against all following ones, reporting
3810 		 * any overlaps. Since we've sorted the sections by offset,
3811 		 * we can stop after the first comparison that fails. There
3812 		 * are no overlaps in a properly formed ELF file, in which
3813 		 * case this algorithm runs in O(n) time. This will degenerate
3814 		 * to O(n^2) for a completely broken file. Such a file is
3815 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3816 		 * for the analysis to take longer.
3817 		 */
3818 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3819 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3820 			Shdr	*shdr1 = _cache1->c_shdr;
3821 
3822 			bgn1 = shdr1->sh_offset;
3823 			end1 = shdr1->sh_offset + shdr1->sh_size;
3824 
3825 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3826 			    ((bgn1 < end) && (end1 >= end))) {
3827 				(void) fprintf(stderr,
3828 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3829 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3830 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3831 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3832 				    _cache1->c_name, EC_OFF(bgn1),
3833 				    EC_OFF(end1));
3834 			} else {	/* No overlap, so can stop */
3835 				break;
3836 			}
3837 		}
3838 
3839 		/*
3840 		 * In addition to checking for sections overlapping
3841 		 * each other (done above), we should also make sure
3842 		 * the section doesn't overlap the section header array.
3843 		 */
3844 		bgn1 = ehdr->e_shoff;
3845 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3846 
3847 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3848 		    ((bgn1 < end) && (end1 >= end))) {
3849 			(void) fprintf(stderr,
3850 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3851 			    EC_OFF(end1),
3852 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3853 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3854 		}
3855 	}
3856 
3857 	/*
3858 	 * Obtain the data for each section.
3859 	 */
3860 	for (ndx = 1; ndx < shnum; ndx++) {
3861 		Cache	*_cache = &cache[ndx];
3862 		Elf_Scn	*scn = _cache->c_scn;
3863 
3864 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3865 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3866 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3867 			    EC_WORD(elf_ndxscn(scn)));
3868 		}
3869 
3870 		/*
3871 		 * If a string table, verify that it has NULL first and
3872 		 * final bytes.
3873 		 */
3874 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
3875 		    (_cache->c_data->d_buf != NULL) &&
3876 		    (_cache->c_data->d_size > 0)) {
3877 			const char *s = _cache->c_data->d_buf;
3878 
3879 			if ((*s != '\0') ||
3880 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
3881 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
3882 				    file, _cache->c_name);
3883 		}
3884 	}
3885 
3886 	return (1);
3887 }
3888 
3889 
3890 
3891 int
3892 regular(const char *file, int fd, Elf *elf, uint_t flags,
3893     const char *wname, int wfd)
3894 {
3895 	Elf_Scn		*scn;
3896 	Ehdr		*ehdr;
3897 	size_t		ndx, shstrndx, shnum, phnum;
3898 	Shdr		*shdr;
3899 	Cache		*cache;
3900 	VERSYM_STATE	versym;
3901 	int		ret = 0;
3902 	int		addr_align;
3903 
3904 	if ((ehdr = elf_getehdr(elf)) == NULL) {
3905 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3906 		return (ret);
3907 	}
3908 
3909 	if (elf_getshnum(elf, &shnum) == 0) {
3910 		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3911 		return (ret);
3912 	}
3913 
3914 	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3915 		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3916 		return (ret);
3917 	}
3918 
3919 	if (elf_getphnum(elf, &phnum) == 0) {
3920 		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3921 		return (ret);
3922 	}
3923 	/*
3924 	 * If the user requested section headers derived from the
3925 	 * program headers (-P option) and this file doesn't have
3926 	 * any program headers (i.e. ET_REL), then we can't do it.
3927 	 */
3928 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
3929 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3930 		return (ret);
3931 	}
3932 
3933 
3934 	if ((scn = elf_getscn(elf, 0)) != NULL) {
3935 		if ((shdr = elf_getshdr(scn)) == NULL) {
3936 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3937 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3938 			return (ret);
3939 		}
3940 	} else
3941 		shdr = 0;
3942 
3943 	/*
3944 	 * Print the elf header.
3945 	 */
3946 	if (flags & FLG_SHOW_EHDR)
3947 		Elf_ehdr(0, ehdr, shdr);
3948 
3949 	/*
3950 	 * If the section headers or program headers have inadequate
3951 	 * alignment for the class of object, print a warning. libelf
3952 	 * can handle such files, but programs that use them can crash
3953 	 * when they dereference unaligned items.
3954 	 *
3955 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
3956 	 * allows access to data types smaller than 128-bits to be on
3957 	 * word alignment.
3958 	 */
3959 	if (ehdr->e_machine == EM_AMD64)
3960 		addr_align = sizeof (Word);
3961 	else
3962 		addr_align = sizeof (Addr);
3963 
3964 	if (ehdr->e_phoff & (addr_align - 1))
3965 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3966 	if (ehdr->e_shoff & (addr_align - 1))
3967 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3968 
3969 	/*
3970 	 * Print the program headers.
3971 	 */
3972 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
3973 		Phdr	*phdr;
3974 
3975 		if ((phdr = elf_getphdr(elf)) == NULL) {
3976 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3977 			return (ret);
3978 		}
3979 
3980 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3981 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
3982 			    NULL, ndx, phdr->p_type))
3983 				continue;
3984 
3985 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3986 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3987 			Elf_phdr(0, ehdr->e_machine, phdr);
3988 		}
3989 	}
3990 
3991 	/*
3992 	 * If we have flag bits set that explicitly require a show or calc
3993 	 * operation, but none of them require the section headers, then
3994 	 * we are done and can return now.
3995 	 */
3996 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
3997 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
3998 		return (ret);
3999 
4000 	/*
4001 	 * If there are no section headers, then resort to synthesizing
4002 	 * section headers from the program headers. This is normally
4003 	 * only done by explicit request, but in this case there's no
4004 	 * reason not to go ahead, since the alternative is simply to quit.
4005 	 */
4006 	if ((shnum <= 1) && ((flags & FLG_CTL_FAKESHDR) == 0)) {
4007 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4008 		flags |= FLG_CTL_FAKESHDR;
4009 	}
4010 
4011 	/*
4012 	 * Generate a cache of section headers and related information
4013 	 * for use by the rest of elfdump. If requested (or the file
4014 	 * contains no section headers), we generate a fake set of
4015 	 * headers from the information accessible from the program headers.
4016 	 * Otherwise, we use the real section headers contained in the file.
4017 	 */
4018 
4019 	if (flags & FLG_CTL_FAKESHDR) {
4020 		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
4021 			return (ret);
4022 	} else {
4023 		if (shdr_cache(file, elf, ehdr, shstrndx, shnum,
4024 		    &cache, flags) == 0)
4025 			return (ret);
4026 	}
4027 
4028 	/*
4029 	 * Everything from this point on requires section headers.
4030 	 * If we have no section headers, there is no reason to continue.
4031 	 */
4032 	if (shnum <= 1)
4033 		goto done;
4034 
4035 	/*
4036 	 * If -w was specified, find and write out the section(s) data.
4037 	 */
4038 	if (wfd) {
4039 		for (ndx = 1; ndx < shnum; ndx++) {
4040 			Cache	*_cache = &cache[ndx];
4041 
4042 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4043 			    ndx, _cache->c_shdr->sh_type) &&
4044 			    _cache->c_data && _cache->c_data->d_buf) {
4045 				if (write(wfd, _cache->c_data->d_buf,
4046 				    _cache->c_data->d_size) !=
4047 				    _cache->c_data->d_size) {
4048 					int err = errno;
4049 					(void) fprintf(stderr,
4050 					    MSG_INTL(MSG_ERR_WRITE), wname,
4051 					    strerror(err));
4052 					/*
4053 					 * Return an exit status of 1, because
4054 					 * the failure is not related to the
4055 					 * ELF file, but by system resources.
4056 					 */
4057 					ret = 1;
4058 					goto done;
4059 				}
4060 			}
4061 		}
4062 	}
4063 
4064 	/*
4065 	 * If we have no flag bits set that explicitly require a show or calc
4066 	 * operation, but match options (-I, -N, -T) were used, then run
4067 	 * through the section headers and see if we can't deduce show flags
4068 	 * from the match options given.
4069 	 *
4070 	 * We don't do this if -w was specified, because (-I, -N, -T) used
4071 	 * with -w in lieu of some other option is supposed to be quiet.
4072 	 */
4073 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4074 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4075 		for (ndx = 1; ndx < shnum; ndx++) {
4076 			Cache	*_cache = &cache[ndx];
4077 
4078 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4079 			    ndx, _cache->c_shdr->sh_type))
4080 				continue;
4081 
4082 			switch (_cache->c_shdr->sh_type) {
4083 			case SHT_PROGBITS:
4084 				/*
4085 				 * Heuristic time: It is usually bad form
4086 				 * to assume that specific section names
4087 				 * have a given meaning. However, the
4088 				 * ELF ABI does specify a few such names. Try
4089 				 * to match them:
4090 				 */
4091 				if (strcmp(_cache->c_name,
4092 				    MSG_ORIG(MSG_ELF_INTERP)) == 0)
4093 					flags |= FLG_SHOW_INTERP;
4094 				else if (strcmp(_cache->c_name,
4095 				    MSG_ORIG(MSG_ELF_GOT)) == 0)
4096 					flags |= FLG_SHOW_GOT;
4097 				break;
4098 
4099 			case SHT_SYMTAB:
4100 			case SHT_DYNSYM:
4101 			case SHT_SUNW_LDYNSYM:
4102 			case SHT_SUNW_versym:
4103 			case SHT_SYMTAB_SHNDX:
4104 				flags |= FLG_SHOW_SYMBOLS;
4105 				break;
4106 
4107 			case SHT_RELA:
4108 			case SHT_REL:
4109 				flags |= FLG_SHOW_RELOC;
4110 				break;
4111 
4112 			case SHT_HASH:
4113 				flags |= FLG_SHOW_HASH;
4114 				break;
4115 
4116 			case SHT_DYNAMIC:
4117 				flags |= FLG_SHOW_DYNAMIC;
4118 				break;
4119 
4120 			case SHT_NOTE:
4121 				flags |= FLG_SHOW_NOTE;
4122 				break;
4123 
4124 			case SHT_GROUP:
4125 				flags |= FLG_SHOW_GROUP;
4126 				break;
4127 
4128 			case SHT_SUNW_symsort:
4129 			case SHT_SUNW_tlssort:
4130 				flags |= FLG_SHOW_SORT;
4131 				break;
4132 
4133 			case SHT_SUNW_cap:
4134 				flags |= FLG_SHOW_CAP;
4135 				break;
4136 
4137 			case SHT_SUNW_move:
4138 				flags |= FLG_SHOW_MOVE;
4139 				break;
4140 
4141 			case SHT_SUNW_syminfo:
4142 				flags |= FLG_SHOW_SYMINFO;
4143 				break;
4144 
4145 			case SHT_SUNW_verdef:
4146 			case SHT_SUNW_verneed:
4147 				flags |= FLG_SHOW_VERSIONS;
4148 				break;
4149 
4150 			case SHT_AMD64_UNWIND:
4151 				flags |= FLG_SHOW_UNWIND;
4152 				break;
4153 			}
4154 		}
4155 	}
4156 
4157 
4158 	if (flags & FLG_SHOW_SHDR)
4159 		sections(file, cache, shnum, ehdr);
4160 
4161 	if (flags & FLG_SHOW_INTERP)
4162 		interp(file, cache, shnum, phnum, elf);
4163 
4164 	versions(cache, shnum, file, flags, &versym);
4165 
4166 	if (flags & FLG_SHOW_SYMBOLS)
4167 		symbols(cache, shnum, ehdr, &versym, file, flags);
4168 
4169 	if (flags & FLG_SHOW_SORT)
4170 		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
4171 
4172 	if (flags & FLG_SHOW_HASH)
4173 		hash(cache, shnum, file, flags);
4174 
4175 	if (flags & FLG_SHOW_GOT)
4176 		got(cache, shnum, ehdr, file);
4177 
4178 	if (flags & FLG_SHOW_GROUP)
4179 		group(cache, shnum, file, flags);
4180 
4181 	if (flags & FLG_SHOW_SYMINFO)
4182 		syminfo(cache, shnum, file);
4183 
4184 	if (flags & FLG_SHOW_RELOC)
4185 		reloc(cache, shnum, ehdr, file);
4186 
4187 	if (flags & FLG_SHOW_DYNAMIC)
4188 		dynamic(cache, shnum, ehdr, file);
4189 
4190 	if (flags & FLG_SHOW_NOTE) {
4191 		Word	note_cnt;
4192 		size_t	note_shnum;
4193 		Cache	*note_cache;
4194 
4195 		note_cnt = note(cache, shnum, ehdr, file);
4196 
4197 		/*
4198 		 * Solaris core files have section headers, but these
4199 		 * headers do not include SHT_NOTE sections that reference
4200 		 * the core note sections. This means that note() won't
4201 		 * find the core notes. Fake section headers (-P option)
4202 		 * recover these sections, but it is inconvenient to require
4203 		 * users to specify -P in this situation. If the following
4204 		 * are all true:
4205 		 *
4206 		 *	- No note sections were found
4207 		 *	- This is a core file
4208 		 *	- We are not already using fake section headers
4209 		 *
4210 		 * then we will automatically generate fake section headers
4211 		 * and then process them in a second call to note().
4212 		 */
4213 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
4214 		    !(flags & FLG_CTL_FAKESHDR) &&
4215 		    (fake_shdr_cache(file, fd, elf, ehdr,
4216 		    &note_cache, &note_shnum) != 0)) {
4217 			(void) note(note_cache, note_shnum, ehdr, file);
4218 			fake_shdr_cache_free(note_cache, note_shnum);
4219 		}
4220 	}
4221 
4222 	if (flags & FLG_SHOW_MOVE)
4223 		move(cache, shnum, file, flags);
4224 
4225 	if (flags & FLG_CALC_CHECKSUM)
4226 		checksum(elf);
4227 
4228 	if (flags & FLG_SHOW_CAP)
4229 		cap(file, cache, shnum, phnum, ehdr, elf);
4230 
4231 	if (flags & FLG_SHOW_UNWIND)
4232 		unwind(cache, shnum, phnum, ehdr, file, elf);
4233 
4234 
4235 	/* Release the memory used to cache section headers */
4236 done:
4237 	if (flags & FLG_CTL_FAKESHDR)
4238 		fake_shdr_cache_free(cache, shnum);
4239 	else
4240 		free(cache);
4241 
4242 	return (ret);
4243 }
4244