1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "pg.h" 78 #include "group.h" 79 #include "list.h" 80 #include "log.h" 81 #include "kgrep.h" 82 #include "kmem.h" 83 #include "bio.h" 84 #include "streams.h" 85 #include "cyclic.h" 86 #include "findstack.h" 87 #include "ndievents.h" 88 #include "mmd.h" 89 #include "net.h" 90 #include "netstack.h" 91 #include "nvpair.h" 92 #include "ctxop.h" 93 #include "tsd.h" 94 #include "thread.h" 95 #include "memory.h" 96 #include "sobj.h" 97 #include "sysevent.h" 98 #include "rctl.h" 99 #include "tsol.h" 100 #include "typegraph.h" 101 #include "ldi.h" 102 #include "vfs.h" 103 #include "zone.h" 104 #include "modhash.h" 105 #include "mdi.h" 106 #include "fm.h" 107 108 /* 109 * Surely this is defined somewhere... 110 */ 111 #define NINTR 16 112 113 #ifndef STACK_BIAS 114 #define STACK_BIAS 0 115 #endif 116 117 static char 118 pstat2ch(uchar_t state) 119 { 120 switch (state) { 121 case SSLEEP: return ('S'); 122 case SRUN: return ('R'); 123 case SZOMB: return ('Z'); 124 case SIDL: return ('I'); 125 case SONPROC: return ('O'); 126 case SSTOP: return ('T'); 127 case SWAIT: return ('W'); 128 default: return ('?'); 129 } 130 } 131 132 #define PS_PRTTHREADS 0x1 133 #define PS_PRTLWPS 0x2 134 #define PS_PSARGS 0x4 135 #define PS_TASKS 0x8 136 #define PS_PROJECTS 0x10 137 #define PS_ZONES 0x20 138 139 static int 140 ps_threadprint(uintptr_t addr, const void *data, void *private) 141 { 142 const kthread_t *t = (const kthread_t *)data; 143 uint_t prt_flags = *((uint_t *)private); 144 145 static const mdb_bitmask_t t_state_bits[] = { 146 { "TS_FREE", UINT_MAX, TS_FREE }, 147 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 148 { "TS_RUN", TS_RUN, TS_RUN }, 149 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 150 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 151 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 152 { "TS_WAIT", TS_WAIT, TS_WAIT }, 153 { NULL, 0, 0 } 154 }; 155 156 if (prt_flags & PS_PRTTHREADS) 157 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 158 159 if (prt_flags & PS_PRTLWPS) 160 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 161 162 return (WALK_NEXT); 163 } 164 165 int 166 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 167 { 168 uint_t prt_flags = 0; 169 proc_t pr; 170 struct pid pid, pgid, sid; 171 sess_t session; 172 cred_t cred; 173 task_t tk; 174 kproject_t pj; 175 zone_t zn; 176 177 if (!(flags & DCMD_ADDRSPEC)) { 178 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 179 mdb_warn("can't walk 'proc'"); 180 return (DCMD_ERR); 181 } 182 return (DCMD_OK); 183 } 184 185 if (mdb_getopts(argc, argv, 186 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 187 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 188 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 189 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 190 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 191 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 192 return (DCMD_USAGE); 193 194 if (DCMD_HDRSPEC(flags)) { 195 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 196 "S", "PID", "PPID", "PGID", "SID"); 197 if (prt_flags & PS_TASKS) 198 mdb_printf("%5s ", "TASK"); 199 if (prt_flags & PS_PROJECTS) 200 mdb_printf("%5s ", "PROJ"); 201 if (prt_flags & PS_ZONES) 202 mdb_printf("%5s ", "ZONE"); 203 mdb_printf("%6s %10s %?s %s%</u>\n", 204 "UID", "FLAGS", "ADDR", "NAME"); 205 } 206 207 mdb_vread(&pr, sizeof (pr), addr); 208 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 209 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 210 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 211 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 212 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 213 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 214 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 215 if (prt_flags & PS_PROJECTS) 216 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 217 if (prt_flags & PS_ZONES) 218 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 219 220 mdb_printf("%c %6d %6d %6d %6d ", 221 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 222 sid.pid_id); 223 if (prt_flags & PS_TASKS) 224 mdb_printf("%5d ", tk.tk_tkid); 225 if (prt_flags & PS_PROJECTS) 226 mdb_printf("%5d ", pj.kpj_id); 227 if (prt_flags & PS_ZONES) 228 mdb_printf("%5d ", zn.zone_id); 229 mdb_printf("%6d 0x%08x %0?p %s\n", 230 cred.cr_uid, pr.p_flag, addr, 231 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 232 233 if (prt_flags & ~PS_PSARGS) 234 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 235 236 return (DCMD_OK); 237 } 238 239 #define PG_NEWEST 0x0001 240 #define PG_OLDEST 0x0002 241 #define PG_PIPE_OUT 0x0004 242 #define PG_EXACT_MATCH 0x0008 243 244 typedef struct pgrep_data { 245 uint_t pg_flags; 246 uint_t pg_psflags; 247 uintptr_t pg_xaddr; 248 hrtime_t pg_xstart; 249 const char *pg_pat; 250 #ifndef _KMDB 251 regex_t pg_reg; 252 #endif 253 } pgrep_data_t; 254 255 /*ARGSUSED*/ 256 static int 257 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 258 { 259 const proc_t *prp = pdata; 260 pgrep_data_t *pgp = data; 261 #ifndef _KMDB 262 regmatch_t pmatch; 263 #endif 264 265 /* 266 * kmdb doesn't have access to the reg* functions, so we fall back 267 * to strstr/strcmp. 268 */ 269 #ifdef _KMDB 270 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 271 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 272 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 273 return (WALK_NEXT); 274 #else 275 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 276 return (WALK_NEXT); 277 278 if ((pgp->pg_flags & PG_EXACT_MATCH) && 279 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 280 return (WALK_NEXT); 281 #endif 282 283 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 284 hrtime_t start; 285 286 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 287 prp->p_user.u_start.tv_nsec; 288 289 if (pgp->pg_flags & PG_NEWEST) { 290 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 291 pgp->pg_xaddr = addr; 292 pgp->pg_xstart = start; 293 } 294 } else { 295 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 296 pgp->pg_xaddr = addr; 297 pgp->pg_xstart = start; 298 } 299 } 300 301 } else if (pgp->pg_flags & PG_PIPE_OUT) { 302 mdb_printf("%p\n", addr); 303 304 } else { 305 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 306 mdb_warn("can't invoke 'ps'"); 307 return (WALK_DONE); 308 } 309 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 310 } 311 312 return (WALK_NEXT); 313 } 314 315 /*ARGSUSED*/ 316 int 317 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 318 { 319 pgrep_data_t pg; 320 int i; 321 #ifndef _KMDB 322 int err; 323 #endif 324 325 if (flags & DCMD_ADDRSPEC) 326 return (DCMD_USAGE); 327 328 pg.pg_flags = 0; 329 pg.pg_xaddr = 0; 330 331 i = mdb_getopts(argc, argv, 332 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 333 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 334 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 335 NULL); 336 337 argc -= i; 338 argv += i; 339 340 if (argc != 1) 341 return (DCMD_USAGE); 342 343 /* 344 * -n and -o are mutually exclusive. 345 */ 346 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 347 return (DCMD_USAGE); 348 349 if (argv->a_type != MDB_TYPE_STRING) 350 return (DCMD_USAGE); 351 352 if (flags & DCMD_PIPE_OUT) 353 pg.pg_flags |= PG_PIPE_OUT; 354 355 pg.pg_pat = argv->a_un.a_str; 356 if (DCMD_HDRSPEC(flags)) 357 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 358 else 359 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 360 361 #ifndef _KMDB 362 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 363 size_t nbytes; 364 char *buf; 365 366 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 367 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 368 (void) regerror(err, &pg.pg_reg, buf, nbytes); 369 mdb_warn("%s\n", buf); 370 371 return (DCMD_ERR); 372 } 373 #endif 374 375 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 376 mdb_warn("can't walk 'proc'"); 377 return (DCMD_ERR); 378 } 379 380 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 381 if (pg.pg_flags & PG_PIPE_OUT) { 382 mdb_printf("%p\n", pg.pg_xaddr); 383 } else { 384 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 385 0, NULL) != 0) { 386 mdb_warn("can't invoke 'ps'"); 387 return (DCMD_ERR); 388 } 389 } 390 } 391 392 return (DCMD_OK); 393 } 394 395 int 396 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 397 { 398 task_t tk; 399 kproject_t pj; 400 401 if (!(flags & DCMD_ADDRSPEC)) { 402 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 403 mdb_warn("can't walk task_cache"); 404 return (DCMD_ERR); 405 } 406 return (DCMD_OK); 407 } 408 if (DCMD_HDRSPEC(flags)) { 409 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 410 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 411 } 412 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 413 mdb_warn("can't read task_t structure at %p", addr); 414 return (DCMD_ERR); 415 } 416 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 417 mdb_warn("can't read project_t structure at %p", addr); 418 return (DCMD_ERR); 419 } 420 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 421 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 422 tk.tk_flags); 423 return (DCMD_OK); 424 } 425 426 int 427 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 428 { 429 kproject_t pj; 430 431 if (!(flags & DCMD_ADDRSPEC)) { 432 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 433 mdb_warn("can't walk projects"); 434 return (DCMD_ERR); 435 } 436 return (DCMD_OK); 437 } 438 if (DCMD_HDRSPEC(flags)) { 439 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 440 "ADDR", "PROJID", "ZONEID", "REFCNT"); 441 } 442 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 443 mdb_warn("can't read kproject_t structure at %p", addr); 444 return (DCMD_ERR); 445 } 446 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 447 pj.kpj_count); 448 return (DCMD_OK); 449 } 450 451 /*ARGSUSED*/ 452 int 453 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 454 { 455 callout_table_t *co_ktable[CALLOUT_TABLES]; 456 int co_kfanout; 457 callout_table_t co_table; 458 callout_t co_callout; 459 callout_t *co_ptr; 460 int co_id; 461 clock_t lbolt; 462 int i, j, k; 463 const char *lbolt_sym; 464 465 if ((flags & DCMD_ADDRSPEC) || argc != 0) 466 return (DCMD_USAGE); 467 468 if (mdb_prop_postmortem) 469 lbolt_sym = "panic_lbolt"; 470 else 471 lbolt_sym = "lbolt"; 472 473 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 474 mdb_warn("failed to read '%s'", lbolt_sym); 475 return (DCMD_ERR); 476 } 477 478 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 479 mdb_warn("failed to read callout_fanout"); 480 return (DCMD_ERR); 481 } 482 483 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 484 mdb_warn("failed to read callout_table"); 485 return (DCMD_ERR); 486 } 487 488 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 489 "FUNCTION", "ARGUMENT", "ID", "TIME"); 490 491 for (i = 0; i < CALLOUT_NTYPES; i++) { 492 for (j = 0; j < co_kfanout; j++) { 493 494 co_id = CALLOUT_TABLE(i, j); 495 496 if (mdb_vread(&co_table, sizeof (co_table), 497 (uintptr_t)co_ktable[co_id]) == -1) { 498 mdb_warn("failed to read table at %p", 499 (uintptr_t)co_ktable[co_id]); 500 continue; 501 } 502 503 for (k = 0; k < CALLOUT_BUCKETS; k++) { 504 co_ptr = co_table.ct_idhash[k]; 505 506 while (co_ptr != NULL) { 507 mdb_vread(&co_callout, 508 sizeof (co_callout), 509 (uintptr_t)co_ptr); 510 511 mdb_printf("%-24a %0?p %0?lx %?lx " 512 "(T%+ld)\n", co_callout.c_func, 513 co_callout.c_arg, co_callout.c_xid, 514 co_callout.c_runtime, 515 co_callout.c_runtime - lbolt); 516 517 co_ptr = co_callout.c_idnext; 518 } 519 } 520 } 521 } 522 523 return (DCMD_OK); 524 } 525 526 /*ARGSUSED*/ 527 int 528 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 529 { 530 long num_classes, i; 531 sclass_t *class_tbl; 532 GElf_Sym g_sclass; 533 char class_name[PC_CLNMSZ]; 534 size_t tbl_size; 535 536 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 537 mdb_warn("failed to find symbol sclass\n"); 538 return (DCMD_ERR); 539 } 540 541 tbl_size = (size_t)g_sclass.st_size; 542 num_classes = tbl_size / (sizeof (sclass_t)); 543 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 544 545 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 546 mdb_warn("failed to read sclass"); 547 return (DCMD_ERR); 548 } 549 550 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 551 "INIT FCN", "CLASS FCN"); 552 553 for (i = 0; i < num_classes; i++) { 554 if (mdb_vread(class_name, sizeof (class_name), 555 (uintptr_t)class_tbl[i].cl_name) == -1) 556 (void) strcpy(class_name, "???"); 557 558 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 559 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 560 } 561 562 return (DCMD_OK); 563 } 564 565 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 566 567 int 568 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 569 { 570 uintptr_t rootdir; 571 vnode_t vn; 572 char buf[MAXPATHLEN]; 573 574 uint_t opt_F = FALSE; 575 576 if (mdb_getopts(argc, argv, 577 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 578 return (DCMD_USAGE); 579 580 if (!(flags & DCMD_ADDRSPEC)) { 581 mdb_warn("expected explicit vnode_t address before ::\n"); 582 return (DCMD_USAGE); 583 } 584 585 if (mdb_readvar(&rootdir, "rootdir") == -1) { 586 mdb_warn("failed to read rootdir"); 587 return (DCMD_ERR); 588 } 589 590 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 591 return (DCMD_ERR); 592 593 if (*buf == '\0') { 594 mdb_printf("??\n"); 595 return (DCMD_OK); 596 } 597 598 mdb_printf("%s", buf); 599 if (opt_F && buf[strlen(buf)-1] != '/' && 600 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 601 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 602 mdb_printf("\n"); 603 604 return (DCMD_OK); 605 } 606 607 int 608 ld_walk_init(mdb_walk_state_t *wsp) 609 { 610 wsp->walk_data = (void *)wsp->walk_addr; 611 return (WALK_NEXT); 612 } 613 614 int 615 ld_walk_step(mdb_walk_state_t *wsp) 616 { 617 int status; 618 lock_descriptor_t ld; 619 620 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 621 mdb_warn("couldn't read lock_descriptor_t at %p\n", 622 wsp->walk_addr); 623 return (WALK_ERR); 624 } 625 626 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 627 if (status == WALK_ERR) 628 return (WALK_ERR); 629 630 wsp->walk_addr = (uintptr_t)ld.l_next; 631 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 632 return (WALK_DONE); 633 634 return (status); 635 } 636 637 int 638 lg_walk_init(mdb_walk_state_t *wsp) 639 { 640 GElf_Sym sym; 641 642 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 643 mdb_warn("failed to find symbol 'lock_graph'\n"); 644 return (WALK_ERR); 645 } 646 647 wsp->walk_addr = (uintptr_t)sym.st_value; 648 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 649 650 return (WALK_NEXT); 651 } 652 653 typedef struct lg_walk_data { 654 uintptr_t startaddr; 655 mdb_walk_cb_t callback; 656 void *data; 657 } lg_walk_data_t; 658 659 /* 660 * We can't use ::walk lock_descriptor directly, because the head of each graph 661 * is really a dummy lock. Rather than trying to dynamically determine if this 662 * is a dummy node or not, we just filter out the initial element of the 663 * list. 664 */ 665 static int 666 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 667 { 668 lg_walk_data_t *lw = priv; 669 670 if (addr != lw->startaddr) 671 return (lw->callback(addr, data, lw->data)); 672 673 return (WALK_NEXT); 674 } 675 676 int 677 lg_walk_step(mdb_walk_state_t *wsp) 678 { 679 graph_t *graph; 680 lg_walk_data_t lw; 681 682 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 683 return (WALK_DONE); 684 685 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 686 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 687 return (WALK_ERR); 688 } 689 690 wsp->walk_addr += sizeof (graph); 691 692 if (graph == NULL) 693 return (WALK_NEXT); 694 695 lw.callback = wsp->walk_callback; 696 lw.data = wsp->walk_cbdata; 697 698 lw.startaddr = (uintptr_t)&(graph->active_locks); 699 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 700 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 701 return (WALK_ERR); 702 } 703 704 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 705 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 706 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 707 return (WALK_ERR); 708 } 709 710 return (WALK_NEXT); 711 } 712 713 /* 714 * The space available for the path corresponding to the locked vnode depends 715 * on whether we are printing 32- or 64-bit addresses. 716 */ 717 #ifdef _LP64 718 #define LM_VNPATHLEN 20 719 #else 720 #define LM_VNPATHLEN 30 721 #endif 722 723 /*ARGSUSED*/ 724 static int 725 lminfo_cb(uintptr_t addr, const void *data, void *priv) 726 { 727 const lock_descriptor_t *ld = data; 728 char buf[LM_VNPATHLEN]; 729 proc_t p; 730 731 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 732 addr, ld->l_type == F_RDLCK ? "RD" : 733 ld->l_type == F_WRLCK ? "WR" : "??", 734 ld->l_state, ld->l_flock.l_pid, 735 ld->l_flock.l_pid == 0 ? "<kernel>" : 736 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 737 "<defunct>" : p.p_user.u_comm, 738 ld->l_vnode); 739 740 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 741 sizeof (buf)); 742 mdb_printf("%s\n", buf); 743 744 return (WALK_NEXT); 745 } 746 747 /*ARGSUSED*/ 748 int 749 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 750 { 751 if (DCMD_HDRSPEC(flags)) 752 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 753 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 754 755 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 756 } 757 758 /*ARGSUSED*/ 759 int 760 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 761 { 762 struct seg s; 763 764 if (argc != 0) 765 return (DCMD_USAGE); 766 767 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 768 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 769 "SEG", "BASE", "SIZE", "DATA", "OPS"); 770 } 771 772 if (mdb_vread(&s, sizeof (s), addr) == -1) { 773 mdb_warn("failed to read seg at %p", addr); 774 return (DCMD_ERR); 775 } 776 777 mdb_printf("%?p %?p %?lx %?p %a\n", 778 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 779 780 return (DCMD_OK); 781 } 782 783 /*ARGSUSED*/ 784 static int 785 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 786 { 787 uintptr_t pp = 788 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 789 790 if (pp != NULL) 791 (*nres)++; 792 793 return (WALK_NEXT); 794 } 795 796 static int 797 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 798 { 799 800 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 801 802 if (segvn == (uintptr_t)seg->s_ops) { 803 struct segvn_data svn; 804 int nres = 0; 805 806 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 807 808 if (svn.amp == NULL) { 809 mdb_printf(" %8s", ""); 810 goto drive_on; 811 } 812 813 /* 814 * We've got an amp for this segment; walk through 815 * the amp, and determine mappings. 816 */ 817 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 818 &nres, (uintptr_t)svn.amp) == -1) 819 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 820 821 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 822 drive_on: 823 824 if (svn.vp != NULL) { 825 char buf[29]; 826 827 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 828 mdb_printf(" %s", buf); 829 } else 830 mdb_printf(" [ anon ]"); 831 } 832 833 mdb_printf("\n"); 834 return (WALK_NEXT); 835 } 836 837 static int 838 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 839 { 840 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 841 842 if (segvn == (uintptr_t)seg->s_ops) { 843 struct segvn_data svn; 844 845 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 846 847 if (svn.vp != NULL) { 848 mdb_printf(" %0?p", svn.vp); 849 } else { 850 mdb_printf(" [ anon ]"); 851 } 852 } 853 854 mdb_printf("\n"); 855 return (WALK_NEXT); 856 } 857 858 /*ARGSUSED*/ 859 int 860 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 861 { 862 uintptr_t segvn; 863 proc_t proc; 864 uint_t quick = FALSE; 865 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 866 867 GElf_Sym sym; 868 869 if (!(flags & DCMD_ADDRSPEC)) 870 return (DCMD_USAGE); 871 872 if (mdb_getopts(argc, argv, 873 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 874 return (DCMD_USAGE); 875 876 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 877 mdb_warn("failed to read proc at %p", addr); 878 return (DCMD_ERR); 879 } 880 881 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 882 segvn = (uintptr_t)sym.st_value; 883 else 884 segvn = NULL; 885 886 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 887 888 if (quick) { 889 mdb_printf("VNODE\n"); 890 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 891 } else { 892 mdb_printf("%8s %s\n", "RES", "PATH"); 893 } 894 895 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 896 mdb_warn("failed to walk segments of as %p", proc.p_as); 897 return (DCMD_ERR); 898 } 899 900 return (DCMD_OK); 901 } 902 903 typedef struct anon_walk_data { 904 uintptr_t *aw_levone; 905 uintptr_t *aw_levtwo; 906 int aw_nlevone; 907 int aw_levone_ndx; 908 int aw_levtwo_ndx; 909 struct anon_map aw_amp; 910 struct anon_hdr aw_ahp; 911 } anon_walk_data_t; 912 913 int 914 anon_walk_init(mdb_walk_state_t *wsp) 915 { 916 anon_walk_data_t *aw; 917 918 if (wsp->walk_addr == NULL) { 919 mdb_warn("anon walk doesn't support global walks\n"); 920 return (WALK_ERR); 921 } 922 923 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 924 925 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 926 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 927 mdb_free(aw, sizeof (anon_walk_data_t)); 928 return (WALK_ERR); 929 } 930 931 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 932 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 933 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 934 mdb_free(aw, sizeof (anon_walk_data_t)); 935 return (WALK_ERR); 936 } 937 938 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 939 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 940 aw->aw_nlevone = aw->aw_ahp.size; 941 aw->aw_levtwo = NULL; 942 } else { 943 aw->aw_nlevone = 944 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 945 aw->aw_levtwo = 946 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 947 } 948 949 aw->aw_levone = 950 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 951 952 aw->aw_levone_ndx = 0; 953 aw->aw_levtwo_ndx = 0; 954 955 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 956 (uintptr_t)aw->aw_ahp.array_chunk); 957 958 if (aw->aw_levtwo != NULL) { 959 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 960 aw->aw_levone_ndx++; 961 if (aw->aw_levone_ndx == aw->aw_nlevone) { 962 mdb_warn("corrupt anon; couldn't" 963 "find ptr to lev two map"); 964 goto out; 965 } 966 } 967 968 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 969 aw->aw_levone[aw->aw_levone_ndx]); 970 } 971 972 out: 973 wsp->walk_data = aw; 974 return (0); 975 } 976 977 int 978 anon_walk_step(mdb_walk_state_t *wsp) 979 { 980 int status; 981 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 982 struct anon anon; 983 uintptr_t anonptr; 984 985 again: 986 /* 987 * Once we've walked through level one, we're done. 988 */ 989 if (aw->aw_levone_ndx == aw->aw_nlevone) 990 return (WALK_DONE); 991 992 if (aw->aw_levtwo == NULL) { 993 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 994 aw->aw_levone_ndx++; 995 } else { 996 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 997 aw->aw_levtwo_ndx++; 998 999 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 1000 aw->aw_levtwo_ndx = 0; 1001 1002 do { 1003 aw->aw_levone_ndx++; 1004 1005 if (aw->aw_levone_ndx == aw->aw_nlevone) 1006 return (WALK_DONE); 1007 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1008 1009 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1010 sizeof (uintptr_t), 1011 aw->aw_levone[aw->aw_levone_ndx]); 1012 } 1013 } 1014 1015 if (anonptr != NULL) { 1016 mdb_vread(&anon, sizeof (anon), anonptr); 1017 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1018 } else 1019 goto again; 1020 1021 return (status); 1022 } 1023 1024 void 1025 anon_walk_fini(mdb_walk_state_t *wsp) 1026 { 1027 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1028 1029 if (aw->aw_levtwo != NULL) 1030 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1031 1032 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1033 mdb_free(aw, sizeof (anon_walk_data_t)); 1034 } 1035 1036 /*ARGSUSED*/ 1037 int 1038 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1039 { 1040 if ((uintptr_t)f->f_vnode == *target) { 1041 mdb_printf("file %p\n", addr); 1042 *target = NULL; 1043 } 1044 1045 return (WALK_NEXT); 1046 } 1047 1048 /*ARGSUSED*/ 1049 int 1050 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1051 { 1052 uintptr_t t = *target; 1053 1054 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1055 mdb_warn("couldn't file walk proc %p", addr); 1056 return (WALK_ERR); 1057 } 1058 1059 if (t == NULL) 1060 mdb_printf("%p\n", addr); 1061 1062 return (WALK_NEXT); 1063 } 1064 1065 /*ARGSUSED*/ 1066 int 1067 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1068 { 1069 uintptr_t target = addr; 1070 1071 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1072 return (DCMD_USAGE); 1073 1074 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1075 mdb_warn("can't proc walk"); 1076 return (DCMD_ERR); 1077 } 1078 1079 return (DCMD_OK); 1080 } 1081 1082 typedef struct datafmt { 1083 char *hdr1; 1084 char *hdr2; 1085 char *dashes; 1086 char *fmt; 1087 } datafmt_t; 1088 1089 static datafmt_t kmemfmt[] = { 1090 { "cache ", "name ", 1091 "-------------------------", "%-25s " }, 1092 { " buf", " size", "------", "%6u " }, 1093 { " buf", "in use", "------", "%6u " }, 1094 { " buf", " total", "------", "%6u " }, 1095 { " memory", " in use", "---------", "%9u " }, 1096 { " alloc", " succeed", "---------", "%9u " }, 1097 { "alloc", " fail", "-----", "%5u " }, 1098 { NULL, NULL, NULL, NULL } 1099 }; 1100 1101 static datafmt_t vmemfmt[] = { 1102 { "vmem ", "name ", 1103 "-------------------------", "%-*s " }, 1104 { " memory", " in use", "---------", "%9llu " }, 1105 { " memory", " total", "----------", "%10llu " }, 1106 { " memory", " import", "---------", "%9llu " }, 1107 { " alloc", " succeed", "---------", "%9llu " }, 1108 { "alloc", " fail", "-----", "%5llu " }, 1109 { NULL, NULL, NULL, NULL } 1110 }; 1111 1112 /*ARGSUSED*/ 1113 static int 1114 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1115 { 1116 if (ccp->cc_rounds > 0) 1117 *avail += ccp->cc_rounds; 1118 if (ccp->cc_prounds > 0) 1119 *avail += ccp->cc_prounds; 1120 1121 return (WALK_NEXT); 1122 } 1123 1124 /*ARGSUSED*/ 1125 static int 1126 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1127 { 1128 *alloc += ccp->cc_alloc; 1129 1130 return (WALK_NEXT); 1131 } 1132 1133 /*ARGSUSED*/ 1134 static int 1135 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1136 { 1137 *avail += sp->slab_chunks - sp->slab_refcnt; 1138 1139 return (WALK_NEXT); 1140 } 1141 1142 typedef struct kmastat_vmem { 1143 uintptr_t kv_addr; 1144 struct kmastat_vmem *kv_next; 1145 int kv_meminuse; 1146 int kv_alloc; 1147 int kv_fail; 1148 } kmastat_vmem_t; 1149 1150 typedef struct kmastat_args { 1151 kmastat_vmem_t **ka_kvpp; 1152 uint_t ka_shift; 1153 } kmastat_args_t; 1154 1155 static int 1156 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1157 { 1158 kmastat_vmem_t **kvp = kap->ka_kvpp; 1159 kmastat_vmem_t *kv; 1160 datafmt_t *dfp = kmemfmt; 1161 int magsize; 1162 1163 int avail, alloc, total; 1164 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1165 cp->cache_slabsize; 1166 1167 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1168 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1169 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1170 1171 magsize = kmem_get_magsize(cp); 1172 1173 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1174 avail = cp->cache_full.ml_total * magsize; 1175 total = cp->cache_buftotal; 1176 1177 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1178 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1179 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1180 1181 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1182 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1183 goto out; 1184 } 1185 1186 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1187 kv->kv_next = *kvp; 1188 kv->kv_addr = (uintptr_t)cp->cache_arena; 1189 *kvp = kv; 1190 out: 1191 kv->kv_meminuse += meminuse; 1192 kv->kv_alloc += alloc; 1193 kv->kv_fail += cp->cache_alloc_fail; 1194 1195 mdb_printf((dfp++)->fmt, cp->cache_name); 1196 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1197 mdb_printf((dfp++)->fmt, total - avail); 1198 mdb_printf((dfp++)->fmt, total); 1199 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift); 1200 mdb_printf((dfp++)->fmt, alloc); 1201 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1202 mdb_printf("\n"); 1203 1204 return (WALK_NEXT); 1205 } 1206 1207 static int 1208 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1209 { 1210 kmastat_vmem_t *kv = *kap->ka_kvpp; 1211 size_t len; 1212 1213 while (kv != NULL && kv->kv_addr != addr) 1214 kv = kv->kv_next; 1215 1216 if (kv == NULL || kv->kv_alloc == 0) 1217 return (WALK_NEXT); 1218 1219 len = MIN(17, strlen(v->vm_name)); 1220 1221 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1222 17 - len, "", "", "", "", 1223 kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail); 1224 1225 return (WALK_NEXT); 1226 } 1227 1228 /*ARGSUSED*/ 1229 static int 1230 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1231 { 1232 datafmt_t *dfp = vmemfmt; 1233 const vmem_kstat_t *vkp = &v->vm_kstat; 1234 uintptr_t paddr; 1235 vmem_t parent; 1236 int ident = 0; 1237 1238 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1239 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1240 mdb_warn("couldn't trace %p's ancestry", addr); 1241 ident = 0; 1242 break; 1243 } 1244 paddr = (uintptr_t)parent.vm_source; 1245 } 1246 1247 mdb_printf("%*s", ident, ""); 1248 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1249 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1250 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1251 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp); 1252 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1253 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1254 1255 mdb_printf("\n"); 1256 1257 return (WALK_NEXT); 1258 } 1259 1260 /*ARGSUSED*/ 1261 int 1262 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1263 { 1264 kmastat_vmem_t *kv = NULL; 1265 datafmt_t *dfp; 1266 kmastat_args_t ka; 1267 1268 ka.ka_shift = 0; 1269 if (mdb_getopts(argc, argv, 1270 'k', MDB_OPT_SETBITS, 10, &ka.ka_shift, 1271 'm', MDB_OPT_SETBITS, 20, &ka.ka_shift, 1272 'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc) 1273 return (DCMD_USAGE); 1274 1275 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1276 mdb_printf("%s ", dfp->hdr1); 1277 mdb_printf("\n"); 1278 1279 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1280 mdb_printf("%s ", dfp->hdr2); 1281 mdb_printf("\n"); 1282 1283 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1284 mdb_printf("%s ", dfp->dashes); 1285 mdb_printf("\n"); 1286 1287 ka.ka_kvpp = &kv; 1288 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1289 mdb_warn("can't walk 'kmem_cache'"); 1290 return (DCMD_ERR); 1291 } 1292 1293 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1294 mdb_printf("%s ", dfp->dashes); 1295 mdb_printf("\n"); 1296 1297 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1298 mdb_warn("can't walk 'vmem'"); 1299 return (DCMD_ERR); 1300 } 1301 1302 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1303 mdb_printf("%s ", dfp->dashes); 1304 mdb_printf("\n"); 1305 1306 mdb_printf("\n"); 1307 1308 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1309 mdb_printf("%s ", dfp->hdr1); 1310 mdb_printf("\n"); 1311 1312 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1313 mdb_printf("%s ", dfp->hdr2); 1314 mdb_printf("\n"); 1315 1316 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1317 mdb_printf("%s ", dfp->dashes); 1318 mdb_printf("\n"); 1319 1320 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1321 mdb_warn("can't walk 'vmem'"); 1322 return (DCMD_ERR); 1323 } 1324 1325 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1326 mdb_printf("%s ", dfp->dashes); 1327 mdb_printf("\n"); 1328 return (DCMD_OK); 1329 } 1330 1331 /* 1332 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1333 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1334 * unfortunately, a few of the segs are both large and sparse, so we could 1335 * spend quite a bit of time scanning VAs which have no backing pages. 1336 * 1337 * So for the few very sparse segs, we skip the segment itself, and scan 1338 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1339 * Currently, we do this for: 1340 * 1341 * SEG VMEM ARENA 1342 * kvseg heap_arena 1343 * kvseg32 heap32_arena 1344 * kvseg_core heap_core_arena 1345 * 1346 * In addition, we skip the segkpm segment in its entirety, since it is very 1347 * sparse, and contains no new kernel data. 1348 */ 1349 typedef struct kgrep_walk_data { 1350 kgrep_cb_func *kg_cb; 1351 void *kg_cbdata; 1352 uintptr_t kg_kvseg; 1353 uintptr_t kg_kvseg32; 1354 uintptr_t kg_kvseg_core; 1355 uintptr_t kg_segkpm; 1356 uintptr_t kg_heap_lp_base; 1357 uintptr_t kg_heap_lp_end; 1358 } kgrep_walk_data_t; 1359 1360 static int 1361 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1362 { 1363 uintptr_t base = (uintptr_t)seg->s_base; 1364 1365 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1366 addr == kg->kg_kvseg_core) 1367 return (WALK_NEXT); 1368 1369 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1370 return (WALK_NEXT); 1371 1372 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1373 } 1374 1375 /*ARGSUSED*/ 1376 static int 1377 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1378 { 1379 /* 1380 * skip large page heap address range - it is scanned by walking 1381 * allocated vmem_segs in the heap_lp_arena 1382 */ 1383 if (seg->vs_start == kg->kg_heap_lp_base && 1384 seg->vs_end == kg->kg_heap_lp_end) 1385 return (WALK_NEXT); 1386 1387 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1388 } 1389 1390 /*ARGSUSED*/ 1391 static int 1392 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1393 { 1394 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1395 } 1396 1397 static int 1398 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1399 { 1400 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1401 1402 if (strcmp(vmem->vm_name, "heap") != 0 && 1403 strcmp(vmem->vm_name, "heap32") != 0 && 1404 strcmp(vmem->vm_name, "heap_core") != 0 && 1405 strcmp(vmem->vm_name, "heap_lp") != 0) 1406 return (WALK_NEXT); 1407 1408 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1409 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1410 1411 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1412 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1413 return (WALK_ERR); 1414 } 1415 1416 return (WALK_NEXT); 1417 } 1418 1419 int 1420 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1421 { 1422 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1423 kgrep_walk_data_t kg; 1424 1425 if (mdb_get_state() == MDB_STATE_RUNNING) { 1426 mdb_warn("kgrep can only be run on a system " 1427 "dump or under kmdb; see dumpadm(1M)\n"); 1428 return (DCMD_ERR); 1429 } 1430 1431 if (mdb_lookup_by_name("kas", &kas) == -1) { 1432 mdb_warn("failed to locate 'kas' symbol\n"); 1433 return (DCMD_ERR); 1434 } 1435 1436 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1437 mdb_warn("failed to locate 'kvseg' symbol\n"); 1438 return (DCMD_ERR); 1439 } 1440 1441 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1442 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1443 return (DCMD_ERR); 1444 } 1445 1446 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1447 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1448 return (DCMD_ERR); 1449 } 1450 1451 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1452 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1453 return (DCMD_ERR); 1454 } 1455 1456 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1457 mdb_warn("failed to read 'heap_lp_base'\n"); 1458 return (DCMD_ERR); 1459 } 1460 1461 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1462 mdb_warn("failed to read 'heap_lp_end'\n"); 1463 return (DCMD_ERR); 1464 } 1465 1466 kg.kg_cb = cb; 1467 kg.kg_cbdata = cbdata; 1468 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1469 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1470 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1471 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1472 1473 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1474 &kg, kas.st_value) == -1) { 1475 mdb_warn("failed to walk kas segments"); 1476 return (DCMD_ERR); 1477 } 1478 1479 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1480 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1481 return (DCMD_ERR); 1482 } 1483 1484 return (DCMD_OK); 1485 } 1486 1487 size_t 1488 kgrep_subr_pagesize(void) 1489 { 1490 return (PAGESIZE); 1491 } 1492 1493 typedef struct file_walk_data { 1494 struct uf_entry *fw_flist; 1495 int fw_flistsz; 1496 int fw_ndx; 1497 int fw_nofiles; 1498 } file_walk_data_t; 1499 1500 int 1501 file_walk_init(mdb_walk_state_t *wsp) 1502 { 1503 file_walk_data_t *fw; 1504 proc_t p; 1505 1506 if (wsp->walk_addr == NULL) { 1507 mdb_warn("file walk doesn't support global walks\n"); 1508 return (WALK_ERR); 1509 } 1510 1511 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1512 1513 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1514 mdb_free(fw, sizeof (file_walk_data_t)); 1515 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1516 return (WALK_ERR); 1517 } 1518 1519 if (p.p_user.u_finfo.fi_nfiles == 0) { 1520 mdb_free(fw, sizeof (file_walk_data_t)); 1521 return (WALK_DONE); 1522 } 1523 1524 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1525 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1526 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1527 1528 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1529 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1530 mdb_warn("failed to read file array at %p", 1531 p.p_user.u_finfo.fi_list); 1532 mdb_free(fw->fw_flist, fw->fw_flistsz); 1533 mdb_free(fw, sizeof (file_walk_data_t)); 1534 return (WALK_ERR); 1535 } 1536 1537 fw->fw_ndx = 0; 1538 wsp->walk_data = fw; 1539 1540 return (WALK_NEXT); 1541 } 1542 1543 int 1544 file_walk_step(mdb_walk_state_t *wsp) 1545 { 1546 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1547 struct file file; 1548 uintptr_t fp; 1549 1550 again: 1551 if (fw->fw_ndx == fw->fw_nofiles) 1552 return (WALK_DONE); 1553 1554 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1555 goto again; 1556 1557 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1558 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1559 } 1560 1561 int 1562 allfile_walk_step(mdb_walk_state_t *wsp) 1563 { 1564 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1565 struct file file; 1566 uintptr_t fp; 1567 1568 if (fw->fw_ndx == fw->fw_nofiles) 1569 return (WALK_DONE); 1570 1571 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1572 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1573 else 1574 bzero(&file, sizeof (file)); 1575 1576 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1577 } 1578 1579 void 1580 file_walk_fini(mdb_walk_state_t *wsp) 1581 { 1582 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1583 1584 mdb_free(fw->fw_flist, fw->fw_flistsz); 1585 mdb_free(fw, sizeof (file_walk_data_t)); 1586 } 1587 1588 int 1589 port_walk_init(mdb_walk_state_t *wsp) 1590 { 1591 if (wsp->walk_addr == NULL) { 1592 mdb_warn("port walk doesn't support global walks\n"); 1593 return (WALK_ERR); 1594 } 1595 1596 if (mdb_layered_walk("file", wsp) == -1) { 1597 mdb_warn("couldn't walk 'file'"); 1598 return (WALK_ERR); 1599 } 1600 return (WALK_NEXT); 1601 } 1602 1603 int 1604 port_walk_step(mdb_walk_state_t *wsp) 1605 { 1606 struct vnode vn; 1607 uintptr_t vp; 1608 uintptr_t pp; 1609 struct port port; 1610 1611 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1612 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1613 mdb_warn("failed to read vnode_t at %p", vp); 1614 return (WALK_ERR); 1615 } 1616 if (vn.v_type != VPORT) 1617 return (WALK_NEXT); 1618 1619 pp = (uintptr_t)vn.v_data; 1620 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1621 mdb_warn("failed to read port_t at %p", pp); 1622 return (WALK_ERR); 1623 } 1624 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1625 } 1626 1627 typedef struct portev_walk_data { 1628 list_node_t *pev_node; 1629 list_node_t *pev_last; 1630 size_t pev_offset; 1631 } portev_walk_data_t; 1632 1633 int 1634 portev_walk_init(mdb_walk_state_t *wsp) 1635 { 1636 portev_walk_data_t *pevd; 1637 struct port port; 1638 struct vnode vn; 1639 struct list *list; 1640 uintptr_t vp; 1641 1642 if (wsp->walk_addr == NULL) { 1643 mdb_warn("portev walk doesn't support global walks\n"); 1644 return (WALK_ERR); 1645 } 1646 1647 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1648 1649 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1650 mdb_free(pevd, sizeof (portev_walk_data_t)); 1651 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1652 return (WALK_ERR); 1653 } 1654 1655 vp = (uintptr_t)port.port_vnode; 1656 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1657 mdb_free(pevd, sizeof (portev_walk_data_t)); 1658 mdb_warn("failed to read vnode_t at %p", vp); 1659 return (WALK_ERR); 1660 } 1661 1662 if (vn.v_type != VPORT) { 1663 mdb_free(pevd, sizeof (portev_walk_data_t)); 1664 mdb_warn("input address (%p) does not point to an event port", 1665 wsp->walk_addr); 1666 return (WALK_ERR); 1667 } 1668 1669 if (port.port_queue.portq_nent == 0) { 1670 mdb_free(pevd, sizeof (portev_walk_data_t)); 1671 return (WALK_DONE); 1672 } 1673 list = &port.port_queue.portq_list; 1674 pevd->pev_offset = list->list_offset; 1675 pevd->pev_last = list->list_head.list_prev; 1676 pevd->pev_node = list->list_head.list_next; 1677 wsp->walk_data = pevd; 1678 return (WALK_NEXT); 1679 } 1680 1681 int 1682 portev_walk_step(mdb_walk_state_t *wsp) 1683 { 1684 portev_walk_data_t *pevd; 1685 struct port_kevent ev; 1686 uintptr_t evp; 1687 1688 pevd = (portev_walk_data_t *)wsp->walk_data; 1689 1690 if (pevd->pev_last == NULL) 1691 return (WALK_DONE); 1692 if (pevd->pev_node == pevd->pev_last) 1693 pevd->pev_last = NULL; /* last round */ 1694 1695 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1696 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1697 mdb_warn("failed to read port_kevent at %p", evp); 1698 return (WALK_DONE); 1699 } 1700 pevd->pev_node = ev.portkev_node.list_next; 1701 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1702 } 1703 1704 void 1705 portev_walk_fini(mdb_walk_state_t *wsp) 1706 { 1707 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1708 1709 if (pevd != NULL) 1710 mdb_free(pevd, sizeof (portev_walk_data_t)); 1711 } 1712 1713 typedef struct proc_walk_data { 1714 uintptr_t *pw_stack; 1715 int pw_depth; 1716 int pw_max; 1717 } proc_walk_data_t; 1718 1719 int 1720 proc_walk_init(mdb_walk_state_t *wsp) 1721 { 1722 GElf_Sym sym; 1723 proc_walk_data_t *pw; 1724 1725 if (wsp->walk_addr == NULL) { 1726 if (mdb_lookup_by_name("p0", &sym) == -1) { 1727 mdb_warn("failed to read 'practive'"); 1728 return (WALK_ERR); 1729 } 1730 wsp->walk_addr = (uintptr_t)sym.st_value; 1731 } 1732 1733 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1734 1735 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1736 mdb_warn("failed to read 'nproc'"); 1737 mdb_free(pw, sizeof (pw)); 1738 return (WALK_ERR); 1739 } 1740 1741 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1742 wsp->walk_data = pw; 1743 1744 return (WALK_NEXT); 1745 } 1746 1747 int 1748 proc_walk_step(mdb_walk_state_t *wsp) 1749 { 1750 proc_walk_data_t *pw = wsp->walk_data; 1751 uintptr_t addr = wsp->walk_addr; 1752 uintptr_t cld, sib; 1753 1754 int status; 1755 proc_t pr; 1756 1757 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1758 mdb_warn("failed to read proc at %p", addr); 1759 return (WALK_DONE); 1760 } 1761 1762 cld = (uintptr_t)pr.p_child; 1763 sib = (uintptr_t)pr.p_sibling; 1764 1765 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1766 pw->pw_depth--; 1767 goto sib; 1768 } 1769 1770 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1771 1772 if (status != WALK_NEXT) 1773 return (status); 1774 1775 if ((wsp->walk_addr = cld) != NULL) { 1776 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1777 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1778 addr, cld); 1779 goto sib; 1780 } 1781 1782 pw->pw_stack[pw->pw_depth++] = addr; 1783 1784 if (pw->pw_depth == pw->pw_max) { 1785 mdb_warn("depth %d exceeds max depth; try again\n", 1786 pw->pw_depth); 1787 return (WALK_DONE); 1788 } 1789 return (WALK_NEXT); 1790 } 1791 1792 sib: 1793 /* 1794 * We know that p0 has no siblings, and if another starting proc 1795 * was given, we don't want to walk its siblings anyway. 1796 */ 1797 if (pw->pw_depth == 0) 1798 return (WALK_DONE); 1799 1800 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1801 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1802 addr, sib); 1803 sib = NULL; 1804 } 1805 1806 if ((wsp->walk_addr = sib) == NULL) { 1807 if (pw->pw_depth > 0) { 1808 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1809 return (WALK_NEXT); 1810 } 1811 return (WALK_DONE); 1812 } 1813 1814 return (WALK_NEXT); 1815 } 1816 1817 void 1818 proc_walk_fini(mdb_walk_state_t *wsp) 1819 { 1820 proc_walk_data_t *pw = wsp->walk_data; 1821 1822 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1823 mdb_free(pw, sizeof (proc_walk_data_t)); 1824 } 1825 1826 int 1827 task_walk_init(mdb_walk_state_t *wsp) 1828 { 1829 task_t task; 1830 1831 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1832 mdb_warn("failed to read task at %p", wsp->walk_addr); 1833 return (WALK_ERR); 1834 } 1835 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1836 wsp->walk_data = task.tk_memb_list; 1837 return (WALK_NEXT); 1838 } 1839 1840 int 1841 task_walk_step(mdb_walk_state_t *wsp) 1842 { 1843 proc_t proc; 1844 int status; 1845 1846 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1847 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1848 return (WALK_DONE); 1849 } 1850 1851 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1852 1853 if (proc.p_tasknext == wsp->walk_data) 1854 return (WALK_DONE); 1855 1856 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1857 return (status); 1858 } 1859 1860 int 1861 project_walk_init(mdb_walk_state_t *wsp) 1862 { 1863 if (wsp->walk_addr == NULL) { 1864 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1865 mdb_warn("failed to read 'proj0p'"); 1866 return (WALK_ERR); 1867 } 1868 } 1869 wsp->walk_data = (void *)wsp->walk_addr; 1870 return (WALK_NEXT); 1871 } 1872 1873 int 1874 project_walk_step(mdb_walk_state_t *wsp) 1875 { 1876 uintptr_t addr = wsp->walk_addr; 1877 kproject_t pj; 1878 int status; 1879 1880 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1881 mdb_warn("failed to read project at %p", addr); 1882 return (WALK_DONE); 1883 } 1884 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1885 if (status != WALK_NEXT) 1886 return (status); 1887 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1888 if ((void *)wsp->walk_addr == wsp->walk_data) 1889 return (WALK_DONE); 1890 return (WALK_NEXT); 1891 } 1892 1893 static int 1894 generic_walk_step(mdb_walk_state_t *wsp) 1895 { 1896 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1897 wsp->walk_cbdata)); 1898 } 1899 1900 int 1901 seg_walk_init(mdb_walk_state_t *wsp) 1902 { 1903 if (wsp->walk_addr == NULL) { 1904 mdb_warn("seg walk must begin at struct as *\n"); 1905 return (WALK_ERR); 1906 } 1907 1908 /* 1909 * this is really just a wrapper to AVL tree walk 1910 */ 1911 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1912 return (avl_walk_init(wsp)); 1913 } 1914 1915 static int 1916 cpu_walk_cmp(const void *l, const void *r) 1917 { 1918 uintptr_t lhs = *((uintptr_t *)l); 1919 uintptr_t rhs = *((uintptr_t *)r); 1920 cpu_t lcpu, rcpu; 1921 1922 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1923 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1924 1925 if (lcpu.cpu_id < rcpu.cpu_id) 1926 return (-1); 1927 1928 if (lcpu.cpu_id > rcpu.cpu_id) 1929 return (1); 1930 1931 return (0); 1932 } 1933 1934 typedef struct cpu_walk { 1935 uintptr_t *cw_array; 1936 int cw_ndx; 1937 } cpu_walk_t; 1938 1939 int 1940 cpu_walk_init(mdb_walk_state_t *wsp) 1941 { 1942 cpu_walk_t *cw; 1943 int max_ncpus, i = 0; 1944 uintptr_t current, first; 1945 cpu_t cpu, panic_cpu; 1946 uintptr_t panicstr, addr; 1947 GElf_Sym sym; 1948 1949 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1950 1951 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1952 mdb_warn("failed to read 'max_ncpus'"); 1953 return (WALK_ERR); 1954 } 1955 1956 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1957 mdb_warn("failed to read 'panicstr'"); 1958 return (WALK_ERR); 1959 } 1960 1961 if (panicstr != NULL) { 1962 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1963 mdb_warn("failed to find 'panic_cpu'"); 1964 return (WALK_ERR); 1965 } 1966 1967 addr = (uintptr_t)sym.st_value; 1968 1969 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1970 mdb_warn("failed to read 'panic_cpu'"); 1971 return (WALK_ERR); 1972 } 1973 } 1974 1975 /* 1976 * Unfortunately, there is no platform-independent way to walk 1977 * CPUs in ID order. We therefore loop through in cpu_next order, 1978 * building an array of CPU pointers which will subsequently be 1979 * sorted. 1980 */ 1981 cw->cw_array = 1982 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1983 1984 if (mdb_readvar(&first, "cpu_list") == -1) { 1985 mdb_warn("failed to read 'cpu_list'"); 1986 return (WALK_ERR); 1987 } 1988 1989 current = first; 1990 do { 1991 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1992 mdb_warn("failed to read cpu at %p", current); 1993 return (WALK_ERR); 1994 } 1995 1996 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1997 cw->cw_array[i++] = addr; 1998 } else { 1999 cw->cw_array[i++] = current; 2000 } 2001 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2002 2003 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2004 wsp->walk_data = cw; 2005 2006 return (WALK_NEXT); 2007 } 2008 2009 int 2010 cpu_walk_step(mdb_walk_state_t *wsp) 2011 { 2012 cpu_walk_t *cw = wsp->walk_data; 2013 cpu_t cpu; 2014 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2015 2016 if (addr == NULL) 2017 return (WALK_DONE); 2018 2019 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2020 mdb_warn("failed to read cpu at %p", addr); 2021 return (WALK_DONE); 2022 } 2023 2024 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2025 } 2026 2027 typedef struct cpuinfo_data { 2028 intptr_t cid_cpu; 2029 uintptr_t cid_lbolt; 2030 uintptr_t **cid_ithr; 2031 char cid_print_head; 2032 char cid_print_thr; 2033 char cid_print_ithr; 2034 char cid_print_flags; 2035 } cpuinfo_data_t; 2036 2037 int 2038 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2039 { 2040 cpu_t c; 2041 int id; 2042 uint8_t pil; 2043 2044 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2045 return (WALK_NEXT); 2046 2047 if (thr->t_bound_cpu == NULL) { 2048 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2049 return (WALK_NEXT); 2050 } 2051 2052 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2053 2054 if ((id = c.cpu_id) >= NCPU) { 2055 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2056 thr->t_bound_cpu, id, NCPU); 2057 return (WALK_NEXT); 2058 } 2059 2060 if ((pil = thr->t_pil) >= NINTR) { 2061 mdb_warn("thread %p has pil (%d) greater than %d\n", 2062 addr, pil, NINTR); 2063 return (WALK_NEXT); 2064 } 2065 2066 if (cid->cid_ithr[id][pil] != NULL) { 2067 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2068 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2069 return (WALK_NEXT); 2070 } 2071 2072 cid->cid_ithr[id][pil] = addr; 2073 2074 return (WALK_NEXT); 2075 } 2076 2077 #define CPUINFO_IDWIDTH 3 2078 #define CPUINFO_FLAGWIDTH 9 2079 2080 #ifdef _LP64 2081 #if defined(__amd64) 2082 #define CPUINFO_TWIDTH 16 2083 #define CPUINFO_CPUWIDTH 16 2084 #else 2085 #define CPUINFO_CPUWIDTH 11 2086 #define CPUINFO_TWIDTH 11 2087 #endif 2088 #else 2089 #define CPUINFO_CPUWIDTH 8 2090 #define CPUINFO_TWIDTH 8 2091 #endif 2092 2093 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2094 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2095 #define CPUINFO_ITHRDELT 4 2096 2097 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2098 flagline < nflaglines ? flagbuf[flagline++] : "") 2099 2100 int 2101 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2102 { 2103 kthread_t t; 2104 disp_t disp; 2105 proc_t p; 2106 uintptr_t pinned; 2107 char **flagbuf; 2108 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2109 2110 const char *flags[] = { 2111 "RUNNING", "READY", "QUIESCED", "EXISTS", 2112 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2113 "SPARE", "FAULTED", NULL 2114 }; 2115 2116 if (cid->cid_cpu != -1) { 2117 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2118 return (WALK_NEXT); 2119 2120 /* 2121 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2122 */ 2123 cid->cid_cpu = -1; 2124 rval = WALK_DONE; 2125 } 2126 2127 if (cid->cid_print_head) { 2128 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2129 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2130 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2131 "PROC"); 2132 cid->cid_print_head = FALSE; 2133 } 2134 2135 bspl = cpu->cpu_base_spl; 2136 2137 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2138 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2139 return (WALK_ERR); 2140 } 2141 2142 mdb_printf("%3d %0*p %3x %4d %4d ", 2143 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2144 disp.disp_nrunnable, bspl); 2145 2146 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2147 mdb_printf("%3d ", t.t_pri); 2148 } else { 2149 mdb_printf("%3s ", "-"); 2150 } 2151 2152 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2153 cpu->cpu_kprunrun ? "yes" : "no"); 2154 2155 if (cpu->cpu_last_swtch) { 2156 clock_t lbolt; 2157 2158 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2159 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2160 return (WALK_ERR); 2161 } 2162 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2163 } else { 2164 mdb_printf("%-6s ", "-"); 2165 } 2166 2167 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2168 2169 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2170 mdb_printf(" (idle)\n"); 2171 else if (cpu->cpu_thread == NULL) 2172 mdb_printf(" -\n"); 2173 else { 2174 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2175 mdb_printf(" %s\n", p.p_user.u_comm); 2176 } else { 2177 mdb_printf(" ?\n"); 2178 } 2179 } 2180 2181 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2182 2183 if (cid->cid_print_flags) { 2184 int first = 1, i, j, k; 2185 char *s; 2186 2187 cid->cid_print_head = TRUE; 2188 2189 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2190 if (!(cpu->cpu_flags & i)) 2191 continue; 2192 2193 if (first) { 2194 s = mdb_alloc(CPUINFO_THRDELT + 1, 2195 UM_GC | UM_SLEEP); 2196 2197 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2198 "%*s|%*s", CPUINFO_FLAGDELT, "", 2199 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2200 flagbuf[nflaglines++] = s; 2201 } 2202 2203 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2204 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2205 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2206 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2207 first ? "<--+" : ""); 2208 2209 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2210 s[k] = ' '; 2211 s[k] = '\0'; 2212 2213 flagbuf[nflaglines++] = s; 2214 first = 0; 2215 } 2216 } 2217 2218 if (cid->cid_print_ithr) { 2219 int i, found_one = FALSE; 2220 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2221 2222 for (i = NINTR - 1; i >= 0; i--) { 2223 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2224 2225 if (iaddr == NULL) 2226 continue; 2227 2228 if (!found_one) { 2229 found_one = TRUE; 2230 2231 CPUINFO_INDENT; 2232 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2233 CPUINFO_ITHRDELT, ""); 2234 2235 CPUINFO_INDENT; 2236 mdb_printf("%c%*s+--> %3s %s\n", 2237 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2238 "", "PIL", "THREAD"); 2239 } 2240 2241 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2242 mdb_warn("failed to read kthread_t at %p", 2243 iaddr); 2244 return (WALK_ERR); 2245 } 2246 2247 CPUINFO_INDENT; 2248 mdb_printf("%c%*s %3d %0*p\n", 2249 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2250 t.t_pil, CPUINFO_TWIDTH, iaddr); 2251 2252 pinned = (uintptr_t)t.t_intr; 2253 } 2254 2255 if (found_one && pinned != NULL) { 2256 cid->cid_print_head = TRUE; 2257 (void) strcpy(p.p_user.u_comm, "?"); 2258 2259 if (mdb_vread(&t, sizeof (t), 2260 (uintptr_t)pinned) == -1) { 2261 mdb_warn("failed to read kthread_t at %p", 2262 pinned); 2263 return (WALK_ERR); 2264 } 2265 if (mdb_vread(&p, sizeof (p), 2266 (uintptr_t)t.t_procp) == -1) { 2267 mdb_warn("failed to read proc_t at %p", 2268 t.t_procp); 2269 return (WALK_ERR); 2270 } 2271 2272 CPUINFO_INDENT; 2273 mdb_printf("%c%*s %3s %0*p %s\n", 2274 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2275 CPUINFO_TWIDTH, pinned, 2276 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2277 "(idle)" : p.p_user.u_comm); 2278 } 2279 } 2280 2281 if (disp.disp_nrunnable && cid->cid_print_thr) { 2282 dispq_t *dq; 2283 2284 int i, npri = disp.disp_npri; 2285 2286 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2287 2288 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2289 (uintptr_t)disp.disp_q) == -1) { 2290 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2291 return (WALK_ERR); 2292 } 2293 2294 CPUINFO_INDENT; 2295 mdb_printf("|\n"); 2296 2297 CPUINFO_INDENT; 2298 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2299 CPUINFO_TWIDTH, "THREAD", "PROC"); 2300 2301 for (i = npri - 1; i >= 0; i--) { 2302 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2303 2304 while (taddr != NULL) { 2305 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2306 mdb_warn("failed to read kthread_t " 2307 "at %p", taddr); 2308 return (WALK_ERR); 2309 } 2310 if (mdb_vread(&p, sizeof (p), 2311 (uintptr_t)t.t_procp) == -1) { 2312 mdb_warn("failed to read proc_t at %p", 2313 t.t_procp); 2314 return (WALK_ERR); 2315 } 2316 2317 CPUINFO_INDENT; 2318 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2319 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2320 2321 taddr = (uintptr_t)t.t_link; 2322 } 2323 } 2324 cid->cid_print_head = TRUE; 2325 } 2326 2327 while (flagline < nflaglines) 2328 mdb_printf("%s\n", flagbuf[flagline++]); 2329 2330 if (cid->cid_print_head) 2331 mdb_printf("\n"); 2332 2333 return (rval); 2334 } 2335 2336 int 2337 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2338 { 2339 uint_t verbose = FALSE; 2340 cpuinfo_data_t cid; 2341 GElf_Sym sym; 2342 clock_t lbolt; 2343 2344 cid.cid_print_ithr = FALSE; 2345 cid.cid_print_thr = FALSE; 2346 cid.cid_print_flags = FALSE; 2347 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2348 cid.cid_cpu = -1; 2349 2350 if (flags & DCMD_ADDRSPEC) 2351 cid.cid_cpu = addr; 2352 2353 if (mdb_getopts(argc, argv, 2354 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2355 return (DCMD_USAGE); 2356 2357 if (verbose) { 2358 cid.cid_print_ithr = TRUE; 2359 cid.cid_print_thr = TRUE; 2360 cid.cid_print_flags = TRUE; 2361 cid.cid_print_head = TRUE; 2362 } 2363 2364 if (cid.cid_print_ithr) { 2365 int i; 2366 2367 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2368 * NCPU, UM_SLEEP | UM_GC); 2369 2370 for (i = 0; i < NCPU; i++) 2371 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2372 NINTR, UM_SLEEP | UM_GC); 2373 2374 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2375 &cid) == -1) { 2376 mdb_warn("couldn't walk thread"); 2377 return (DCMD_ERR); 2378 } 2379 } 2380 2381 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2382 mdb_warn("failed to find panic_lbolt"); 2383 return (DCMD_ERR); 2384 } 2385 2386 cid.cid_lbolt = (uintptr_t)sym.st_value; 2387 2388 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2389 mdb_warn("failed to read panic_lbolt"); 2390 return (DCMD_ERR); 2391 } 2392 2393 if (lbolt == 0) { 2394 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2395 mdb_warn("failed to find lbolt"); 2396 return (DCMD_ERR); 2397 } 2398 cid.cid_lbolt = (uintptr_t)sym.st_value; 2399 } 2400 2401 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2402 mdb_warn("can't walk cpus"); 2403 return (DCMD_ERR); 2404 } 2405 2406 if (cid.cid_cpu != -1) { 2407 /* 2408 * We didn't find this CPU when we walked through the CPUs 2409 * (i.e. the address specified doesn't show up in the "cpu" 2410 * walk). However, the specified address may still correspond 2411 * to a valid cpu_t (for example, if the specified address is 2412 * the actual panicking cpu_t and not the cached panic_cpu). 2413 * Point is: even if we didn't find it, we still want to try 2414 * to print the specified address as a cpu_t. 2415 */ 2416 cpu_t cpu; 2417 2418 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2419 mdb_warn("%p is neither a valid CPU ID nor a " 2420 "valid cpu_t address\n", cid.cid_cpu); 2421 return (DCMD_ERR); 2422 } 2423 2424 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2425 } 2426 2427 return (DCMD_OK); 2428 } 2429 2430 /*ARGSUSED*/ 2431 int 2432 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2433 { 2434 int i; 2435 2436 if (!(flags & DCMD_ADDRSPEC)) 2437 return (DCMD_USAGE); 2438 2439 for (i = 0; i < sizeof (addr) * NBBY; i++) 2440 mdb_printf("%p\n", addr ^ (1UL << i)); 2441 2442 return (DCMD_OK); 2443 } 2444 2445 /* 2446 * Grumble, grumble. 2447 */ 2448 #define SMAP_HASHFUNC(vp, off) \ 2449 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2450 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2451 2452 int 2453 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2454 { 2455 long smd_hashmsk; 2456 int hash; 2457 uintptr_t offset = 0; 2458 struct smap smp; 2459 uintptr_t saddr, kaddr; 2460 uintptr_t smd_hash, smd_smap; 2461 struct seg seg; 2462 2463 if (!(flags & DCMD_ADDRSPEC)) 2464 return (DCMD_USAGE); 2465 2466 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2467 mdb_warn("failed to read smd_hashmsk"); 2468 return (DCMD_ERR); 2469 } 2470 2471 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2472 mdb_warn("failed to read smd_hash"); 2473 return (DCMD_ERR); 2474 } 2475 2476 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2477 mdb_warn("failed to read smd_hash"); 2478 return (DCMD_ERR); 2479 } 2480 2481 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2482 mdb_warn("failed to read segkmap"); 2483 return (DCMD_ERR); 2484 } 2485 2486 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2487 mdb_warn("failed to read segkmap at %p", kaddr); 2488 return (DCMD_ERR); 2489 } 2490 2491 if (argc != 0) { 2492 const mdb_arg_t *arg = &argv[0]; 2493 2494 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2495 offset = arg->a_un.a_val; 2496 else 2497 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2498 } 2499 2500 hash = SMAP_HASHFUNC(addr, offset); 2501 2502 if (mdb_vread(&saddr, sizeof (saddr), 2503 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2504 mdb_warn("couldn't read smap at %p", 2505 smd_hash + hash * sizeof (uintptr_t)); 2506 return (DCMD_ERR); 2507 } 2508 2509 do { 2510 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2511 mdb_warn("couldn't read smap at %p", saddr); 2512 return (DCMD_ERR); 2513 } 2514 2515 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2516 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2517 addr, offset, saddr, ((saddr - smd_smap) / 2518 sizeof (smp)) * MAXBSIZE + seg.s_base); 2519 return (DCMD_OK); 2520 } 2521 2522 saddr = (uintptr_t)smp.sm_hash; 2523 } while (saddr != NULL); 2524 2525 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2526 return (DCMD_OK); 2527 } 2528 2529 /*ARGSUSED*/ 2530 int 2531 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2532 { 2533 uintptr_t kaddr; 2534 struct seg seg; 2535 struct segmap_data sd; 2536 2537 if (!(flags & DCMD_ADDRSPEC)) 2538 return (DCMD_USAGE); 2539 2540 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2541 mdb_warn("failed to read segkmap"); 2542 return (DCMD_ERR); 2543 } 2544 2545 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2546 mdb_warn("failed to read segkmap at %p", kaddr); 2547 return (DCMD_ERR); 2548 } 2549 2550 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2551 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2552 return (DCMD_ERR); 2553 } 2554 2555 mdb_printf("%p is smap %p\n", addr, 2556 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2557 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2558 2559 return (DCMD_OK); 2560 } 2561 2562 int 2563 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2564 { 2565 if (p->p_as == *asp) 2566 mdb_printf("%p\n", addr); 2567 return (WALK_NEXT); 2568 } 2569 2570 /*ARGSUSED*/ 2571 int 2572 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2573 { 2574 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2575 return (DCMD_USAGE); 2576 2577 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2578 mdb_warn("failed to walk proc"); 2579 return (DCMD_ERR); 2580 } 2581 2582 return (DCMD_OK); 2583 } 2584 2585 /*ARGSUSED*/ 2586 int 2587 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2588 { 2589 proc_t parent; 2590 int ident = 0; 2591 uintptr_t paddr; 2592 2593 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2594 mdb_vread(&parent, sizeof (parent), paddr); 2595 paddr = (uintptr_t)parent.p_parent; 2596 } 2597 2598 mdb_inc_indent(ident); 2599 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2600 mdb_dec_indent(ident); 2601 2602 return (WALK_NEXT); 2603 } 2604 2605 void 2606 ptree_ancestors(uintptr_t addr, uintptr_t start) 2607 { 2608 proc_t p; 2609 2610 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2611 mdb_warn("couldn't read ancestor at %p", addr); 2612 return; 2613 } 2614 2615 if (p.p_parent != NULL) 2616 ptree_ancestors((uintptr_t)p.p_parent, start); 2617 2618 if (addr != start) 2619 (void) ptree_walk(addr, &p, NULL); 2620 } 2621 2622 /*ARGSUSED*/ 2623 int 2624 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2625 { 2626 if (!(flags & DCMD_ADDRSPEC)) 2627 addr = NULL; 2628 else 2629 ptree_ancestors(addr, addr); 2630 2631 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2632 mdb_warn("couldn't walk 'proc'"); 2633 return (DCMD_ERR); 2634 } 2635 2636 return (DCMD_OK); 2637 } 2638 2639 /*ARGSUSED*/ 2640 static int 2641 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2642 { 2643 int fdnum; 2644 const mdb_arg_t *argp = &argv[0]; 2645 proc_t p; 2646 uf_entry_t uf; 2647 2648 if ((flags & DCMD_ADDRSPEC) == 0) { 2649 mdb_warn("fd doesn't give global information\n"); 2650 return (DCMD_ERR); 2651 } 2652 if (argc != 1) 2653 return (DCMD_USAGE); 2654 2655 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2656 fdnum = argp->a_un.a_val; 2657 else 2658 fdnum = mdb_strtoull(argp->a_un.a_str); 2659 2660 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2661 mdb_warn("couldn't read proc_t at %p", addr); 2662 return (DCMD_ERR); 2663 } 2664 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2665 mdb_warn("process %p only has %d files open.\n", 2666 addr, p.p_user.u_finfo.fi_nfiles); 2667 return (DCMD_ERR); 2668 } 2669 if (mdb_vread(&uf, sizeof (uf_entry_t), 2670 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2671 mdb_warn("couldn't read uf_entry_t at %p", 2672 &p.p_user.u_finfo.fi_list[fdnum]); 2673 return (DCMD_ERR); 2674 } 2675 2676 mdb_printf("%p\n", uf.uf_file); 2677 return (DCMD_OK); 2678 } 2679 2680 /*ARGSUSED*/ 2681 static int 2682 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2683 { 2684 pid_t pid = (pid_t)addr; 2685 2686 if (argc != 0) 2687 return (DCMD_USAGE); 2688 2689 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2690 mdb_warn("PID 0t%d not found\n", pid); 2691 return (DCMD_ERR); 2692 } 2693 2694 mdb_printf("%p\n", addr); 2695 return (DCMD_OK); 2696 } 2697 2698 static char *sysfile_cmd[] = { 2699 "exclude:", 2700 "include:", 2701 "forceload:", 2702 "rootdev:", 2703 "rootfs:", 2704 "swapdev:", 2705 "swapfs:", 2706 "moddir:", 2707 "set", 2708 "unknown", 2709 }; 2710 2711 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2712 2713 /*ARGSUSED*/ 2714 static int 2715 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2716 { 2717 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2718 *target = NULL; 2719 return (WALK_DONE); 2720 } 2721 return (WALK_NEXT); 2722 } 2723 2724 /*ARGSUSED*/ 2725 static int 2726 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2727 { 2728 struct sysparam *sysp, sys; 2729 char var[256]; 2730 char modname[256]; 2731 char val[256]; 2732 char strval[256]; 2733 vmem_t *mod_sysfile_arena; 2734 void *straddr; 2735 2736 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2737 mdb_warn("failed to read sysparam_hd"); 2738 return (DCMD_ERR); 2739 } 2740 2741 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2742 mdb_warn("failed to read mod_sysfile_arena"); 2743 return (DCMD_ERR); 2744 } 2745 2746 while (sysp != NULL) { 2747 var[0] = '\0'; 2748 val[0] = '\0'; 2749 modname[0] = '\0'; 2750 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2751 mdb_warn("couldn't read sysparam %p", sysp); 2752 return (DCMD_ERR); 2753 } 2754 if (sys.sys_modnam != NULL && 2755 mdb_readstr(modname, 256, 2756 (uintptr_t)sys.sys_modnam) == -1) { 2757 mdb_warn("couldn't read modname in %p", sysp); 2758 return (DCMD_ERR); 2759 } 2760 if (sys.sys_ptr != NULL && 2761 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2762 mdb_warn("couldn't read ptr in %p", sysp); 2763 return (DCMD_ERR); 2764 } 2765 if (sys.sys_op != SETOP_NONE) { 2766 /* 2767 * Is this an int or a string? We determine this 2768 * by checking whether straddr is contained in 2769 * mod_sysfile_arena. If so, the walker will set 2770 * straddr to NULL. 2771 */ 2772 straddr = (void *)(uintptr_t)sys.sys_info; 2773 if (sys.sys_op == SETOP_ASSIGN && 2774 sys.sys_info != 0 && 2775 mdb_pwalk("vmem_seg", 2776 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2777 (uintptr_t)mod_sysfile_arena) == 0 && 2778 straddr == NULL && 2779 mdb_readstr(strval, 256, 2780 (uintptr_t)sys.sys_info) != -1) { 2781 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2782 strval); 2783 } else { 2784 (void) mdb_snprintf(val, sizeof (val), 2785 "0x%llx [0t%llu]", sys.sys_info, 2786 sys.sys_info); 2787 } 2788 } 2789 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2790 modname, modname[0] == '\0' ? "" : ":", 2791 var, sysfile_ops[sys.sys_op], val); 2792 2793 sysp = sys.sys_next; 2794 } 2795 2796 return (DCMD_OK); 2797 } 2798 2799 /* 2800 * Dump a taskq_ent_t given its address. 2801 */ 2802 /*ARGSUSED*/ 2803 int 2804 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2805 { 2806 taskq_ent_t taskq_ent; 2807 GElf_Sym sym; 2808 char buf[MDB_SYM_NAMLEN+1]; 2809 2810 2811 if (!(flags & DCMD_ADDRSPEC)) { 2812 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2813 return (DCMD_USAGE); 2814 } 2815 2816 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2817 mdb_warn("failed to read taskq_ent_t at %p", addr); 2818 return (DCMD_ERR); 2819 } 2820 2821 if (DCMD_HDRSPEC(flags)) { 2822 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2823 "ENTRY", "ARG", "FUNCTION"); 2824 } 2825 2826 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2827 buf, sizeof (buf), &sym) == -1) { 2828 (void) strcpy(buf, "????"); 2829 } 2830 2831 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2832 2833 return (DCMD_OK); 2834 } 2835 2836 /* 2837 * Given the address of the (taskq_t) task queue head, walk the queue listing 2838 * the address of every taskq_ent_t. 2839 */ 2840 int 2841 taskq_walk_init(mdb_walk_state_t *wsp) 2842 { 2843 taskq_t tq_head; 2844 2845 2846 if (wsp->walk_addr == NULL) { 2847 mdb_warn("start address required\n"); 2848 return (WALK_ERR); 2849 } 2850 2851 2852 /* 2853 * Save the address of the list head entry. This terminates the list. 2854 */ 2855 wsp->walk_data = (void *) 2856 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2857 2858 2859 /* 2860 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2861 */ 2862 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2863 -1) { 2864 mdb_warn("failed to read taskq list head at %p", 2865 wsp->walk_addr); 2866 } 2867 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2868 2869 2870 /* 2871 * Check for null list (next=head) 2872 */ 2873 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2874 return (WALK_DONE); 2875 } 2876 2877 return (WALK_NEXT); 2878 } 2879 2880 2881 int 2882 taskq_walk_step(mdb_walk_state_t *wsp) 2883 { 2884 taskq_ent_t tq_ent; 2885 int status; 2886 2887 2888 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2889 -1) { 2890 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2891 return (DCMD_ERR); 2892 } 2893 2894 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2895 wsp->walk_cbdata); 2896 2897 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2898 2899 2900 /* Check if we're at the last element (next=head) */ 2901 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2902 return (WALK_DONE); 2903 } 2904 2905 return (status); 2906 } 2907 2908 int 2909 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2910 { 2911 2912 if (*didp == thr->t_did) { 2913 mdb_printf("%p\n", addr); 2914 return (WALK_DONE); 2915 } else 2916 return (WALK_NEXT); 2917 } 2918 2919 /*ARGSUSED*/ 2920 int 2921 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2922 { 2923 const mdb_arg_t *argp = &argv[0]; 2924 kt_did_t did; 2925 2926 if (argc != 1) 2927 return (DCMD_USAGE); 2928 2929 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2930 2931 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2932 mdb_warn("failed to walk thread"); 2933 return (DCMD_ERR); 2934 2935 } 2936 return (DCMD_OK); 2937 2938 } 2939 2940 static int 2941 errorq_walk_init(mdb_walk_state_t *wsp) 2942 { 2943 if (wsp->walk_addr == NULL && 2944 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2945 mdb_warn("failed to read errorq_list"); 2946 return (WALK_ERR); 2947 } 2948 2949 return (WALK_NEXT); 2950 } 2951 2952 static int 2953 errorq_walk_step(mdb_walk_state_t *wsp) 2954 { 2955 uintptr_t addr = wsp->walk_addr; 2956 errorq_t eq; 2957 2958 if (addr == NULL) 2959 return (WALK_DONE); 2960 2961 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2962 mdb_warn("failed to read errorq at %p", addr); 2963 return (WALK_ERR); 2964 } 2965 2966 wsp->walk_addr = (uintptr_t)eq.eq_next; 2967 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2968 } 2969 2970 typedef struct eqd_walk_data { 2971 uintptr_t *eqd_stack; 2972 void *eqd_buf; 2973 ulong_t eqd_qpos; 2974 ulong_t eqd_qlen; 2975 size_t eqd_size; 2976 } eqd_walk_data_t; 2977 2978 /* 2979 * In order to walk the list of pending error queue elements, we push the 2980 * addresses of the corresponding data buffers in to the eqd_stack array. 2981 * The error lists are in reverse chronological order when iterating using 2982 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2983 * walker client gets addresses in order from oldest error to newest error. 2984 */ 2985 static void 2986 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2987 { 2988 errorq_elem_t eqe; 2989 2990 while (addr != NULL) { 2991 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2992 mdb_warn("failed to read errorq element at %p", addr); 2993 break; 2994 } 2995 2996 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2997 mdb_warn("errorq is overfull -- more than %lu " 2998 "elems found\n", eqdp->eqd_qlen); 2999 break; 3000 } 3001 3002 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3003 addr = (uintptr_t)eqe.eqe_prev; 3004 } 3005 } 3006 3007 static int 3008 eqd_walk_init(mdb_walk_state_t *wsp) 3009 { 3010 eqd_walk_data_t *eqdp; 3011 errorq_elem_t eqe, *addr; 3012 errorq_t eq; 3013 ulong_t i; 3014 3015 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3016 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3017 return (WALK_ERR); 3018 } 3019 3020 if (eq.eq_ptail != NULL && 3021 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3022 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3023 return (WALK_ERR); 3024 } 3025 3026 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3027 wsp->walk_data = eqdp; 3028 3029 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3030 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3031 eqdp->eqd_qlen = eq.eq_qlen; 3032 eqdp->eqd_qpos = 0; 3033 eqdp->eqd_size = eq.eq_size; 3034 3035 /* 3036 * The newest elements in the queue are on the pending list, so we 3037 * push those on to our stack first. 3038 */ 3039 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3040 3041 /* 3042 * If eq_ptail is set, it may point to a subset of the errors on the 3043 * pending list in the event a casptr() failed; if ptail's data is 3044 * already in our stack, NULL out eq_ptail and ignore it. 3045 */ 3046 if (eq.eq_ptail != NULL) { 3047 for (i = 0; i < eqdp->eqd_qpos; i++) { 3048 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3049 eq.eq_ptail = NULL; 3050 break; 3051 } 3052 } 3053 } 3054 3055 /* 3056 * If eq_phead is set, it has the processing list in order from oldest 3057 * to newest. Use this to recompute eq_ptail as best we can and then 3058 * we nicely fall into eqd_push_list() of eq_ptail below. 3059 */ 3060 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3061 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3062 eq.eq_ptail = addr; 3063 3064 /* 3065 * The oldest elements in the queue are on the processing list, subject 3066 * to machinations in the if-clauses above. Push any such elements. 3067 */ 3068 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3069 return (WALK_NEXT); 3070 } 3071 3072 static int 3073 eqd_walk_step(mdb_walk_state_t *wsp) 3074 { 3075 eqd_walk_data_t *eqdp = wsp->walk_data; 3076 uintptr_t addr; 3077 3078 if (eqdp->eqd_qpos == 0) 3079 return (WALK_DONE); 3080 3081 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3082 3083 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3084 mdb_warn("failed to read errorq data at %p", addr); 3085 return (WALK_ERR); 3086 } 3087 3088 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3089 } 3090 3091 static void 3092 eqd_walk_fini(mdb_walk_state_t *wsp) 3093 { 3094 eqd_walk_data_t *eqdp = wsp->walk_data; 3095 3096 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3097 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3098 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3099 } 3100 3101 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3102 3103 static int 3104 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3105 { 3106 int i; 3107 errorq_t eq; 3108 uint_t opt_v = FALSE; 3109 3110 if (!(flags & DCMD_ADDRSPEC)) { 3111 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3112 mdb_warn("can't walk 'errorq'"); 3113 return (DCMD_ERR); 3114 } 3115 return (DCMD_OK); 3116 } 3117 3118 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3119 argc -= i; 3120 argv += i; 3121 3122 if (argc != 0) 3123 return (DCMD_USAGE); 3124 3125 if (opt_v || DCMD_HDRSPEC(flags)) { 3126 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3127 "ADDR", "NAME", "S", "V", "N"); 3128 if (!opt_v) { 3129 mdb_printf("%7s %7s %7s%</u>\n", 3130 "ACCEPT", "DROP", "LOG"); 3131 } else { 3132 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3133 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3134 } 3135 } 3136 3137 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3138 mdb_warn("failed to read errorq at %p", addr); 3139 return (DCMD_ERR); 3140 } 3141 3142 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3143 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3144 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3145 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3146 3147 if (!opt_v) { 3148 mdb_printf("%7llu %7llu %7llu\n", 3149 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3150 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3151 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3152 } else { 3153 mdb_printf("%5s %6lu %6lu %3u %a\n", 3154 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3155 mdb_printf("%38s\n%41s" 3156 "%12s %llu\n" 3157 "%53s %llu\n" 3158 "%53s %llu\n" 3159 "%53s %llu\n" 3160 "%53s %llu\n" 3161 "%53s %llu\n" 3162 "%53s %llu\n" 3163 "%53s %llu\n\n", 3164 "|", "+-> ", 3165 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3166 "DROPPED", EQKSVAL(eq, eqk_dropped), 3167 "LOGGED", EQKSVAL(eq, eqk_logged), 3168 "RESERVED", EQKSVAL(eq, eqk_reserved), 3169 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3170 "COMMITTED", EQKSVAL(eq, eqk_committed), 3171 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3172 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3173 } 3174 3175 return (DCMD_OK); 3176 } 3177 3178 /*ARGSUSED*/ 3179 static int 3180 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3181 { 3182 cpu_t panic_cpu; 3183 kthread_t *panic_thread; 3184 void *buf; 3185 panic_data_t *pd; 3186 int i, n; 3187 3188 if (!mdb_prop_postmortem) { 3189 mdb_warn("panicinfo can only be run on a system " 3190 "dump; see dumpadm(1M)\n"); 3191 return (DCMD_ERR); 3192 } 3193 3194 if (flags & DCMD_ADDRSPEC || argc != 0) 3195 return (DCMD_USAGE); 3196 3197 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3198 mdb_warn("failed to read 'panic_cpu'"); 3199 else 3200 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3201 3202 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3203 mdb_warn("failed to read 'panic_thread'"); 3204 else 3205 mdb_printf("%16s %?p\n", "thread", panic_thread); 3206 3207 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3208 pd = (panic_data_t *)buf; 3209 3210 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3211 pd->pd_version != PANICBUFVERS) { 3212 mdb_warn("failed to read 'panicbuf'"); 3213 mdb_free(buf, PANICBUFSIZE); 3214 return (DCMD_ERR); 3215 } 3216 3217 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3218 3219 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3220 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3221 3222 for (i = 0; i < n; i++) 3223 mdb_printf("%16s %?llx\n", 3224 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3225 3226 mdb_free(buf, PANICBUFSIZE); 3227 return (DCMD_OK); 3228 } 3229 3230 static const mdb_dcmd_t dcmds[] = { 3231 3232 /* from genunix.c */ 3233 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3234 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3235 { "binding_hash_entry", ":", "print driver names hash table entry", 3236 binding_hash_entry }, 3237 { "callout", NULL, "print callout table", callout }, 3238 { "class", NULL, "print process scheduler classes", class }, 3239 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3240 { "did2thread", "? kt_did", "find kernel thread for this id", 3241 did2thread }, 3242 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3243 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3244 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3245 { "lminfo", NULL, "print lock manager information", lminfo }, 3246 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3247 { "panicinfo", NULL, "print panic information", panicinfo }, 3248 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3249 { "pmap", ":[-q]", "print process memory map", pmap }, 3250 { "project", NULL, "display kernel project(s)", project }, 3251 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3252 { "pgrep", "[-x] [-n | -o] pattern", 3253 "pattern match against all processes", pgrep }, 3254 { "ptree", NULL, "print process tree", ptree }, 3255 { "seg", ":", "print address space segment", seg }, 3256 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3257 sysevent}, 3258 { "sysevent_channel", "?", "print sysevent channel database", 3259 sysevent_channel}, 3260 { "sysevent_class_list", ":", "print sysevent class list", 3261 sysevent_class_list}, 3262 { "sysevent_subclass_list", ":", 3263 "print sysevent subclass list", sysevent_subclass_list}, 3264 { "system", NULL, "print contents of /etc/system file", sysfile }, 3265 { "task", NULL, "display kernel task(s)", task }, 3266 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3267 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3268 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3269 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3270 whereopen }, 3271 3272 /* from zone.c */ 3273 { "zone", "?", "display kernel zone(s)", zoneprt }, 3274 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3275 3276 /* from bio.c */ 3277 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3278 3279 /* from contract.c */ 3280 { "contract", "?", "display a contract", cmd_contract }, 3281 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3282 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3283 3284 /* from cpupart.c */ 3285 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3286 3287 /* from cyclic.c */ 3288 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3289 { "cycid", "?", "dump a cyclic id", cycid }, 3290 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3291 { "cyclic", ":", "developer information", cyclic }, 3292 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3293 3294 /* from devinfo.c */ 3295 { "devbindings", "?[-qs] [device-name | major-num]", 3296 "print devinfo nodes bound to device-name or major-num", 3297 devbindings, devinfo_help }, 3298 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3299 devinfo_help }, 3300 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3301 devinfo_audit }, 3302 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3303 devinfo_audit_log }, 3304 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3305 devinfo_audit_node }, 3306 { "devinfo2driver", ":", "find driver name for this devinfo node", 3307 devinfo2driver }, 3308 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3309 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3310 dev2major }, 3311 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3312 dev2minor }, 3313 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3314 devt }, 3315 { "major2name", "?<major-num>", "convert major number to dev name", 3316 major2name }, 3317 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3318 minornodes }, 3319 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3320 modctl2devinfo }, 3321 { "name2major", "<dev-name>", "convert dev name to major number", 3322 name2major }, 3323 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3324 { "softstate", ":<instance>", "retrieve soft-state pointer", 3325 softstate }, 3326 { "devinfo_fm", ":", "devinfo fault managment configuration", 3327 devinfo_fm }, 3328 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3329 devinfo_fmce}, 3330 3331 /* from fm.c */ 3332 { "ereport", "[-v]", "print ereports logged in dump", 3333 ereport }, 3334 3335 /* from findstack.c */ 3336 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3337 { "findstack_debug", NULL, "toggle findstack debugging", 3338 findstack_debug }, 3339 3340 /* from kgrep.c + genunix.c */ 3341 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3342 kgrep_help }, 3343 3344 /* from kmem.c */ 3345 { "allocdby", ":", "given a thread, print its allocated buffers", 3346 allocdby }, 3347 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3348 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3349 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3350 { "kmalog", "?[ fail | slab ]", 3351 "display kmem transaction log and stack traces", kmalog }, 3352 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3353 kmastat }, 3354 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3355 "of the kmem allocator", kmausers, kmausers_help }, 3356 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3357 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3358 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3359 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3360 kmem_verify }, 3361 { "vmem", "?", "print a vmem_t", vmem }, 3362 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3363 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3364 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3365 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3366 whatis_help }, 3367 { "whatthread", ":[-v]", "print threads whose stack contains the " 3368 "given address", whatthread }, 3369 3370 /* from ldi.c */ 3371 { "ldi_handle", "?[-i]", "display a layered driver handle", 3372 ldi_handle, ldi_handle_help }, 3373 { "ldi_ident", NULL, "display a layered driver identifier", 3374 ldi_ident, ldi_ident_help }, 3375 3376 /* from leaky.c + leaky_subr.c */ 3377 { "findleaks", FINDLEAKS_USAGE, 3378 "search for potential kernel memory leaks", findleaks, 3379 findleaks_help }, 3380 3381 /* from lgrp.c */ 3382 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3383 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3384 3385 /* from log.c */ 3386 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3387 3388 /* from memory.c */ 3389 { "page", "?", "display a summarized page_t", page }, 3390 { "memstat", NULL, "display memory usage summary", memstat }, 3391 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3392 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3393 3394 /* from mmd.c */ 3395 { "multidata", ":[-sv]", "display a summarized multidata_t", 3396 multidata }, 3397 { "pattbl", ":", "display a summarized multidata attribute table", 3398 pattbl }, 3399 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3400 pattr2multidata }, 3401 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3402 pdesc2slab }, 3403 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3404 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3405 slab2multidata }, 3406 3407 /* from modhash.c */ 3408 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3409 "display information about one or all mod_hash structures", 3410 modhash, modhash_help }, 3411 { "modent", ":[-k | -v | -t type]", 3412 "display information about a mod_hash_entry", modent, 3413 modent_help }, 3414 3415 /* from net.c */ 3416 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3417 mi }, 3418 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3419 "show network statistics", netstat }, 3420 { "sonode", "?[-f inet | inet6 | unix | #] " 3421 "[-t stream | dgram | raw | #] [-p #]", 3422 "filter and display sonode", sonode }, 3423 3424 /* from netstack.c */ 3425 { "netstack", "", "show stack instances", netstack }, 3426 3427 /* from nvpair.c */ 3428 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3429 nvpair_print }, 3430 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3431 print_nvlist }, 3432 3433 /* from pg.c */ 3434 { "pg", "?[-q]", "display a pg", pg}, 3435 /* from group.c */ 3436 { "group", "?[-q]", "display a group", group}, 3437 3438 /* from log.c */ 3439 /* from rctl.c */ 3440 { "rctl_dict", "?", "print systemwide default rctl definitions", 3441 rctl_dict }, 3442 { "rctl_list", ":[handle]", "print rctls for the given proc", 3443 rctl_list }, 3444 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3445 rctl }, 3446 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3447 "sequence", rctl_validate }, 3448 3449 /* from sobj.c */ 3450 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3451 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3452 mutex_help }, 3453 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3454 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3455 { "turnstile", "?", "display a turnstile", turnstile }, 3456 3457 /* from stream.c */ 3458 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3459 "print an mblk", mblk_prt, mblk_help }, 3460 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3461 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3462 mblk2dblk }, 3463 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3464 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3465 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3466 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3467 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3468 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3469 "filter and display STREAM queue", queue, queue_help }, 3470 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3471 "filter and display STREAM head", stdata, stdata_help }, 3472 { "str2mate", ":", "print mate of this stream", str2mate }, 3473 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3474 { "stream", ":", "display STREAM", stream }, 3475 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3476 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3477 "filter and display STREAM sync queue", syncq, syncq_help }, 3478 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3479 3480 /* from thread.c */ 3481 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3482 thread_help }, 3483 { "threadlist", "?[-v [count]]", 3484 "display threads and associated C stack traces", threadlist, 3485 threadlist_help }, 3486 3487 /* from tsd.c */ 3488 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3489 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3490 3491 /* 3492 * typegraph does not work under kmdb, as it requires too much memory 3493 * for its internal data structures. 3494 */ 3495 #ifndef _KMDB 3496 /* from typegraph.c */ 3497 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3498 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3499 findfalse }, 3500 { "typegraph", NULL, "build type graph", typegraph }, 3501 { "istype", ":type", "manually set object type", istype }, 3502 { "notype", ":", "manually clear object type", notype }, 3503 { "whattype", ":", "determine object type", whattype }, 3504 #endif 3505 3506 /* from vfs.c */ 3507 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3508 { "pfiles", ":[-fp]", "print process file information", pfiles, 3509 pfiles_help }, 3510 3511 /* from mdi.c */ 3512 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3513 "and detailed pi_prop list", mdipi }, 3514 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3515 mdiprops }, 3516 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3517 "list all paths", mdiphci }, 3518 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3519 "all phcis", mdivhci }, 3520 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3521 "client links", mdiclient_paths }, 3522 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3523 "phci links", mdiphci_paths }, 3524 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3525 mdiphcis }, 3526 3527 { NULL } 3528 }; 3529 3530 static const mdb_walker_t walkers[] = { 3531 3532 /* from genunix.c */ 3533 { "anon", "given an amp, list of anon structures", 3534 anon_walk_init, anon_walk_step, anon_walk_fini }, 3535 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3536 { "ereportq_dump", "walk list of ereports in dump error queue", 3537 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3538 { "ereportq_pend", "walk list of ereports in pending error queue", 3539 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3540 { "errorq", "walk list of system error queues", 3541 errorq_walk_init, errorq_walk_step, NULL }, 3542 { "errorq_data", "walk pending error queue data buffers", 3543 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3544 { "allfile", "given a proc pointer, list all file pointers", 3545 file_walk_init, allfile_walk_step, file_walk_fini }, 3546 { "file", "given a proc pointer, list of open file pointers", 3547 file_walk_init, file_walk_step, file_walk_fini }, 3548 { "lock_descriptor", "walk lock_descriptor_t structures", 3549 ld_walk_init, ld_walk_step, NULL }, 3550 { "lock_graph", "walk lock graph", 3551 lg_walk_init, lg_walk_step, NULL }, 3552 { "port", "given a proc pointer, list of created event ports", 3553 port_walk_init, port_walk_step, NULL }, 3554 { "portev", "given a port pointer, list of events in the queue", 3555 portev_walk_init, portev_walk_step, portev_walk_fini }, 3556 { "proc", "list of active proc_t structures", 3557 proc_walk_init, proc_walk_step, proc_walk_fini }, 3558 { "projects", "walk a list of kernel projects", 3559 project_walk_init, project_walk_step, NULL }, 3560 { "seg", "given an as, list of segments", 3561 seg_walk_init, avl_walk_step, avl_walk_fini }, 3562 { "sysevent_pend", "walk sysevent pending queue", 3563 sysevent_pend_walk_init, sysevent_walk_step, 3564 sysevent_walk_fini}, 3565 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3566 sysevent_walk_step, sysevent_walk_fini}, 3567 { "sysevent_channel", "walk sysevent channel subscriptions", 3568 sysevent_channel_walk_init, sysevent_channel_walk_step, 3569 sysevent_channel_walk_fini}, 3570 { "sysevent_class_list", "walk sysevent subscription's class list", 3571 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3572 sysevent_class_list_walk_fini}, 3573 { "sysevent_subclass_list", 3574 "walk sysevent subscription's subclass list", 3575 sysevent_subclass_list_walk_init, 3576 sysevent_subclass_list_walk_step, 3577 sysevent_subclass_list_walk_fini}, 3578 { "task", "given a task pointer, walk its processes", 3579 task_walk_init, task_walk_step, NULL }, 3580 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3581 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3582 3583 /* from avl.c */ 3584 { AVL_WALK_NAME, AVL_WALK_DESC, 3585 avl_walk_init, avl_walk_step, avl_walk_fini }, 3586 3587 /* from zone.c */ 3588 { "zone", "walk a list of kernel zones", 3589 zone_walk_init, zone_walk_step, NULL }, 3590 { "zsd", "walk list of zsd entries for a zone", 3591 zsd_walk_init, zsd_walk_step, NULL }, 3592 3593 /* from bio.c */ 3594 { "buf", "walk the bio buf hash", 3595 buf_walk_init, buf_walk_step, buf_walk_fini }, 3596 3597 /* from contract.c */ 3598 { "contract", "walk all contracts, or those of the specified type", 3599 ct_walk_init, generic_walk_step, NULL }, 3600 { "ct_event", "walk events on a contract event queue", 3601 ct_event_walk_init, generic_walk_step, NULL }, 3602 { "ct_listener", "walk contract event queue listeners", 3603 ct_listener_walk_init, generic_walk_step, NULL }, 3604 3605 /* from cpupart.c */ 3606 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3607 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3608 NULL }, 3609 { "cpupart_walk", "walk the set of cpu partitions", 3610 cpupart_walk_init, cpupart_walk_step, NULL }, 3611 3612 /* from ctxop.c */ 3613 { "ctxop", "walk list of context ops on a thread", 3614 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3615 3616 /* from cyclic.c */ 3617 { "cyccpu", "walk per-CPU cyc_cpu structures", 3618 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3619 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3620 cycomni_walk_init, cycomni_walk_step, NULL }, 3621 { "cyctrace", "walk cyclic trace buffer", 3622 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3623 3624 /* from devinfo.c */ 3625 { "binding_hash", "walk all entries in binding hash table", 3626 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3627 { "devinfo", "walk devinfo tree or subtree", 3628 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3629 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3630 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3631 devinfo_audit_log_walk_fini}, 3632 { "devinfo_audit_node", "walk per-devinfo audit history", 3633 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3634 devinfo_audit_node_walk_fini}, 3635 { "devinfo_children", "walk children of devinfo node", 3636 devinfo_children_walk_init, devinfo_children_walk_step, 3637 devinfo_children_walk_fini }, 3638 { "devinfo_parents", "walk ancestors of devinfo node", 3639 devinfo_parents_walk_init, devinfo_parents_walk_step, 3640 devinfo_parents_walk_fini }, 3641 { "devinfo_siblings", "walk siblings of devinfo node", 3642 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3643 { "devi_next", "walk devinfo list", 3644 NULL, devi_next_walk_step, NULL }, 3645 { "devnames", "walk devnames array", 3646 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3647 { "minornode", "given a devinfo node, walk minor nodes", 3648 minornode_walk_init, minornode_walk_step, NULL }, 3649 { "softstate", 3650 "given an i_ddi_soft_state*, list all in-use driver stateps", 3651 soft_state_walk_init, soft_state_walk_step, 3652 NULL, NULL }, 3653 { "softstate_all", 3654 "given an i_ddi_soft_state*, list all driver stateps", 3655 soft_state_walk_init, soft_state_all_walk_step, 3656 NULL, NULL }, 3657 { "devinfo_fmc", 3658 "walk a fault management handle cache active list", 3659 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3660 3661 /* from kmem.c */ 3662 { "allocdby", "given a thread, walk its allocated bufctls", 3663 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3664 { "bufctl", "walk a kmem cache's bufctls", 3665 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3666 { "bufctl_history", "walk the available history of a bufctl", 3667 bufctl_history_walk_init, bufctl_history_walk_step, 3668 bufctl_history_walk_fini }, 3669 { "freedby", "given a thread, walk its freed bufctls", 3670 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3671 { "freectl", "walk a kmem cache's free bufctls", 3672 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3673 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3674 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3675 { "freemem", "walk a kmem cache's free memory", 3676 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3677 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3678 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3679 { "kmem", "walk a kmem cache", 3680 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3681 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3682 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3683 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3684 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3685 { "kmem_log", "walk the kmem transaction log", 3686 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3687 { "kmem_slab", "given a kmem cache, walk its slabs", 3688 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3689 { "kmem_slab_partial", 3690 "given a kmem cache, walk its partially allocated slabs (min 1)", 3691 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3692 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3693 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3694 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3695 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3696 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3697 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3698 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3699 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3700 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3701 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3702 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3703 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3704 3705 /* from ldi.c */ 3706 { "ldi_handle", "walk the layered driver handle hash", 3707 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3708 { "ldi_ident", "walk the layered driver identifier hash", 3709 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3710 3711 /* from leaky.c + leaky_subr.c */ 3712 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3713 "stack trace", 3714 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3715 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3716 "leaks w/ same stack trace", 3717 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3718 3719 /* from lgrp.c */ 3720 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3721 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3722 { "lgrptbl", "walk lgroup table", 3723 lgrp_walk_init, lgrp_walk_step, NULL }, 3724 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3725 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3726 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3727 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3728 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3729 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3730 3731 /* from group.c */ 3732 { "group", "walk all elements of a group", 3733 group_walk_init, group_walk_step, NULL }, 3734 3735 /* from list.c */ 3736 { LIST_WALK_NAME, LIST_WALK_DESC, 3737 list_walk_init, list_walk_step, list_walk_fini }, 3738 3739 /* from memory.c */ 3740 { "page", "walk all pages, or those from the specified vnode", 3741 page_walk_init, page_walk_step, page_walk_fini }, 3742 { "memlist", "walk specified memlist", 3743 NULL, memlist_walk_step, NULL }, 3744 { "swapinfo", "walk swapinfo structures", 3745 swap_walk_init, swap_walk_step, NULL }, 3746 3747 /* from mmd.c */ 3748 { "pattr", "walk pattr_t structures", pattr_walk_init, 3749 mmdq_walk_step, mmdq_walk_fini }, 3750 { "pdesc", "walk pdesc_t structures", 3751 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3752 { "pdesc_slab", "walk pdesc_slab_t structures", 3753 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3754 3755 /* from modhash.c */ 3756 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3757 modhash_walk_step, NULL }, 3758 { "modent", "walk list of entries in a given mod_hash", 3759 modent_walk_init, modent_walk_step, modent_walk_fini }, 3760 { "modchain", "walk list of entries in a given mod_hash_entry", 3761 NULL, modchain_walk_step, NULL }, 3762 3763 /* from net.c */ 3764 { "ar", "walk ar_t structures using MI for all stacks", 3765 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 3766 { "icmp", "walk ICMP control structures using MI for all stacks", 3767 mi_payload_walk_init, mi_payload_walk_step, NULL, 3768 &mi_icmp_arg }, 3769 { "ill", "walk ill_t structures using MI for all stacks", 3770 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 3771 3772 { "mi", "given a MI_O, walk the MI", 3773 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3774 { "sonode", "given a sonode, walk its children", 3775 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3776 3777 { "ar_stacks", "walk all the ar_stack_t", 3778 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 3779 { "icmp_stacks", "walk all the icmp_stack_t", 3780 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 3781 { "tcp_stacks", "walk all the tcp_stack_t", 3782 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 3783 { "udp_stacks", "walk all the udp_stack_t", 3784 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 3785 3786 /* from nvpair.c */ 3787 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3788 nvpair_walk_init, nvpair_walk_step, NULL }, 3789 3790 /* from rctl.c */ 3791 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3792 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3793 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3794 rctl_set_walk_step, NULL }, 3795 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3796 rctl_val_walk_init, rctl_val_walk_step }, 3797 3798 /* from sobj.c */ 3799 { "blocked", "walk threads blocked on a given sobj", 3800 blocked_walk_init, blocked_walk_step, NULL }, 3801 { "wchan", "given a wchan, list of blocked threads", 3802 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3803 3804 /* from stream.c */ 3805 { "b_cont", "walk mblk_t list using b_cont", 3806 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3807 { "b_next", "walk mblk_t list using b_next", 3808 mblk_walk_init, b_next_step, mblk_walk_fini }, 3809 { "qlink", "walk queue_t list using q_link", 3810 queue_walk_init, queue_link_step, queue_walk_fini }, 3811 { "qnext", "walk queue_t list using q_next", 3812 queue_walk_init, queue_next_step, queue_walk_fini }, 3813 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3814 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3815 { "readq", "walk read queue side of stdata", 3816 str_walk_init, strr_walk_step, str_walk_fini }, 3817 { "writeq", "walk write queue side of stdata", 3818 str_walk_init, strw_walk_step, str_walk_fini }, 3819 3820 /* from thread.c */ 3821 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3822 deathrow_walk_init, deathrow_walk_step, NULL }, 3823 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3824 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3825 { "cpupart_dispq", 3826 "given a cpupart_t, walk threads in dispatcher queues", 3827 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3828 { "lwp_deathrow", "walk lwp_deathrow", 3829 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3830 { "thread", "global or per-process kthread_t structures", 3831 thread_walk_init, thread_walk_step, thread_walk_fini }, 3832 { "thread_deathrow", "walk threads on thread_deathrow", 3833 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3834 3835 /* from tsd.c */ 3836 { "tsd", "walk list of thread-specific data", 3837 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3838 3839 /* from tsol.c */ 3840 { "tnrh", "walk remote host cache structures", 3841 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3842 { "tnrhtp", "walk remote host template structures", 3843 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3844 3845 /* 3846 * typegraph does not work under kmdb, as it requires too much memory 3847 * for its internal data structures. 3848 */ 3849 #ifndef _KMDB 3850 /* from typegraph.c */ 3851 { "typeconflict", "walk buffers with conflicting type inferences", 3852 typegraph_walk_init, typeconflict_walk_step }, 3853 { "typeunknown", "walk buffers with unknown types", 3854 typegraph_walk_init, typeunknown_walk_step }, 3855 #endif 3856 3857 /* from vfs.c */ 3858 { "vfs", "walk file system list", 3859 vfs_walk_init, vfs_walk_step }, 3860 3861 /* from mdi.c */ 3862 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3863 mdi_pi_client_link_walk_init, 3864 mdi_pi_client_link_walk_step, 3865 mdi_pi_client_link_walk_fini }, 3866 3867 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3868 mdi_pi_phci_link_walk_init, 3869 mdi_pi_phci_link_walk_step, 3870 mdi_pi_phci_link_walk_fini }, 3871 3872 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3873 mdi_phci_ph_next_walk_init, 3874 mdi_phci_ph_next_walk_step, 3875 mdi_phci_ph_next_walk_fini }, 3876 3877 /* from netstack.c */ 3878 { "netstack", "walk a list of kernel netstacks", 3879 netstack_walk_init, netstack_walk_step, NULL }, 3880 3881 { NULL } 3882 }; 3883 3884 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3885 3886 const mdb_modinfo_t * 3887 _mdb_init(void) 3888 { 3889 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3890 mdb_warn("failed to read 'top_devinfo'"); 3891 return (NULL); 3892 } 3893 3894 if (findstack_init() != DCMD_OK) 3895 return (NULL); 3896 3897 kmem_init(); 3898 3899 return (&modinfo); 3900 } 3901 3902 void 3903 _mdb_fini(void) 3904 { 3905 /* 3906 * Force ::findleaks to let go any cached memory 3907 */ 3908 leaky_cleanup(1); 3909 } 3910