1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/callo.h> 39 #include <sys/priocntl.h> 40 #include <sys/class.h> 41 #include <sys/regset.h> 42 #include <sys/stack.h> 43 #include <sys/cpuvar.h> 44 #include <sys/vnode.h> 45 #include <sys/vfs.h> 46 #include <sys/flock_impl.h> 47 #include <sys/kmem_impl.h> 48 #include <sys/vmem_impl.h> 49 #include <sys/kstat.h> 50 #include <sys/dditypes.h> 51 #include <sys/ddi_impldefs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/sysconf.h> 54 #include <sys/task.h> 55 #include <sys/project.h> 56 #include <sys/errorq_impl.h> 57 #include <sys/cred_impl.h> 58 #include <sys/zone.h> 59 #include <sys/panic.h> 60 #include <regex.h> 61 #include <sys/port_impl.h> 62 63 #include "avl.h" 64 #include "bio.h" 65 #include "bitset.h" 66 #include "combined.h" 67 #include "contract.h" 68 #include "cpupart_mdb.h" 69 #include "ctxop.h" 70 #include "cyclic.h" 71 #include "damap.h" 72 #include "devinfo.h" 73 #include "findstack.h" 74 #include "fm.h" 75 #include "group.h" 76 #include "irm.h" 77 #include "kgrep.h" 78 #include "kmem.h" 79 #include "ldi.h" 80 #include "leaky.h" 81 #include "lgrp.h" 82 #include "list.h" 83 #include "log.h" 84 #include "mdi.h" 85 #include "memory.h" 86 #include "mmd.h" 87 #include "modhash.h" 88 #include "ndievents.h" 89 #include "net.h" 90 #include "netstack.h" 91 #include "nvpair.h" 92 #include "pg.h" 93 #include "rctl.h" 94 #include "sobj.h" 95 #include "streams.h" 96 #include "sysevent.h" 97 #include "taskq.h" 98 #include "thread.h" 99 #include "tsd.h" 100 #include "tsol.h" 101 #include "typegraph.h" 102 #include "vfs.h" 103 #include "zone.h" 104 #include "hotplug.h" 105 106 /* 107 * Surely this is defined somewhere... 108 */ 109 #define NINTR 16 110 111 #define KILOS 10 112 #define MEGS 20 113 #define GIGS 30 114 115 #ifndef STACK_BIAS 116 #define STACK_BIAS 0 117 #endif 118 119 static char 120 pstat2ch(uchar_t state) 121 { 122 switch (state) { 123 case SSLEEP: return ('S'); 124 case SRUN: return ('R'); 125 case SZOMB: return ('Z'); 126 case SIDL: return ('I'); 127 case SONPROC: return ('O'); 128 case SSTOP: return ('T'); 129 case SWAIT: return ('W'); 130 default: return ('?'); 131 } 132 } 133 134 #define PS_PRTTHREADS 0x1 135 #define PS_PRTLWPS 0x2 136 #define PS_PSARGS 0x4 137 #define PS_TASKS 0x8 138 #define PS_PROJECTS 0x10 139 #define PS_ZONES 0x20 140 141 static int 142 ps_threadprint(uintptr_t addr, const void *data, void *private) 143 { 144 const kthread_t *t = (const kthread_t *)data; 145 uint_t prt_flags = *((uint_t *)private); 146 147 static const mdb_bitmask_t t_state_bits[] = { 148 { "TS_FREE", UINT_MAX, TS_FREE }, 149 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 150 { "TS_RUN", TS_RUN, TS_RUN }, 151 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 152 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 153 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 154 { "TS_WAIT", TS_WAIT, TS_WAIT }, 155 { NULL, 0, 0 } 156 }; 157 158 if (prt_flags & PS_PRTTHREADS) 159 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 160 161 if (prt_flags & PS_PRTLWPS) 162 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 163 164 return (WALK_NEXT); 165 } 166 167 int 168 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 169 { 170 uint_t prt_flags = 0; 171 proc_t pr; 172 struct pid pid, pgid, sid; 173 sess_t session; 174 cred_t cred; 175 task_t tk; 176 kproject_t pj; 177 zone_t zn; 178 179 if (!(flags & DCMD_ADDRSPEC)) { 180 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 181 mdb_warn("can't walk 'proc'"); 182 return (DCMD_ERR); 183 } 184 return (DCMD_OK); 185 } 186 187 if (mdb_getopts(argc, argv, 188 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 189 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 190 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 191 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 192 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 193 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 194 return (DCMD_USAGE); 195 196 if (DCMD_HDRSPEC(flags)) { 197 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 198 "S", "PID", "PPID", "PGID", "SID"); 199 if (prt_flags & PS_TASKS) 200 mdb_printf("%5s ", "TASK"); 201 if (prt_flags & PS_PROJECTS) 202 mdb_printf("%5s ", "PROJ"); 203 if (prt_flags & PS_ZONES) 204 mdb_printf("%5s ", "ZONE"); 205 mdb_printf("%6s %10s %?s %s%</u>\n", 206 "UID", "FLAGS", "ADDR", "NAME"); 207 } 208 209 mdb_vread(&pr, sizeof (pr), addr); 210 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 211 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 212 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 213 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 214 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 215 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 216 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 217 if (prt_flags & PS_PROJECTS) 218 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 219 if (prt_flags & PS_ZONES) 220 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 221 222 mdb_printf("%c %6d %6d %6d %6d ", 223 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 224 sid.pid_id); 225 if (prt_flags & PS_TASKS) 226 mdb_printf("%5d ", tk.tk_tkid); 227 if (prt_flags & PS_PROJECTS) 228 mdb_printf("%5d ", pj.kpj_id); 229 if (prt_flags & PS_ZONES) 230 mdb_printf("%5d ", zn.zone_id); 231 mdb_printf("%6d 0x%08x %0?p %s\n", 232 cred.cr_uid, pr.p_flag, addr, 233 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 234 235 if (prt_flags & ~PS_PSARGS) 236 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 237 238 return (DCMD_OK); 239 } 240 241 #define PG_NEWEST 0x0001 242 #define PG_OLDEST 0x0002 243 #define PG_PIPE_OUT 0x0004 244 #define PG_EXACT_MATCH 0x0008 245 246 typedef struct pgrep_data { 247 uint_t pg_flags; 248 uint_t pg_psflags; 249 uintptr_t pg_xaddr; 250 hrtime_t pg_xstart; 251 const char *pg_pat; 252 #ifndef _KMDB 253 regex_t pg_reg; 254 #endif 255 } pgrep_data_t; 256 257 /*ARGSUSED*/ 258 static int 259 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 260 { 261 const proc_t *prp = pdata; 262 pgrep_data_t *pgp = data; 263 #ifndef _KMDB 264 regmatch_t pmatch; 265 #endif 266 267 /* 268 * kmdb doesn't have access to the reg* functions, so we fall back 269 * to strstr/strcmp. 270 */ 271 #ifdef _KMDB 272 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 273 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 274 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 275 return (WALK_NEXT); 276 #else 277 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 278 return (WALK_NEXT); 279 280 if ((pgp->pg_flags & PG_EXACT_MATCH) && 281 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 282 return (WALK_NEXT); 283 #endif 284 285 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 286 hrtime_t start; 287 288 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 289 prp->p_user.u_start.tv_nsec; 290 291 if (pgp->pg_flags & PG_NEWEST) { 292 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 293 pgp->pg_xaddr = addr; 294 pgp->pg_xstart = start; 295 } 296 } else { 297 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 298 pgp->pg_xaddr = addr; 299 pgp->pg_xstart = start; 300 } 301 } 302 303 } else if (pgp->pg_flags & PG_PIPE_OUT) { 304 mdb_printf("%p\n", addr); 305 306 } else { 307 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 308 mdb_warn("can't invoke 'ps'"); 309 return (WALK_DONE); 310 } 311 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 312 } 313 314 return (WALK_NEXT); 315 } 316 317 /*ARGSUSED*/ 318 int 319 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 320 { 321 pgrep_data_t pg; 322 int i; 323 #ifndef _KMDB 324 int err; 325 #endif 326 327 if (flags & DCMD_ADDRSPEC) 328 return (DCMD_USAGE); 329 330 pg.pg_flags = 0; 331 pg.pg_xaddr = 0; 332 333 i = mdb_getopts(argc, argv, 334 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 335 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 336 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 337 NULL); 338 339 argc -= i; 340 argv += i; 341 342 if (argc != 1) 343 return (DCMD_USAGE); 344 345 /* 346 * -n and -o are mutually exclusive. 347 */ 348 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 349 return (DCMD_USAGE); 350 351 if (argv->a_type != MDB_TYPE_STRING) 352 return (DCMD_USAGE); 353 354 if (flags & DCMD_PIPE_OUT) 355 pg.pg_flags |= PG_PIPE_OUT; 356 357 pg.pg_pat = argv->a_un.a_str; 358 if (DCMD_HDRSPEC(flags)) 359 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 360 else 361 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 362 363 #ifndef _KMDB 364 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 365 size_t nbytes; 366 char *buf; 367 368 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 369 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 370 (void) regerror(err, &pg.pg_reg, buf, nbytes); 371 mdb_warn("%s\n", buf); 372 373 return (DCMD_ERR); 374 } 375 #endif 376 377 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 378 mdb_warn("can't walk 'proc'"); 379 return (DCMD_ERR); 380 } 381 382 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 383 if (pg.pg_flags & PG_PIPE_OUT) { 384 mdb_printf("%p\n", pg.pg_xaddr); 385 } else { 386 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 387 0, NULL) != 0) { 388 mdb_warn("can't invoke 'ps'"); 389 return (DCMD_ERR); 390 } 391 } 392 } 393 394 return (DCMD_OK); 395 } 396 397 int 398 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 399 { 400 task_t tk; 401 kproject_t pj; 402 403 if (!(flags & DCMD_ADDRSPEC)) { 404 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 405 mdb_warn("can't walk task_cache"); 406 return (DCMD_ERR); 407 } 408 return (DCMD_OK); 409 } 410 if (DCMD_HDRSPEC(flags)) { 411 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 412 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 413 } 414 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 415 mdb_warn("can't read task_t structure at %p", addr); 416 return (DCMD_ERR); 417 } 418 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 419 mdb_warn("can't read project_t structure at %p", addr); 420 return (DCMD_ERR); 421 } 422 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 423 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 424 tk.tk_flags); 425 return (DCMD_OK); 426 } 427 428 int 429 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 430 { 431 kproject_t pj; 432 433 if (!(flags & DCMD_ADDRSPEC)) { 434 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 435 mdb_warn("can't walk projects"); 436 return (DCMD_ERR); 437 } 438 return (DCMD_OK); 439 } 440 if (DCMD_HDRSPEC(flags)) { 441 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 442 "ADDR", "PROJID", "ZONEID", "REFCNT"); 443 } 444 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 445 mdb_warn("can't read kproject_t structure at %p", addr); 446 return (DCMD_ERR); 447 } 448 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 449 pj.kpj_count); 450 return (DCMD_OK); 451 } 452 453 /* walk callouts themselves, either by list or id hash. */ 454 int 455 callout_walk_init(mdb_walk_state_t *wsp) 456 { 457 if (wsp->walk_addr == NULL) { 458 mdb_warn("callout doesn't support global walk"); 459 return (WALK_ERR); 460 } 461 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 462 return (WALK_NEXT); 463 } 464 465 #define CALLOUT_WALK_BYLIST 0 466 #define CALLOUT_WALK_BYID 1 467 468 /* the walker arg switches between walking by list (0) and walking by id (1). */ 469 int 470 callout_walk_step(mdb_walk_state_t *wsp) 471 { 472 int retval; 473 474 if (wsp->walk_addr == NULL) { 475 return (WALK_DONE); 476 } 477 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 478 wsp->walk_addr) == -1) { 479 mdb_warn("failed to read callout at %p", wsp->walk_addr); 480 return (WALK_DONE); 481 } 482 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 483 wsp->walk_cbdata); 484 485 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 486 wsp->walk_addr = 487 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 488 } else { 489 wsp->walk_addr = 490 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 491 } 492 493 return (retval); 494 } 495 496 void 497 callout_walk_fini(mdb_walk_state_t *wsp) 498 { 499 mdb_free(wsp->walk_data, sizeof (callout_t)); 500 } 501 502 /* 503 * walker for callout lists. This is different from hashes and callouts. 504 * Thankfully, it's also simpler. 505 */ 506 int 507 callout_list_walk_init(mdb_walk_state_t *wsp) 508 { 509 if (wsp->walk_addr == NULL) { 510 mdb_warn("callout list doesn't support global walk"); 511 return (WALK_ERR); 512 } 513 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 514 return (WALK_NEXT); 515 } 516 517 int 518 callout_list_walk_step(mdb_walk_state_t *wsp) 519 { 520 int retval; 521 522 if (wsp->walk_addr == NULL) { 523 return (WALK_DONE); 524 } 525 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 526 wsp->walk_addr) != sizeof (callout_list_t)) { 527 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 528 return (WALK_ERR); 529 } 530 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 531 wsp->walk_cbdata); 532 533 wsp->walk_addr = (uintptr_t) 534 (((callout_list_t *)wsp->walk_data)->cl_next); 535 536 return (retval); 537 } 538 539 void 540 callout_list_walk_fini(mdb_walk_state_t *wsp) 541 { 542 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 543 } 544 545 /* routines/structs to walk callout table(s) */ 546 typedef struct cot_data { 547 callout_table_t *ct0; 548 callout_table_t ct; 549 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 550 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 551 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 552 int cotndx; 553 int cotsize; 554 } cot_data_t; 555 556 int 557 callout_table_walk_init(mdb_walk_state_t *wsp) 558 { 559 int max_ncpus; 560 cot_data_t *cot_walk_data; 561 562 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 563 564 if (wsp->walk_addr == NULL) { 565 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 566 mdb_warn("failed to read 'callout_table'"); 567 return (WALK_ERR); 568 } 569 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 570 mdb_warn("failed to get callout_table array size"); 571 return (WALK_ERR); 572 } 573 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 574 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 575 } else { 576 /* not a global walk */ 577 cot_walk_data->cotsize = 1; 578 } 579 580 cot_walk_data->cotndx = 0; 581 wsp->walk_data = cot_walk_data; 582 583 return (WALK_NEXT); 584 } 585 586 int 587 callout_table_walk_step(mdb_walk_state_t *wsp) 588 { 589 int retval; 590 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 591 size_t size; 592 593 if (cotwd->cotndx >= cotwd->cotsize) { 594 return (WALK_DONE); 595 } 596 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 597 wsp->walk_addr) != sizeof (callout_table_t)) { 598 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 599 return (WALK_ERR); 600 } 601 602 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 603 if (cotwd->ct.ct_idhash != NULL) { 604 if (mdb_vread(cotwd->cot_idhash, size, 605 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 606 mdb_warn("failed to read id_hash at %p", 607 cotwd->ct.ct_idhash); 608 return (WALK_ERR); 609 } 610 } 611 if (cotwd->ct.ct_clhash != NULL) { 612 if (mdb_vread(&(cotwd->cot_clhash), size, 613 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 614 mdb_warn("failed to read cl_hash at %p", 615 cotwd->ct.ct_clhash); 616 return (WALK_ERR); 617 } 618 } 619 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 620 if (cotwd->ct.ct_kstat_data != NULL) { 621 if (mdb_vread(&(cotwd->ct_kstat_data), size, 622 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 623 mdb_warn("failed to read kstats at %p", 624 cotwd->ct.ct_kstat_data); 625 return (WALK_ERR); 626 } 627 } 628 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 629 wsp->walk_cbdata); 630 631 cotwd->cotndx++; 632 if (cotwd->cotndx >= cotwd->cotsize) { 633 return (WALK_DONE); 634 } 635 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 636 sizeof (callout_table_t)); 637 638 return (retval); 639 } 640 641 void 642 callout_table_walk_fini(mdb_walk_state_t *wsp) 643 { 644 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 645 } 646 647 static const char *co_typenames[] = { "R", "N" }; 648 649 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 650 651 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 652 653 /* callout flags, in no particular order */ 654 #define COF_REAL 0x0000001 655 #define COF_NORM 0x0000002 656 #define COF_LONG 0x0000004 657 #define COF_SHORT 0x0000008 658 #define COF_EMPTY 0x0000010 659 #define COF_TIME 0x0000020 660 #define COF_BEFORE 0x0000040 661 #define COF_AFTER 0x0000080 662 #define COF_SEQID 0x0000100 663 #define COF_FUNC 0x0000200 664 #define COF_ADDR 0x0000400 665 #define COF_EXEC 0x0000800 666 #define COF_HIRES 0x0001000 667 #define COF_ABS 0x0002000 668 #define COF_TABLE 0x0004000 669 #define COF_BYIDH 0x0008000 670 #define COF_FREE 0x0010000 671 #define COF_LIST 0x0020000 672 #define COF_EXPREL 0x0040000 673 #define COF_HDR 0x0080000 674 #define COF_VERBOSE 0x0100000 675 #define COF_LONGLIST 0x0200000 676 #define COF_THDR 0x0400000 677 #define COF_LHDR 0x0800000 678 #define COF_CHDR 0x1000000 679 #define COF_PARAM 0x2000000 680 #define COF_DECODE 0x4000000 681 682 /* show real and normal, short and long, expired and unexpired. */ 683 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 684 685 #define COF_LIST_FLAGS \ 686 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 687 688 /* private callout data for callback functions */ 689 typedef struct callout_data { 690 uint_t flags; /* COF_* */ 691 cpu_t *cpu; /* cpu pointer if given */ 692 int seqid; /* cpu seqid, or -1 */ 693 hrtime_t time; /* expiration time value */ 694 hrtime_t atime; /* expiration before value */ 695 hrtime_t btime; /* expiration after value */ 696 uintptr_t funcaddr; /* function address or NULL */ 697 uintptr_t param; /* parameter to function or NULL */ 698 hrtime_t now; /* current system time */ 699 int nsec_per_tick; /* for conversions */ 700 ulong_t ctbits; /* for decoding xid */ 701 callout_table_t *co_table; /* top of callout table array */ 702 int ndx; /* table index. */ 703 int bucket; /* which list/id bucket are we in */ 704 hrtime_t exp; /* expire time */ 705 int list_flags; /* copy of cl_flags */ 706 } callout_data_t; 707 708 /* this callback does the actual callback itself (finally). */ 709 /*ARGSUSED*/ 710 static int 711 callouts_cb(uintptr_t addr, const void *data, void *priv) 712 { 713 callout_data_t *coargs = (callout_data_t *)priv; 714 callout_t *co = (callout_t *)data; 715 int tableid, list_flags; 716 callout_id_t coid; 717 718 if ((coargs == NULL) || (co == NULL)) { 719 return (WALK_ERR); 720 } 721 722 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_FREE)) { 723 /* 724 * The callout must have been reallocated. No point in 725 * walking any more. 726 */ 727 return (WALK_DONE); 728 } 729 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_FREE)) { 730 /* 731 * The callout must have been freed. No point in 732 * walking any more. 733 */ 734 return (WALK_DONE); 735 } 736 if ((coargs->flags & COF_FUNC) && 737 (coargs->funcaddr != (uintptr_t)co->c_func)) { 738 return (WALK_NEXT); 739 } 740 if ((coargs->flags & COF_PARAM) && 741 (coargs->param != (uintptr_t)co->c_arg)) { 742 return (WALK_NEXT); 743 } 744 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 745 return (WALK_NEXT); 746 } 747 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 748 return (WALK_NEXT); 749 } 750 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 751 return (WALK_NEXT); 752 } 753 /* it is possible we don't have the exp time or flags */ 754 if (coargs->flags & COF_BYIDH) { 755 if (!(coargs->flags & COF_FREE)) { 756 /* we have to fetch the expire time ourselves. */ 757 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 758 (uintptr_t)co->c_list + offsetof(callout_list_t, 759 cl_expiration)) == -1) { 760 mdb_warn("failed to read expiration " 761 "time from %p", co->c_list); 762 coargs->exp = 0; 763 } 764 /* and flags. */ 765 if (mdb_vread(&coargs->list_flags, sizeof (int), 766 (uintptr_t)co->c_list + offsetof(callout_list_t, 767 cl_flags)) == -1) { 768 mdb_warn("failed to read list flags" 769 "from %p", co->c_list); 770 coargs->list_flags = 0; 771 } 772 } else { 773 /* free callouts can't use list pointer. */ 774 coargs->exp = 0; 775 coargs->list_flags = 0; 776 } 777 if (coargs->exp != 0) { 778 if ((coargs->flags & COF_TIME) && 779 (coargs->exp != coargs->time)) { 780 return (WALK_NEXT); 781 } 782 if ((coargs->flags & COF_BEFORE) && 783 (coargs->exp > coargs->btime)) { 784 return (WALK_NEXT); 785 } 786 if ((coargs->flags & COF_AFTER) && 787 (coargs->exp < coargs->atime)) { 788 return (WALK_NEXT); 789 } 790 } 791 /* tricky part, since both HIRES and ABS can be set */ 792 list_flags = coargs->list_flags; 793 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 794 /* both flags are set, only skip "regular" ones */ 795 if (! (list_flags & COF_LIST_FLAGS)) { 796 return (WALK_NEXT); 797 } 798 } else { 799 /* individual flags, or no flags */ 800 if ((coargs->flags & COF_HIRES) && 801 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 802 return (WALK_NEXT); 803 } 804 if ((coargs->flags & COF_ABS) && 805 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 806 return (WALK_NEXT); 807 } 808 } 809 } 810 811 #define callout_table_mask ((1 << coargs->ctbits) - 1) 812 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 813 #undef callout_table_mask 814 coid = CO_PLAIN_ID(co->c_xid); 815 816 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 817 /* 818 * We need to print the headers. If walking by id, then 819 * the list header isn't printed, so we must include 820 * that info here. 821 */ 822 if (!(coargs->flags & COF_VERBOSE)) { 823 mdb_printf("%<u>%3s %-1s %-14s %</u>", 824 "SEQ", "T", "EXP"); 825 } else if (coargs->flags & COF_BYIDH) { 826 mdb_printf("%<u>%-14s %</u>", "EXP"); 827 } 828 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 829 "XHAL", "XID", "FUNC(ARG)"); 830 if (coargs->flags & COF_LONGLIST) { 831 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 832 "PREVID", "NEXTID", "PREVL", "NEXTL"); 833 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 834 "DONE", "UTOS", "THREAD"); 835 } 836 mdb_printf("\n"); 837 coargs->flags &= ~COF_CHDR; 838 coargs->flags |= (COF_THDR | COF_LHDR); 839 } 840 841 if (!(coargs->flags & COF_ADDR)) { 842 if (!(coargs->flags & COF_VERBOSE)) { 843 mdb_printf("%-3d %1s %-14llx ", 844 TABLE_TO_SEQID(tableid), 845 co_typenames[tableid & CALLOUT_TYPE_MASK], 846 (coargs->flags & COF_EXPREL) ? 847 coargs->exp - coargs->now : coargs->exp); 848 } else if (coargs->flags & COF_BYIDH) { 849 mdb_printf("%-14x ", 850 (coargs->flags & COF_EXPREL) ? 851 coargs->exp - coargs->now : coargs->exp); 852 } 853 list_flags = coargs->list_flags; 854 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 855 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 856 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 857 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 858 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 859 (long long)coid, co->c_func, co->c_arg); 860 if (coargs->flags & COF_LONGLIST) { 861 mdb_printf(" %-?p %-?p %-?p %-?p", 862 co->c_idprev, co->c_idnext, co->c_clprev, 863 co->c_clnext); 864 mdb_printf(" %-?p %-4d %-0?p", 865 co->c_done, co->c_waiting, co->c_executor); 866 } 867 } else { 868 /* address only */ 869 mdb_printf("%-0p", addr); 870 } 871 mdb_printf("\n"); 872 return (WALK_NEXT); 873 } 874 875 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 876 /*ARGSUSED*/ 877 static int 878 callout_list_cb(uintptr_t addr, const void *data, void *priv) 879 { 880 callout_data_t *coargs = (callout_data_t *)priv; 881 callout_list_t *cl = (callout_list_t *)data; 882 callout_t *coptr; 883 int list_flags; 884 885 if ((coargs == NULL) || (cl == NULL)) { 886 return (WALK_ERR); 887 } 888 889 coargs->exp = cl->cl_expiration; 890 coargs->list_flags = cl->cl_flags; 891 if ((coargs->flags & COF_FREE) && 892 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 893 /* 894 * The callout list must have been reallocated. No point in 895 * walking any more. 896 */ 897 return (WALK_DONE); 898 } 899 if (!(coargs->flags & COF_FREE) && 900 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 901 /* 902 * The callout list must have been freed. No point in 903 * walking any more. 904 */ 905 return (WALK_DONE); 906 } 907 if ((coargs->flags & COF_TIME) && 908 (cl->cl_expiration != coargs->time)) { 909 return (WALK_NEXT); 910 } 911 if ((coargs->flags & COF_BEFORE) && 912 (cl->cl_expiration > coargs->btime)) { 913 return (WALK_NEXT); 914 } 915 if ((coargs->flags & COF_AFTER) && 916 (cl->cl_expiration < coargs->atime)) { 917 return (WALK_NEXT); 918 } 919 if (!(coargs->flags & COF_EMPTY) && 920 (cl->cl_callouts.ch_head == NULL)) { 921 return (WALK_NEXT); 922 } 923 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 924 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 925 /* both flags are set, only skip "regular" ones */ 926 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 927 return (WALK_NEXT); 928 } 929 } else { 930 if ((coargs->flags & COF_HIRES) && 931 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 932 return (WALK_NEXT); 933 } 934 if ((coargs->flags & COF_ABS) && 935 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 936 return (WALK_NEXT); 937 } 938 } 939 940 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 941 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 942 if (!(coargs->flags & COF_VERBOSE)) { 943 /* don't be redundant again */ 944 mdb_printf("%<u>SEQ T %</u>"); 945 } 946 mdb_printf("%<u>EXP HA BUCKET " 947 "CALLOUTS %</u>"); 948 949 if (coargs->flags & COF_LONGLIST) { 950 mdb_printf("%<u> %-?s %-?s%</u>", 951 "PREV", "NEXT"); 952 } 953 mdb_printf("\n"); 954 coargs->flags &= ~COF_LHDR; 955 coargs->flags |= (COF_THDR | COF_CHDR); 956 } 957 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 958 if (!(coargs->flags & COF_ADDR)) { 959 if (!(coargs->flags & COF_VERBOSE)) { 960 mdb_printf("%3d %1s ", 961 TABLE_TO_SEQID(coargs->ndx), 962 co_typenames[coargs->ndx & 963 CALLOUT_TYPE_MASK]); 964 } 965 966 list_flags = coargs->list_flags; 967 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 968 (coargs->flags & COF_EXPREL) ? 969 coargs->exp - coargs->now : coargs->exp, 970 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 971 "H" : " ", 972 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 973 "A" : " ", 974 coargs->bucket, cl->cl_callouts.ch_head); 975 976 if (coargs->flags & COF_LONGLIST) { 977 mdb_printf(" %-?p %-?p", 978 cl->cl_prev, cl->cl_next); 979 } 980 } else { 981 /* address only */ 982 mdb_printf("%-0p", addr); 983 } 984 mdb_printf("\n"); 985 if (coargs->flags & COF_LIST) { 986 return (WALK_NEXT); 987 } 988 } 989 /* yet another layer as we walk the actual callouts via list. */ 990 if (cl->cl_callouts.ch_head == NULL) { 991 return (WALK_NEXT); 992 } 993 /* free list structures do not have valid callouts off of them. */ 994 if (coargs->flags & COF_FREE) { 995 return (WALK_NEXT); 996 } 997 coptr = (callout_t *)cl->cl_callouts.ch_head; 998 999 if (coargs->flags & COF_VERBOSE) { 1000 mdb_inc_indent(4); 1001 } 1002 /* 1003 * walk callouts using yet another callback routine. 1004 * we use callouts_bytime because id hash is handled via 1005 * the callout_t_cb callback. 1006 */ 1007 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1008 (uintptr_t)coptr) == -1) { 1009 mdb_warn("cannot walk callouts at %p", coptr); 1010 return (WALK_ERR); 1011 } 1012 if (coargs->flags & COF_VERBOSE) { 1013 mdb_dec_indent(4); 1014 } 1015 1016 return (WALK_NEXT); 1017 } 1018 1019 /* this callback handles the details of callout table walking. */ 1020 static int 1021 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1022 { 1023 callout_data_t *coargs = (callout_data_t *)priv; 1024 cot_data_t *cotwd = (cot_data_t *)data; 1025 callout_table_t *ct = &(cotwd->ct); 1026 int index, seqid, cotype; 1027 int i; 1028 callout_list_t *clptr; 1029 callout_t *coptr; 1030 1031 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1032 return (WALK_ERR); 1033 } 1034 1035 index = ((char *)addr - (char *)coargs->co_table) / 1036 sizeof (callout_table_t); 1037 cotype = index & CALLOUT_TYPE_MASK; 1038 seqid = TABLE_TO_SEQID(index); 1039 1040 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1041 return (WALK_NEXT); 1042 } 1043 1044 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1045 return (WALK_NEXT); 1046 } 1047 1048 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1049 return (WALK_NEXT); 1050 } 1051 1052 if (!(coargs->flags & COF_EMPTY) && ( 1053 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1054 return (WALK_NEXT); 1055 } 1056 1057 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1058 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1059 /* print table hdr */ 1060 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1061 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1062 coargs->flags &= ~COF_THDR; 1063 coargs->flags |= (COF_LHDR | COF_CHDR); 1064 if (coargs->flags & COF_LONGLIST) { 1065 /* more info! */ 1066 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s" 1067 " %-?s %-?s %-?s%</u>", 1068 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", 1069 "PEND", "FREE", "LOCK"); 1070 } 1071 mdb_printf("\n"); 1072 } 1073 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1074 if (!(coargs->flags & COF_ADDR)) { 1075 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1076 seqid, co_typenames[cotype], 1077 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1078 ct->ct_heap); 1079 if (coargs->flags & COF_LONGLIST) { 1080 /* more info! */ 1081 mdb_printf(" %-7d %-7d %-?p %-?p" 1082 " %-?lld %-?lld %-?p", 1083 ct->ct_heap_num, ct->ct_heap_max, 1084 ct->ct_taskq, ct->ct_expired.ch_head, 1085 cotwd->ct_timeouts_pending, 1086 cotwd->ct_allocations - 1087 cotwd->ct_timeouts_pending, 1088 ct->ct_mutex); 1089 } 1090 } else { 1091 /* address only */ 1092 mdb_printf("%-0?p", addr); 1093 } 1094 mdb_printf("\n"); 1095 if (coargs->flags & COF_TABLE) { 1096 return (WALK_NEXT); 1097 } 1098 } 1099 1100 coargs->ndx = index; 1101 if (coargs->flags & COF_VERBOSE) { 1102 mdb_inc_indent(4); 1103 } 1104 /* keep digging. */ 1105 if (!(coargs->flags & COF_BYIDH)) { 1106 /* walk the list hash table */ 1107 if (coargs->flags & COF_FREE) { 1108 clptr = ct->ct_lfree; 1109 coargs->bucket = 0; 1110 if (clptr == NULL) { 1111 return (WALK_NEXT); 1112 } 1113 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1114 (uintptr_t)clptr) == -1) { 1115 mdb_warn("cannot walk callout free list at %p", 1116 clptr); 1117 return (WALK_ERR); 1118 } 1119 } else { 1120 /* first print the expired list. */ 1121 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1122 if (clptr != NULL) { 1123 coargs->bucket = -1; 1124 if (mdb_pwalk("callout_list", callout_list_cb, 1125 coargs, (uintptr_t)clptr) == -1) { 1126 mdb_warn("cannot walk callout_list" 1127 " at %p", clptr); 1128 return (WALK_ERR); 1129 } 1130 } 1131 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1132 if (ct->ct_clhash == NULL) { 1133 /* nothing to do */ 1134 break; 1135 } 1136 if (cotwd->cot_clhash[i].ch_head == NULL) { 1137 continue; 1138 } 1139 clptr = (callout_list_t *) 1140 cotwd->cot_clhash[i].ch_head; 1141 coargs->bucket = i; 1142 /* walk list with callback routine. */ 1143 if (mdb_pwalk("callout_list", callout_list_cb, 1144 coargs, (uintptr_t)clptr) == -1) { 1145 mdb_warn("cannot walk callout_list" 1146 " at %p", clptr); 1147 return (WALK_ERR); 1148 } 1149 } 1150 } 1151 } else { 1152 /* walk the id hash table. */ 1153 if (coargs->flags & COF_FREE) { 1154 coptr = ct->ct_free; 1155 coargs->bucket = 0; 1156 if (coptr == NULL) { 1157 return (WALK_NEXT); 1158 } 1159 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1160 (uintptr_t)coptr) == -1) { 1161 mdb_warn("cannot walk callout id free list" 1162 " at %p", coptr); 1163 return (WALK_ERR); 1164 } 1165 } else { 1166 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1167 if (ct->ct_idhash == NULL) { 1168 break; 1169 } 1170 coptr = (callout_t *) 1171 cotwd->cot_idhash[i].ch_head; 1172 if (coptr == NULL) { 1173 continue; 1174 } 1175 coargs->bucket = i; 1176 1177 /* 1178 * walk callouts directly by id. For id 1179 * chain, the callout list is just a header, 1180 * so there's no need to walk it. 1181 */ 1182 if (mdb_pwalk("callouts_byid", callouts_cb, 1183 coargs, (uintptr_t)coptr) == -1) { 1184 mdb_warn("cannot walk callouts at %p", 1185 coptr); 1186 return (WALK_ERR); 1187 } 1188 } 1189 } 1190 } 1191 if (coargs->flags & COF_VERBOSE) { 1192 mdb_dec_indent(4); 1193 } 1194 return (WALK_NEXT); 1195 } 1196 1197 /* 1198 * initialize some common info for both callout dcmds. 1199 */ 1200 int 1201 callout_common_init(callout_data_t *coargs) 1202 { 1203 /* we need a couple of things */ 1204 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1205 mdb_warn("failed to read 'callout_table'"); 1206 return (DCMD_ERR); 1207 } 1208 /* need to get now in nsecs. Approximate with hrtime vars */ 1209 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1210 sizeof (hrtime_t)) { 1211 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1212 "hrtime_base") != sizeof (hrtime_t)) { 1213 mdb_warn("Could not determine current system time"); 1214 return (DCMD_ERR); 1215 } 1216 } 1217 1218 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1219 mdb_warn("failed to read 'callout_table_bits'"); 1220 return (DCMD_ERR); 1221 } 1222 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1223 mdb_warn("failed to read 'nsec_per_tick'"); 1224 return (DCMD_ERR); 1225 } 1226 return (DCMD_OK); 1227 } 1228 1229 /* 1230 * dcmd to print callouts. Optional addr limits to specific table. 1231 * Parses lots of options that get passed to callbacks for walkers. 1232 * Has it's own help function. 1233 */ 1234 /*ARGSUSED*/ 1235 int 1236 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1237 { 1238 callout_data_t coargs; 1239 /* getopts doesn't help much with stuff like this */ 1240 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1241 char *funcname = NULL; 1242 char *paramstr = NULL; 1243 uintptr_t Stmp, Ctmp; /* for getopt. */ 1244 int retval; 1245 1246 coargs.flags = COF_DEFAULT; 1247 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1248 coargs.seqid = -1; 1249 1250 if (mdb_getopts(argc, argv, 1251 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1252 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1253 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1254 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1255 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1256 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1257 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1258 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1259 'd', MDB_OPT_SETBITS, 1, &dflag, 1260 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1261 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1262 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1263 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1264 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1265 'k', MDB_OPT_SETBITS, 1, &kflag, 1266 'f', MDB_OPT_STR, &funcname, 1267 'p', MDB_OPT_STR, ¶mstr, 1268 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1269 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1270 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1271 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1272 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1273 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1274 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1275 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1276 NULL) != argc) { 1277 return (DCMD_USAGE); 1278 } 1279 1280 /* initialize from kernel variables */ 1281 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1282 return (retval); 1283 } 1284 1285 /* do some option post-processing */ 1286 if (kflag) { 1287 coargs.time *= coargs.nsec_per_tick; 1288 coargs.atime *= coargs.nsec_per_tick; 1289 coargs.btime *= coargs.nsec_per_tick; 1290 } 1291 1292 if (dflag) { 1293 coargs.time += coargs.now; 1294 coargs.atime += coargs.now; 1295 coargs.btime += coargs.now; 1296 } 1297 if (Sflag) { 1298 if (flags & DCMD_ADDRSPEC) { 1299 mdb_printf("-S option conflicts with explicit" 1300 " address\n"); 1301 return (DCMD_USAGE); 1302 } 1303 coargs.flags |= COF_SEQID; 1304 coargs.seqid = (int)Stmp; 1305 } 1306 if (Cflag) { 1307 if (flags & DCMD_ADDRSPEC) { 1308 mdb_printf("-C option conflicts with explicit" 1309 " address\n"); 1310 return (DCMD_USAGE); 1311 } 1312 if (coargs.flags & COF_SEQID) { 1313 mdb_printf("-C and -S are mutually exclusive\n"); 1314 return (DCMD_USAGE); 1315 } 1316 coargs.cpu = (cpu_t *)Ctmp; 1317 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1318 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1319 mdb_warn("failed to read cpu_t at %p", Ctmp); 1320 return (DCMD_ERR); 1321 } 1322 coargs.flags |= COF_SEQID; 1323 } 1324 /* avoid null outputs. */ 1325 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1326 coargs.flags |= COF_REAL | COF_NORM; 1327 } 1328 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1329 coargs.flags |= COF_LONG | COF_SHORT; 1330 } 1331 if (tflag) { 1332 if (aflag || bflag) { 1333 mdb_printf("-t and -a|b are mutually exclusive\n"); 1334 return (DCMD_USAGE); 1335 } 1336 coargs.flags |= COF_TIME; 1337 } 1338 if (aflag) { 1339 coargs.flags |= COF_AFTER; 1340 } 1341 if (bflag) { 1342 coargs.flags |= COF_BEFORE; 1343 } 1344 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1345 mdb_printf("value for -a must be earlier than the value" 1346 " for -b.\n"); 1347 return (DCMD_USAGE); 1348 } 1349 1350 if (funcname != NULL) { 1351 GElf_Sym sym; 1352 1353 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1354 coargs.funcaddr = mdb_strtoull(funcname); 1355 } else { 1356 coargs.funcaddr = sym.st_value; 1357 } 1358 coargs.flags |= COF_FUNC; 1359 } 1360 1361 if (paramstr != NULL) { 1362 GElf_Sym sym; 1363 1364 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1365 coargs.param = mdb_strtoull(paramstr); 1366 } else { 1367 coargs.param = sym.st_value; 1368 } 1369 coargs.flags |= COF_PARAM; 1370 } 1371 1372 if (!(flags & DCMD_ADDRSPEC)) { 1373 /* don't pass "dot" if no addr. */ 1374 addr = NULL; 1375 } 1376 if (addr != NULL) { 1377 /* 1378 * a callout table was specified. Ignore -r|n option 1379 * to avoid null output. 1380 */ 1381 coargs.flags |= (COF_REAL | COF_NORM); 1382 } 1383 1384 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1385 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1386 } 1387 if (coargs.flags & COF_FREE) { 1388 coargs.flags |= COF_EMPTY; 1389 /* -F = free callouts, -FL = free lists */ 1390 if (!(coargs.flags & COF_LIST)) { 1391 coargs.flags |= COF_BYIDH; 1392 } 1393 } 1394 1395 /* walk table, using specialized callback routine. */ 1396 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1397 mdb_warn("cannot walk callout_table"); 1398 return (DCMD_ERR); 1399 } 1400 return (DCMD_OK); 1401 } 1402 1403 1404 /* 1405 * Given an extended callout id, dump its information. 1406 */ 1407 /*ARGSUSED*/ 1408 int 1409 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1410 { 1411 callout_data_t coargs; 1412 callout_table_t *ctptr; 1413 callout_table_t ct; 1414 callout_id_t coid; 1415 callout_t *coptr; 1416 int tableid; 1417 callout_id_t xid; 1418 ulong_t idhash; 1419 int i, retval; 1420 const mdb_arg_t *arg; 1421 size_t size; 1422 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1423 1424 coargs.flags = COF_DEFAULT | COF_BYIDH; 1425 i = mdb_getopts(argc, argv, 1426 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1427 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1428 NULL); 1429 argc -= i; 1430 argv += i; 1431 1432 if (argc != 1) { 1433 return (DCMD_USAGE); 1434 } 1435 arg = &argv[0]; 1436 1437 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1438 xid = arg->a_un.a_val; 1439 } else { 1440 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1441 } 1442 1443 if (DCMD_HDRSPEC(flags)) { 1444 coargs.flags |= COF_CHDR; 1445 } 1446 1447 1448 /* initialize from kernel variables */ 1449 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1450 return (retval); 1451 } 1452 1453 /* we must massage the environment so that the macros will play nice */ 1454 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1455 #define callout_table_bits coargs.ctbits 1456 #define nsec_per_tick coargs.nsec_per_tick 1457 tableid = CALLOUT_ID_TO_TABLE(xid); 1458 idhash = CALLOUT_IDHASH(xid); 1459 #undef callouts_table_bits 1460 #undef callout_table_mask 1461 #undef nsec_per_tick 1462 coid = CO_PLAIN_ID(xid); 1463 1464 if (flags & DCMD_ADDRSPEC) { 1465 mdb_printf("calloutid does not accept explicit address.\n"); 1466 return (DCMD_USAGE); 1467 } 1468 1469 if (coargs.flags & COF_DECODE) { 1470 if (DCMD_HDRSPEC(flags)) { 1471 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1472 "SEQ", "T", "XL", "XID", "IDHASH"); 1473 } 1474 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1475 TABLE_TO_SEQID(tableid), 1476 co_typenames[tableid & CALLOUT_TYPE_MASK], 1477 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1478 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1479 (long long)coid, idhash); 1480 return (DCMD_OK); 1481 } 1482 1483 /* get our table. Note this relies on the types being correct */ 1484 ctptr = coargs.co_table + tableid; 1485 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1486 mdb_warn("failed to read callout_table at %p", ctptr); 1487 return (DCMD_ERR); 1488 } 1489 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1490 if (ct.ct_idhash != NULL) { 1491 if (mdb_vread(&(cot_idhash), size, 1492 (uintptr_t)ct.ct_idhash) == -1) { 1493 mdb_warn("failed to read id_hash at %p", 1494 ct.ct_idhash); 1495 return (WALK_ERR); 1496 } 1497 } 1498 1499 /* callout at beginning of hash chain */ 1500 if (ct.ct_idhash == NULL) { 1501 mdb_printf("id hash chain for this xid is empty\n"); 1502 return (DCMD_ERR); 1503 } 1504 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1505 if (coptr == NULL) { 1506 mdb_printf("id hash chain for this xid is empty\n"); 1507 return (DCMD_ERR); 1508 } 1509 1510 coargs.ndx = tableid; 1511 coargs.bucket = idhash; 1512 1513 /* use the walker, luke */ 1514 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1515 (uintptr_t)coptr) == -1) { 1516 mdb_warn("cannot walk callouts at %p", coptr); 1517 return (WALK_ERR); 1518 } 1519 1520 return (DCMD_OK); 1521 } 1522 1523 void 1524 callout_help(void) 1525 { 1526 mdb_printf("callout: display callouts.\n" 1527 "Given a callout table address, display callouts from table.\n" 1528 "Without an address, display callouts from all tables.\n" 1529 "options:\n" 1530 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1531 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1532 " -x : limit display to callouts which are executing\n" 1533 " -h : limit display to callouts based on hrestime\n" 1534 " -B : limit display to callouts based on absolute time\n" 1535 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1536 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1537 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1538 " -d : interpret time option to -t|a|b as delta from current time\n" 1539 " -k : use ticks instead of nanoseconds as arguments to" 1540 " -t|a|b. Note that\n ticks are less accurate and may not" 1541 " match other tick times (ie: lbolt).\n" 1542 " -D : display exiration time as delta from current time\n" 1543 " -S seqid : limit display to callouts for this cpu sequence id\n" 1544 " -C addr : limit display to callouts for this cpu pointer\n" 1545 " -f name|addr : limit display to callouts with this function\n" 1546 " -p name|addr : limit display to callouts functions with this" 1547 " parameter\n" 1548 " -T : display the callout table itself, instead of callouts\n" 1549 " -L : display callout lists instead of callouts\n" 1550 " -E : with -T or L, display empty data structures.\n" 1551 " -i : traverse callouts by id hash instead of list hash\n" 1552 " -F : walk free callout list (free list with -i) instead\n" 1553 " -v : display more info for each item\n" 1554 " -V : show details of each level of info as it is traversed\n" 1555 " -A : show only addresses. Useful for pipelines.\n"); 1556 } 1557 1558 void 1559 calloutid_help(void) 1560 { 1561 mdb_printf("calloutid: display callout by id.\n" 1562 "Given an extended callout id, display the callout infomation.\n" 1563 "options:\n" 1564 " -d : do not dereference callout, just decode the id.\n" 1565 " -v : verbose display more info about the callout\n"); 1566 } 1567 1568 /*ARGSUSED*/ 1569 int 1570 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1571 { 1572 long num_classes, i; 1573 sclass_t *class_tbl; 1574 GElf_Sym g_sclass; 1575 char class_name[PC_CLNMSZ]; 1576 size_t tbl_size; 1577 1578 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1579 mdb_warn("failed to find symbol sclass\n"); 1580 return (DCMD_ERR); 1581 } 1582 1583 tbl_size = (size_t)g_sclass.st_size; 1584 num_classes = tbl_size / (sizeof (sclass_t)); 1585 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1586 1587 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1588 mdb_warn("failed to read sclass"); 1589 return (DCMD_ERR); 1590 } 1591 1592 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1593 "INIT FCN", "CLASS FCN"); 1594 1595 for (i = 0; i < num_classes; i++) { 1596 if (mdb_vread(class_name, sizeof (class_name), 1597 (uintptr_t)class_tbl[i].cl_name) == -1) 1598 (void) strcpy(class_name, "???"); 1599 1600 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1601 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1602 } 1603 1604 return (DCMD_OK); 1605 } 1606 1607 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1608 1609 int 1610 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1611 { 1612 uintptr_t rootdir; 1613 vnode_t vn; 1614 char buf[MAXPATHLEN]; 1615 1616 uint_t opt_F = FALSE; 1617 1618 if (mdb_getopts(argc, argv, 1619 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1620 return (DCMD_USAGE); 1621 1622 if (!(flags & DCMD_ADDRSPEC)) { 1623 mdb_warn("expected explicit vnode_t address before ::\n"); 1624 return (DCMD_USAGE); 1625 } 1626 1627 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1628 mdb_warn("failed to read rootdir"); 1629 return (DCMD_ERR); 1630 } 1631 1632 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1633 return (DCMD_ERR); 1634 1635 if (*buf == '\0') { 1636 mdb_printf("??\n"); 1637 return (DCMD_OK); 1638 } 1639 1640 mdb_printf("%s", buf); 1641 if (opt_F && buf[strlen(buf)-1] != '/' && 1642 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1643 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1644 mdb_printf("\n"); 1645 1646 return (DCMD_OK); 1647 } 1648 1649 int 1650 ld_walk_init(mdb_walk_state_t *wsp) 1651 { 1652 wsp->walk_data = (void *)wsp->walk_addr; 1653 return (WALK_NEXT); 1654 } 1655 1656 int 1657 ld_walk_step(mdb_walk_state_t *wsp) 1658 { 1659 int status; 1660 lock_descriptor_t ld; 1661 1662 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1663 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1664 wsp->walk_addr); 1665 return (WALK_ERR); 1666 } 1667 1668 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1669 if (status == WALK_ERR) 1670 return (WALK_ERR); 1671 1672 wsp->walk_addr = (uintptr_t)ld.l_next; 1673 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1674 return (WALK_DONE); 1675 1676 return (status); 1677 } 1678 1679 int 1680 lg_walk_init(mdb_walk_state_t *wsp) 1681 { 1682 GElf_Sym sym; 1683 1684 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1685 mdb_warn("failed to find symbol 'lock_graph'\n"); 1686 return (WALK_ERR); 1687 } 1688 1689 wsp->walk_addr = (uintptr_t)sym.st_value; 1690 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1691 1692 return (WALK_NEXT); 1693 } 1694 1695 typedef struct lg_walk_data { 1696 uintptr_t startaddr; 1697 mdb_walk_cb_t callback; 1698 void *data; 1699 } lg_walk_data_t; 1700 1701 /* 1702 * We can't use ::walk lock_descriptor directly, because the head of each graph 1703 * is really a dummy lock. Rather than trying to dynamically determine if this 1704 * is a dummy node or not, we just filter out the initial element of the 1705 * list. 1706 */ 1707 static int 1708 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1709 { 1710 lg_walk_data_t *lw = priv; 1711 1712 if (addr != lw->startaddr) 1713 return (lw->callback(addr, data, lw->data)); 1714 1715 return (WALK_NEXT); 1716 } 1717 1718 int 1719 lg_walk_step(mdb_walk_state_t *wsp) 1720 { 1721 graph_t *graph; 1722 lg_walk_data_t lw; 1723 1724 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1725 return (WALK_DONE); 1726 1727 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1728 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1729 return (WALK_ERR); 1730 } 1731 1732 wsp->walk_addr += sizeof (graph); 1733 1734 if (graph == NULL) 1735 return (WALK_NEXT); 1736 1737 lw.callback = wsp->walk_callback; 1738 lw.data = wsp->walk_cbdata; 1739 1740 lw.startaddr = (uintptr_t)&(graph->active_locks); 1741 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1742 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1743 return (WALK_ERR); 1744 } 1745 1746 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1747 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1748 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1749 return (WALK_ERR); 1750 } 1751 1752 return (WALK_NEXT); 1753 } 1754 1755 /* 1756 * The space available for the path corresponding to the locked vnode depends 1757 * on whether we are printing 32- or 64-bit addresses. 1758 */ 1759 #ifdef _LP64 1760 #define LM_VNPATHLEN 20 1761 #else 1762 #define LM_VNPATHLEN 30 1763 #endif 1764 1765 /*ARGSUSED*/ 1766 static int 1767 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1768 { 1769 const lock_descriptor_t *ld = data; 1770 char buf[LM_VNPATHLEN]; 1771 proc_t p; 1772 1773 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1774 addr, ld->l_type == F_RDLCK ? "RD" : 1775 ld->l_type == F_WRLCK ? "WR" : "??", 1776 ld->l_state, ld->l_flock.l_pid, 1777 ld->l_flock.l_pid == 0 ? "<kernel>" : 1778 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1779 "<defunct>" : p.p_user.u_comm, 1780 ld->l_vnode); 1781 1782 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1783 sizeof (buf)); 1784 mdb_printf("%s\n", buf); 1785 1786 return (WALK_NEXT); 1787 } 1788 1789 /*ARGSUSED*/ 1790 int 1791 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1792 { 1793 if (DCMD_HDRSPEC(flags)) 1794 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1795 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1796 1797 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1798 } 1799 1800 /*ARGSUSED*/ 1801 int 1802 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1803 { 1804 if ((uintptr_t)f->f_vnode == *target) { 1805 mdb_printf("file %p\n", addr); 1806 *target = NULL; 1807 } 1808 1809 return (WALK_NEXT); 1810 } 1811 1812 /*ARGSUSED*/ 1813 int 1814 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1815 { 1816 uintptr_t t = *target; 1817 1818 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1819 mdb_warn("couldn't file walk proc %p", addr); 1820 return (WALK_ERR); 1821 } 1822 1823 if (t == NULL) 1824 mdb_printf("%p\n", addr); 1825 1826 return (WALK_NEXT); 1827 } 1828 1829 /*ARGSUSED*/ 1830 int 1831 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1832 { 1833 uintptr_t target = addr; 1834 1835 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1836 return (DCMD_USAGE); 1837 1838 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1839 mdb_warn("can't proc walk"); 1840 return (DCMD_ERR); 1841 } 1842 1843 return (DCMD_OK); 1844 } 1845 1846 typedef struct datafmt { 1847 char *hdr1; 1848 char *hdr2; 1849 char *dashes; 1850 char *fmt; 1851 } datafmt_t; 1852 1853 static datafmt_t kmemfmt[] = { 1854 { "cache ", "name ", 1855 "-------------------------", "%-25s " }, 1856 { " buf", " size", "------", "%6u " }, 1857 { " buf", "in use", "------", "%6u " }, 1858 { " buf", " total", "------", "%6u " }, 1859 { " memory", " in use", "----------", "%10lu%c " }, 1860 { " alloc", " succeed", "---------", "%9u " }, 1861 { "alloc", " fail", "-----", "%5u " }, 1862 { NULL, NULL, NULL, NULL } 1863 }; 1864 1865 static datafmt_t vmemfmt[] = { 1866 { "vmem ", "name ", 1867 "-------------------------", "%-*s " }, 1868 { " memory", " in use", "----------", "%9llu%c " }, 1869 { " memory", " total", "-----------", "%10llu%c " }, 1870 { " memory", " import", "----------", "%9llu%c " }, 1871 { " alloc", " succeed", "---------", "%9llu " }, 1872 { "alloc", " fail", "-----", "%5llu " }, 1873 { NULL, NULL, NULL, NULL } 1874 }; 1875 1876 /*ARGSUSED*/ 1877 static int 1878 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1879 { 1880 short rounds, prounds; 1881 1882 if (KMEM_DUMPCC(ccp)) { 1883 rounds = ccp->cc_dump_rounds; 1884 prounds = ccp->cc_dump_prounds; 1885 } else { 1886 rounds = ccp->cc_rounds; 1887 prounds = ccp->cc_prounds; 1888 } 1889 if (rounds > 0) 1890 *avail += rounds; 1891 if (prounds > 0) 1892 *avail += prounds; 1893 1894 return (WALK_NEXT); 1895 } 1896 1897 /*ARGSUSED*/ 1898 static int 1899 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1900 { 1901 *alloc += ccp->cc_alloc; 1902 1903 return (WALK_NEXT); 1904 } 1905 1906 /*ARGSUSED*/ 1907 static int 1908 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1909 { 1910 *avail += sp->slab_chunks - sp->slab_refcnt; 1911 1912 return (WALK_NEXT); 1913 } 1914 1915 typedef struct kmastat_vmem { 1916 uintptr_t kv_addr; 1917 struct kmastat_vmem *kv_next; 1918 size_t kv_meminuse; 1919 int kv_alloc; 1920 int kv_fail; 1921 } kmastat_vmem_t; 1922 1923 typedef struct kmastat_args { 1924 kmastat_vmem_t **ka_kvpp; 1925 uint_t ka_shift; 1926 } kmastat_args_t; 1927 1928 static int 1929 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1930 { 1931 kmastat_vmem_t **kvpp = kap->ka_kvpp; 1932 kmastat_vmem_t *kv; 1933 datafmt_t *dfp = kmemfmt; 1934 int magsize; 1935 1936 int avail, alloc, total; 1937 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1938 cp->cache_slabsize; 1939 1940 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1941 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1942 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1943 1944 magsize = kmem_get_magsize(cp); 1945 1946 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1947 avail = cp->cache_full.ml_total * magsize; 1948 total = cp->cache_buftotal; 1949 1950 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1951 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1952 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1953 1954 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 1955 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1956 goto out; 1957 } 1958 1959 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1960 kv->kv_next = *kvpp; 1961 kv->kv_addr = (uintptr_t)cp->cache_arena; 1962 *kvpp = kv; 1963 out: 1964 kv->kv_meminuse += meminuse; 1965 kv->kv_alloc += alloc; 1966 kv->kv_fail += cp->cache_alloc_fail; 1967 1968 mdb_printf((dfp++)->fmt, cp->cache_name); 1969 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1970 mdb_printf((dfp++)->fmt, total - avail); 1971 mdb_printf((dfp++)->fmt, total); 1972 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 1973 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1974 kap->ka_shift == KILOS ? 'K' : 'B'); 1975 mdb_printf((dfp++)->fmt, alloc); 1976 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1977 mdb_printf("\n"); 1978 1979 return (WALK_NEXT); 1980 } 1981 1982 static int 1983 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1984 { 1985 kmastat_vmem_t *kv = *kap->ka_kvpp; 1986 size_t len; 1987 1988 while (kv != NULL && kv->kv_addr != addr) 1989 kv = kv->kv_next; 1990 1991 if (kv == NULL || kv->kv_alloc == 0) 1992 return (WALK_NEXT); 1993 1994 len = MIN(17, strlen(v->vm_name)); 1995 1996 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 1997 17 - len, "", "", "", "", 1998 kv->kv_meminuse >> kap->ka_shift, 1999 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2000 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2001 2002 return (WALK_NEXT); 2003 } 2004 2005 /*ARGSUSED*/ 2006 static int 2007 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2008 { 2009 datafmt_t *dfp = vmemfmt; 2010 const vmem_kstat_t *vkp = &v->vm_kstat; 2011 uintptr_t paddr; 2012 vmem_t parent; 2013 int ident = 0; 2014 2015 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2016 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2017 mdb_warn("couldn't trace %p's ancestry", addr); 2018 ident = 0; 2019 break; 2020 } 2021 paddr = (uintptr_t)parent.vm_source; 2022 } 2023 2024 mdb_printf("%*s", ident, ""); 2025 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2026 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2027 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2028 *shiftp == KILOS ? 'K' : 'B'); 2029 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2030 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2031 *shiftp == KILOS ? 'K' : 'B'); 2032 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2033 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2034 *shiftp == KILOS ? 'K' : 'B'); 2035 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2036 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2037 2038 mdb_printf("\n"); 2039 2040 return (WALK_NEXT); 2041 } 2042 2043 /*ARGSUSED*/ 2044 int 2045 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2046 { 2047 kmastat_vmem_t *kv = NULL; 2048 datafmt_t *dfp; 2049 kmastat_args_t ka; 2050 2051 ka.ka_shift = 0; 2052 if (mdb_getopts(argc, argv, 2053 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2054 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2055 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2056 return (DCMD_USAGE); 2057 2058 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2059 mdb_printf("%s ", dfp->hdr1); 2060 mdb_printf("\n"); 2061 2062 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2063 mdb_printf("%s ", dfp->hdr2); 2064 mdb_printf("\n"); 2065 2066 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2067 mdb_printf("%s ", dfp->dashes); 2068 mdb_printf("\n"); 2069 2070 ka.ka_kvpp = &kv; 2071 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2072 mdb_warn("can't walk 'kmem_cache'"); 2073 return (DCMD_ERR); 2074 } 2075 2076 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2077 mdb_printf("%s ", dfp->dashes); 2078 mdb_printf("\n"); 2079 2080 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2081 mdb_warn("can't walk 'vmem'"); 2082 return (DCMD_ERR); 2083 } 2084 2085 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2086 mdb_printf("%s ", dfp->dashes); 2087 mdb_printf("\n"); 2088 2089 mdb_printf("\n"); 2090 2091 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2092 mdb_printf("%s ", dfp->hdr1); 2093 mdb_printf("\n"); 2094 2095 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2096 mdb_printf("%s ", dfp->hdr2); 2097 mdb_printf("\n"); 2098 2099 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2100 mdb_printf("%s ", dfp->dashes); 2101 mdb_printf("\n"); 2102 2103 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2104 mdb_warn("can't walk 'vmem'"); 2105 return (DCMD_ERR); 2106 } 2107 2108 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2109 mdb_printf("%s ", dfp->dashes); 2110 mdb_printf("\n"); 2111 return (DCMD_OK); 2112 } 2113 2114 /* 2115 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2116 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2117 * unfortunately, a few of the segs are both large and sparse, so we could 2118 * spend quite a bit of time scanning VAs which have no backing pages. 2119 * 2120 * So for the few very sparse segs, we skip the segment itself, and scan 2121 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2122 * Currently, we do this for: 2123 * 2124 * SEG VMEM ARENA 2125 * kvseg heap_arena 2126 * kvseg32 heap32_arena 2127 * kvseg_core heap_core_arena 2128 * 2129 * In addition, we skip the segkpm segment in its entirety, since it is very 2130 * sparse, and contains no new kernel data. 2131 */ 2132 typedef struct kgrep_walk_data { 2133 kgrep_cb_func *kg_cb; 2134 void *kg_cbdata; 2135 uintptr_t kg_kvseg; 2136 uintptr_t kg_kvseg32; 2137 uintptr_t kg_kvseg_core; 2138 uintptr_t kg_segkpm; 2139 uintptr_t kg_heap_lp_base; 2140 uintptr_t kg_heap_lp_end; 2141 } kgrep_walk_data_t; 2142 2143 static int 2144 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2145 { 2146 uintptr_t base = (uintptr_t)seg->s_base; 2147 2148 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2149 addr == kg->kg_kvseg_core) 2150 return (WALK_NEXT); 2151 2152 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2153 return (WALK_NEXT); 2154 2155 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2156 } 2157 2158 /*ARGSUSED*/ 2159 static int 2160 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2161 { 2162 /* 2163 * skip large page heap address range - it is scanned by walking 2164 * allocated vmem_segs in the heap_lp_arena 2165 */ 2166 if (seg->vs_start == kg->kg_heap_lp_base && 2167 seg->vs_end == kg->kg_heap_lp_end) 2168 return (WALK_NEXT); 2169 2170 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2171 } 2172 2173 /*ARGSUSED*/ 2174 static int 2175 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2176 { 2177 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2178 } 2179 2180 static int 2181 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2182 { 2183 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2184 2185 if (strcmp(vmem->vm_name, "heap") != 0 && 2186 strcmp(vmem->vm_name, "heap32") != 0 && 2187 strcmp(vmem->vm_name, "heap_core") != 0 && 2188 strcmp(vmem->vm_name, "heap_lp") != 0) 2189 return (WALK_NEXT); 2190 2191 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2192 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2193 2194 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2195 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2196 return (WALK_ERR); 2197 } 2198 2199 return (WALK_NEXT); 2200 } 2201 2202 int 2203 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2204 { 2205 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2206 kgrep_walk_data_t kg; 2207 2208 if (mdb_get_state() == MDB_STATE_RUNNING) { 2209 mdb_warn("kgrep can only be run on a system " 2210 "dump or under kmdb; see dumpadm(1M)\n"); 2211 return (DCMD_ERR); 2212 } 2213 2214 if (mdb_lookup_by_name("kas", &kas) == -1) { 2215 mdb_warn("failed to locate 'kas' symbol\n"); 2216 return (DCMD_ERR); 2217 } 2218 2219 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2220 mdb_warn("failed to locate 'kvseg' symbol\n"); 2221 return (DCMD_ERR); 2222 } 2223 2224 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2225 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2226 return (DCMD_ERR); 2227 } 2228 2229 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2230 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2231 return (DCMD_ERR); 2232 } 2233 2234 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2235 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2236 return (DCMD_ERR); 2237 } 2238 2239 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2240 mdb_warn("failed to read 'heap_lp_base'\n"); 2241 return (DCMD_ERR); 2242 } 2243 2244 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2245 mdb_warn("failed to read 'heap_lp_end'\n"); 2246 return (DCMD_ERR); 2247 } 2248 2249 kg.kg_cb = cb; 2250 kg.kg_cbdata = cbdata; 2251 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2252 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2253 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2254 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2255 2256 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2257 &kg, kas.st_value) == -1) { 2258 mdb_warn("failed to walk kas segments"); 2259 return (DCMD_ERR); 2260 } 2261 2262 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2263 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2264 return (DCMD_ERR); 2265 } 2266 2267 return (DCMD_OK); 2268 } 2269 2270 size_t 2271 kgrep_subr_pagesize(void) 2272 { 2273 return (PAGESIZE); 2274 } 2275 2276 typedef struct file_walk_data { 2277 struct uf_entry *fw_flist; 2278 int fw_flistsz; 2279 int fw_ndx; 2280 int fw_nofiles; 2281 } file_walk_data_t; 2282 2283 int 2284 file_walk_init(mdb_walk_state_t *wsp) 2285 { 2286 file_walk_data_t *fw; 2287 proc_t p; 2288 2289 if (wsp->walk_addr == NULL) { 2290 mdb_warn("file walk doesn't support global walks\n"); 2291 return (WALK_ERR); 2292 } 2293 2294 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2295 2296 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2297 mdb_free(fw, sizeof (file_walk_data_t)); 2298 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2299 return (WALK_ERR); 2300 } 2301 2302 if (p.p_user.u_finfo.fi_nfiles == 0) { 2303 mdb_free(fw, sizeof (file_walk_data_t)); 2304 return (WALK_DONE); 2305 } 2306 2307 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2308 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2309 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2310 2311 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2312 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2313 mdb_warn("failed to read file array at %p", 2314 p.p_user.u_finfo.fi_list); 2315 mdb_free(fw->fw_flist, fw->fw_flistsz); 2316 mdb_free(fw, sizeof (file_walk_data_t)); 2317 return (WALK_ERR); 2318 } 2319 2320 fw->fw_ndx = 0; 2321 wsp->walk_data = fw; 2322 2323 return (WALK_NEXT); 2324 } 2325 2326 int 2327 file_walk_step(mdb_walk_state_t *wsp) 2328 { 2329 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2330 struct file file; 2331 uintptr_t fp; 2332 2333 again: 2334 if (fw->fw_ndx == fw->fw_nofiles) 2335 return (WALK_DONE); 2336 2337 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2338 goto again; 2339 2340 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2341 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2342 } 2343 2344 int 2345 allfile_walk_step(mdb_walk_state_t *wsp) 2346 { 2347 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2348 struct file file; 2349 uintptr_t fp; 2350 2351 if (fw->fw_ndx == fw->fw_nofiles) 2352 return (WALK_DONE); 2353 2354 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2355 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2356 else 2357 bzero(&file, sizeof (file)); 2358 2359 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2360 } 2361 2362 void 2363 file_walk_fini(mdb_walk_state_t *wsp) 2364 { 2365 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2366 2367 mdb_free(fw->fw_flist, fw->fw_flistsz); 2368 mdb_free(fw, sizeof (file_walk_data_t)); 2369 } 2370 2371 int 2372 port_walk_init(mdb_walk_state_t *wsp) 2373 { 2374 if (wsp->walk_addr == NULL) { 2375 mdb_warn("port walk doesn't support global walks\n"); 2376 return (WALK_ERR); 2377 } 2378 2379 if (mdb_layered_walk("file", wsp) == -1) { 2380 mdb_warn("couldn't walk 'file'"); 2381 return (WALK_ERR); 2382 } 2383 return (WALK_NEXT); 2384 } 2385 2386 int 2387 port_walk_step(mdb_walk_state_t *wsp) 2388 { 2389 struct vnode vn; 2390 uintptr_t vp; 2391 uintptr_t pp; 2392 struct port port; 2393 2394 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2395 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2396 mdb_warn("failed to read vnode_t at %p", vp); 2397 return (WALK_ERR); 2398 } 2399 if (vn.v_type != VPORT) 2400 return (WALK_NEXT); 2401 2402 pp = (uintptr_t)vn.v_data; 2403 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2404 mdb_warn("failed to read port_t at %p", pp); 2405 return (WALK_ERR); 2406 } 2407 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2408 } 2409 2410 typedef struct portev_walk_data { 2411 list_node_t *pev_node; 2412 list_node_t *pev_last; 2413 size_t pev_offset; 2414 } portev_walk_data_t; 2415 2416 int 2417 portev_walk_init(mdb_walk_state_t *wsp) 2418 { 2419 portev_walk_data_t *pevd; 2420 struct port port; 2421 struct vnode vn; 2422 struct list *list; 2423 uintptr_t vp; 2424 2425 if (wsp->walk_addr == NULL) { 2426 mdb_warn("portev walk doesn't support global walks\n"); 2427 return (WALK_ERR); 2428 } 2429 2430 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2431 2432 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2433 mdb_free(pevd, sizeof (portev_walk_data_t)); 2434 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2435 return (WALK_ERR); 2436 } 2437 2438 vp = (uintptr_t)port.port_vnode; 2439 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2440 mdb_free(pevd, sizeof (portev_walk_data_t)); 2441 mdb_warn("failed to read vnode_t at %p", vp); 2442 return (WALK_ERR); 2443 } 2444 2445 if (vn.v_type != VPORT) { 2446 mdb_free(pevd, sizeof (portev_walk_data_t)); 2447 mdb_warn("input address (%p) does not point to an event port", 2448 wsp->walk_addr); 2449 return (WALK_ERR); 2450 } 2451 2452 if (port.port_queue.portq_nent == 0) { 2453 mdb_free(pevd, sizeof (portev_walk_data_t)); 2454 return (WALK_DONE); 2455 } 2456 list = &port.port_queue.portq_list; 2457 pevd->pev_offset = list->list_offset; 2458 pevd->pev_last = list->list_head.list_prev; 2459 pevd->pev_node = list->list_head.list_next; 2460 wsp->walk_data = pevd; 2461 return (WALK_NEXT); 2462 } 2463 2464 int 2465 portev_walk_step(mdb_walk_state_t *wsp) 2466 { 2467 portev_walk_data_t *pevd; 2468 struct port_kevent ev; 2469 uintptr_t evp; 2470 2471 pevd = (portev_walk_data_t *)wsp->walk_data; 2472 2473 if (pevd->pev_last == NULL) 2474 return (WALK_DONE); 2475 if (pevd->pev_node == pevd->pev_last) 2476 pevd->pev_last = NULL; /* last round */ 2477 2478 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2479 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2480 mdb_warn("failed to read port_kevent at %p", evp); 2481 return (WALK_DONE); 2482 } 2483 pevd->pev_node = ev.portkev_node.list_next; 2484 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2485 } 2486 2487 void 2488 portev_walk_fini(mdb_walk_state_t *wsp) 2489 { 2490 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2491 2492 if (pevd != NULL) 2493 mdb_free(pevd, sizeof (portev_walk_data_t)); 2494 } 2495 2496 typedef struct proc_walk_data { 2497 uintptr_t *pw_stack; 2498 int pw_depth; 2499 int pw_max; 2500 } proc_walk_data_t; 2501 2502 int 2503 proc_walk_init(mdb_walk_state_t *wsp) 2504 { 2505 GElf_Sym sym; 2506 proc_walk_data_t *pw; 2507 2508 if (wsp->walk_addr == NULL) { 2509 if (mdb_lookup_by_name("p0", &sym) == -1) { 2510 mdb_warn("failed to read 'practive'"); 2511 return (WALK_ERR); 2512 } 2513 wsp->walk_addr = (uintptr_t)sym.st_value; 2514 } 2515 2516 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2517 2518 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2519 mdb_warn("failed to read 'nproc'"); 2520 mdb_free(pw, sizeof (pw)); 2521 return (WALK_ERR); 2522 } 2523 2524 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2525 wsp->walk_data = pw; 2526 2527 return (WALK_NEXT); 2528 } 2529 2530 int 2531 proc_walk_step(mdb_walk_state_t *wsp) 2532 { 2533 proc_walk_data_t *pw = wsp->walk_data; 2534 uintptr_t addr = wsp->walk_addr; 2535 uintptr_t cld, sib; 2536 2537 int status; 2538 proc_t pr; 2539 2540 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2541 mdb_warn("failed to read proc at %p", addr); 2542 return (WALK_DONE); 2543 } 2544 2545 cld = (uintptr_t)pr.p_child; 2546 sib = (uintptr_t)pr.p_sibling; 2547 2548 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2549 pw->pw_depth--; 2550 goto sib; 2551 } 2552 2553 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2554 2555 if (status != WALK_NEXT) 2556 return (status); 2557 2558 if ((wsp->walk_addr = cld) != NULL) { 2559 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2560 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2561 addr, cld); 2562 goto sib; 2563 } 2564 2565 pw->pw_stack[pw->pw_depth++] = addr; 2566 2567 if (pw->pw_depth == pw->pw_max) { 2568 mdb_warn("depth %d exceeds max depth; try again\n", 2569 pw->pw_depth); 2570 return (WALK_DONE); 2571 } 2572 return (WALK_NEXT); 2573 } 2574 2575 sib: 2576 /* 2577 * We know that p0 has no siblings, and if another starting proc 2578 * was given, we don't want to walk its siblings anyway. 2579 */ 2580 if (pw->pw_depth == 0) 2581 return (WALK_DONE); 2582 2583 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2584 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2585 addr, sib); 2586 sib = NULL; 2587 } 2588 2589 if ((wsp->walk_addr = sib) == NULL) { 2590 if (pw->pw_depth > 0) { 2591 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2592 return (WALK_NEXT); 2593 } 2594 return (WALK_DONE); 2595 } 2596 2597 return (WALK_NEXT); 2598 } 2599 2600 void 2601 proc_walk_fini(mdb_walk_state_t *wsp) 2602 { 2603 proc_walk_data_t *pw = wsp->walk_data; 2604 2605 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2606 mdb_free(pw, sizeof (proc_walk_data_t)); 2607 } 2608 2609 int 2610 task_walk_init(mdb_walk_state_t *wsp) 2611 { 2612 task_t task; 2613 2614 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2615 mdb_warn("failed to read task at %p", wsp->walk_addr); 2616 return (WALK_ERR); 2617 } 2618 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2619 wsp->walk_data = task.tk_memb_list; 2620 return (WALK_NEXT); 2621 } 2622 2623 int 2624 task_walk_step(mdb_walk_state_t *wsp) 2625 { 2626 proc_t proc; 2627 int status; 2628 2629 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2630 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2631 return (WALK_DONE); 2632 } 2633 2634 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2635 2636 if (proc.p_tasknext == wsp->walk_data) 2637 return (WALK_DONE); 2638 2639 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2640 return (status); 2641 } 2642 2643 int 2644 project_walk_init(mdb_walk_state_t *wsp) 2645 { 2646 if (wsp->walk_addr == NULL) { 2647 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2648 mdb_warn("failed to read 'proj0p'"); 2649 return (WALK_ERR); 2650 } 2651 } 2652 wsp->walk_data = (void *)wsp->walk_addr; 2653 return (WALK_NEXT); 2654 } 2655 2656 int 2657 project_walk_step(mdb_walk_state_t *wsp) 2658 { 2659 uintptr_t addr = wsp->walk_addr; 2660 kproject_t pj; 2661 int status; 2662 2663 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2664 mdb_warn("failed to read project at %p", addr); 2665 return (WALK_DONE); 2666 } 2667 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2668 if (status != WALK_NEXT) 2669 return (status); 2670 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2671 if ((void *)wsp->walk_addr == wsp->walk_data) 2672 return (WALK_DONE); 2673 return (WALK_NEXT); 2674 } 2675 2676 static int 2677 generic_walk_step(mdb_walk_state_t *wsp) 2678 { 2679 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2680 wsp->walk_cbdata)); 2681 } 2682 2683 static int 2684 cpu_walk_cmp(const void *l, const void *r) 2685 { 2686 uintptr_t lhs = *((uintptr_t *)l); 2687 uintptr_t rhs = *((uintptr_t *)r); 2688 cpu_t lcpu, rcpu; 2689 2690 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2691 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2692 2693 if (lcpu.cpu_id < rcpu.cpu_id) 2694 return (-1); 2695 2696 if (lcpu.cpu_id > rcpu.cpu_id) 2697 return (1); 2698 2699 return (0); 2700 } 2701 2702 typedef struct cpu_walk { 2703 uintptr_t *cw_array; 2704 int cw_ndx; 2705 } cpu_walk_t; 2706 2707 int 2708 cpu_walk_init(mdb_walk_state_t *wsp) 2709 { 2710 cpu_walk_t *cw; 2711 int max_ncpus, i = 0; 2712 uintptr_t current, first; 2713 cpu_t cpu, panic_cpu; 2714 uintptr_t panicstr, addr; 2715 GElf_Sym sym; 2716 2717 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2718 2719 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2720 mdb_warn("failed to read 'max_ncpus'"); 2721 return (WALK_ERR); 2722 } 2723 2724 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2725 mdb_warn("failed to read 'panicstr'"); 2726 return (WALK_ERR); 2727 } 2728 2729 if (panicstr != NULL) { 2730 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2731 mdb_warn("failed to find 'panic_cpu'"); 2732 return (WALK_ERR); 2733 } 2734 2735 addr = (uintptr_t)sym.st_value; 2736 2737 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2738 mdb_warn("failed to read 'panic_cpu'"); 2739 return (WALK_ERR); 2740 } 2741 } 2742 2743 /* 2744 * Unfortunately, there is no platform-independent way to walk 2745 * CPUs in ID order. We therefore loop through in cpu_next order, 2746 * building an array of CPU pointers which will subsequently be 2747 * sorted. 2748 */ 2749 cw->cw_array = 2750 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2751 2752 if (mdb_readvar(&first, "cpu_list") == -1) { 2753 mdb_warn("failed to read 'cpu_list'"); 2754 return (WALK_ERR); 2755 } 2756 2757 current = first; 2758 do { 2759 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2760 mdb_warn("failed to read cpu at %p", current); 2761 return (WALK_ERR); 2762 } 2763 2764 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2765 cw->cw_array[i++] = addr; 2766 } else { 2767 cw->cw_array[i++] = current; 2768 } 2769 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2770 2771 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2772 wsp->walk_data = cw; 2773 2774 return (WALK_NEXT); 2775 } 2776 2777 int 2778 cpu_walk_step(mdb_walk_state_t *wsp) 2779 { 2780 cpu_walk_t *cw = wsp->walk_data; 2781 cpu_t cpu; 2782 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2783 2784 if (addr == NULL) 2785 return (WALK_DONE); 2786 2787 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2788 mdb_warn("failed to read cpu at %p", addr); 2789 return (WALK_DONE); 2790 } 2791 2792 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2793 } 2794 2795 typedef struct cpuinfo_data { 2796 intptr_t cid_cpu; 2797 uintptr_t **cid_ithr; 2798 char cid_print_head; 2799 char cid_print_thr; 2800 char cid_print_ithr; 2801 char cid_print_flags; 2802 } cpuinfo_data_t; 2803 2804 int 2805 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2806 { 2807 cpu_t c; 2808 int id; 2809 uint8_t pil; 2810 2811 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2812 return (WALK_NEXT); 2813 2814 if (thr->t_bound_cpu == NULL) { 2815 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2816 return (WALK_NEXT); 2817 } 2818 2819 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2820 2821 if ((id = c.cpu_id) >= NCPU) { 2822 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2823 thr->t_bound_cpu, id, NCPU); 2824 return (WALK_NEXT); 2825 } 2826 2827 if ((pil = thr->t_pil) >= NINTR) { 2828 mdb_warn("thread %p has pil (%d) greater than %d\n", 2829 addr, pil, NINTR); 2830 return (WALK_NEXT); 2831 } 2832 2833 if (cid->cid_ithr[id][pil] != NULL) { 2834 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2835 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2836 return (WALK_NEXT); 2837 } 2838 2839 cid->cid_ithr[id][pil] = addr; 2840 2841 return (WALK_NEXT); 2842 } 2843 2844 #define CPUINFO_IDWIDTH 3 2845 #define CPUINFO_FLAGWIDTH 9 2846 2847 #ifdef _LP64 2848 #if defined(__amd64) 2849 #define CPUINFO_TWIDTH 16 2850 #define CPUINFO_CPUWIDTH 16 2851 #else 2852 #define CPUINFO_CPUWIDTH 11 2853 #define CPUINFO_TWIDTH 11 2854 #endif 2855 #else 2856 #define CPUINFO_CPUWIDTH 8 2857 #define CPUINFO_TWIDTH 8 2858 #endif 2859 2860 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2861 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2862 #define CPUINFO_ITHRDELT 4 2863 2864 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2865 flagline < nflaglines ? flagbuf[flagline++] : "") 2866 2867 int 2868 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2869 { 2870 kthread_t t; 2871 disp_t disp; 2872 proc_t p; 2873 uintptr_t pinned; 2874 char **flagbuf; 2875 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2876 2877 const char *flags[] = { 2878 "RUNNING", "READY", "QUIESCED", "EXISTS", 2879 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2880 "SPARE", "FAULTED", NULL 2881 }; 2882 2883 if (cid->cid_cpu != -1) { 2884 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2885 return (WALK_NEXT); 2886 2887 /* 2888 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2889 */ 2890 cid->cid_cpu = -1; 2891 rval = WALK_DONE; 2892 } 2893 2894 if (cid->cid_print_head) { 2895 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2896 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2897 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2898 "PROC"); 2899 cid->cid_print_head = FALSE; 2900 } 2901 2902 bspl = cpu->cpu_base_spl; 2903 2904 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2905 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2906 return (WALK_ERR); 2907 } 2908 2909 mdb_printf("%3d %0*p %3x %4d %4d ", 2910 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2911 disp.disp_nrunnable, bspl); 2912 2913 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2914 mdb_printf("%3d ", t.t_pri); 2915 } else { 2916 mdb_printf("%3s ", "-"); 2917 } 2918 2919 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2920 cpu->cpu_kprunrun ? "yes" : "no"); 2921 2922 if (cpu->cpu_last_swtch) { 2923 mdb_printf("t-%-4d ", 2924 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2925 } else { 2926 mdb_printf("%-6s ", "-"); 2927 } 2928 2929 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2930 2931 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2932 mdb_printf(" (idle)\n"); 2933 else if (cpu->cpu_thread == NULL) 2934 mdb_printf(" -\n"); 2935 else { 2936 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2937 mdb_printf(" %s\n", p.p_user.u_comm); 2938 } else { 2939 mdb_printf(" ?\n"); 2940 } 2941 } 2942 2943 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2944 2945 if (cid->cid_print_flags) { 2946 int first = 1, i, j, k; 2947 char *s; 2948 2949 cid->cid_print_head = TRUE; 2950 2951 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2952 if (!(cpu->cpu_flags & i)) 2953 continue; 2954 2955 if (first) { 2956 s = mdb_alloc(CPUINFO_THRDELT + 1, 2957 UM_GC | UM_SLEEP); 2958 2959 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2960 "%*s|%*s", CPUINFO_FLAGDELT, "", 2961 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2962 flagbuf[nflaglines++] = s; 2963 } 2964 2965 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2966 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2967 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2968 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2969 first ? "<--+" : ""); 2970 2971 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2972 s[k] = ' '; 2973 s[k] = '\0'; 2974 2975 flagbuf[nflaglines++] = s; 2976 first = 0; 2977 } 2978 } 2979 2980 if (cid->cid_print_ithr) { 2981 int i, found_one = FALSE; 2982 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2983 2984 for (i = NINTR - 1; i >= 0; i--) { 2985 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2986 2987 if (iaddr == NULL) 2988 continue; 2989 2990 if (!found_one) { 2991 found_one = TRUE; 2992 2993 CPUINFO_INDENT; 2994 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2995 CPUINFO_ITHRDELT, ""); 2996 2997 CPUINFO_INDENT; 2998 mdb_printf("%c%*s+--> %3s %s\n", 2999 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3000 "", "PIL", "THREAD"); 3001 } 3002 3003 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3004 mdb_warn("failed to read kthread_t at %p", 3005 iaddr); 3006 return (WALK_ERR); 3007 } 3008 3009 CPUINFO_INDENT; 3010 mdb_printf("%c%*s %3d %0*p\n", 3011 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3012 t.t_pil, CPUINFO_TWIDTH, iaddr); 3013 3014 pinned = (uintptr_t)t.t_intr; 3015 } 3016 3017 if (found_one && pinned != NULL) { 3018 cid->cid_print_head = TRUE; 3019 (void) strcpy(p.p_user.u_comm, "?"); 3020 3021 if (mdb_vread(&t, sizeof (t), 3022 (uintptr_t)pinned) == -1) { 3023 mdb_warn("failed to read kthread_t at %p", 3024 pinned); 3025 return (WALK_ERR); 3026 } 3027 if (mdb_vread(&p, sizeof (p), 3028 (uintptr_t)t.t_procp) == -1) { 3029 mdb_warn("failed to read proc_t at %p", 3030 t.t_procp); 3031 return (WALK_ERR); 3032 } 3033 3034 CPUINFO_INDENT; 3035 mdb_printf("%c%*s %3s %0*p %s\n", 3036 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3037 CPUINFO_TWIDTH, pinned, 3038 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3039 "(idle)" : p.p_user.u_comm); 3040 } 3041 } 3042 3043 if (disp.disp_nrunnable && cid->cid_print_thr) { 3044 dispq_t *dq; 3045 3046 int i, npri = disp.disp_npri; 3047 3048 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3049 3050 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3051 (uintptr_t)disp.disp_q) == -1) { 3052 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3053 return (WALK_ERR); 3054 } 3055 3056 CPUINFO_INDENT; 3057 mdb_printf("|\n"); 3058 3059 CPUINFO_INDENT; 3060 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3061 CPUINFO_TWIDTH, "THREAD", "PROC"); 3062 3063 for (i = npri - 1; i >= 0; i--) { 3064 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3065 3066 while (taddr != NULL) { 3067 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3068 mdb_warn("failed to read kthread_t " 3069 "at %p", taddr); 3070 return (WALK_ERR); 3071 } 3072 if (mdb_vread(&p, sizeof (p), 3073 (uintptr_t)t.t_procp) == -1) { 3074 mdb_warn("failed to read proc_t at %p", 3075 t.t_procp); 3076 return (WALK_ERR); 3077 } 3078 3079 CPUINFO_INDENT; 3080 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3081 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3082 3083 taddr = (uintptr_t)t.t_link; 3084 } 3085 } 3086 cid->cid_print_head = TRUE; 3087 } 3088 3089 while (flagline < nflaglines) 3090 mdb_printf("%s\n", flagbuf[flagline++]); 3091 3092 if (cid->cid_print_head) 3093 mdb_printf("\n"); 3094 3095 return (rval); 3096 } 3097 3098 int 3099 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3100 { 3101 uint_t verbose = FALSE; 3102 cpuinfo_data_t cid; 3103 3104 cid.cid_print_ithr = FALSE; 3105 cid.cid_print_thr = FALSE; 3106 cid.cid_print_flags = FALSE; 3107 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3108 cid.cid_cpu = -1; 3109 3110 if (flags & DCMD_ADDRSPEC) 3111 cid.cid_cpu = addr; 3112 3113 if (mdb_getopts(argc, argv, 3114 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3115 return (DCMD_USAGE); 3116 3117 if (verbose) { 3118 cid.cid_print_ithr = TRUE; 3119 cid.cid_print_thr = TRUE; 3120 cid.cid_print_flags = TRUE; 3121 cid.cid_print_head = TRUE; 3122 } 3123 3124 if (cid.cid_print_ithr) { 3125 int i; 3126 3127 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3128 * NCPU, UM_SLEEP | UM_GC); 3129 3130 for (i = 0; i < NCPU; i++) 3131 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3132 NINTR, UM_SLEEP | UM_GC); 3133 3134 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3135 &cid) == -1) { 3136 mdb_warn("couldn't walk thread"); 3137 return (DCMD_ERR); 3138 } 3139 } 3140 3141 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3142 mdb_warn("can't walk cpus"); 3143 return (DCMD_ERR); 3144 } 3145 3146 if (cid.cid_cpu != -1) { 3147 /* 3148 * We didn't find this CPU when we walked through the CPUs 3149 * (i.e. the address specified doesn't show up in the "cpu" 3150 * walk). However, the specified address may still correspond 3151 * to a valid cpu_t (for example, if the specified address is 3152 * the actual panicking cpu_t and not the cached panic_cpu). 3153 * Point is: even if we didn't find it, we still want to try 3154 * to print the specified address as a cpu_t. 3155 */ 3156 cpu_t cpu; 3157 3158 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3159 mdb_warn("%p is neither a valid CPU ID nor a " 3160 "valid cpu_t address\n", cid.cid_cpu); 3161 return (DCMD_ERR); 3162 } 3163 3164 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3165 } 3166 3167 return (DCMD_OK); 3168 } 3169 3170 /*ARGSUSED*/ 3171 int 3172 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3173 { 3174 int i; 3175 3176 if (!(flags & DCMD_ADDRSPEC)) 3177 return (DCMD_USAGE); 3178 3179 for (i = 0; i < sizeof (addr) * NBBY; i++) 3180 mdb_printf("%p\n", addr ^ (1UL << i)); 3181 3182 return (DCMD_OK); 3183 } 3184 3185 int 3186 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3187 { 3188 if (p->p_as == *asp) 3189 mdb_printf("%p\n", addr); 3190 return (WALK_NEXT); 3191 } 3192 3193 /*ARGSUSED*/ 3194 int 3195 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3196 { 3197 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3198 return (DCMD_USAGE); 3199 3200 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3201 mdb_warn("failed to walk proc"); 3202 return (DCMD_ERR); 3203 } 3204 3205 return (DCMD_OK); 3206 } 3207 3208 /*ARGSUSED*/ 3209 int 3210 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3211 { 3212 proc_t parent; 3213 int ident = 0; 3214 uintptr_t paddr; 3215 3216 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3217 mdb_vread(&parent, sizeof (parent), paddr); 3218 paddr = (uintptr_t)parent.p_parent; 3219 } 3220 3221 mdb_inc_indent(ident); 3222 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3223 mdb_dec_indent(ident); 3224 3225 return (WALK_NEXT); 3226 } 3227 3228 void 3229 ptree_ancestors(uintptr_t addr, uintptr_t start) 3230 { 3231 proc_t p; 3232 3233 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3234 mdb_warn("couldn't read ancestor at %p", addr); 3235 return; 3236 } 3237 3238 if (p.p_parent != NULL) 3239 ptree_ancestors((uintptr_t)p.p_parent, start); 3240 3241 if (addr != start) 3242 (void) ptree_walk(addr, &p, NULL); 3243 } 3244 3245 /*ARGSUSED*/ 3246 int 3247 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3248 { 3249 if (!(flags & DCMD_ADDRSPEC)) 3250 addr = NULL; 3251 else 3252 ptree_ancestors(addr, addr); 3253 3254 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3255 mdb_warn("couldn't walk 'proc'"); 3256 return (DCMD_ERR); 3257 } 3258 3259 return (DCMD_OK); 3260 } 3261 3262 /*ARGSUSED*/ 3263 static int 3264 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3265 { 3266 int fdnum; 3267 const mdb_arg_t *argp = &argv[0]; 3268 proc_t p; 3269 uf_entry_t uf; 3270 3271 if ((flags & DCMD_ADDRSPEC) == 0) { 3272 mdb_warn("fd doesn't give global information\n"); 3273 return (DCMD_ERR); 3274 } 3275 if (argc != 1) 3276 return (DCMD_USAGE); 3277 3278 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3279 fdnum = argp->a_un.a_val; 3280 else 3281 fdnum = mdb_strtoull(argp->a_un.a_str); 3282 3283 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3284 mdb_warn("couldn't read proc_t at %p", addr); 3285 return (DCMD_ERR); 3286 } 3287 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3288 mdb_warn("process %p only has %d files open.\n", 3289 addr, p.p_user.u_finfo.fi_nfiles); 3290 return (DCMD_ERR); 3291 } 3292 if (mdb_vread(&uf, sizeof (uf_entry_t), 3293 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3294 mdb_warn("couldn't read uf_entry_t at %p", 3295 &p.p_user.u_finfo.fi_list[fdnum]); 3296 return (DCMD_ERR); 3297 } 3298 3299 mdb_printf("%p\n", uf.uf_file); 3300 return (DCMD_OK); 3301 } 3302 3303 /*ARGSUSED*/ 3304 static int 3305 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3306 { 3307 pid_t pid = (pid_t)addr; 3308 3309 if (argc != 0) 3310 return (DCMD_USAGE); 3311 3312 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3313 mdb_warn("PID 0t%d not found\n", pid); 3314 return (DCMD_ERR); 3315 } 3316 3317 mdb_printf("%p\n", addr); 3318 return (DCMD_OK); 3319 } 3320 3321 static char *sysfile_cmd[] = { 3322 "exclude:", 3323 "include:", 3324 "forceload:", 3325 "rootdev:", 3326 "rootfs:", 3327 "swapdev:", 3328 "swapfs:", 3329 "moddir:", 3330 "set", 3331 "unknown", 3332 }; 3333 3334 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3335 3336 /*ARGSUSED*/ 3337 static int 3338 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3339 { 3340 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3341 *target = NULL; 3342 return (WALK_DONE); 3343 } 3344 return (WALK_NEXT); 3345 } 3346 3347 /*ARGSUSED*/ 3348 static int 3349 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3350 { 3351 struct sysparam *sysp, sys; 3352 char var[256]; 3353 char modname[256]; 3354 char val[256]; 3355 char strval[256]; 3356 vmem_t *mod_sysfile_arena; 3357 void *straddr; 3358 3359 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3360 mdb_warn("failed to read sysparam_hd"); 3361 return (DCMD_ERR); 3362 } 3363 3364 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3365 mdb_warn("failed to read mod_sysfile_arena"); 3366 return (DCMD_ERR); 3367 } 3368 3369 while (sysp != NULL) { 3370 var[0] = '\0'; 3371 val[0] = '\0'; 3372 modname[0] = '\0'; 3373 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3374 mdb_warn("couldn't read sysparam %p", sysp); 3375 return (DCMD_ERR); 3376 } 3377 if (sys.sys_modnam != NULL && 3378 mdb_readstr(modname, 256, 3379 (uintptr_t)sys.sys_modnam) == -1) { 3380 mdb_warn("couldn't read modname in %p", sysp); 3381 return (DCMD_ERR); 3382 } 3383 if (sys.sys_ptr != NULL && 3384 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3385 mdb_warn("couldn't read ptr in %p", sysp); 3386 return (DCMD_ERR); 3387 } 3388 if (sys.sys_op != SETOP_NONE) { 3389 /* 3390 * Is this an int or a string? We determine this 3391 * by checking whether straddr is contained in 3392 * mod_sysfile_arena. If so, the walker will set 3393 * straddr to NULL. 3394 */ 3395 straddr = (void *)(uintptr_t)sys.sys_info; 3396 if (sys.sys_op == SETOP_ASSIGN && 3397 sys.sys_info != 0 && 3398 mdb_pwalk("vmem_seg", 3399 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3400 (uintptr_t)mod_sysfile_arena) == 0 && 3401 straddr == NULL && 3402 mdb_readstr(strval, 256, 3403 (uintptr_t)sys.sys_info) != -1) { 3404 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3405 strval); 3406 } else { 3407 (void) mdb_snprintf(val, sizeof (val), 3408 "0x%llx [0t%llu]", sys.sys_info, 3409 sys.sys_info); 3410 } 3411 } 3412 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3413 modname, modname[0] == '\0' ? "" : ":", 3414 var, sysfile_ops[sys.sys_op], val); 3415 3416 sysp = sys.sys_next; 3417 } 3418 3419 return (DCMD_OK); 3420 } 3421 3422 int 3423 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3424 { 3425 3426 if (*didp == thr->t_did) { 3427 mdb_printf("%p\n", addr); 3428 return (WALK_DONE); 3429 } else 3430 return (WALK_NEXT); 3431 } 3432 3433 /*ARGSUSED*/ 3434 int 3435 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3436 { 3437 const mdb_arg_t *argp = &argv[0]; 3438 kt_did_t did; 3439 3440 if (argc != 1) 3441 return (DCMD_USAGE); 3442 3443 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3444 3445 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3446 mdb_warn("failed to walk thread"); 3447 return (DCMD_ERR); 3448 3449 } 3450 return (DCMD_OK); 3451 3452 } 3453 3454 static int 3455 errorq_walk_init(mdb_walk_state_t *wsp) 3456 { 3457 if (wsp->walk_addr == NULL && 3458 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3459 mdb_warn("failed to read errorq_list"); 3460 return (WALK_ERR); 3461 } 3462 3463 return (WALK_NEXT); 3464 } 3465 3466 static int 3467 errorq_walk_step(mdb_walk_state_t *wsp) 3468 { 3469 uintptr_t addr = wsp->walk_addr; 3470 errorq_t eq; 3471 3472 if (addr == NULL) 3473 return (WALK_DONE); 3474 3475 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3476 mdb_warn("failed to read errorq at %p", addr); 3477 return (WALK_ERR); 3478 } 3479 3480 wsp->walk_addr = (uintptr_t)eq.eq_next; 3481 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3482 } 3483 3484 typedef struct eqd_walk_data { 3485 uintptr_t *eqd_stack; 3486 void *eqd_buf; 3487 ulong_t eqd_qpos; 3488 ulong_t eqd_qlen; 3489 size_t eqd_size; 3490 } eqd_walk_data_t; 3491 3492 /* 3493 * In order to walk the list of pending error queue elements, we push the 3494 * addresses of the corresponding data buffers in to the eqd_stack array. 3495 * The error lists are in reverse chronological order when iterating using 3496 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3497 * walker client gets addresses in order from oldest error to newest error. 3498 */ 3499 static void 3500 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3501 { 3502 errorq_elem_t eqe; 3503 3504 while (addr != NULL) { 3505 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3506 mdb_warn("failed to read errorq element at %p", addr); 3507 break; 3508 } 3509 3510 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3511 mdb_warn("errorq is overfull -- more than %lu " 3512 "elems found\n", eqdp->eqd_qlen); 3513 break; 3514 } 3515 3516 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3517 addr = (uintptr_t)eqe.eqe_prev; 3518 } 3519 } 3520 3521 static int 3522 eqd_walk_init(mdb_walk_state_t *wsp) 3523 { 3524 eqd_walk_data_t *eqdp; 3525 errorq_elem_t eqe, *addr; 3526 errorq_t eq; 3527 ulong_t i; 3528 3529 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3530 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3531 return (WALK_ERR); 3532 } 3533 3534 if (eq.eq_ptail != NULL && 3535 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3536 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3537 return (WALK_ERR); 3538 } 3539 3540 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3541 wsp->walk_data = eqdp; 3542 3543 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3544 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3545 eqdp->eqd_qlen = eq.eq_qlen; 3546 eqdp->eqd_qpos = 0; 3547 eqdp->eqd_size = eq.eq_size; 3548 3549 /* 3550 * The newest elements in the queue are on the pending list, so we 3551 * push those on to our stack first. 3552 */ 3553 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3554 3555 /* 3556 * If eq_ptail is set, it may point to a subset of the errors on the 3557 * pending list in the event a casptr() failed; if ptail's data is 3558 * already in our stack, NULL out eq_ptail and ignore it. 3559 */ 3560 if (eq.eq_ptail != NULL) { 3561 for (i = 0; i < eqdp->eqd_qpos; i++) { 3562 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3563 eq.eq_ptail = NULL; 3564 break; 3565 } 3566 } 3567 } 3568 3569 /* 3570 * If eq_phead is set, it has the processing list in order from oldest 3571 * to newest. Use this to recompute eq_ptail as best we can and then 3572 * we nicely fall into eqd_push_list() of eq_ptail below. 3573 */ 3574 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3575 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3576 eq.eq_ptail = addr; 3577 3578 /* 3579 * The oldest elements in the queue are on the processing list, subject 3580 * to machinations in the if-clauses above. Push any such elements. 3581 */ 3582 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3583 return (WALK_NEXT); 3584 } 3585 3586 static int 3587 eqd_walk_step(mdb_walk_state_t *wsp) 3588 { 3589 eqd_walk_data_t *eqdp = wsp->walk_data; 3590 uintptr_t addr; 3591 3592 if (eqdp->eqd_qpos == 0) 3593 return (WALK_DONE); 3594 3595 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3596 3597 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3598 mdb_warn("failed to read errorq data at %p", addr); 3599 return (WALK_ERR); 3600 } 3601 3602 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3603 } 3604 3605 static void 3606 eqd_walk_fini(mdb_walk_state_t *wsp) 3607 { 3608 eqd_walk_data_t *eqdp = wsp->walk_data; 3609 3610 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3611 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3612 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3613 } 3614 3615 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3616 3617 static int 3618 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3619 { 3620 int i; 3621 errorq_t eq; 3622 uint_t opt_v = FALSE; 3623 3624 if (!(flags & DCMD_ADDRSPEC)) { 3625 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3626 mdb_warn("can't walk 'errorq'"); 3627 return (DCMD_ERR); 3628 } 3629 return (DCMD_OK); 3630 } 3631 3632 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3633 argc -= i; 3634 argv += i; 3635 3636 if (argc != 0) 3637 return (DCMD_USAGE); 3638 3639 if (opt_v || DCMD_HDRSPEC(flags)) { 3640 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3641 "ADDR", "NAME", "S", "V", "N"); 3642 if (!opt_v) { 3643 mdb_printf("%7s %7s %7s%</u>\n", 3644 "ACCEPT", "DROP", "LOG"); 3645 } else { 3646 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3647 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3648 } 3649 } 3650 3651 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3652 mdb_warn("failed to read errorq at %p", addr); 3653 return (DCMD_ERR); 3654 } 3655 3656 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3657 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3658 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3659 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3660 3661 if (!opt_v) { 3662 mdb_printf("%7llu %7llu %7llu\n", 3663 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3664 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3665 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3666 } else { 3667 mdb_printf("%5s %6lu %6lu %3u %a\n", 3668 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3669 mdb_printf("%38s\n%41s" 3670 "%12s %llu\n" 3671 "%53s %llu\n" 3672 "%53s %llu\n" 3673 "%53s %llu\n" 3674 "%53s %llu\n" 3675 "%53s %llu\n" 3676 "%53s %llu\n" 3677 "%53s %llu\n\n", 3678 "|", "+-> ", 3679 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3680 "DROPPED", EQKSVAL(eq, eqk_dropped), 3681 "LOGGED", EQKSVAL(eq, eqk_logged), 3682 "RESERVED", EQKSVAL(eq, eqk_reserved), 3683 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3684 "COMMITTED", EQKSVAL(eq, eqk_committed), 3685 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3686 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3687 } 3688 3689 return (DCMD_OK); 3690 } 3691 3692 /*ARGSUSED*/ 3693 static int 3694 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3695 { 3696 cpu_t panic_cpu; 3697 kthread_t *panic_thread; 3698 void *buf; 3699 panic_data_t *pd; 3700 int i, n; 3701 3702 if (!mdb_prop_postmortem) { 3703 mdb_warn("panicinfo can only be run on a system " 3704 "dump; see dumpadm(1M)\n"); 3705 return (DCMD_ERR); 3706 } 3707 3708 if (flags & DCMD_ADDRSPEC || argc != 0) 3709 return (DCMD_USAGE); 3710 3711 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3712 mdb_warn("failed to read 'panic_cpu'"); 3713 else 3714 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3715 3716 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3717 mdb_warn("failed to read 'panic_thread'"); 3718 else 3719 mdb_printf("%16s %?p\n", "thread", panic_thread); 3720 3721 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3722 pd = (panic_data_t *)buf; 3723 3724 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3725 pd->pd_version != PANICBUFVERS) { 3726 mdb_warn("failed to read 'panicbuf'"); 3727 mdb_free(buf, PANICBUFSIZE); 3728 return (DCMD_ERR); 3729 } 3730 3731 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3732 3733 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3734 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3735 3736 for (i = 0; i < n; i++) 3737 mdb_printf("%16s %?llx\n", 3738 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3739 3740 mdb_free(buf, PANICBUFSIZE); 3741 return (DCMD_OK); 3742 } 3743 3744 /* 3745 * ::time dcmd, which will print a hires timestamp of when we entered the 3746 * debugger, or the lbolt value if used with the -l option. 3747 * 3748 */ 3749 /*ARGSUSED*/ 3750 static int 3751 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3752 { 3753 uint_t opt_lbolt = FALSE; 3754 3755 if (mdb_getopts(argc, argv, 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3756 NULL) != argc) 3757 return (DCMD_USAGE); 3758 3759 if (opt_lbolt) 3760 mdb_printf("%ld\n", mdb_get_lbolt()); 3761 else 3762 mdb_printf("%lld\n", mdb_gethrtime()); 3763 3764 return (DCMD_OK); 3765 } 3766 3767 void 3768 time_help(void) 3769 { 3770 mdb_printf("Prints the system time in nanoseconds.\n\n" 3771 "::time will return the timestamp at which we dropped into, \n" 3772 "if called from, kmdb(1); the core dump's high resolution \n" 3773 "time if inspecting one; or the running hires time if we're \n" 3774 "looking at a live system.\n\n" 3775 "Switches:\n" 3776 " -l prints the number of clock ticks since system boot\n"); 3777 } 3778 3779 static const mdb_dcmd_t dcmds[] = { 3780 3781 /* from genunix.c */ 3782 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3783 { "binding_hash_entry", ":", "print driver names hash table entry", 3784 binding_hash_entry }, 3785 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3786 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3787 " [-FivVA]", 3788 "display callouts", callout, callout_help }, 3789 { "calloutid", "[-d|v] xid", "print callout by extended id", 3790 calloutid, calloutid_help }, 3791 { "class", NULL, "print process scheduler classes", class }, 3792 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3793 { "did2thread", "? kt_did", "find kernel thread for this id", 3794 did2thread }, 3795 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3796 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3797 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3798 { "lminfo", NULL, "print lock manager information", lminfo }, 3799 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3800 { "panicinfo", NULL, "print panic information", panicinfo }, 3801 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3802 { "project", NULL, "display kernel project(s)", project }, 3803 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3804 { "pgrep", "[-x] [-n | -o] pattern", 3805 "pattern match against all processes", pgrep }, 3806 { "ptree", NULL, "print process tree", ptree }, 3807 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3808 sysevent}, 3809 { "sysevent_channel", "?", "print sysevent channel database", 3810 sysevent_channel}, 3811 { "sysevent_class_list", ":", "print sysevent class list", 3812 sysevent_class_list}, 3813 { "sysevent_subclass_list", ":", 3814 "print sysevent subclass list", sysevent_subclass_list}, 3815 { "system", NULL, "print contents of /etc/system file", sysfile }, 3816 { "task", NULL, "display kernel task(s)", task }, 3817 { "time", "[-l]", "display system time", time, time_help }, 3818 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3819 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3820 whereopen }, 3821 3822 /* from bio.c */ 3823 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3824 3825 /* from bitset.c */ 3826 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3827 3828 /* from contract.c */ 3829 { "contract", "?", "display a contract", cmd_contract }, 3830 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3831 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3832 3833 /* from cpupart.c */ 3834 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3835 3836 /* from cyclic.c */ 3837 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3838 { "cycid", "?", "dump a cyclic id", cycid }, 3839 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3840 { "cyclic", ":", "developer information", cyclic }, 3841 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3842 3843 /* from damap.c */ 3844 { "damap", ":", "display a damap_t", damap, damap_help }, 3845 3846 /* from devinfo.c */ 3847 { "devbindings", "?[-qs] [device-name | major-num]", 3848 "print devinfo nodes bound to device-name or major-num", 3849 devbindings, devinfo_help }, 3850 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3851 devinfo_help }, 3852 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3853 devinfo_audit }, 3854 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3855 devinfo_audit_log }, 3856 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3857 devinfo_audit_node }, 3858 { "devinfo2driver", ":", "find driver name for this devinfo node", 3859 devinfo2driver }, 3860 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3861 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3862 dev2major }, 3863 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3864 dev2minor }, 3865 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3866 devt }, 3867 { "major2name", "?<major-num>", "convert major number to dev name", 3868 major2name }, 3869 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3870 minornodes }, 3871 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3872 modctl2devinfo }, 3873 { "name2major", "<dev-name>", "convert dev name to major number", 3874 name2major }, 3875 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3876 { "softstate", ":<instance>", "retrieve soft-state pointer", 3877 softstate }, 3878 { "devinfo_fm", ":", "devinfo fault managment configuration", 3879 devinfo_fm }, 3880 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3881 devinfo_fmce}, 3882 3883 /* from findstack.c */ 3884 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3885 { "findstack_debug", NULL, "toggle findstack debugging", 3886 findstack_debug }, 3887 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3888 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3889 "print unique kernel thread stacks", 3890 stacks, stacks_help }, 3891 3892 /* from fm.c */ 3893 { "ereport", "[-v]", "print ereports logged in dump", 3894 ereport }, 3895 3896 /* from group.c */ 3897 { "group", "?[-q]", "display a group", group}, 3898 3899 /* from hotplug.c */ 3900 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3901 hotplug, hotplug_help }, 3902 3903 /* from irm.c */ 3904 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3905 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3906 irmreqs_dcmd }, 3907 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3908 3909 /* from kgrep.c + genunix.c */ 3910 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3911 kgrep_help }, 3912 3913 /* from kmem.c */ 3914 { "allocdby", ":", "given a thread, print its allocated buffers", 3915 allocdby }, 3916 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3917 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3918 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3919 { "kmalog", "?[ fail | slab ]", 3920 "display kmem transaction log and stack traces", kmalog }, 3921 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3922 kmastat }, 3923 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3924 "of the kmem allocator", kmausers, kmausers_help }, 3925 { "kmem_cache", "?[-n name]", 3926 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3927 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3928 "[-B minbinsize]", "display slab usage per kmem cache", 3929 kmem_slabs, kmem_slabs_help }, 3930 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3931 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3932 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3933 kmem_verify }, 3934 { "vmem", "?", "print a vmem_t", vmem }, 3935 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3936 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3937 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3938 { "whatthread", ":[-v]", "print threads whose stack contains the " 3939 "given address", whatthread }, 3940 3941 /* from ldi.c */ 3942 { "ldi_handle", "?[-i]", "display a layered driver handle", 3943 ldi_handle, ldi_handle_help }, 3944 { "ldi_ident", NULL, "display a layered driver identifier", 3945 ldi_ident, ldi_ident_help }, 3946 3947 /* from leaky.c + leaky_subr.c */ 3948 { "findleaks", FINDLEAKS_USAGE, 3949 "search for potential kernel memory leaks", findleaks, 3950 findleaks_help }, 3951 3952 /* from lgrp.c */ 3953 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3954 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3955 3956 /* from log.c */ 3957 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3958 3959 /* from mdi.c */ 3960 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3961 "and detailed pi_prop list", mdipi }, 3962 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3963 mdiprops }, 3964 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3965 "list all paths", mdiphci }, 3966 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3967 "all phcis", mdivhci }, 3968 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3969 "client links", mdiclient_paths }, 3970 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3971 "phci links", mdiphci_paths }, 3972 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3973 mdiphcis }, 3974 3975 /* from memory.c */ 3976 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3977 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3978 { "memstat", NULL, "display memory usage summary", memstat }, 3979 { "page", "?", "display a summarized page_t", page }, 3980 { "pagelookup", "?[-v vp] [-o offset]", 3981 "find the page_t with the name {vp, offset}", 3982 pagelookup, pagelookup_help }, 3983 { "page_num2pp", ":", "find the page_t for a given page frame number", 3984 page_num2pp }, 3985 { "pmap", ":[-q]", "print process memory map", pmap }, 3986 { "seg", ":", "print address space segment", seg }, 3987 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3988 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3989 3990 /* from mmd.c */ 3991 { "multidata", ":[-sv]", "display a summarized multidata_t", 3992 multidata }, 3993 { "pattbl", ":", "display a summarized multidata attribute table", 3994 pattbl }, 3995 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3996 pattr2multidata }, 3997 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3998 pdesc2slab }, 3999 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4000 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4001 slab2multidata }, 4002 4003 /* from modhash.c */ 4004 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4005 "display information about one or all mod_hash structures", 4006 modhash, modhash_help }, 4007 { "modent", ":[-k | -v | -t type]", 4008 "display information about a mod_hash_entry", modent, 4009 modent_help }, 4010 4011 /* from net.c */ 4012 { "dladm", "?<sub-command> [flags]", "show data link information", 4013 dladm, dladm_help }, 4014 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4015 mi }, 4016 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4017 "show network statistics", netstat }, 4018 { "sonode", "?[-f inet | inet6 | unix | #] " 4019 "[-t stream | dgram | raw | #] [-p #]", 4020 "filter and display sonode", sonode }, 4021 4022 /* from netstack.c */ 4023 { "netstack", "", "show stack instances", netstack }, 4024 4025 /* from nvpair.c */ 4026 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4027 nvpair_print }, 4028 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4029 print_nvlist }, 4030 4031 /* from pg.c */ 4032 { "pg", "?[-q]", "display a pg", pg}, 4033 4034 /* from rctl.c */ 4035 { "rctl_dict", "?", "print systemwide default rctl definitions", 4036 rctl_dict }, 4037 { "rctl_list", ":[handle]", "print rctls for the given proc", 4038 rctl_list }, 4039 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4040 rctl }, 4041 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4042 "sequence", rctl_validate }, 4043 4044 /* from sobj.c */ 4045 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4046 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4047 mutex_help }, 4048 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4049 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4050 { "turnstile", "?", "display a turnstile", turnstile }, 4051 4052 /* from stream.c */ 4053 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4054 "print an mblk", mblk_prt, mblk_help }, 4055 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4056 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4057 mblk2dblk }, 4058 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4059 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4060 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4061 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4062 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4063 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4064 "filter and display STREAM queue", queue, queue_help }, 4065 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4066 "filter and display STREAM head", stdata, stdata_help }, 4067 { "str2mate", ":", "print mate of this stream", str2mate }, 4068 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4069 { "stream", ":", "display STREAM", stream }, 4070 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4071 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4072 "filter and display STREAM sync queue", syncq, syncq_help }, 4073 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4074 4075 /* from taskq.c */ 4076 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4077 "display a taskq", taskq, taskq_help }, 4078 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4079 4080 /* from thread.c */ 4081 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4082 thread_help }, 4083 { "threadlist", "?[-t] [-v [count]]", 4084 "display threads and associated C stack traces", threadlist, 4085 threadlist_help }, 4086 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4087 stackinfo_help }, 4088 4089 /* from tsd.c */ 4090 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4091 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4092 4093 /* 4094 * typegraph does not work under kmdb, as it requires too much memory 4095 * for its internal data structures. 4096 */ 4097 #ifndef _KMDB 4098 /* from typegraph.c */ 4099 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4100 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4101 findfalse }, 4102 { "typegraph", NULL, "build type graph", typegraph }, 4103 { "istype", ":type", "manually set object type", istype }, 4104 { "notype", ":", "manually clear object type", notype }, 4105 { "whattype", ":", "determine object type", whattype }, 4106 #endif 4107 4108 /* from vfs.c */ 4109 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4110 { "pfiles", ":[-fp]", "print process file information", pfiles, 4111 pfiles_help }, 4112 4113 /* from zone.c */ 4114 { "zone", "?", "display kernel zone(s)", zoneprt }, 4115 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4116 "selected zones", zsd }, 4117 4118 { NULL } 4119 }; 4120 4121 static const mdb_walker_t walkers[] = { 4122 4123 /* from genunix.c */ 4124 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4125 callout_walk_init, callout_walk_step, callout_walk_fini, 4126 (void *)CALLOUT_WALK_BYLIST }, 4127 { "callouts_byid", "walk callouts by id hash chain", 4128 callout_walk_init, callout_walk_step, callout_walk_fini, 4129 (void *)CALLOUT_WALK_BYID }, 4130 { "callout_list", "walk a callout list", callout_list_walk_init, 4131 callout_list_walk_step, callout_list_walk_fini }, 4132 { "callout_table", "walk callout table array", callout_table_walk_init, 4133 callout_table_walk_step, callout_table_walk_fini }, 4134 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4135 { "ereportq_dump", "walk list of ereports in dump error queue", 4136 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4137 { "ereportq_pend", "walk list of ereports in pending error queue", 4138 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4139 { "errorq", "walk list of system error queues", 4140 errorq_walk_init, errorq_walk_step, NULL }, 4141 { "errorq_data", "walk pending error queue data buffers", 4142 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4143 { "allfile", "given a proc pointer, list all file pointers", 4144 file_walk_init, allfile_walk_step, file_walk_fini }, 4145 { "file", "given a proc pointer, list of open file pointers", 4146 file_walk_init, file_walk_step, file_walk_fini }, 4147 { "lock_descriptor", "walk lock_descriptor_t structures", 4148 ld_walk_init, ld_walk_step, NULL }, 4149 { "lock_graph", "walk lock graph", 4150 lg_walk_init, lg_walk_step, NULL }, 4151 { "port", "given a proc pointer, list of created event ports", 4152 port_walk_init, port_walk_step, NULL }, 4153 { "portev", "given a port pointer, list of events in the queue", 4154 portev_walk_init, portev_walk_step, portev_walk_fini }, 4155 { "proc", "list of active proc_t structures", 4156 proc_walk_init, proc_walk_step, proc_walk_fini }, 4157 { "projects", "walk a list of kernel projects", 4158 project_walk_init, project_walk_step, NULL }, 4159 { "sysevent_pend", "walk sysevent pending queue", 4160 sysevent_pend_walk_init, sysevent_walk_step, 4161 sysevent_walk_fini}, 4162 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4163 sysevent_walk_step, sysevent_walk_fini}, 4164 { "sysevent_channel", "walk sysevent channel subscriptions", 4165 sysevent_channel_walk_init, sysevent_channel_walk_step, 4166 sysevent_channel_walk_fini}, 4167 { "sysevent_class_list", "walk sysevent subscription's class list", 4168 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4169 sysevent_class_list_walk_fini}, 4170 { "sysevent_subclass_list", 4171 "walk sysevent subscription's subclass list", 4172 sysevent_subclass_list_walk_init, 4173 sysevent_subclass_list_walk_step, 4174 sysevent_subclass_list_walk_fini}, 4175 { "task", "given a task pointer, walk its processes", 4176 task_walk_init, task_walk_step, NULL }, 4177 4178 /* from avl.c */ 4179 { AVL_WALK_NAME, AVL_WALK_DESC, 4180 avl_walk_init, avl_walk_step, avl_walk_fini }, 4181 4182 /* from bio.c */ 4183 { "buf", "walk the bio buf hash", 4184 buf_walk_init, buf_walk_step, buf_walk_fini }, 4185 4186 /* from contract.c */ 4187 { "contract", "walk all contracts, or those of the specified type", 4188 ct_walk_init, generic_walk_step, NULL }, 4189 { "ct_event", "walk events on a contract event queue", 4190 ct_event_walk_init, generic_walk_step, NULL }, 4191 { "ct_listener", "walk contract event queue listeners", 4192 ct_listener_walk_init, generic_walk_step, NULL }, 4193 4194 /* from cpupart.c */ 4195 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4196 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4197 NULL }, 4198 { "cpupart_walk", "walk the set of cpu partitions", 4199 cpupart_walk_init, cpupart_walk_step, NULL }, 4200 4201 /* from ctxop.c */ 4202 { "ctxop", "walk list of context ops on a thread", 4203 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4204 4205 /* from cyclic.c */ 4206 { "cyccpu", "walk per-CPU cyc_cpu structures", 4207 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4208 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4209 cycomni_walk_init, cycomni_walk_step, NULL }, 4210 { "cyctrace", "walk cyclic trace buffer", 4211 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4212 4213 /* from devinfo.c */ 4214 { "binding_hash", "walk all entries in binding hash table", 4215 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4216 { "devinfo", "walk devinfo tree or subtree", 4217 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4218 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4219 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4220 devinfo_audit_log_walk_fini}, 4221 { "devinfo_audit_node", "walk per-devinfo audit history", 4222 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4223 devinfo_audit_node_walk_fini}, 4224 { "devinfo_children", "walk children of devinfo node", 4225 devinfo_children_walk_init, devinfo_children_walk_step, 4226 devinfo_children_walk_fini }, 4227 { "devinfo_parents", "walk ancestors of devinfo node", 4228 devinfo_parents_walk_init, devinfo_parents_walk_step, 4229 devinfo_parents_walk_fini }, 4230 { "devinfo_siblings", "walk siblings of devinfo node", 4231 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4232 { "devi_next", "walk devinfo list", 4233 NULL, devi_next_walk_step, NULL }, 4234 { "devnames", "walk devnames array", 4235 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4236 { "minornode", "given a devinfo node, walk minor nodes", 4237 minornode_walk_init, minornode_walk_step, NULL }, 4238 { "softstate", 4239 "given an i_ddi_soft_state*, list all in-use driver stateps", 4240 soft_state_walk_init, soft_state_walk_step, 4241 NULL, NULL }, 4242 { "softstate_all", 4243 "given an i_ddi_soft_state*, list all driver stateps", 4244 soft_state_walk_init, soft_state_all_walk_step, 4245 NULL, NULL }, 4246 { "devinfo_fmc", 4247 "walk a fault management handle cache active list", 4248 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4249 4250 /* from group.c */ 4251 { "group", "walk all elements of a group", 4252 group_walk_init, group_walk_step, NULL }, 4253 4254 /* from irm.c */ 4255 { "irmpools", "walk global list of interrupt pools", 4256 irmpools_walk_init, list_walk_step, list_walk_fini }, 4257 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4258 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4259 4260 /* from kmem.c */ 4261 { "allocdby", "given a thread, walk its allocated bufctls", 4262 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4263 { "bufctl", "walk a kmem cache's bufctls", 4264 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4265 { "bufctl_history", "walk the available history of a bufctl", 4266 bufctl_history_walk_init, bufctl_history_walk_step, 4267 bufctl_history_walk_fini }, 4268 { "freedby", "given a thread, walk its freed bufctls", 4269 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4270 { "freectl", "walk a kmem cache's free bufctls", 4271 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4272 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4273 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4274 { "freemem", "walk a kmem cache's free memory", 4275 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4276 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4277 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4278 { "kmem", "walk a kmem cache", 4279 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4280 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4281 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4282 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4283 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4284 { "kmem_log", "walk the kmem transaction log", 4285 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4286 { "kmem_slab", "given a kmem cache, walk its slabs", 4287 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4288 { "kmem_slab_partial", 4289 "given a kmem cache, walk its partially allocated slabs (min 1)", 4290 kmem_slab_walk_partial_init, combined_walk_step, 4291 combined_walk_fini }, 4292 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4293 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4294 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4295 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4296 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4297 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4298 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4299 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4300 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4301 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4302 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4303 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4304 4305 /* from ldi.c */ 4306 { "ldi_handle", "walk the layered driver handle hash", 4307 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4308 { "ldi_ident", "walk the layered driver identifier hash", 4309 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4310 4311 /* from leaky.c + leaky_subr.c */ 4312 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4313 "stack trace", 4314 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4315 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4316 "leaks w/ same stack trace", 4317 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4318 4319 /* from lgrp.c */ 4320 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4321 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4322 { "lgrptbl", "walk lgroup table", 4323 lgrp_walk_init, lgrp_walk_step, NULL }, 4324 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4325 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4326 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4327 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4328 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4329 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4330 4331 /* from list.c */ 4332 { LIST_WALK_NAME, LIST_WALK_DESC, 4333 list_walk_init, list_walk_step, list_walk_fini }, 4334 4335 /* from mdi.c */ 4336 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4337 mdi_pi_client_link_walk_init, 4338 mdi_pi_client_link_walk_step, 4339 mdi_pi_client_link_walk_fini }, 4340 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4341 mdi_pi_phci_link_walk_init, 4342 mdi_pi_phci_link_walk_step, 4343 mdi_pi_phci_link_walk_fini }, 4344 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4345 mdi_phci_ph_next_walk_init, 4346 mdi_phci_ph_next_walk_step, 4347 mdi_phci_ph_next_walk_fini }, 4348 4349 /* from memory.c */ 4350 { "allpages", "walk all pages, including free pages", 4351 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4352 { "anon", "given an amp, list of anon structures", 4353 anon_walk_init, anon_walk_step, anon_walk_fini }, 4354 { "memlist", "walk specified memlist", 4355 NULL, memlist_walk_step, NULL }, 4356 { "page", "walk all pages, or those from the specified vnode", 4357 page_walk_init, page_walk_step, page_walk_fini }, 4358 { "seg", "given an as, list of segments", 4359 seg_walk_init, avl_walk_step, avl_walk_fini }, 4360 { "swapinfo", "walk swapinfo structures", 4361 swap_walk_init, swap_walk_step, NULL }, 4362 4363 /* from mmd.c */ 4364 { "pattr", "walk pattr_t structures", pattr_walk_init, 4365 mmdq_walk_step, mmdq_walk_fini }, 4366 { "pdesc", "walk pdesc_t structures", 4367 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4368 { "pdesc_slab", "walk pdesc_slab_t structures", 4369 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4370 4371 /* from modhash.c */ 4372 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4373 modhash_walk_step, NULL }, 4374 { "modent", "walk list of entries in a given mod_hash", 4375 modent_walk_init, modent_walk_step, modent_walk_fini }, 4376 { "modchain", "walk list of entries in a given mod_hash_entry", 4377 NULL, modchain_walk_step, NULL }, 4378 4379 /* from net.c */ 4380 { "icmp", "walk ICMP control structures using MI for all stacks", 4381 mi_payload_walk_init, mi_payload_walk_step, NULL, 4382 &mi_icmp_arg }, 4383 { "mi", "given a MI_O, walk the MI", 4384 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4385 { "sonode", "given a sonode, walk its children", 4386 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4387 { "icmp_stacks", "walk all the icmp_stack_t", 4388 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4389 { "tcp_stacks", "walk all the tcp_stack_t", 4390 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4391 { "udp_stacks", "walk all the udp_stack_t", 4392 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4393 4394 /* from netstack.c */ 4395 { "netstack", "walk a list of kernel netstacks", 4396 netstack_walk_init, netstack_walk_step, NULL }, 4397 4398 /* from nvpair.c */ 4399 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4400 nvpair_walk_init, nvpair_walk_step, NULL }, 4401 4402 /* from rctl.c */ 4403 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4404 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4405 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4406 rctl_set_walk_step, NULL }, 4407 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4408 rctl_val_walk_init, rctl_val_walk_step }, 4409 4410 /* from sobj.c */ 4411 { "blocked", "walk threads blocked on a given sobj", 4412 blocked_walk_init, blocked_walk_step, NULL }, 4413 { "wchan", "given a wchan, list of blocked threads", 4414 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4415 4416 /* from stream.c */ 4417 { "b_cont", "walk mblk_t list using b_cont", 4418 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4419 { "b_next", "walk mblk_t list using b_next", 4420 mblk_walk_init, b_next_step, mblk_walk_fini }, 4421 { "qlink", "walk queue_t list using q_link", 4422 queue_walk_init, queue_link_step, queue_walk_fini }, 4423 { "qnext", "walk queue_t list using q_next", 4424 queue_walk_init, queue_next_step, queue_walk_fini }, 4425 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4426 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4427 { "readq", "walk read queue side of stdata", 4428 str_walk_init, strr_walk_step, str_walk_fini }, 4429 { "writeq", "walk write queue side of stdata", 4430 str_walk_init, strw_walk_step, str_walk_fini }, 4431 4432 /* from taskq.c */ 4433 { "taskq_thread", "given a taskq_t, list all of its threads", 4434 taskq_thread_walk_init, 4435 taskq_thread_walk_step, 4436 taskq_thread_walk_fini }, 4437 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4438 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4439 4440 /* from thread.c */ 4441 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4442 deathrow_walk_init, deathrow_walk_step, NULL }, 4443 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4444 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4445 { "cpupart_dispq", 4446 "given a cpupart_t, walk threads in dispatcher queues", 4447 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4448 { "lwp_deathrow", "walk lwp_deathrow", 4449 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4450 { "thread", "global or per-process kthread_t structures", 4451 thread_walk_init, thread_walk_step, thread_walk_fini }, 4452 { "thread_deathrow", "walk threads on thread_deathrow", 4453 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4454 4455 /* from tsd.c */ 4456 { "tsd", "walk list of thread-specific data", 4457 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4458 4459 /* from tsol.c */ 4460 { "tnrh", "walk remote host cache structures", 4461 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4462 { "tnrhtp", "walk remote host template structures", 4463 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4464 4465 /* 4466 * typegraph does not work under kmdb, as it requires too much memory 4467 * for its internal data structures. 4468 */ 4469 #ifndef _KMDB 4470 /* from typegraph.c */ 4471 { "typeconflict", "walk buffers with conflicting type inferences", 4472 typegraph_walk_init, typeconflict_walk_step }, 4473 { "typeunknown", "walk buffers with unknown types", 4474 typegraph_walk_init, typeunknown_walk_step }, 4475 #endif 4476 4477 /* from vfs.c */ 4478 { "vfs", "walk file system list", 4479 vfs_walk_init, vfs_walk_step }, 4480 4481 /* from zone.c */ 4482 { "zone", "walk a list of kernel zones", 4483 zone_walk_init, zone_walk_step, NULL }, 4484 { "zsd", "walk list of zsd entries for a zone", 4485 zsd_walk_init, zsd_walk_step, NULL }, 4486 4487 { NULL } 4488 }; 4489 4490 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4491 4492 /*ARGSUSED*/ 4493 static void 4494 genunix_statechange_cb(void *ignored) 4495 { 4496 /* 4497 * Force ::findleaks and ::stacks to let go any cached state. 4498 */ 4499 leaky_cleanup(1); 4500 stacks_cleanup(1); 4501 4502 kmem_statechange(); /* notify kmem */ 4503 } 4504 4505 const mdb_modinfo_t * 4506 _mdb_init(void) 4507 { 4508 kmem_init(); 4509 4510 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4511 genunix_statechange_cb, NULL); 4512 4513 return (&modinfo); 4514 } 4515 4516 void 4517 _mdb_fini(void) 4518 { 4519 leaky_cleanup(1); 4520 stacks_cleanup(1); 4521 } 4522