xref: /titanic_44/usr/src/cmd/mdb/intel/mdb/kvm_amd64dep.c (revision 6185db853e024a486ff8837e6784dd290d866112)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Libkvm Kernel Target Intel 64-bit component
31  *
32  * This file provides the ISA-dependent portion of the libkvm kernel target.
33  * For more details on the implementation refer to mdb_kvm.c.
34  */
35 
36 #include <sys/types.h>
37 #include <sys/reg.h>
38 #include <sys/frame.h>
39 #include <sys/stack.h>
40 #include <sys/sysmacros.h>
41 #include <sys/panic.h>
42 #include <sys/privregs.h>
43 #include <strings.h>
44 
45 #include <mdb/mdb_target_impl.h>
46 #include <mdb/mdb_disasm.h>
47 #include <mdb/mdb_modapi.h>
48 #include <mdb/mdb_conf.h>
49 #include <mdb/mdb_kreg_impl.h>
50 #include <mdb/mdb_amd64util.h>
51 #include <mdb/mdb_kvm.h>
52 #include <mdb/mdb_err.h>
53 #include <mdb/mdb_debug.h>
54 #include <mdb/mdb.h>
55 
56 static int
57 kt_getareg(mdb_tgt_t *t, mdb_tgt_tid_t tid,
58     const char *rname, mdb_tgt_reg_t *rp)
59 {
60 	const mdb_tgt_regdesc_t *rdp;
61 	kt_data_t *kt = t->t_data;
62 
63 	if (tid != kt->k_tid)
64 		return (set_errno(EMDB_NOREGS));
65 
66 	for (rdp = kt->k_rds; rdp->rd_name != NULL; rdp++) {
67 		if (strcmp(rname, rdp->rd_name) == 0) {
68 			*rp = kt->k_regs->kregs[rdp->rd_num];
69 			return (0);
70 		}
71 	}
72 
73 	return (set_errno(EMDB_BADREG));
74 }
75 
76 static int
77 kt_putareg(mdb_tgt_t *t, mdb_tgt_tid_t tid, const char *rname, mdb_tgt_reg_t r)
78 {
79 	const mdb_tgt_regdesc_t *rdp;
80 	kt_data_t *kt = t->t_data;
81 
82 	if (tid != kt->k_tid)
83 		return (set_errno(EMDB_NOREGS));
84 
85 	for (rdp = kt->k_rds; rdp->rd_name != NULL; rdp++) {
86 		if (strcmp(rname, rdp->rd_name) == 0) {
87 			kt->k_regs->kregs[rdp->rd_num] = (kreg_t)r;
88 			return (0);
89 		}
90 	}
91 
92 	return (set_errno(EMDB_BADREG));
93 }
94 
95 /*ARGSUSED*/
96 int
97 kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
98 {
99 	kt_data_t *kt = mdb.m_target->t_data;
100 
101 	if (argc != 0 || (flags & DCMD_ADDRSPEC))
102 		return (DCMD_USAGE);
103 
104 	mdb_amd64_printregs(kt->k_regs);
105 
106 	return (DCMD_OK);
107 }
108 
109 /*
110  * Return a flag indicating if the specified %eip is likely to have an
111  * interrupt frame on the stack.  We do this by comparing the address to the
112  * range of addresses spanned by several well-known routines, and looking
113  * to see if the next and previous %ebp values are "far" apart.  Sigh.
114  */
115 int
116 mdb_kvm_intrframe(mdb_tgt_t *t, uintptr_t pc, uintptr_t fp,
117     uintptr_t prevfp)
118 {
119 	kt_data_t *kt = t->t_data;
120 
121 	return ((pc >= kt->k_intr_sym.st_value &&
122 	    (pc < kt->k_intr_sym.st_value + kt->k_intr_sym.st_size)) ||
123 	    (pc >= kt->k_trap_sym.st_value &&
124 	    (pc < kt->k_trap_sym.st_value + kt->k_trap_sym.st_size)) ||
125 	    (fp >= prevfp + 0x2000) || (fp <= prevfp - 0x2000));
126 }
127 
128 static int
129 kt_stack_common(uintptr_t addr, uint_t flags, int argc,
130     const mdb_arg_t *argv, mdb_tgt_stack_f *func)
131 {
132 	kt_data_t *kt = mdb.m_target->t_data;
133 	void *arg = (void *)(uintptr_t)mdb.m_nargs;
134 	mdb_tgt_gregset_t gregs, *grp;
135 
136 	if (flags & DCMD_ADDRSPEC) {
137 		bzero(&gregs, sizeof (gregs));
138 		gregs.kregs[KREG_RBP] = addr;
139 		grp = &gregs;
140 	} else
141 		grp = kt->k_regs;
142 
143 	if (argc != 0) {
144 		if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
145 			return (DCMD_USAGE);
146 
147 		if (argv->a_type == MDB_TYPE_STRING)
148 			arg = (void *)mdb_strtoull(argv->a_un.a_str);
149 		else
150 			arg = (void *)argv->a_un.a_val;
151 	}
152 
153 	(void) mdb_amd64_kvm_stack_iter(mdb.m_target, grp, func, arg);
154 	return (DCMD_OK);
155 }
156 
157 static int
158 kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
159 {
160 	return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_frame));
161 }
162 
163 static int
164 kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
165 {
166 	return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_framev));
167 }
168 
169 const mdb_tgt_ops_t kt_amd64_ops = {
170 	kt_setflags,				/* t_setflags */
171 	kt_setcontext,				/* t_setcontext */
172 	kt_activate,				/* t_activate */
173 	kt_deactivate,				/* t_deactivate */
174 	(void (*)()) mdb_tgt_nop,		/* t_periodic */
175 	kt_destroy,				/* t_destroy */
176 	kt_name,				/* t_name */
177 	(const char *(*)()) mdb_conf_isa,	/* t_isa */
178 	kt_platform,				/* t_platform */
179 	kt_uname,				/* t_uname */
180 	kt_dmodel,				/* t_dmodel */
181 	kt_aread,				/* t_aread */
182 	kt_awrite,				/* t_awrite */
183 	kt_vread,				/* t_vread */
184 	kt_vwrite,				/* t_vwrite */
185 	kt_pread,				/* t_pread */
186 	kt_pwrite,				/* t_pwrite */
187 	kt_fread,				/* t_fread */
188 	kt_fwrite,				/* t_fwrite */
189 	(ssize_t (*)()) mdb_tgt_notsup,		/* t_ioread */
190 	(ssize_t (*)()) mdb_tgt_notsup,		/* t_iowrite */
191 	kt_vtop,				/* t_vtop */
192 	kt_lookup_by_name,			/* t_lookup_by_name */
193 	kt_lookup_by_addr,			/* t_lookup_by_addr */
194 	kt_symbol_iter,				/* t_symbol_iter */
195 	kt_mapping_iter,			/* t_mapping_iter */
196 	kt_object_iter,				/* t_object_iter */
197 	kt_addr_to_map,				/* t_addr_to_map */
198 	kt_name_to_map,				/* t_name_to_map */
199 	kt_addr_to_ctf,				/* t_addr_to_ctf */
200 	kt_name_to_ctf,				/* t_name_to_ctf */
201 	kt_status,				/* t_status */
202 	(int (*)()) mdb_tgt_notsup,		/* t_run */
203 	(int (*)()) mdb_tgt_notsup,		/* t_step */
204 	(int (*)()) mdb_tgt_notsup,		/* t_step_out */
205 	(int (*)()) mdb_tgt_notsup,		/* t_step_branch */
206 	(int (*)()) mdb_tgt_notsup,		/* t_next */
207 	(int (*)()) mdb_tgt_notsup,		/* t_cont */
208 	(int (*)()) mdb_tgt_notsup,		/* t_signal */
209 	(int (*)()) mdb_tgt_null,		/* t_add_vbrkpt */
210 	(int (*)()) mdb_tgt_null,		/* t_add_sbrkpt */
211 	(int (*)()) mdb_tgt_null,		/* t_add_pwapt */
212 	(int (*)()) mdb_tgt_null,		/* t_add_vwapt */
213 	(int (*)()) mdb_tgt_null,		/* t_add_iowapt */
214 	(int (*)()) mdb_tgt_null,		/* t_add_sysenter */
215 	(int (*)()) mdb_tgt_null,		/* t_add_sysexit */
216 	(int (*)()) mdb_tgt_null,		/* t_add_signal */
217 	(int (*)()) mdb_tgt_null,		/* t_add_fault */
218 	kt_getareg,				/* t_getareg */
219 	kt_putareg,				/* t_putareg */
220 	mdb_amd64_kvm_stack_iter,		/* t_stack_iter */
221 };
222 
223 void
224 kt_amd64_init(mdb_tgt_t *t)
225 {
226 	kt_data_t *kt = t->t_data;
227 
228 	panic_data_t pd;
229 	kreg_t *kregs;
230 	struct regs regs;
231 	uintptr_t addr;
232 
233 	/*
234 	 * Initialize the machine-dependent parts of the kernel target
235 	 * structure.  Once this is complete and we fill in the ops
236 	 * vector, the target is now fully constructed and we can use
237 	 * the target API itself to perform the rest of our initialization.
238 	 */
239 	kt->k_rds = mdb_amd64_kregs;
240 	kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
241 	kt->k_regsize = sizeof (mdb_tgt_gregset_t);
242 	kt->k_dcmd_regs = kt_regs;
243 	kt->k_dcmd_stack = kt_stack;
244 	kt->k_dcmd_stackv = kt_stackv;
245 	kt->k_dcmd_stackr = kt_stackv;
246 
247 	t->t_ops = &kt_amd64_ops;
248 	kregs = kt->k_regs->kregs;
249 
250 	(void) mdb_dis_select("amd64");
251 
252 	/*
253 	 * Lookup the symbols corresponding to subroutines in locore.s where
254 	 * we expect a saved regs structure to be pushed on the stack.  When
255 	 * performing stack tracebacks we will attempt to detect interrupt
256 	 * frames by comparing the %eip value to these symbols.
257 	 */
258 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
259 	    "cmnint", &kt->k_intr_sym, NULL);
260 
261 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
262 	    "cmntrap", &kt->k_trap_sym, NULL);
263 
264 	/*
265 	 * Don't attempt to load any thread or register information if
266 	 * we're examining the live operating system.
267 	 */
268 	if (strcmp(kt->k_symfile, "/dev/ksyms") == 0)
269 		return;
270 
271 	/*
272 	 * If the panicbuf symbol is present and we can consume a panicbuf
273 	 * header of the appropriate version from this address, then we can
274 	 * initialize our current register set based on its contents.
275 	 * Prior to the re-structuring of panicbuf, our only register data
276 	 * was the panic_regs label_t, into which a setjmp() was performed,
277 	 * or the panic_reg register pointer, which was only non-zero if
278 	 * the system panicked as a result of a trap calling die().
279 	 */
280 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
281 	    MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
282 	    pd.pd_version == PANICBUFVERS) {
283 
284 		size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
285 		panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
286 		uint_t i, n;
287 
288 		(void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
289 		    MDB_TGT_OBJ_EXEC, "panicbuf");
290 
291 		n = (pd_size - (sizeof (panic_data_t) -
292 		    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
293 
294 		for (i = 0; i < n; i++) {
295 			(void) kt_putareg(t, kt->k_tid,
296 			    pdp->pd_nvdata[i].pnv_name,
297 			    pdp->pd_nvdata[i].pnv_value);
298 		}
299 
300 		mdb_free(pdp, pd_size);
301 
302 	} else if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
303 	    MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != NULL &&
304 	    mdb_tgt_vread(t, &regs, sizeof (regs), addr) == sizeof (regs)) {
305 
306 		kregs[KREG_SAVFP] = regs.r_savfp;
307 		kregs[KREG_SAVPC] = regs.r_savpc;
308 		kregs[KREG_RDI] = regs.r_rdi;
309 		kregs[KREG_RSI] = regs.r_rsi;
310 		kregs[KREG_RDX] = regs.r_rdx;
311 		kregs[KREG_RCX] = regs.r_rcx;
312 		kregs[KREG_R8] = regs.r_r8;
313 		kregs[KREG_R9] = regs.r_r9;
314 		kregs[KREG_RAX] = regs.r_rax;
315 		kregs[KREG_RBX] = regs.r_rbx;
316 		kregs[KREG_RBP] = regs.r_rbp;
317 		kregs[KREG_R10] = regs.r_r10;
318 		kregs[KREG_R11] = regs.r_r11;
319 		kregs[KREG_R12] = regs.r_r12;
320 		kregs[KREG_R13] = regs.r_r13;
321 		kregs[KREG_R14] = regs.r_r14;
322 		kregs[KREG_R15] = regs.r_r15;
323 		kregs[KREG_FSBASE] = regs.r_fsbase;
324 		kregs[KREG_GSBASE] = regs.r_gsbase;
325 		kregs[KREG_DS] = regs.r_ds;
326 		kregs[KREG_ES] = regs.r_es;
327 		kregs[KREG_FS] = regs.r_fs;
328 		kregs[KREG_GS] = regs.r_gs;
329 		kregs[KREG_TRAPNO] = regs.r_trapno;
330 		kregs[KREG_ERR] = regs.r_err;
331 		kregs[KREG_RIP] = regs.r_rip;
332 		kregs[KREG_CS] = regs.r_cs;
333 		kregs[KREG_RFLAGS] = regs.r_rfl;
334 		kregs[KREG_RSP] = regs.r_rsp;
335 		kregs[KREG_SS] = regs.r_ss;
336 
337 	} else {
338 		warn("failed to read panicbuf and panic_reg -- "
339 		    "current register set will be unavailable\n");
340 	}
341 }
342