1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <mdb/mdb_param.h> 30 #include <mdb/mdb_modapi.h> 31 #include <mdb/mdb_ks.h> 32 #include <mdb/mdb_ctf.h> 33 34 #include <sys/types.h> 35 #include <sys/thread.h> 36 #include <sys/session.h> 37 #include <sys/user.h> 38 #include <sys/proc.h> 39 #include <sys/var.h> 40 #include <sys/t_lock.h> 41 #include <sys/callo.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/regset.h> 45 #include <sys/stack.h> 46 #include <sys/cpuvar.h> 47 #include <sys/vnode.h> 48 #include <sys/vfs.h> 49 #include <sys/flock_impl.h> 50 #include <sys/kmem_impl.h> 51 #include <sys/vmem_impl.h> 52 #include <sys/kstat.h> 53 #include <vm/seg_vn.h> 54 #include <vm/anon.h> 55 #include <vm/as.h> 56 #include <vm/seg_map.h> 57 #include <sys/dditypes.h> 58 #include <sys/ddi_impldefs.h> 59 #include <sys/sysmacros.h> 60 #include <sys/sysconf.h> 61 #include <sys/task.h> 62 #include <sys/project.h> 63 #include <sys/taskq.h> 64 #include <sys/taskq_impl.h> 65 #include <sys/errorq_impl.h> 66 #include <sys/cred_impl.h> 67 #include <sys/zone.h> 68 #include <sys/panic.h> 69 #include <regex.h> 70 #include <sys/port_impl.h> 71 72 #include "avl.h" 73 #include "contract.h" 74 #include "cpupart_mdb.h" 75 #include "devinfo.h" 76 #include "leaky.h" 77 #include "lgrp.h" 78 #include "list.h" 79 #include "log.h" 80 #include "kgrep.h" 81 #include "kmem.h" 82 #include "bio.h" 83 #include "streams.h" 84 #include "cyclic.h" 85 #include "findstack.h" 86 #include "ndievents.h" 87 #include "mmd.h" 88 #include "net.h" 89 #include "nvpair.h" 90 #include "ctxop.h" 91 #include "tsd.h" 92 #include "thread.h" 93 #include "memory.h" 94 #include "sobj.h" 95 #include "sysevent.h" 96 #include "rctl.h" 97 #include "typegraph.h" 98 #include "ldi.h" 99 #include "vfs.h" 100 #include "zone.h" 101 #include "modhash.h" 102 103 /* 104 * Surely this is defined somewhere... 105 */ 106 #define NINTR 16 107 108 #ifndef STACK_BIAS 109 #define STACK_BIAS 0 110 #endif 111 112 static char 113 pstat2ch(uchar_t state) 114 { 115 switch (state) { 116 case SSLEEP: return ('S'); 117 case SRUN: return ('R'); 118 case SZOMB: return ('Z'); 119 case SIDL: return ('I'); 120 case SONPROC: return ('O'); 121 case SSTOP: return ('T'); 122 default: return ('?'); 123 } 124 } 125 126 #define PS_PRTTHREADS 0x1 127 #define PS_PRTLWPS 0x2 128 #define PS_PSARGS 0x4 129 #define PS_TASKS 0x8 130 #define PS_PROJECTS 0x10 131 #define PS_ZONES 0x20 132 133 static int 134 ps_threadprint(uintptr_t addr, const void *data, void *private) 135 { 136 const kthread_t *t = (const kthread_t *)data; 137 uint_t prt_flags = *((uint_t *)private); 138 139 static const mdb_bitmask_t t_state_bits[] = { 140 { "TS_FREE", UINT_MAX, TS_FREE }, 141 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 142 { "TS_RUN", TS_RUN, TS_RUN }, 143 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 144 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 145 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 146 { NULL, 0, 0 } 147 }; 148 149 if (prt_flags & PS_PRTTHREADS) 150 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 151 152 if (prt_flags & PS_PRTLWPS) 153 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 154 155 return (WALK_NEXT); 156 } 157 158 int 159 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 160 { 161 uint_t prt_flags = 0; 162 proc_t pr; 163 struct pid pid, pgid, sid; 164 sess_t session; 165 cred_t cred; 166 task_t tk; 167 kproject_t pj; 168 zone_t zn; 169 170 if (!(flags & DCMD_ADDRSPEC)) { 171 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 172 mdb_warn("can't walk 'proc'"); 173 return (DCMD_ERR); 174 } 175 return (DCMD_OK); 176 } 177 178 if (mdb_getopts(argc, argv, 179 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 180 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 181 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 182 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 183 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 184 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 185 return (DCMD_USAGE); 186 187 if (DCMD_HDRSPEC(flags)) { 188 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 189 "S", "PID", "PPID", "PGID", "SID"); 190 if (prt_flags & PS_TASKS) 191 mdb_printf("%5s ", "TASK"); 192 if (prt_flags & PS_PROJECTS) 193 mdb_printf("%5s ", "PROJ"); 194 if (prt_flags & PS_ZONES) 195 mdb_printf("%5s ", "ZONE"); 196 mdb_printf("%6s %10s %?s %s%</u>\n", 197 "UID", "FLAGS", "ADDR", "NAME"); 198 } 199 200 mdb_vread(&pr, sizeof (pr), addr); 201 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 202 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 203 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 204 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 205 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 206 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 207 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 208 if (prt_flags & PS_PROJECTS) 209 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 210 if (prt_flags & PS_ZONES) 211 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 212 213 mdb_printf("%c %6d %6d %6d %6d ", 214 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 215 sid.pid_id); 216 if (prt_flags & PS_TASKS) 217 mdb_printf("%5d ", tk.tk_tkid); 218 if (prt_flags & PS_PROJECTS) 219 mdb_printf("%5d ", pj.kpj_id); 220 if (prt_flags & PS_ZONES) 221 mdb_printf("%5d ", zn.zone_id); 222 mdb_printf("%6d 0x%08x %0?p %s\n", 223 cred.cr_uid, pr.p_flag, addr, 224 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 225 226 if (prt_flags & ~PS_PSARGS) 227 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 228 229 return (DCMD_OK); 230 } 231 232 #define PG_NEWEST 0x0001 233 #define PG_OLDEST 0x0002 234 #define PG_PIPE_OUT 0x0004 235 236 typedef struct pgrep_data { 237 uint_t pg_flags; 238 uint_t pg_psflags; 239 uintptr_t pg_xaddr; 240 hrtime_t pg_xstart; 241 const char *pg_pat; 242 #ifndef _KMDB 243 regex_t pg_reg; 244 #endif 245 } pgrep_data_t; 246 247 /*ARGSUSED*/ 248 static int 249 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 250 { 251 const proc_t *prp = pdata; 252 pgrep_data_t *pgp = data; 253 #ifndef _KMDB 254 regmatch_t pmatch; 255 #endif 256 257 /* 258 * kmdb doesn't have access to the reg* functions, so we fall back 259 * to strstr. 260 */ 261 #ifdef _KMDB 262 if (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL) 263 return (WALK_NEXT); 264 #else 265 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 266 return (WALK_NEXT); 267 #endif 268 269 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 270 hrtime_t start; 271 272 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 273 prp->p_user.u_start.tv_nsec; 274 275 if (pgp->pg_flags & PG_NEWEST) { 276 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 277 pgp->pg_xaddr = addr; 278 pgp->pg_xstart = start; 279 } 280 } else { 281 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 282 pgp->pg_xaddr = addr; 283 pgp->pg_xstart = start; 284 } 285 } 286 287 } else if (pgp->pg_flags & PG_PIPE_OUT) { 288 mdb_printf("%p\n", addr); 289 290 } else { 291 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 292 mdb_warn("can't invoke 'ps'"); 293 return (WALK_DONE); 294 } 295 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 296 } 297 298 return (WALK_NEXT); 299 } 300 301 /*ARGSUSED*/ 302 int 303 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 304 { 305 pgrep_data_t pg; 306 int i; 307 #ifndef _KMDB 308 int err; 309 #endif 310 311 if (flags & DCMD_ADDRSPEC) 312 return (DCMD_USAGE); 313 314 pg.pg_flags = 0; 315 pg.pg_xaddr = 0; 316 317 i = mdb_getopts(argc, argv, 318 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 319 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 320 NULL); 321 322 argc -= i; 323 argv += i; 324 325 if (argc != 1) 326 return (DCMD_USAGE); 327 328 /* 329 * -n and -o are mutually exclusive. 330 */ 331 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 332 return (DCMD_USAGE); 333 334 if (argv->a_type != MDB_TYPE_STRING) 335 return (DCMD_USAGE); 336 337 if (flags & DCMD_PIPE_OUT) 338 pg.pg_flags |= PG_PIPE_OUT; 339 340 pg.pg_pat = argv->a_un.a_str; 341 if (DCMD_HDRSPEC(flags)) 342 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 343 else 344 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 345 346 #ifndef _KMDB 347 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 348 size_t nbytes; 349 char *buf; 350 351 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 352 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 353 (void) regerror(err, &pg.pg_reg, buf, nbytes); 354 mdb_warn("%s\n", buf); 355 356 return (DCMD_ERR); 357 } 358 #endif 359 360 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 361 mdb_warn("can't walk 'proc'"); 362 return (DCMD_ERR); 363 } 364 365 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 366 if (pg.pg_flags & PG_PIPE_OUT) { 367 mdb_printf("%p\n", pg.pg_xaddr); 368 } else { 369 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 370 0, NULL) != 0) { 371 mdb_warn("can't invoke 'ps'"); 372 return (DCMD_ERR); 373 } 374 } 375 } 376 377 return (DCMD_OK); 378 } 379 380 int 381 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 382 { 383 task_t tk; 384 kproject_t pj; 385 386 if (!(flags & DCMD_ADDRSPEC)) { 387 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 388 mdb_warn("can't walk task_cache"); 389 return (DCMD_ERR); 390 } 391 return (DCMD_OK); 392 } 393 if (DCMD_HDRSPEC(flags)) { 394 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 395 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 396 } 397 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 398 mdb_warn("can't read task_t structure at %p", addr); 399 return (DCMD_ERR); 400 } 401 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 402 mdb_warn("can't read project_t structure at %p", addr); 403 return (DCMD_ERR); 404 } 405 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 406 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 407 tk.tk_flags); 408 return (DCMD_OK); 409 } 410 411 int 412 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 413 { 414 kproject_t pj; 415 416 if (!(flags & DCMD_ADDRSPEC)) { 417 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 418 mdb_warn("can't walk projects"); 419 return (DCMD_ERR); 420 } 421 return (DCMD_OK); 422 } 423 if (DCMD_HDRSPEC(flags)) { 424 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 425 "ADDR", "PROJID", "ZONEID", "REFCNT"); 426 } 427 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 428 mdb_warn("can't read kproject_t structure at %p", addr); 429 return (DCMD_ERR); 430 } 431 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 432 pj.kpj_count); 433 return (DCMD_OK); 434 } 435 436 /*ARGSUSED*/ 437 int 438 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 439 { 440 callout_table_t *co_ktable[CALLOUT_TABLES]; 441 int co_kfanout; 442 callout_table_t co_table; 443 callout_t co_callout; 444 callout_t *co_ptr; 445 int co_id; 446 clock_t lbolt; 447 int i, j, k; 448 const char *lbolt_sym; 449 450 if ((flags & DCMD_ADDRSPEC) || argc != 0) 451 return (DCMD_USAGE); 452 453 if (mdb_prop_postmortem) 454 lbolt_sym = "panic_lbolt"; 455 else 456 lbolt_sym = "lbolt"; 457 458 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 459 mdb_warn("failed to read '%s'", lbolt_sym); 460 return (DCMD_ERR); 461 } 462 463 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 464 mdb_warn("failed to read callout_fanout"); 465 return (DCMD_ERR); 466 } 467 468 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 469 mdb_warn("failed to read callout_table"); 470 return (DCMD_ERR); 471 } 472 473 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 474 "FUNCTION", "ARGUMENT", "ID", "TIME"); 475 476 for (i = 0; i < CALLOUT_NTYPES; i++) { 477 for (j = 0; j < co_kfanout; j++) { 478 479 co_id = CALLOUT_TABLE(i, j); 480 481 if (mdb_vread(&co_table, sizeof (co_table), 482 (uintptr_t)co_ktable[co_id]) == -1) { 483 mdb_warn("failed to read table at %p", 484 (uintptr_t)co_ktable[co_id]); 485 continue; 486 } 487 488 for (k = 0; k < CALLOUT_BUCKETS; k++) { 489 co_ptr = co_table.ct_idhash[k]; 490 491 while (co_ptr != NULL) { 492 mdb_vread(&co_callout, 493 sizeof (co_callout), 494 (uintptr_t)co_ptr); 495 496 mdb_printf("%-24a %0?p %0?lx %?lx " 497 "(T%+ld)\n", co_callout.c_func, 498 co_callout.c_arg, co_callout.c_xid, 499 co_callout.c_runtime, 500 co_callout.c_runtime - lbolt); 501 502 co_ptr = co_callout.c_idnext; 503 } 504 } 505 } 506 } 507 508 return (DCMD_OK); 509 } 510 511 /*ARGSUSED*/ 512 int 513 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 514 { 515 long num_classes, i; 516 sclass_t *class_tbl; 517 GElf_Sym g_sclass; 518 char class_name[PC_CLNMSZ]; 519 size_t tbl_size; 520 521 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 522 mdb_warn("failed to find symbol sclass\n"); 523 return (DCMD_ERR); 524 } 525 526 tbl_size = (size_t)g_sclass.st_size; 527 num_classes = tbl_size / (sizeof (sclass_t)); 528 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 529 530 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 531 mdb_warn("failed to read sclass"); 532 return (DCMD_ERR); 533 } 534 535 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 536 "INIT FCN", "CLASS FCN"); 537 538 for (i = 0; i < num_classes; i++) { 539 if (mdb_vread(class_name, sizeof (class_name), 540 (uintptr_t)class_tbl[i].cl_name) == -1) 541 (void) strcpy(class_name, "???"); 542 543 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 544 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 545 } 546 547 return (DCMD_OK); 548 } 549 550 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 551 552 int 553 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 554 { 555 uintptr_t rootdir; 556 vnode_t vn; 557 char buf[MAXPATHLEN]; 558 559 uint_t opt_F = FALSE; 560 561 if (mdb_getopts(argc, argv, 562 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 563 return (DCMD_USAGE); 564 565 if (!(flags & DCMD_ADDRSPEC)) { 566 mdb_warn("expected explicit vnode_t address before ::\n"); 567 return (DCMD_USAGE); 568 } 569 570 if (mdb_readvar(&rootdir, "rootdir") == -1) { 571 mdb_warn("failed to read rootdir"); 572 return (DCMD_ERR); 573 } 574 575 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 576 return (DCMD_ERR); 577 578 if (*buf == '\0') { 579 mdb_printf("??\n"); 580 return (DCMD_OK); 581 } 582 583 mdb_printf("%s", buf); 584 if (opt_F && buf[strlen(buf)-1] != '/' && 585 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 586 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 587 mdb_printf("\n"); 588 589 return (DCMD_OK); 590 } 591 592 int 593 ld_walk_init(mdb_walk_state_t *wsp) 594 { 595 wsp->walk_data = (void *)wsp->walk_addr; 596 return (WALK_NEXT); 597 } 598 599 int 600 ld_walk_step(mdb_walk_state_t *wsp) 601 { 602 int status; 603 lock_descriptor_t ld; 604 605 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 606 mdb_warn("couldn't read lock_descriptor_t at %p\n", 607 wsp->walk_addr); 608 return (WALK_ERR); 609 } 610 611 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 612 if (status == WALK_ERR) 613 return (WALK_ERR); 614 615 wsp->walk_addr = (uintptr_t)ld.l_next; 616 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 617 return (WALK_DONE); 618 619 return (status); 620 } 621 622 int 623 lg_walk_init(mdb_walk_state_t *wsp) 624 { 625 GElf_Sym sym; 626 627 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 628 mdb_warn("failed to find symbol 'lock_graph'\n"); 629 return (WALK_ERR); 630 } 631 632 wsp->walk_addr = (uintptr_t)sym.st_value; 633 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 634 635 return (WALK_NEXT); 636 } 637 638 typedef struct lg_walk_data { 639 uintptr_t startaddr; 640 mdb_walk_cb_t callback; 641 void *data; 642 } lg_walk_data_t; 643 644 /* 645 * We can't use ::walk lock_descriptor directly, because the head of each graph 646 * is really a dummy lock. Rather than trying to dynamically determine if this 647 * is a dummy node or not, we just filter out the initial element of the 648 * list. 649 */ 650 static int 651 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 652 { 653 lg_walk_data_t *lw = priv; 654 655 if (addr != lw->startaddr) 656 return (lw->callback(addr, data, lw->data)); 657 658 return (WALK_NEXT); 659 } 660 661 int 662 lg_walk_step(mdb_walk_state_t *wsp) 663 { 664 graph_t *graph; 665 lg_walk_data_t lw; 666 667 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 668 return (WALK_DONE); 669 670 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 671 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 672 return (WALK_ERR); 673 } 674 675 wsp->walk_addr += sizeof (graph); 676 677 if (graph == NULL) 678 return (WALK_NEXT); 679 680 lw.callback = wsp->walk_callback; 681 lw.data = wsp->walk_cbdata; 682 683 lw.startaddr = (uintptr_t)&(graph->active_locks); 684 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 685 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 686 return (WALK_ERR); 687 } 688 689 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 690 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 691 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 692 return (WALK_ERR); 693 } 694 695 return (WALK_NEXT); 696 } 697 698 /* 699 * The space available for the path corresponding to the locked vnode depends 700 * on whether we are printing 32- or 64-bit addresses. 701 */ 702 #ifdef _LP64 703 #define LM_VNPATHLEN 20 704 #else 705 #define LM_VNPATHLEN 30 706 #endif 707 708 /*ARGSUSED*/ 709 static int 710 lminfo_cb(uintptr_t addr, const void *data, void *priv) 711 { 712 const lock_descriptor_t *ld = data; 713 char buf[LM_VNPATHLEN]; 714 proc_t p; 715 716 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 717 addr, ld->l_type == F_RDLCK ? "RD" : 718 ld->l_type == F_WRLCK ? "WR" : "??", 719 ld->l_state, ld->l_flock.l_pid, 720 ld->l_flock.l_pid == 0 ? "<kernel>" : 721 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 722 "<defunct>" : p.p_user.u_comm, 723 ld->l_vnode); 724 725 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 726 sizeof (buf)); 727 mdb_printf("%s\n", buf); 728 729 return (WALK_NEXT); 730 } 731 732 /*ARGSUSED*/ 733 int 734 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 735 { 736 if (DCMD_HDRSPEC(flags)) 737 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 738 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 739 740 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 741 } 742 743 /*ARGSUSED*/ 744 int 745 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 746 { 747 struct seg s; 748 749 if (argc != 0) 750 return (DCMD_USAGE); 751 752 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 753 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 754 "SEG", "BASE", "SIZE", "DATA", "OPS"); 755 } 756 757 if (mdb_vread(&s, sizeof (s), addr) == -1) { 758 mdb_warn("failed to read seg at %p", addr); 759 return (DCMD_ERR); 760 } 761 762 mdb_printf("%?p %?p %?lx %?p %a\n", 763 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 764 765 return (DCMD_OK); 766 } 767 768 /*ARGSUSED*/ 769 static int 770 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 771 { 772 uintptr_t pp = 773 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 774 775 if (pp != NULL) 776 (*nres)++; 777 778 return (WALK_NEXT); 779 } 780 781 static int 782 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 783 { 784 785 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 786 787 if (segvn == (uintptr_t)seg->s_ops) { 788 struct segvn_data svn; 789 int nres = 0; 790 791 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 792 793 if (svn.amp == NULL) { 794 mdb_printf(" %8s", ""); 795 goto drive_on; 796 } 797 798 /* 799 * We've got an amp for this segment; walk through 800 * the amp, and determine mappings. 801 */ 802 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 803 &nres, (uintptr_t)svn.amp) == -1) 804 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 805 806 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 807 drive_on: 808 809 if (svn.vp != NULL) { 810 char buf[29]; 811 812 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 813 mdb_printf(" %s", buf); 814 } else 815 mdb_printf(" [ anon ]"); 816 } 817 818 mdb_printf("\n"); 819 return (WALK_NEXT); 820 } 821 822 static int 823 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 824 { 825 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 826 827 if (segvn == (uintptr_t)seg->s_ops) { 828 struct segvn_data svn; 829 830 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 831 832 if (svn.vp != NULL) { 833 mdb_printf(" %0?p", svn.vp); 834 } else { 835 mdb_printf(" [ anon ]"); 836 } 837 } 838 839 mdb_printf("\n"); 840 return (WALK_NEXT); 841 } 842 843 /*ARGSUSED*/ 844 int 845 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 846 { 847 uintptr_t segvn; 848 proc_t proc; 849 uint_t quick = FALSE; 850 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 851 852 GElf_Sym sym; 853 854 if (!(flags & DCMD_ADDRSPEC)) 855 return (DCMD_USAGE); 856 857 if (mdb_getopts(argc, argv, 858 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 859 return (DCMD_USAGE); 860 861 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 862 mdb_warn("failed to read proc at %p", addr); 863 return (DCMD_ERR); 864 } 865 866 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 867 segvn = (uintptr_t)sym.st_value; 868 else 869 segvn = NULL; 870 871 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 872 873 if (quick) { 874 mdb_printf("VNODE\n"); 875 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 876 } else { 877 mdb_printf("%8s %s\n", "RES", "PATH"); 878 } 879 880 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 881 mdb_warn("failed to walk segments of as %p", proc.p_as); 882 return (DCMD_ERR); 883 } 884 885 return (DCMD_OK); 886 } 887 888 typedef struct anon_walk_data { 889 uintptr_t *aw_levone; 890 uintptr_t *aw_levtwo; 891 int aw_nlevone; 892 int aw_levone_ndx; 893 int aw_levtwo_ndx; 894 struct anon_map aw_amp; 895 struct anon_hdr aw_ahp; 896 } anon_walk_data_t; 897 898 int 899 anon_walk_init(mdb_walk_state_t *wsp) 900 { 901 anon_walk_data_t *aw; 902 903 if (wsp->walk_addr == NULL) { 904 mdb_warn("anon walk doesn't support global walks\n"); 905 return (WALK_ERR); 906 } 907 908 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 909 910 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 911 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 912 mdb_free(aw, sizeof (anon_walk_data_t)); 913 return (WALK_ERR); 914 } 915 916 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 917 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 918 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 919 mdb_free(aw, sizeof (anon_walk_data_t)); 920 return (WALK_ERR); 921 } 922 923 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 924 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 925 aw->aw_nlevone = aw->aw_ahp.size; 926 aw->aw_levtwo = NULL; 927 } else { 928 aw->aw_nlevone = 929 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 930 aw->aw_levtwo = 931 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 932 } 933 934 aw->aw_levone = 935 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 936 937 aw->aw_levone_ndx = 0; 938 aw->aw_levtwo_ndx = 0; 939 940 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 941 (uintptr_t)aw->aw_ahp.array_chunk); 942 943 if (aw->aw_levtwo != NULL) { 944 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 945 aw->aw_levone_ndx++; 946 if (aw->aw_levone_ndx == aw->aw_nlevone) { 947 mdb_warn("corrupt anon; couldn't" 948 "find ptr to lev two map"); 949 goto out; 950 } 951 } 952 953 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 954 aw->aw_levone[aw->aw_levone_ndx]); 955 } 956 957 out: 958 wsp->walk_data = aw; 959 return (0); 960 } 961 962 int 963 anon_walk_step(mdb_walk_state_t *wsp) 964 { 965 int status; 966 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 967 struct anon anon; 968 uintptr_t anonptr; 969 970 again: 971 /* 972 * Once we've walked through level one, we're done. 973 */ 974 if (aw->aw_levone_ndx == aw->aw_nlevone) 975 return (WALK_DONE); 976 977 if (aw->aw_levtwo == NULL) { 978 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 979 aw->aw_levone_ndx++; 980 } else { 981 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 982 aw->aw_levtwo_ndx++; 983 984 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 985 aw->aw_levtwo_ndx = 0; 986 987 do { 988 aw->aw_levone_ndx++; 989 990 if (aw->aw_levone_ndx == aw->aw_nlevone) 991 return (WALK_DONE); 992 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 993 994 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 995 sizeof (uintptr_t), 996 aw->aw_levone[aw->aw_levone_ndx]); 997 } 998 } 999 1000 if (anonptr != NULL) { 1001 mdb_vread(&anon, sizeof (anon), anonptr); 1002 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1003 } else 1004 goto again; 1005 1006 return (status); 1007 } 1008 1009 void 1010 anon_walk_fini(mdb_walk_state_t *wsp) 1011 { 1012 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1013 1014 if (aw->aw_levtwo != NULL) 1015 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1016 1017 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1018 mdb_free(aw, sizeof (anon_walk_data_t)); 1019 } 1020 1021 /*ARGSUSED*/ 1022 int 1023 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1024 { 1025 if ((uintptr_t)f->f_vnode == *target) { 1026 mdb_printf("file %p\n", addr); 1027 *target = NULL; 1028 } 1029 1030 return (WALK_NEXT); 1031 } 1032 1033 /*ARGSUSED*/ 1034 int 1035 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1036 { 1037 uintptr_t t = *target; 1038 1039 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1040 mdb_warn("couldn't file walk proc %p", addr); 1041 return (WALK_ERR); 1042 } 1043 1044 if (t == NULL) 1045 mdb_printf("%p\n", addr); 1046 1047 return (WALK_NEXT); 1048 } 1049 1050 /*ARGSUSED*/ 1051 int 1052 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1053 { 1054 uintptr_t target = addr; 1055 1056 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1057 return (DCMD_USAGE); 1058 1059 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1060 mdb_warn("can't proc walk"); 1061 return (DCMD_ERR); 1062 } 1063 1064 return (DCMD_OK); 1065 } 1066 1067 typedef struct datafmt { 1068 char *hdr1; 1069 char *hdr2; 1070 char *dashes; 1071 char *fmt; 1072 } datafmt_t; 1073 1074 static datafmt_t kmemfmt[] = { 1075 { "cache ", "name ", 1076 "-------------------------", "%-25s " }, 1077 { " buf", " size", "------", "%6u " }, 1078 { " buf", "in use", "------", "%6u " }, 1079 { " buf", " total", "------", "%6u " }, 1080 { " memory", " in use", "---------", "%9u " }, 1081 { " alloc", " succeed", "---------", "%9u " }, 1082 { "alloc", " fail", "-----", "%5u " }, 1083 { NULL, NULL, NULL, NULL } 1084 }; 1085 1086 static datafmt_t vmemfmt[] = { 1087 { "vmem ", "name ", 1088 "-------------------------", "%-*s " }, 1089 { " memory", " in use", "---------", "%9llu " }, 1090 { " memory", " total", "----------", "%10llu " }, 1091 { " memory", " import", "---------", "%9llu " }, 1092 { " alloc", " succeed", "---------", "%9llu " }, 1093 { "alloc", " fail", "-----", "%5llu " }, 1094 { NULL, NULL, NULL, NULL } 1095 }; 1096 1097 /*ARGSUSED*/ 1098 static int 1099 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1100 { 1101 if (ccp->cc_rounds > 0) 1102 *avail += ccp->cc_rounds; 1103 if (ccp->cc_prounds > 0) 1104 *avail += ccp->cc_prounds; 1105 1106 return (WALK_NEXT); 1107 } 1108 1109 /*ARGSUSED*/ 1110 static int 1111 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1112 { 1113 *alloc += ccp->cc_alloc; 1114 1115 return (WALK_NEXT); 1116 } 1117 1118 /*ARGSUSED*/ 1119 static int 1120 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1121 { 1122 *avail += sp->slab_chunks - sp->slab_refcnt; 1123 1124 return (WALK_NEXT); 1125 } 1126 1127 typedef struct kmastat_vmem { 1128 uintptr_t kv_addr; 1129 struct kmastat_vmem *kv_next; 1130 int kv_meminuse; 1131 int kv_alloc; 1132 int kv_fail; 1133 } kmastat_vmem_t; 1134 1135 static int 1136 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) 1137 { 1138 kmastat_vmem_t *kv; 1139 datafmt_t *dfp = kmemfmt; 1140 int magsize; 1141 1142 int avail, alloc, total; 1143 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1144 cp->cache_slabsize; 1145 1146 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1147 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1148 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1149 1150 magsize = kmem_get_magsize(cp); 1151 1152 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1153 avail = cp->cache_full.ml_total * magsize; 1154 total = cp->cache_buftotal; 1155 1156 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1157 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1158 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1159 1160 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1161 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1162 goto out; 1163 } 1164 1165 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1166 kv->kv_next = *kvp; 1167 kv->kv_addr = (uintptr_t)cp->cache_arena; 1168 *kvp = kv; 1169 out: 1170 kv->kv_meminuse += meminuse; 1171 kv->kv_alloc += alloc; 1172 kv->kv_fail += cp->cache_alloc_fail; 1173 1174 mdb_printf((dfp++)->fmt, cp->cache_name); 1175 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1176 mdb_printf((dfp++)->fmt, total - avail); 1177 mdb_printf((dfp++)->fmt, total); 1178 mdb_printf((dfp++)->fmt, meminuse); 1179 mdb_printf((dfp++)->fmt, alloc); 1180 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1181 mdb_printf("\n"); 1182 1183 return (WALK_NEXT); 1184 } 1185 1186 static int 1187 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 1188 { 1189 size_t len; 1190 1191 while (kv != NULL && kv->kv_addr != addr) 1192 kv = kv->kv_next; 1193 1194 if (kv == NULL || kv->kv_alloc == 0) 1195 return (WALK_NEXT); 1196 1197 len = MIN(17, strlen(v->vm_name)); 1198 1199 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1200 17 - len, "", "", "", "", 1201 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 1202 1203 return (WALK_NEXT); 1204 } 1205 1206 /*ARGSUSED*/ 1207 static int 1208 kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) 1209 { 1210 datafmt_t *dfp = vmemfmt; 1211 const vmem_kstat_t *vkp = &v->vm_kstat; 1212 uintptr_t paddr; 1213 vmem_t parent; 1214 int ident = 0; 1215 1216 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1217 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1218 mdb_warn("couldn't trace %p's ancestry", addr); 1219 ident = 0; 1220 break; 1221 } 1222 paddr = (uintptr_t)parent.vm_source; 1223 } 1224 1225 mdb_printf("%*s", ident, ""); 1226 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1227 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1228 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1229 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 1230 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1231 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1232 1233 mdb_printf("\n"); 1234 1235 return (WALK_NEXT); 1236 } 1237 1238 /*ARGSUSED*/ 1239 int 1240 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1241 { 1242 kmastat_vmem_t *kv = NULL; 1243 datafmt_t *dfp; 1244 1245 if (argc != 0) 1246 return (DCMD_USAGE); 1247 1248 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1249 mdb_printf("%s ", dfp->hdr1); 1250 mdb_printf("\n"); 1251 1252 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1253 mdb_printf("%s ", dfp->hdr2); 1254 mdb_printf("\n"); 1255 1256 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1257 mdb_printf("%s ", dfp->dashes); 1258 mdb_printf("\n"); 1259 1260 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 1261 mdb_warn("can't walk 'kmem_cache'"); 1262 return (DCMD_ERR); 1263 } 1264 1265 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1266 mdb_printf("%s ", dfp->dashes); 1267 mdb_printf("\n"); 1268 1269 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 1270 mdb_warn("can't walk 'vmem'"); 1271 return (DCMD_ERR); 1272 } 1273 1274 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1275 mdb_printf("%s ", dfp->dashes); 1276 mdb_printf("\n"); 1277 1278 mdb_printf("\n"); 1279 1280 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1281 mdb_printf("%s ", dfp->hdr1); 1282 mdb_printf("\n"); 1283 1284 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1285 mdb_printf("%s ", dfp->hdr2); 1286 mdb_printf("\n"); 1287 1288 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1289 mdb_printf("%s ", dfp->dashes); 1290 mdb_printf("\n"); 1291 1292 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 1293 mdb_warn("can't walk 'vmem'"); 1294 return (DCMD_ERR); 1295 } 1296 1297 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1298 mdb_printf("%s ", dfp->dashes); 1299 mdb_printf("\n"); 1300 return (DCMD_OK); 1301 } 1302 1303 /* 1304 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1305 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1306 * unfortunately, a few of the segs are both large and sparse, so we could 1307 * spend quite a bit of time scanning VAs which have no backing pages. 1308 * 1309 * So for the few very sparse segs, we skip the segment itself, and scan 1310 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1311 * Currently, we do this for: 1312 * 1313 * SEG VMEM ARENA 1314 * kvseg heap_arena 1315 * kvseg32 heap32_arena 1316 * kvseg_core heap_core_arena 1317 * 1318 * In addition, we skip the segkpm segment in its entirety, since it is very 1319 * sparse, and contains no new kernel data. 1320 */ 1321 typedef struct kgrep_walk_data { 1322 kgrep_cb_func *kg_cb; 1323 void *kg_cbdata; 1324 uintptr_t kg_kvseg; 1325 uintptr_t kg_kvseg32; 1326 uintptr_t kg_kvseg_core; 1327 uintptr_t kg_segkpm; 1328 uintptr_t kg_heap_lp_base; 1329 uintptr_t kg_heap_lp_end; 1330 } kgrep_walk_data_t; 1331 1332 static int 1333 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1334 { 1335 uintptr_t base = (uintptr_t)seg->s_base; 1336 1337 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1338 addr == kg->kg_kvseg_core) 1339 return (WALK_NEXT); 1340 1341 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1342 return (WALK_NEXT); 1343 1344 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1345 } 1346 1347 /*ARGSUSED*/ 1348 static int 1349 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1350 { 1351 /* 1352 * skip large page heap address range - it is scanned by walking 1353 * allocated vmem_segs in the heap_lp_arena 1354 */ 1355 if (seg->vs_start == kg->kg_heap_lp_base && 1356 seg->vs_end == kg->kg_heap_lp_end) 1357 return (WALK_NEXT); 1358 1359 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1360 } 1361 1362 /*ARGSUSED*/ 1363 static int 1364 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1365 { 1366 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1367 } 1368 1369 static int 1370 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1371 { 1372 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1373 1374 if (strcmp(vmem->vm_name, "heap") != 0 && 1375 strcmp(vmem->vm_name, "heap32") != 0 && 1376 strcmp(vmem->vm_name, "heap_core") != 0 && 1377 strcmp(vmem->vm_name, "heap_lp") != 0) 1378 return (WALK_NEXT); 1379 1380 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1381 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1382 1383 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1384 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1385 return (WALK_ERR); 1386 } 1387 1388 return (WALK_NEXT); 1389 } 1390 1391 int 1392 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1393 { 1394 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1395 kgrep_walk_data_t kg; 1396 1397 if (mdb_get_state() == MDB_STATE_RUNNING) { 1398 mdb_warn("kgrep can only be run on a system " 1399 "dump or under kmdb; see dumpadm(1M)\n"); 1400 return (DCMD_ERR); 1401 } 1402 1403 if (mdb_lookup_by_name("kas", &kas) == -1) { 1404 mdb_warn("failed to locate 'kas' symbol\n"); 1405 return (DCMD_ERR); 1406 } 1407 1408 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1409 mdb_warn("failed to locate 'kvseg' symbol\n"); 1410 return (DCMD_ERR); 1411 } 1412 1413 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1414 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1415 return (DCMD_ERR); 1416 } 1417 1418 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1419 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1420 return (DCMD_ERR); 1421 } 1422 1423 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1424 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1425 return (DCMD_ERR); 1426 } 1427 1428 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1429 mdb_warn("failed to read 'heap_lp_base'\n"); 1430 return (DCMD_ERR); 1431 } 1432 1433 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1434 mdb_warn("failed to read 'heap_lp_end'\n"); 1435 return (DCMD_ERR); 1436 } 1437 1438 kg.kg_cb = cb; 1439 kg.kg_cbdata = cbdata; 1440 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1441 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1442 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1443 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1444 1445 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1446 &kg, kas.st_value) == -1) { 1447 mdb_warn("failed to walk kas segments"); 1448 return (DCMD_ERR); 1449 } 1450 1451 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1452 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1453 return (DCMD_ERR); 1454 } 1455 1456 return (DCMD_OK); 1457 } 1458 1459 size_t 1460 kgrep_subr_pagesize(void) 1461 { 1462 return (PAGESIZE); 1463 } 1464 1465 typedef struct file_walk_data { 1466 struct uf_entry *fw_flist; 1467 int fw_flistsz; 1468 int fw_ndx; 1469 int fw_nofiles; 1470 } file_walk_data_t; 1471 1472 int 1473 file_walk_init(mdb_walk_state_t *wsp) 1474 { 1475 file_walk_data_t *fw; 1476 proc_t p; 1477 1478 if (wsp->walk_addr == NULL) { 1479 mdb_warn("file walk doesn't support global walks\n"); 1480 return (WALK_ERR); 1481 } 1482 1483 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1484 1485 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1486 mdb_free(fw, sizeof (file_walk_data_t)); 1487 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1488 return (WALK_ERR); 1489 } 1490 1491 if (p.p_user.u_finfo.fi_nfiles == 0) { 1492 mdb_free(fw, sizeof (file_walk_data_t)); 1493 return (WALK_DONE); 1494 } 1495 1496 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1497 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1498 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1499 1500 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1501 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1502 mdb_warn("failed to read file array at %p", 1503 p.p_user.u_finfo.fi_list); 1504 mdb_free(fw->fw_flist, fw->fw_flistsz); 1505 mdb_free(fw, sizeof (file_walk_data_t)); 1506 return (WALK_ERR); 1507 } 1508 1509 fw->fw_ndx = 0; 1510 wsp->walk_data = fw; 1511 1512 return (WALK_NEXT); 1513 } 1514 1515 int 1516 file_walk_step(mdb_walk_state_t *wsp) 1517 { 1518 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1519 struct file file; 1520 uintptr_t fp; 1521 1522 again: 1523 if (fw->fw_ndx == fw->fw_nofiles) 1524 return (WALK_DONE); 1525 1526 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1527 goto again; 1528 1529 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1530 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1531 } 1532 1533 int 1534 allfile_walk_step(mdb_walk_state_t *wsp) 1535 { 1536 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1537 struct file file; 1538 uintptr_t fp; 1539 1540 if (fw->fw_ndx == fw->fw_nofiles) 1541 return (WALK_DONE); 1542 1543 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1544 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1545 else 1546 bzero(&file, sizeof (file)); 1547 1548 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1549 } 1550 1551 void 1552 file_walk_fini(mdb_walk_state_t *wsp) 1553 { 1554 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1555 1556 mdb_free(fw->fw_flist, fw->fw_flistsz); 1557 mdb_free(fw, sizeof (file_walk_data_t)); 1558 } 1559 1560 int 1561 port_walk_init(mdb_walk_state_t *wsp) 1562 { 1563 if (wsp->walk_addr == NULL) { 1564 mdb_warn("port walk doesn't support global walks\n"); 1565 return (WALK_ERR); 1566 } 1567 1568 if (mdb_layered_walk("file", wsp) == -1) { 1569 mdb_warn("couldn't walk 'file'"); 1570 return (WALK_ERR); 1571 } 1572 return (WALK_NEXT); 1573 } 1574 1575 int 1576 port_walk_step(mdb_walk_state_t *wsp) 1577 { 1578 struct vnode vn; 1579 uintptr_t vp; 1580 uintptr_t pp; 1581 struct port port; 1582 1583 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1584 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1585 mdb_warn("failed to read vnode_t at %p", vp); 1586 return (WALK_ERR); 1587 } 1588 if (vn.v_type != VPORT) 1589 return (WALK_NEXT); 1590 1591 pp = (uintptr_t)vn.v_data; 1592 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1593 mdb_warn("failed to read port_t at %p", pp); 1594 return (WALK_ERR); 1595 } 1596 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1597 } 1598 1599 typedef struct portev_walk_data { 1600 list_node_t *pev_node; 1601 list_node_t *pev_last; 1602 size_t pev_offset; 1603 } portev_walk_data_t; 1604 1605 int 1606 portev_walk_init(mdb_walk_state_t *wsp) 1607 { 1608 portev_walk_data_t *pevd; 1609 struct port port; 1610 struct vnode vn; 1611 struct list *list; 1612 uintptr_t vp; 1613 1614 if (wsp->walk_addr == NULL) { 1615 mdb_warn("portev walk doesn't support global walks\n"); 1616 return (WALK_ERR); 1617 } 1618 1619 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1620 1621 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1622 mdb_free(pevd, sizeof (portev_walk_data_t)); 1623 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1624 return (WALK_ERR); 1625 } 1626 1627 vp = (uintptr_t)port.port_vnode; 1628 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1629 mdb_free(pevd, sizeof (portev_walk_data_t)); 1630 mdb_warn("failed to read vnode_t at %p", vp); 1631 return (WALK_ERR); 1632 } 1633 1634 if (vn.v_type != VPORT) { 1635 mdb_free(pevd, sizeof (portev_walk_data_t)); 1636 mdb_warn("input address (%p) does not point to an event port", 1637 wsp->walk_addr); 1638 return (WALK_ERR); 1639 } 1640 1641 if (port.port_queue.portq_nent == 0) { 1642 mdb_free(pevd, sizeof (portev_walk_data_t)); 1643 return (WALK_DONE); 1644 } 1645 list = &port.port_queue.portq_list; 1646 pevd->pev_offset = list->list_offset; 1647 pevd->pev_last = list->list_head.list_prev; 1648 pevd->pev_node = list->list_head.list_next; 1649 wsp->walk_data = pevd; 1650 return (WALK_NEXT); 1651 } 1652 1653 int 1654 portev_walk_step(mdb_walk_state_t *wsp) 1655 { 1656 portev_walk_data_t *pevd; 1657 struct port_kevent ev; 1658 uintptr_t evp; 1659 1660 pevd = (portev_walk_data_t *)wsp->walk_data; 1661 1662 if (pevd->pev_last == NULL) 1663 return (WALK_DONE); 1664 if (pevd->pev_node == pevd->pev_last) 1665 pevd->pev_last = NULL; /* last round */ 1666 1667 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1668 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1669 mdb_warn("failed to read port_kevent at %p", evp); 1670 return (WALK_DONE); 1671 } 1672 pevd->pev_node = ev.portkev_node.list_next; 1673 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1674 } 1675 1676 void 1677 portev_walk_fini(mdb_walk_state_t *wsp) 1678 { 1679 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1680 1681 if (pevd != NULL) 1682 mdb_free(pevd, sizeof (portev_walk_data_t)); 1683 } 1684 1685 typedef struct proc_walk_data { 1686 uintptr_t *pw_stack; 1687 int pw_depth; 1688 int pw_max; 1689 } proc_walk_data_t; 1690 1691 int 1692 proc_walk_init(mdb_walk_state_t *wsp) 1693 { 1694 GElf_Sym sym; 1695 proc_walk_data_t *pw; 1696 1697 if (wsp->walk_addr == NULL) { 1698 if (mdb_lookup_by_name("p0", &sym) == -1) { 1699 mdb_warn("failed to read 'practive'"); 1700 return (WALK_ERR); 1701 } 1702 wsp->walk_addr = (uintptr_t)sym.st_value; 1703 } 1704 1705 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1706 1707 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1708 mdb_warn("failed to read 'nproc'"); 1709 mdb_free(pw, sizeof (pw)); 1710 return (WALK_ERR); 1711 } 1712 1713 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1714 wsp->walk_data = pw; 1715 1716 return (WALK_NEXT); 1717 } 1718 1719 int 1720 proc_walk_step(mdb_walk_state_t *wsp) 1721 { 1722 proc_walk_data_t *pw = wsp->walk_data; 1723 uintptr_t addr = wsp->walk_addr; 1724 uintptr_t cld, sib; 1725 1726 int status; 1727 proc_t pr; 1728 1729 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1730 mdb_warn("failed to read proc at %p", addr); 1731 return (WALK_DONE); 1732 } 1733 1734 cld = (uintptr_t)pr.p_child; 1735 sib = (uintptr_t)pr.p_sibling; 1736 1737 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1738 pw->pw_depth--; 1739 goto sib; 1740 } 1741 1742 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1743 1744 if (status != WALK_NEXT) 1745 return (status); 1746 1747 if ((wsp->walk_addr = cld) != NULL) { 1748 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1749 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1750 addr, cld); 1751 goto sib; 1752 } 1753 1754 pw->pw_stack[pw->pw_depth++] = addr; 1755 1756 if (pw->pw_depth == pw->pw_max) { 1757 mdb_warn("depth %d exceeds max depth; try again\n", 1758 pw->pw_depth); 1759 return (WALK_DONE); 1760 } 1761 return (WALK_NEXT); 1762 } 1763 1764 sib: 1765 /* 1766 * We know that p0 has no siblings, and if another starting proc 1767 * was given, we don't want to walk its siblings anyway. 1768 */ 1769 if (pw->pw_depth == 0) 1770 return (WALK_DONE); 1771 1772 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1773 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1774 addr, sib); 1775 sib = NULL; 1776 } 1777 1778 if ((wsp->walk_addr = sib) == NULL) { 1779 if (pw->pw_depth > 0) { 1780 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1781 return (WALK_NEXT); 1782 } 1783 return (WALK_DONE); 1784 } 1785 1786 return (WALK_NEXT); 1787 } 1788 1789 void 1790 proc_walk_fini(mdb_walk_state_t *wsp) 1791 { 1792 proc_walk_data_t *pw = wsp->walk_data; 1793 1794 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1795 mdb_free(pw, sizeof (proc_walk_data_t)); 1796 } 1797 1798 int 1799 task_walk_init(mdb_walk_state_t *wsp) 1800 { 1801 task_t task; 1802 1803 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1804 mdb_warn("failed to read task at %p", wsp->walk_addr); 1805 return (WALK_ERR); 1806 } 1807 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1808 wsp->walk_data = task.tk_memb_list; 1809 return (WALK_NEXT); 1810 } 1811 1812 int 1813 task_walk_step(mdb_walk_state_t *wsp) 1814 { 1815 proc_t proc; 1816 int status; 1817 1818 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1819 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1820 return (WALK_DONE); 1821 } 1822 1823 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1824 1825 if (proc.p_tasknext == wsp->walk_data) 1826 return (WALK_DONE); 1827 1828 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1829 return (status); 1830 } 1831 1832 int 1833 project_walk_init(mdb_walk_state_t *wsp) 1834 { 1835 if (wsp->walk_addr == NULL) { 1836 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1837 mdb_warn("failed to read 'proj0p'"); 1838 return (WALK_ERR); 1839 } 1840 } 1841 wsp->walk_data = (void *)wsp->walk_addr; 1842 return (WALK_NEXT); 1843 } 1844 1845 int 1846 project_walk_step(mdb_walk_state_t *wsp) 1847 { 1848 uintptr_t addr = wsp->walk_addr; 1849 kproject_t pj; 1850 int status; 1851 1852 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1853 mdb_warn("failed to read project at %p", addr); 1854 return (WALK_DONE); 1855 } 1856 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1857 if (status != WALK_NEXT) 1858 return (status); 1859 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1860 if ((void *)wsp->walk_addr == wsp->walk_data) 1861 return (WALK_DONE); 1862 return (WALK_NEXT); 1863 } 1864 1865 static int 1866 generic_walk_step(mdb_walk_state_t *wsp) 1867 { 1868 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1869 wsp->walk_cbdata)); 1870 } 1871 1872 int 1873 seg_walk_init(mdb_walk_state_t *wsp) 1874 { 1875 if (wsp->walk_addr == NULL) { 1876 mdb_warn("seg walk must begin at struct as *\n"); 1877 return (WALK_ERR); 1878 } 1879 1880 /* 1881 * this is really just a wrapper to AVL tree walk 1882 */ 1883 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1884 return (avl_walk_init(wsp)); 1885 } 1886 1887 static int 1888 cpu_walk_cmp(const void *l, const void *r) 1889 { 1890 uintptr_t lhs = *((uintptr_t *)l); 1891 uintptr_t rhs = *((uintptr_t *)r); 1892 cpu_t lcpu, rcpu; 1893 1894 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1895 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1896 1897 if (lcpu.cpu_id < rcpu.cpu_id) 1898 return (-1); 1899 1900 if (lcpu.cpu_id > rcpu.cpu_id) 1901 return (1); 1902 1903 return (0); 1904 } 1905 1906 typedef struct cpu_walk { 1907 uintptr_t *cw_array; 1908 int cw_ndx; 1909 } cpu_walk_t; 1910 1911 int 1912 cpu_walk_init(mdb_walk_state_t *wsp) 1913 { 1914 cpu_walk_t *cw; 1915 int max_ncpus, i = 0; 1916 uintptr_t current, first; 1917 cpu_t cpu, panic_cpu; 1918 uintptr_t panicstr, addr; 1919 GElf_Sym sym; 1920 1921 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1922 1923 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1924 mdb_warn("failed to read 'max_ncpus'"); 1925 return (WALK_ERR); 1926 } 1927 1928 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1929 mdb_warn("failed to read 'panicstr'"); 1930 return (WALK_ERR); 1931 } 1932 1933 if (panicstr != NULL) { 1934 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1935 mdb_warn("failed to find 'panic_cpu'"); 1936 return (WALK_ERR); 1937 } 1938 1939 addr = (uintptr_t)sym.st_value; 1940 1941 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1942 mdb_warn("failed to read 'panic_cpu'"); 1943 return (WALK_ERR); 1944 } 1945 } 1946 1947 /* 1948 * Unfortunately, there is no platform-independent way to walk 1949 * CPUs in ID order. We therefore loop through in cpu_next order, 1950 * building an array of CPU pointers which will subsequently be 1951 * sorted. 1952 */ 1953 cw->cw_array = 1954 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1955 1956 if (mdb_readvar(&first, "cpu_list") == -1) { 1957 mdb_warn("failed to read 'cpu_list'"); 1958 return (WALK_ERR); 1959 } 1960 1961 current = first; 1962 do { 1963 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1964 mdb_warn("failed to read cpu at %p", current); 1965 return (WALK_ERR); 1966 } 1967 1968 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1969 cw->cw_array[i++] = addr; 1970 } else { 1971 cw->cw_array[i++] = current; 1972 } 1973 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1974 1975 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 1976 wsp->walk_data = cw; 1977 1978 return (WALK_NEXT); 1979 } 1980 1981 int 1982 cpu_walk_step(mdb_walk_state_t *wsp) 1983 { 1984 cpu_walk_t *cw = wsp->walk_data; 1985 cpu_t cpu; 1986 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 1987 1988 if (addr == NULL) 1989 return (WALK_DONE); 1990 1991 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 1992 mdb_warn("failed to read cpu at %p", addr); 1993 return (WALK_DONE); 1994 } 1995 1996 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 1997 } 1998 1999 typedef struct cpuinfo_data { 2000 intptr_t cid_cpu; 2001 uintptr_t cid_lbolt; 2002 uintptr_t **cid_ithr; 2003 char cid_print_head; 2004 char cid_print_thr; 2005 char cid_print_ithr; 2006 char cid_print_flags; 2007 } cpuinfo_data_t; 2008 2009 int 2010 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2011 { 2012 cpu_t c; 2013 int id; 2014 uint8_t pil; 2015 2016 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2017 return (WALK_NEXT); 2018 2019 if (thr->t_bound_cpu == NULL) { 2020 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2021 return (WALK_NEXT); 2022 } 2023 2024 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2025 2026 if ((id = c.cpu_id) >= NCPU) { 2027 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2028 thr->t_bound_cpu, id, NCPU); 2029 return (WALK_NEXT); 2030 } 2031 2032 if ((pil = thr->t_pil) >= NINTR) { 2033 mdb_warn("thread %p has pil (%d) greater than %d\n", 2034 addr, pil, NINTR); 2035 return (WALK_NEXT); 2036 } 2037 2038 if (cid->cid_ithr[id][pil] != NULL) { 2039 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2040 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2041 return (WALK_NEXT); 2042 } 2043 2044 cid->cid_ithr[id][pil] = addr; 2045 2046 return (WALK_NEXT); 2047 } 2048 2049 #define CPUINFO_IDWIDTH 3 2050 #define CPUINFO_FLAGWIDTH 9 2051 2052 #ifdef _LP64 2053 #if defined(__amd64) 2054 #define CPUINFO_TWIDTH 16 2055 #define CPUINFO_CPUWIDTH 16 2056 #else 2057 #define CPUINFO_CPUWIDTH 11 2058 #define CPUINFO_TWIDTH 11 2059 #endif 2060 #else 2061 #define CPUINFO_CPUWIDTH 8 2062 #define CPUINFO_TWIDTH 8 2063 #endif 2064 2065 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2066 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2067 #define CPUINFO_ITHRDELT 4 2068 2069 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2070 flagline < nflaglines ? flagbuf[flagline++] : "") 2071 2072 int 2073 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2074 { 2075 kthread_t t; 2076 disp_t disp; 2077 proc_t p; 2078 uintptr_t pinned; 2079 char **flagbuf; 2080 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2081 2082 const char *flags[] = { 2083 "RUNNING", "READY", "QUIESCED", "EXISTS", 2084 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2085 "SPARE", "FAULTED", NULL 2086 }; 2087 2088 if (cid->cid_cpu != -1) { 2089 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2090 return (WALK_NEXT); 2091 2092 /* 2093 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2094 */ 2095 cid->cid_cpu = -1; 2096 rval = WALK_DONE; 2097 } 2098 2099 if (cid->cid_print_head) { 2100 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2101 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2102 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2103 "PROC"); 2104 cid->cid_print_head = FALSE; 2105 } 2106 2107 bspl = cpu->cpu_base_spl; 2108 2109 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2110 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2111 return (WALK_ERR); 2112 } 2113 2114 mdb_printf("%3d %0*p %3x %4d %4d ", 2115 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2116 disp.disp_nrunnable, bspl); 2117 2118 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2119 mdb_printf("%3d ", t.t_pri); 2120 } else { 2121 mdb_printf("%3s ", "-"); 2122 } 2123 2124 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2125 cpu->cpu_kprunrun ? "yes" : "no"); 2126 2127 if (cpu->cpu_last_swtch) { 2128 clock_t lbolt; 2129 2130 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2131 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2132 return (WALK_ERR); 2133 } 2134 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2135 } else { 2136 mdb_printf("%-6s ", "-"); 2137 } 2138 2139 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2140 2141 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2142 mdb_printf(" (idle)\n"); 2143 else if (cpu->cpu_thread == NULL) 2144 mdb_printf(" -\n"); 2145 else { 2146 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2147 mdb_printf(" %s\n", p.p_user.u_comm); 2148 } else { 2149 mdb_printf(" ?\n"); 2150 } 2151 } 2152 2153 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2154 2155 if (cid->cid_print_flags) { 2156 int first = 1, i, j, k; 2157 char *s; 2158 2159 cid->cid_print_head = TRUE; 2160 2161 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2162 if (!(cpu->cpu_flags & i)) 2163 continue; 2164 2165 if (first) { 2166 s = mdb_alloc(CPUINFO_THRDELT + 1, 2167 UM_GC | UM_SLEEP); 2168 2169 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2170 "%*s|%*s", CPUINFO_FLAGDELT, "", 2171 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2172 flagbuf[nflaglines++] = s; 2173 } 2174 2175 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2176 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2177 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2178 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2179 first ? "<--+" : ""); 2180 2181 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2182 s[k] = ' '; 2183 s[k] = '\0'; 2184 2185 flagbuf[nflaglines++] = s; 2186 first = 0; 2187 } 2188 } 2189 2190 if (cid->cid_print_ithr) { 2191 int i, found_one = FALSE; 2192 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2193 2194 for (i = NINTR - 1; i >= 0; i--) { 2195 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2196 2197 if (iaddr == NULL) 2198 continue; 2199 2200 if (!found_one) { 2201 found_one = TRUE; 2202 2203 CPUINFO_INDENT; 2204 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2205 CPUINFO_ITHRDELT, ""); 2206 2207 CPUINFO_INDENT; 2208 mdb_printf("%c%*s+--> %3s %s\n", 2209 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2210 "", "PIL", "THREAD"); 2211 } 2212 2213 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2214 mdb_warn("failed to read kthread_t at %p", 2215 iaddr); 2216 return (WALK_ERR); 2217 } 2218 2219 CPUINFO_INDENT; 2220 mdb_printf("%c%*s %3d %0*p\n", 2221 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2222 t.t_pil, CPUINFO_TWIDTH, iaddr); 2223 2224 pinned = (uintptr_t)t.t_intr; 2225 } 2226 2227 if (found_one && pinned != NULL) { 2228 cid->cid_print_head = TRUE; 2229 (void) strcpy(p.p_user.u_comm, "?"); 2230 2231 if (mdb_vread(&t, sizeof (t), 2232 (uintptr_t)pinned) == -1) { 2233 mdb_warn("failed to read kthread_t at %p", 2234 pinned); 2235 return (WALK_ERR); 2236 } 2237 if (mdb_vread(&p, sizeof (p), 2238 (uintptr_t)t.t_procp) == -1) { 2239 mdb_warn("failed to read proc_t at %p", 2240 t.t_procp); 2241 return (WALK_ERR); 2242 } 2243 2244 CPUINFO_INDENT; 2245 mdb_printf("%c%*s %3s %0*p %s\n", 2246 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2247 CPUINFO_TWIDTH, pinned, 2248 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2249 "(idle)" : p.p_user.u_comm); 2250 } 2251 } 2252 2253 if (disp.disp_nrunnable && cid->cid_print_thr) { 2254 dispq_t *dq; 2255 2256 int i, npri = disp.disp_npri; 2257 2258 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2259 2260 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2261 (uintptr_t)disp.disp_q) == -1) { 2262 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2263 return (WALK_ERR); 2264 } 2265 2266 CPUINFO_INDENT; 2267 mdb_printf("|\n"); 2268 2269 CPUINFO_INDENT; 2270 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2271 CPUINFO_TWIDTH, "THREAD", "PROC"); 2272 2273 for (i = npri - 1; i >= 0; i--) { 2274 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2275 2276 while (taddr != NULL) { 2277 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2278 mdb_warn("failed to read kthread_t " 2279 "at %p", taddr); 2280 return (WALK_ERR); 2281 } 2282 if (mdb_vread(&p, sizeof (p), 2283 (uintptr_t)t.t_procp) == -1) { 2284 mdb_warn("failed to read proc_t at %p", 2285 t.t_procp); 2286 return (WALK_ERR); 2287 } 2288 2289 CPUINFO_INDENT; 2290 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2291 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2292 2293 taddr = (uintptr_t)t.t_link; 2294 } 2295 } 2296 cid->cid_print_head = TRUE; 2297 } 2298 2299 while (flagline < nflaglines) 2300 mdb_printf("%s\n", flagbuf[flagline++]); 2301 2302 if (cid->cid_print_head) 2303 mdb_printf("\n"); 2304 2305 return (rval); 2306 } 2307 2308 int 2309 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2310 { 2311 uint_t verbose = FALSE; 2312 cpuinfo_data_t cid; 2313 GElf_Sym sym; 2314 clock_t lbolt; 2315 2316 cid.cid_print_ithr = FALSE; 2317 cid.cid_print_thr = FALSE; 2318 cid.cid_print_flags = FALSE; 2319 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2320 cid.cid_cpu = -1; 2321 2322 if (flags & DCMD_ADDRSPEC) 2323 cid.cid_cpu = addr; 2324 2325 if (mdb_getopts(argc, argv, 2326 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2327 return (DCMD_USAGE); 2328 2329 if (verbose) { 2330 cid.cid_print_ithr = TRUE; 2331 cid.cid_print_thr = TRUE; 2332 cid.cid_print_flags = TRUE; 2333 cid.cid_print_head = TRUE; 2334 } 2335 2336 if (cid.cid_print_ithr) { 2337 int i; 2338 2339 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2340 * NCPU, UM_SLEEP | UM_GC); 2341 2342 for (i = 0; i < NCPU; i++) 2343 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2344 NINTR, UM_SLEEP | UM_GC); 2345 2346 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2347 &cid) == -1) { 2348 mdb_warn("couldn't walk thread"); 2349 return (DCMD_ERR); 2350 } 2351 } 2352 2353 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2354 mdb_warn("failed to find panic_lbolt"); 2355 return (DCMD_ERR); 2356 } 2357 2358 cid.cid_lbolt = (uintptr_t)sym.st_value; 2359 2360 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2361 mdb_warn("failed to read panic_lbolt"); 2362 return (DCMD_ERR); 2363 } 2364 2365 if (lbolt == 0) { 2366 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2367 mdb_warn("failed to find lbolt"); 2368 return (DCMD_ERR); 2369 } 2370 cid.cid_lbolt = (uintptr_t)sym.st_value; 2371 } 2372 2373 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2374 mdb_warn("can't walk cpus"); 2375 return (DCMD_ERR); 2376 } 2377 2378 if (cid.cid_cpu != -1) { 2379 /* 2380 * We didn't find this CPU when we walked through the CPUs 2381 * (i.e. the address specified doesn't show up in the "cpu" 2382 * walk). However, the specified address may still correspond 2383 * to a valid cpu_t (for example, if the specified address is 2384 * the actual panicking cpu_t and not the cached panic_cpu). 2385 * Point is: even if we didn't find it, we still want to try 2386 * to print the specified address as a cpu_t. 2387 */ 2388 cpu_t cpu; 2389 2390 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2391 mdb_warn("%p is neither a valid CPU ID nor a " 2392 "valid cpu_t address\n", cid.cid_cpu); 2393 return (DCMD_ERR); 2394 } 2395 2396 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2397 } 2398 2399 return (DCMD_OK); 2400 } 2401 2402 /*ARGSUSED*/ 2403 int 2404 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2405 { 2406 int i; 2407 2408 if (!(flags & DCMD_ADDRSPEC)) 2409 return (DCMD_USAGE); 2410 2411 for (i = 0; i < sizeof (addr) * NBBY; i++) 2412 mdb_printf("%p\n", addr ^ (1UL << i)); 2413 2414 return (DCMD_OK); 2415 } 2416 2417 /* 2418 * Grumble, grumble. 2419 */ 2420 #define SMAP_HASHFUNC(vp, off) \ 2421 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2422 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2423 2424 int 2425 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2426 { 2427 long smd_hashmsk; 2428 int hash; 2429 uintptr_t offset = 0; 2430 struct smap smp; 2431 uintptr_t saddr, kaddr; 2432 uintptr_t smd_hash, smd_smap; 2433 struct seg seg; 2434 2435 if (!(flags & DCMD_ADDRSPEC)) 2436 return (DCMD_USAGE); 2437 2438 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2439 mdb_warn("failed to read smd_hashmsk"); 2440 return (DCMD_ERR); 2441 } 2442 2443 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2444 mdb_warn("failed to read smd_hash"); 2445 return (DCMD_ERR); 2446 } 2447 2448 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2449 mdb_warn("failed to read smd_hash"); 2450 return (DCMD_ERR); 2451 } 2452 2453 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2454 mdb_warn("failed to read segkmap"); 2455 return (DCMD_ERR); 2456 } 2457 2458 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2459 mdb_warn("failed to read segkmap at %p", kaddr); 2460 return (DCMD_ERR); 2461 } 2462 2463 if (argc != 0) { 2464 const mdb_arg_t *arg = &argv[0]; 2465 2466 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2467 offset = arg->a_un.a_val; 2468 else 2469 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2470 } 2471 2472 hash = SMAP_HASHFUNC(addr, offset); 2473 2474 if (mdb_vread(&saddr, sizeof (saddr), 2475 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2476 mdb_warn("couldn't read smap at %p", 2477 smd_hash + hash * sizeof (uintptr_t)); 2478 return (DCMD_ERR); 2479 } 2480 2481 do { 2482 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2483 mdb_warn("couldn't read smap at %p", saddr); 2484 return (DCMD_ERR); 2485 } 2486 2487 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2488 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2489 addr, offset, saddr, ((saddr - smd_smap) / 2490 sizeof (smp)) * MAXBSIZE + seg.s_base); 2491 return (DCMD_OK); 2492 } 2493 2494 saddr = (uintptr_t)smp.sm_hash; 2495 } while (saddr != NULL); 2496 2497 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2498 return (DCMD_OK); 2499 } 2500 2501 /*ARGSUSED*/ 2502 int 2503 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2504 { 2505 uintptr_t kaddr; 2506 struct seg seg; 2507 struct segmap_data sd; 2508 2509 if (!(flags & DCMD_ADDRSPEC)) 2510 return (DCMD_USAGE); 2511 2512 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2513 mdb_warn("failed to read segkmap"); 2514 return (DCMD_ERR); 2515 } 2516 2517 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2518 mdb_warn("failed to read segkmap at %p", kaddr); 2519 return (DCMD_ERR); 2520 } 2521 2522 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2523 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2524 return (DCMD_ERR); 2525 } 2526 2527 mdb_printf("%p is smap %p\n", addr, 2528 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2529 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2530 2531 return (DCMD_OK); 2532 } 2533 2534 int 2535 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2536 { 2537 if (p->p_as == *asp) 2538 mdb_printf("%p\n", addr); 2539 return (WALK_NEXT); 2540 } 2541 2542 /*ARGSUSED*/ 2543 int 2544 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2545 { 2546 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2547 return (DCMD_USAGE); 2548 2549 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2550 mdb_warn("failed to walk proc"); 2551 return (DCMD_ERR); 2552 } 2553 2554 return (DCMD_OK); 2555 } 2556 2557 /*ARGSUSED*/ 2558 int 2559 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2560 { 2561 proc_t parent; 2562 int ident = 0; 2563 uintptr_t paddr; 2564 2565 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2566 mdb_vread(&parent, sizeof (parent), paddr); 2567 paddr = (uintptr_t)parent.p_parent; 2568 } 2569 2570 mdb_inc_indent(ident); 2571 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2572 mdb_dec_indent(ident); 2573 2574 return (WALK_NEXT); 2575 } 2576 2577 void 2578 ptree_ancestors(uintptr_t addr, uintptr_t start) 2579 { 2580 proc_t p; 2581 2582 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2583 mdb_warn("couldn't read ancestor at %p", addr); 2584 return; 2585 } 2586 2587 if (p.p_parent != NULL) 2588 ptree_ancestors((uintptr_t)p.p_parent, start); 2589 2590 if (addr != start) 2591 (void) ptree_walk(addr, &p, NULL); 2592 } 2593 2594 /*ARGSUSED*/ 2595 int 2596 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2597 { 2598 if (!(flags & DCMD_ADDRSPEC)) 2599 addr = NULL; 2600 else 2601 ptree_ancestors(addr, addr); 2602 2603 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2604 mdb_warn("couldn't walk 'proc'"); 2605 return (DCMD_ERR); 2606 } 2607 2608 return (DCMD_OK); 2609 } 2610 2611 /*ARGSUSED*/ 2612 static int 2613 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2614 { 2615 int fdnum; 2616 const mdb_arg_t *argp = &argv[0]; 2617 proc_t p; 2618 uf_entry_t uf; 2619 2620 if ((flags & DCMD_ADDRSPEC) == 0) { 2621 mdb_warn("fd doesn't give global information\n"); 2622 return (DCMD_ERR); 2623 } 2624 if (argc != 1) 2625 return (DCMD_USAGE); 2626 2627 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2628 fdnum = argp->a_un.a_val; 2629 else 2630 fdnum = mdb_strtoull(argp->a_un.a_str); 2631 2632 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2633 mdb_warn("couldn't read proc_t at %p", addr); 2634 return (DCMD_ERR); 2635 } 2636 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2637 mdb_warn("process %p only has %d files open.\n", 2638 addr, p.p_user.u_finfo.fi_nfiles); 2639 return (DCMD_ERR); 2640 } 2641 if (mdb_vread(&uf, sizeof (uf_entry_t), 2642 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2643 mdb_warn("couldn't read uf_entry_t at %p", 2644 &p.p_user.u_finfo.fi_list[fdnum]); 2645 return (DCMD_ERR); 2646 } 2647 2648 mdb_printf("%p\n", uf.uf_file); 2649 return (DCMD_OK); 2650 } 2651 2652 /*ARGSUSED*/ 2653 static int 2654 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2655 { 2656 pid_t pid = (pid_t)addr; 2657 2658 if (argc != 0) 2659 return (DCMD_USAGE); 2660 2661 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2662 mdb_warn("PID 0t%d not found\n", pid); 2663 return (DCMD_ERR); 2664 } 2665 2666 mdb_printf("%p\n", addr); 2667 return (DCMD_OK); 2668 } 2669 2670 static char *sysfile_cmd[] = { 2671 "exclude:", 2672 "include:", 2673 "forceload:", 2674 "rootdev:", 2675 "rootfs:", 2676 "swapdev:", 2677 "swapfs:", 2678 "moddir:", 2679 "set", 2680 "unknown", 2681 }; 2682 2683 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2684 2685 /*ARGSUSED*/ 2686 static int 2687 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2688 { 2689 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2690 *target = NULL; 2691 return (WALK_DONE); 2692 } 2693 return (WALK_NEXT); 2694 } 2695 2696 /*ARGSUSED*/ 2697 static int 2698 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2699 { 2700 struct sysparam *sysp, sys; 2701 char var[256]; 2702 char modname[256]; 2703 char val[256]; 2704 char strval[256]; 2705 vmem_t *mod_sysfile_arena; 2706 void *straddr; 2707 2708 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2709 mdb_warn("failed to read sysparam_hd"); 2710 return (DCMD_ERR); 2711 } 2712 2713 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2714 mdb_warn("failed to read mod_sysfile_arena"); 2715 return (DCMD_ERR); 2716 } 2717 2718 while (sysp != NULL) { 2719 var[0] = '\0'; 2720 val[0] = '\0'; 2721 modname[0] = '\0'; 2722 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2723 mdb_warn("couldn't read sysparam %p", sysp); 2724 return (DCMD_ERR); 2725 } 2726 if (sys.sys_modnam != NULL && 2727 mdb_readstr(modname, 256, 2728 (uintptr_t)sys.sys_modnam) == -1) { 2729 mdb_warn("couldn't read modname in %p", sysp); 2730 return (DCMD_ERR); 2731 } 2732 if (sys.sys_ptr != NULL && 2733 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2734 mdb_warn("couldn't read ptr in %p", sysp); 2735 return (DCMD_ERR); 2736 } 2737 if (sys.sys_op != SETOP_NONE) { 2738 /* 2739 * Is this an int or a string? We determine this 2740 * by checking whether straddr is contained in 2741 * mod_sysfile_arena. If so, the walker will set 2742 * straddr to NULL. 2743 */ 2744 straddr = (void *)(uintptr_t)sys.sys_info; 2745 if (sys.sys_op == SETOP_ASSIGN && 2746 sys.sys_info != 0 && 2747 mdb_pwalk("vmem_seg", 2748 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2749 (uintptr_t)mod_sysfile_arena) == 0 && 2750 straddr == NULL && 2751 mdb_readstr(strval, 256, 2752 (uintptr_t)sys.sys_info) != -1) { 2753 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2754 strval); 2755 } else { 2756 (void) mdb_snprintf(val, sizeof (val), 2757 "0x%llx [0t%llu]", sys.sys_info, 2758 sys.sys_info); 2759 } 2760 } 2761 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2762 modname, modname[0] == '\0' ? "" : ":", 2763 var, sysfile_ops[sys.sys_op], val); 2764 2765 sysp = sys.sys_next; 2766 } 2767 2768 return (DCMD_OK); 2769 } 2770 2771 /* 2772 * Dump a taskq_ent_t given its address. 2773 */ 2774 /*ARGSUSED*/ 2775 int 2776 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2777 { 2778 taskq_ent_t taskq_ent; 2779 GElf_Sym sym; 2780 char buf[MDB_SYM_NAMLEN+1]; 2781 2782 2783 if (!(flags & DCMD_ADDRSPEC)) { 2784 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2785 return (DCMD_USAGE); 2786 } 2787 2788 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2789 mdb_warn("failed to read taskq_ent_t at %p", addr); 2790 return (DCMD_ERR); 2791 } 2792 2793 if (DCMD_HDRSPEC(flags)) { 2794 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2795 "ENTRY", "ARG", "FUNCTION"); 2796 } 2797 2798 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2799 buf, sizeof (buf), &sym) == -1) { 2800 (void) strcpy(buf, "????"); 2801 } 2802 2803 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2804 2805 return (DCMD_OK); 2806 } 2807 2808 /* 2809 * Given the address of the (taskq_t) task queue head, walk the queue listing 2810 * the address of every taskq_ent_t. 2811 */ 2812 int 2813 taskq_walk_init(mdb_walk_state_t *wsp) 2814 { 2815 taskq_t tq_head; 2816 2817 2818 if (wsp->walk_addr == NULL) { 2819 mdb_warn("start address required\n"); 2820 return (WALK_ERR); 2821 } 2822 2823 2824 /* 2825 * Save the address of the list head entry. This terminates the list. 2826 */ 2827 wsp->walk_data = (void *) 2828 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2829 2830 2831 /* 2832 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2833 */ 2834 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2835 -1) { 2836 mdb_warn("failed to read taskq list head at %p", 2837 wsp->walk_addr); 2838 } 2839 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2840 2841 2842 /* 2843 * Check for null list (next=head) 2844 */ 2845 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2846 return (WALK_DONE); 2847 } 2848 2849 return (WALK_NEXT); 2850 } 2851 2852 2853 int 2854 taskq_walk_step(mdb_walk_state_t *wsp) 2855 { 2856 taskq_ent_t tq_ent; 2857 int status; 2858 2859 2860 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2861 -1) { 2862 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2863 return (DCMD_ERR); 2864 } 2865 2866 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2867 wsp->walk_cbdata); 2868 2869 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2870 2871 2872 /* Check if we're at the last element (next=head) */ 2873 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2874 return (WALK_DONE); 2875 } 2876 2877 return (status); 2878 } 2879 2880 int 2881 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2882 { 2883 2884 if (*didp == thr->t_did) { 2885 mdb_printf("%p\n", addr); 2886 return (WALK_DONE); 2887 } else 2888 return (WALK_NEXT); 2889 } 2890 2891 /*ARGSUSED*/ 2892 int 2893 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2894 { 2895 const mdb_arg_t *argp = &argv[0]; 2896 kt_did_t did; 2897 2898 if (argc != 1) 2899 return (DCMD_USAGE); 2900 2901 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2902 2903 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2904 mdb_warn("failed to walk thread"); 2905 return (DCMD_ERR); 2906 2907 } 2908 return (DCMD_OK); 2909 2910 } 2911 2912 static int 2913 errorq_walk_init(mdb_walk_state_t *wsp) 2914 { 2915 if (wsp->walk_addr == NULL && 2916 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2917 mdb_warn("failed to read errorq_list"); 2918 return (WALK_ERR); 2919 } 2920 2921 return (WALK_NEXT); 2922 } 2923 2924 static int 2925 errorq_walk_step(mdb_walk_state_t *wsp) 2926 { 2927 uintptr_t addr = wsp->walk_addr; 2928 errorq_t eq; 2929 2930 if (addr == NULL) 2931 return (WALK_DONE); 2932 2933 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2934 mdb_warn("failed to read errorq at %p", addr); 2935 return (WALK_ERR); 2936 } 2937 2938 wsp->walk_addr = (uintptr_t)eq.eq_next; 2939 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2940 } 2941 2942 typedef struct eqd_walk_data { 2943 uintptr_t *eqd_stack; 2944 void *eqd_buf; 2945 ulong_t eqd_qpos; 2946 ulong_t eqd_qlen; 2947 size_t eqd_size; 2948 } eqd_walk_data_t; 2949 2950 /* 2951 * In order to walk the list of pending error queue elements, we push the 2952 * addresses of the corresponding data buffers in to the eqd_stack array. 2953 * The error lists are in reverse chronological order when iterating using 2954 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2955 * walker client gets addresses in order from oldest error to newest error. 2956 */ 2957 static void 2958 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2959 { 2960 errorq_elem_t eqe; 2961 2962 while (addr != NULL) { 2963 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2964 mdb_warn("failed to read errorq element at %p", addr); 2965 break; 2966 } 2967 2968 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2969 mdb_warn("errorq is overfull -- more than %lu " 2970 "elems found\n", eqdp->eqd_qlen); 2971 break; 2972 } 2973 2974 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 2975 addr = (uintptr_t)eqe.eqe_prev; 2976 } 2977 } 2978 2979 static int 2980 eqd_walk_init(mdb_walk_state_t *wsp) 2981 { 2982 eqd_walk_data_t *eqdp; 2983 errorq_elem_t eqe, *addr; 2984 errorq_t eq; 2985 ulong_t i; 2986 2987 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 2988 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 2989 return (WALK_ERR); 2990 } 2991 2992 if (eq.eq_ptail != NULL && 2993 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 2994 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 2995 return (WALK_ERR); 2996 } 2997 2998 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 2999 wsp->walk_data = eqdp; 3000 3001 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3002 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3003 eqdp->eqd_qlen = eq.eq_qlen; 3004 eqdp->eqd_qpos = 0; 3005 eqdp->eqd_size = eq.eq_size; 3006 3007 /* 3008 * The newest elements in the queue are on the pending list, so we 3009 * push those on to our stack first. 3010 */ 3011 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3012 3013 /* 3014 * If eq_ptail is set, it may point to a subset of the errors on the 3015 * pending list in the event a casptr() failed; if ptail's data is 3016 * already in our stack, NULL out eq_ptail and ignore it. 3017 */ 3018 if (eq.eq_ptail != NULL) { 3019 for (i = 0; i < eqdp->eqd_qpos; i++) { 3020 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3021 eq.eq_ptail = NULL; 3022 break; 3023 } 3024 } 3025 } 3026 3027 /* 3028 * If eq_phead is set, it has the processing list in order from oldest 3029 * to newest. Use this to recompute eq_ptail as best we can and then 3030 * we nicely fall into eqd_push_list() of eq_ptail below. 3031 */ 3032 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3033 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3034 eq.eq_ptail = addr; 3035 3036 /* 3037 * The oldest elements in the queue are on the processing list, subject 3038 * to machinations in the if-clauses above. Push any such elements. 3039 */ 3040 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3041 return (WALK_NEXT); 3042 } 3043 3044 static int 3045 eqd_walk_step(mdb_walk_state_t *wsp) 3046 { 3047 eqd_walk_data_t *eqdp = wsp->walk_data; 3048 uintptr_t addr; 3049 3050 if (eqdp->eqd_qpos == 0) 3051 return (WALK_DONE); 3052 3053 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3054 3055 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3056 mdb_warn("failed to read errorq data at %p", addr); 3057 return (WALK_ERR); 3058 } 3059 3060 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3061 } 3062 3063 static void 3064 eqd_walk_fini(mdb_walk_state_t *wsp) 3065 { 3066 eqd_walk_data_t *eqdp = wsp->walk_data; 3067 3068 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3069 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3070 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3071 } 3072 3073 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3074 3075 static int 3076 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3077 { 3078 int i; 3079 errorq_t eq; 3080 uint_t opt_v = FALSE; 3081 3082 if (!(flags & DCMD_ADDRSPEC)) { 3083 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3084 mdb_warn("can't walk 'errorq'"); 3085 return (DCMD_ERR); 3086 } 3087 return (DCMD_OK); 3088 } 3089 3090 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3091 argc -= i; 3092 argv += i; 3093 3094 if (argc != 0) 3095 return (DCMD_USAGE); 3096 3097 if (opt_v || DCMD_HDRSPEC(flags)) { 3098 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3099 "ADDR", "NAME", "S", "V", "N"); 3100 if (!opt_v) { 3101 mdb_printf("%7s %7s %7s%</u>\n", 3102 "ACCEPT", "DROP", "LOG"); 3103 } else { 3104 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3105 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3106 } 3107 } 3108 3109 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3110 mdb_warn("failed to read errorq at %p", addr); 3111 return (DCMD_ERR); 3112 } 3113 3114 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3115 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3116 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3117 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3118 3119 if (!opt_v) { 3120 mdb_printf("%7llu %7llu %7llu\n", 3121 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3122 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3123 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3124 } else { 3125 mdb_printf("%5s %6lu %6lu %3u %a\n", 3126 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3127 mdb_printf("%38s\n%41s" 3128 "%12s %llu\n" 3129 "%53s %llu\n" 3130 "%53s %llu\n" 3131 "%53s %llu\n" 3132 "%53s %llu\n" 3133 "%53s %llu\n" 3134 "%53s %llu\n" 3135 "%53s %llu\n\n", 3136 "|", "+-> ", 3137 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3138 "DROPPED", EQKSVAL(eq, eqk_dropped), 3139 "LOGGED", EQKSVAL(eq, eqk_logged), 3140 "RESERVED", EQKSVAL(eq, eqk_reserved), 3141 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3142 "COMMITTED", EQKSVAL(eq, eqk_committed), 3143 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3144 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3145 } 3146 3147 return (DCMD_OK); 3148 } 3149 3150 /*ARGSUSED*/ 3151 static int 3152 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3153 { 3154 cpu_t panic_cpu; 3155 kthread_t *panic_thread; 3156 void *panicbuf; 3157 panic_data_t *pd; 3158 int i, n; 3159 3160 if (!mdb_prop_postmortem) { 3161 mdb_warn("panicinfo can only be run on a system " 3162 "dump; see dumpadm(1M)\n"); 3163 return (DCMD_ERR); 3164 } 3165 3166 if (flags & DCMD_ADDRSPEC || argc != 0) 3167 return (DCMD_USAGE); 3168 3169 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3170 mdb_warn("failed to read 'panic_cpu'"); 3171 else 3172 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3173 3174 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3175 mdb_warn("failed to read 'panic_thread'"); 3176 else 3177 mdb_printf("%16s %?p\n", "thread", panic_thread); 3178 3179 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3180 pd = (panic_data_t *)panicbuf; 3181 3182 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3183 pd->pd_version != PANICBUFVERS) { 3184 mdb_warn("failed to read 'panicbuf'"); 3185 mdb_free(panicbuf, PANICBUFSIZE); 3186 return (DCMD_ERR); 3187 } 3188 3189 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3190 3191 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3192 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3193 3194 for (i = 0; i < n; i++) 3195 mdb_printf("%16s %?llx\n", 3196 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3197 3198 mdb_free(panicbuf, PANICBUFSIZE); 3199 return (DCMD_OK); 3200 } 3201 3202 static const mdb_dcmd_t dcmds[] = { 3203 3204 /* from genunix.c */ 3205 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3206 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3207 { "binding_hash_entry", ":", "print driver names hash table entry", 3208 binding_hash_entry }, 3209 { "callout", NULL, "print callout table", callout }, 3210 { "class", NULL, "print process scheduler classes", class }, 3211 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3212 { "did2thread", "? kt_did", "find kernel thread for this id", 3213 did2thread }, 3214 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3215 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3216 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3217 { "lminfo", NULL, "print lock manager information", lminfo }, 3218 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3219 { "panicinfo", NULL, "print panic information", panicinfo }, 3220 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3221 { "pmap", ":[-q]", "print process memory map", pmap }, 3222 { "project", NULL, "display kernel project(s)", project }, 3223 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3224 { "pgrep", "[-n | -o] pattern", "pattern match against all processes", 3225 pgrep }, 3226 { "ptree", NULL, "print process tree", ptree }, 3227 { "seg", ":", "print address space segment", seg }, 3228 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3229 sysevent}, 3230 { "sysevent_channel", "?", "print sysevent channel database", 3231 sysevent_channel}, 3232 { "sysevent_class_list", ":", "print sysevent class list", 3233 sysevent_class_list}, 3234 { "sysevent_subclass_list", ":", 3235 "print sysevent subclass list", sysevent_subclass_list}, 3236 { "system", NULL, "print contents of /etc/system file", sysfile }, 3237 { "task", NULL, "display kernel task(s)", task }, 3238 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3239 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3240 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3241 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3242 whereopen }, 3243 3244 /* from zone.c */ 3245 { "zone", "?", "display kernel zone(s)", zoneprt }, 3246 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3247 3248 /* from bio.c */ 3249 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3250 3251 /* from contract.c */ 3252 { "contract", "?", "display a contract", cmd_contract }, 3253 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3254 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3255 3256 /* from cpupart.c */ 3257 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3258 3259 /* from cyclic.c */ 3260 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3261 { "cycid", "?", "dump a cyclic id", cycid }, 3262 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3263 { "cyclic", ":", "developer information", cyclic }, 3264 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3265 3266 /* from devinfo.c */ 3267 { "devbindings", "?[-qs] [device-name | major-num]", 3268 "print devinfo nodes bound to device-name or major-num", 3269 devbindings, devinfo_help }, 3270 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3271 devinfo_help }, 3272 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3273 devinfo_audit }, 3274 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3275 devinfo_audit_log }, 3276 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3277 devinfo_audit_node }, 3278 { "devinfo2driver", ":", "find driver name for this devinfo node", 3279 devinfo2driver }, 3280 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3281 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3282 dev2major }, 3283 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3284 dev2minor }, 3285 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3286 devt }, 3287 { "major2name", "?<major-num>", "convert major number to dev name", 3288 major2name }, 3289 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3290 minornodes }, 3291 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3292 modctl2devinfo }, 3293 { "name2major", "<dev-name>", "convert dev name to major number", 3294 name2major }, 3295 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3296 { "softstate", ":<instance>", "retrieve soft-state pointer", 3297 softstate }, 3298 { "devinfo_fm", ":", "devinfo fault managment configuration", 3299 devinfo_fm }, 3300 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3301 devinfo_fmce}, 3302 3303 /* from findstack.c */ 3304 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3305 { "findstack_debug", NULL, "toggle findstack debugging", 3306 findstack_debug }, 3307 3308 /* from kgrep.c + genunix.c */ 3309 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep }, 3310 3311 /* from kmem.c */ 3312 { "allocdby", ":", "given a thread, print its allocated buffers", 3313 allocdby }, 3314 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3315 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3316 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3317 { "kmalog", "?[ fail | slab ]", 3318 "display kmem transaction log and stack traces", kmalog }, 3319 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3320 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3321 "of the kmem allocator", kmausers, kmausers_help }, 3322 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3323 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3324 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3325 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3326 kmem_verify }, 3327 { "vmem", "?", "print a vmem_t", vmem }, 3328 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3329 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3330 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3331 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3332 whatis_help }, 3333 { "whatthread", ":[-v]", "print threads whose stack contains the " 3334 "given address", whatthread }, 3335 3336 /* from ldi.c */ 3337 { "ldi_handle", "?[-i]", "display a layered driver handle", 3338 ldi_handle, ldi_handle_help }, 3339 { "ldi_ident", NULL, "display a layered driver identifier", 3340 ldi_ident, ldi_ident_help }, 3341 3342 /* from leaky.c + leaky_subr.c */ 3343 { "findleaks", FINDLEAKS_USAGE, 3344 "search for potential kernel memory leaks", findleaks, 3345 findleaks_help }, 3346 3347 /* from lgrp.c */ 3348 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3349 3350 /* from log.c */ 3351 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3352 3353 /* from memory.c */ 3354 { "page", "?", "display a summarized page_t", page }, 3355 { "memstat", NULL, "display memory usage summary", memstat }, 3356 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3357 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3358 3359 /* from mmd.c */ 3360 { "multidata", ":[-sv]", "display a summarized multidata_t", 3361 multidata }, 3362 { "pattbl", ":", "display a summarized multidata attribute table", 3363 pattbl }, 3364 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3365 pattr2multidata }, 3366 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3367 pdesc2slab }, 3368 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3369 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3370 slab2multidata }, 3371 3372 /* from modhash.c */ 3373 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3374 "display information about one or all mod_hash structures", 3375 modhash, modhash_help }, 3376 { "modent", ":[-k | -v | -t type]", 3377 "display information about a mod_hash_entry", modent, 3378 modent_help }, 3379 3380 /* from net.c */ 3381 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3382 mi }, 3383 { "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]", 3384 "show network statistics", netstat }, 3385 { "sonode", "?[-f inet | inet6 | unix | #] " 3386 "[-t stream | dgram | raw | #] [-p #]", 3387 "filter and display sonode", sonode }, 3388 3389 /* from nvpair.c */ 3390 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3391 nvpair_print }, 3392 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3393 nvlist_print }, 3394 3395 /* from rctl.c */ 3396 { "rctl_dict", "?", "print systemwide default rctl definitions", 3397 rctl_dict }, 3398 { "rctl_list", ":[handle]", "print rctls for the given proc", 3399 rctl_list }, 3400 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3401 rctl }, 3402 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3403 "sequence", rctl_validate }, 3404 3405 /* from sobj.c */ 3406 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3407 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3408 mutex_help }, 3409 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3410 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3411 { "turnstile", "?", "display a turnstile", turnstile }, 3412 3413 /* from stream.c */ 3414 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3415 "print an mblk", mblk_prt, mblk_help }, 3416 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3417 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3418 mblk2dblk }, 3419 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3420 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3421 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3422 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3423 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3424 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3425 "filter and display STREAM queue", queue, queue_help }, 3426 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3427 "filter and display STREAM head", stdata, stdata_help }, 3428 { "str2mate", ":", "print mate of this stream", str2mate }, 3429 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3430 { "stream", ":", "display STREAM", stream }, 3431 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3432 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3433 "filter and display STREAM sync queue", syncq, syncq_help }, 3434 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3435 3436 /* from thread.c */ 3437 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3438 thread_help }, 3439 { "threadlist", "?[-v [count]]", 3440 "display threads and associated C stack traces", threadlist, 3441 threadlist_help }, 3442 3443 /* from tsd.c */ 3444 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3445 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3446 3447 /* 3448 * typegraph does not work under kmdb, as it requires too much memory 3449 * for its internal data structures. 3450 */ 3451 #ifndef _KMDB 3452 /* from typegraph.c */ 3453 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3454 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3455 findfalse }, 3456 { "typegraph", NULL, "build type graph", typegraph }, 3457 { "istype", ":type", "manually set object type", istype }, 3458 { "notype", ":", "manually clear object type", notype }, 3459 { "whattype", ":", "determine object type", whattype }, 3460 #endif 3461 3462 /* from vfs.c */ 3463 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3464 { "pfiles", ":[-fp]", "print process file information", pfiles, 3465 pfiles_help }, 3466 3467 { NULL } 3468 }; 3469 3470 static const mdb_walker_t walkers[] = { 3471 3472 /* from genunix.c */ 3473 { "anon", "given an amp, list of anon structures", 3474 anon_walk_init, anon_walk_step, anon_walk_fini }, 3475 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3476 { "errorq", "walk list of system error queues", 3477 errorq_walk_init, errorq_walk_step, NULL }, 3478 { "errorq_data", "walk pending error queue data buffers", 3479 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3480 { "allfile", "given a proc pointer, list all file pointers", 3481 file_walk_init, allfile_walk_step, file_walk_fini }, 3482 { "file", "given a proc pointer, list of open file pointers", 3483 file_walk_init, file_walk_step, file_walk_fini }, 3484 { "lock_descriptor", "walk lock_descriptor_t structures", 3485 ld_walk_init, ld_walk_step, NULL }, 3486 { "lock_graph", "walk lock graph", 3487 lg_walk_init, lg_walk_step, NULL }, 3488 { "port", "given a proc pointer, list of created event ports", 3489 port_walk_init, port_walk_step, NULL }, 3490 { "portev", "given a port pointer, list of events in the queue", 3491 portev_walk_init, portev_walk_step, portev_walk_fini }, 3492 { "proc", "list of active proc_t structures", 3493 proc_walk_init, proc_walk_step, proc_walk_fini }, 3494 { "projects", "walk a list of kernel projects", 3495 project_walk_init, project_walk_step, NULL }, 3496 { "seg", "given an as, list of segments", 3497 seg_walk_init, avl_walk_step, avl_walk_fini }, 3498 { "sysevent_pend", "walk sysevent pending queue", 3499 sysevent_pend_walk_init, sysevent_walk_step, 3500 sysevent_walk_fini}, 3501 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3502 sysevent_walk_step, sysevent_walk_fini}, 3503 { "sysevent_channel", "walk sysevent channel subscriptions", 3504 sysevent_channel_walk_init, sysevent_channel_walk_step, 3505 sysevent_channel_walk_fini}, 3506 { "sysevent_class_list", "walk sysevent subscription's class list", 3507 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3508 sysevent_class_list_walk_fini}, 3509 { "sysevent_subclass_list", 3510 "walk sysevent subscription's subclass list", 3511 sysevent_subclass_list_walk_init, 3512 sysevent_subclass_list_walk_step, 3513 sysevent_subclass_list_walk_fini}, 3514 { "task", "given a task pointer, walk its processes", 3515 task_walk_init, task_walk_step, NULL }, 3516 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3517 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3518 3519 /* from avl.c */ 3520 { AVL_WALK_NAME, AVL_WALK_DESC, 3521 avl_walk_init, avl_walk_step, avl_walk_fini }, 3522 3523 /* from zone.c */ 3524 { "zone", "walk a list of kernel zones", 3525 zone_walk_init, zone_walk_step, NULL }, 3526 { "zsd", "walk list of zsd entries for a zone", 3527 zsd_walk_init, zsd_walk_step, NULL }, 3528 3529 /* from bio.c */ 3530 { "buf", "walk the bio buf hash", 3531 buf_walk_init, buf_walk_step, buf_walk_fini }, 3532 3533 /* from contract.c */ 3534 { "contract", "walk all contracts, or those of the specified type", 3535 ct_walk_init, generic_walk_step, NULL }, 3536 { "ct_event", "walk events on a contract event queue", 3537 ct_event_walk_init, generic_walk_step, NULL }, 3538 { "ct_listener", "walk contract event queue listeners", 3539 ct_listener_walk_init, generic_walk_step, NULL }, 3540 3541 /* from cpupart.c */ 3542 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3543 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3544 NULL }, 3545 { "cpupart_walk", "walk the set of cpu partitions", 3546 cpupart_walk_init, cpupart_walk_step, NULL }, 3547 3548 /* from ctxop.c */ 3549 { "ctxop", "walk list of context ops on a thread", 3550 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3551 3552 /* from cyclic.c */ 3553 { "cyccpu", "walk per-CPU cyc_cpu structures", 3554 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3555 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3556 cycomni_walk_init, cycomni_walk_step, NULL }, 3557 { "cyctrace", "walk cyclic trace buffer", 3558 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3559 3560 /* from devinfo.c */ 3561 { "binding_hash", "walk all entries in binding hash table", 3562 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3563 { "devinfo", "walk devinfo tree or subtree", 3564 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3565 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3566 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3567 devinfo_audit_log_walk_fini}, 3568 { "devinfo_audit_node", "walk per-devinfo audit history", 3569 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3570 devinfo_audit_node_walk_fini}, 3571 { "devinfo_children", "walk children of devinfo node", 3572 devinfo_children_walk_init, devinfo_children_walk_step, 3573 devinfo_children_walk_fini }, 3574 { "devinfo_parents", "walk ancestors of devinfo node", 3575 devinfo_parents_walk_init, devinfo_parents_walk_step, 3576 devinfo_parents_walk_fini }, 3577 { "devinfo_siblings", "walk siblings of devinfo node", 3578 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3579 { "devi_next", "walk devinfo list", 3580 NULL, devi_next_walk_step, NULL }, 3581 { "devnames", "walk devnames array", 3582 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3583 { "minornode", "given a devinfo node, walk minor nodes", 3584 minornode_walk_init, minornode_walk_step, NULL }, 3585 { "softstate", 3586 "given an i_ddi_soft_state*, list all in-use driver stateps", 3587 soft_state_walk_init, soft_state_walk_step, 3588 NULL, NULL }, 3589 { "softstate_all", 3590 "given an i_ddi_soft_state*, list all driver stateps", 3591 soft_state_walk_init, soft_state_all_walk_step, 3592 NULL, NULL }, 3593 { "devinfo_fmc", 3594 "walk a fault management handle cache active list", 3595 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3596 3597 /* from kmem.c */ 3598 { "allocdby", "given a thread, walk its allocated bufctls", 3599 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3600 { "bufctl", "walk a kmem cache's bufctls", 3601 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3602 { "bufctl_history", "walk the available history of a bufctl", 3603 bufctl_history_walk_init, bufctl_history_walk_step, 3604 bufctl_history_walk_fini }, 3605 { "freedby", "given a thread, walk its freed bufctls", 3606 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3607 { "freectl", "walk a kmem cache's free bufctls", 3608 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3609 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3610 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3611 { "freemem", "walk a kmem cache's free memory", 3612 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3613 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3614 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3615 { "kmem", "walk a kmem cache", 3616 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3617 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3618 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3619 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3620 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3621 { "kmem_log", "walk the kmem transaction log", 3622 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3623 { "kmem_slab", "given a kmem cache, walk its slabs", 3624 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3625 { "kmem_slab_partial", 3626 "given a kmem cache, walk its partially allocated slabs (min 1)", 3627 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3628 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3629 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3630 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3631 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3632 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3633 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3634 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3635 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3636 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3637 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3638 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3639 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3640 3641 /* from ldi.c */ 3642 { "ldi_handle", "walk the layered driver handle hash", 3643 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3644 { "ldi_ident", "walk the layered driver identifier hash", 3645 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3646 3647 /* from leaky.c + leaky_subr.c */ 3648 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3649 "stack trace", 3650 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3651 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3652 "leaks w/ same stack trace", 3653 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3654 3655 /* from lgrp.c */ 3656 { "lgrp_cpulist", "given an lgrp, walk cpus", 3657 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, 3658 NULL }, 3659 { "lgrptbl", "walk the lgrp table", 3660 lgrp_walk_init, lgrp_walk_step, NULL }, 3661 3662 /* from list.c */ 3663 { LIST_WALK_NAME, LIST_WALK_DESC, 3664 list_walk_init, list_walk_step, list_walk_fini }, 3665 3666 /* from memory.c */ 3667 { "page", "walk all pages, or those from the specified vnode", 3668 page_walk_init, page_walk_step, page_walk_fini }, 3669 { "memlist", "walk specified memlist", 3670 NULL, memlist_walk_step, NULL }, 3671 { "swapinfo", "walk swapinfo structures", 3672 swap_walk_init, swap_walk_step, NULL }, 3673 3674 /* from mmd.c */ 3675 { "pattr", "walk pattr_t structures", pattr_walk_init, 3676 mmdq_walk_step, mmdq_walk_fini }, 3677 { "pdesc", "walk pdesc_t structures", 3678 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3679 { "pdesc_slab", "walk pdesc_slab_t structures", 3680 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3681 3682 /* from modhash.c */ 3683 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3684 modhash_walk_step, NULL }, 3685 { "modent", "walk list of entries in a given mod_hash", 3686 modent_walk_init, modent_walk_step, modent_walk_fini }, 3687 { "modchain", "walk list of entries in a given mod_hash_entry", 3688 NULL, modchain_walk_step, NULL }, 3689 3690 /* from net.c */ 3691 { "ar", "walk ar_t structures using MI", 3692 mi_payload_walk_init, mi_payload_walk_step, 3693 mi_payload_walk_fini, &mi_ar_arg }, 3694 { "icmp", "walk ICMP control structures using MI", 3695 mi_payload_walk_init, mi_payload_walk_step, 3696 mi_payload_walk_fini, &mi_icmp_arg }, 3697 { "ill", "walk ill_t structures using MI", 3698 mi_payload_walk_init, mi_payload_walk_step, 3699 mi_payload_walk_fini, &mi_ill_arg }, 3700 { "mi", "given a MI_O, walk the MI", 3701 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3702 { "sonode", "given a sonode, walk its children", 3703 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3704 3705 /* from nvpair.c */ 3706 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3707 nvpair_walk_init, nvpair_walk_step, NULL }, 3708 3709 /* from rctl.c */ 3710 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3711 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3712 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3713 rctl_set_walk_step, NULL }, 3714 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3715 rctl_val_walk_init, rctl_val_walk_step }, 3716 3717 /* from sobj.c */ 3718 { "blocked", "walk threads blocked on a given sobj", 3719 blocked_walk_init, blocked_walk_step, NULL }, 3720 { "wchan", "given a wchan, list of blocked threads", 3721 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3722 3723 /* from stream.c */ 3724 { "b_cont", "walk mblk_t list using b_cont", 3725 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3726 { "b_next", "walk mblk_t list using b_next", 3727 mblk_walk_init, b_next_step, mblk_walk_fini }, 3728 { "qlink", "walk queue_t list using q_link", 3729 queue_walk_init, queue_link_step, queue_walk_fini }, 3730 { "qnext", "walk queue_t list using q_next", 3731 queue_walk_init, queue_next_step, queue_walk_fini }, 3732 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3733 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3734 { "readq", "walk read queue side of stdata", 3735 str_walk_init, strr_walk_step, str_walk_fini }, 3736 { "writeq", "walk write queue side of stdata", 3737 str_walk_init, strw_walk_step, str_walk_fini }, 3738 3739 /* from thread.c */ 3740 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3741 deathrow_walk_init, deathrow_walk_step, NULL }, 3742 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3743 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3744 { "cpupart_dispq", 3745 "given a cpupart_t, walk threads in dispatcher queues", 3746 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3747 { "lwp_deathrow", "walk lwp_deathrow", 3748 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3749 { "thread", "global or per-process kthread_t structures", 3750 thread_walk_init, thread_walk_step, thread_walk_fini }, 3751 { "thread_deathrow", "walk threads on thread_deathrow", 3752 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3753 3754 /* from tsd.c */ 3755 { "tsd", "walk list of thread-specific data", 3756 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3757 3758 /* 3759 * typegraph does not work under kmdb, as it requires too much memory 3760 * for its internal data structures. 3761 */ 3762 #ifndef _KMDB 3763 /* from typegraph.c */ 3764 { "typeconflict", "walk buffers with conflicting type inferences", 3765 typegraph_walk_init, typeconflict_walk_step }, 3766 { "typeunknown", "walk buffers with unknown types", 3767 typegraph_walk_init, typeunknown_walk_step }, 3768 #endif 3769 3770 /* from vfs.c */ 3771 { "vfs", "walk file system list", 3772 vfs_walk_init, vfs_walk_step }, 3773 { NULL } 3774 }; 3775 3776 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3777 3778 const mdb_modinfo_t * 3779 _mdb_init(void) 3780 { 3781 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3782 mdb_warn("failed to read 'top_devinfo'"); 3783 return (NULL); 3784 } 3785 3786 if (findstack_init() != DCMD_OK) 3787 return (NULL); 3788 3789 kmem_init(); 3790 3791 return (&modinfo); 3792 } 3793 3794 void 3795 _mdb_fini(void) 3796 { 3797 /* 3798 * Force ::findleaks to let go any cached memory 3799 */ 3800 leaky_cleanup(1); 3801 } 3802