xref: /titanic_44/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision 3c4993fb5a74112f361d71dab20997bdc749a7fb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32 
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <vm/seg_vn.h>
53 #include <vm/anon.h>
54 #include <vm/as.h>
55 #include <vm/seg_map.h>
56 #include <sys/dditypes.h>
57 #include <sys/ddi_impldefs.h>
58 #include <sys/sysmacros.h>
59 #include <sys/sysconf.h>
60 #include <sys/task.h>
61 #include <sys/project.h>
62 #include <sys/taskq.h>
63 #include <sys/taskq_impl.h>
64 #include <sys/errorq_impl.h>
65 #include <sys/cred_impl.h>
66 #include <sys/zone.h>
67 #include <sys/panic.h>
68 #include <regex.h>
69 #include <sys/port_impl.h>
70 
71 #include "avl.h"
72 #include "contract.h"
73 #include "cpupart_mdb.h"
74 #include "devinfo.h"
75 #include "leaky.h"
76 #include "lgrp.h"
77 #include "pg.h"
78 #include "group.h"
79 #include "list.h"
80 #include "log.h"
81 #include "kgrep.h"
82 #include "kmem.h"
83 #include "bio.h"
84 #include "streams.h"
85 #include "cyclic.h"
86 #include "findstack.h"
87 #include "ndievents.h"
88 #include "mmd.h"
89 #include "net.h"
90 #include "netstack.h"
91 #include "nvpair.h"
92 #include "ctxop.h"
93 #include "tsd.h"
94 #include "thread.h"
95 #include "memory.h"
96 #include "sobj.h"
97 #include "sysevent.h"
98 #include "rctl.h"
99 #include "tsol.h"
100 #include "typegraph.h"
101 #include "ldi.h"
102 #include "vfs.h"
103 #include "zone.h"
104 #include "modhash.h"
105 #include "mdi.h"
106 #include "fm.h"
107 
108 /*
109  * Surely this is defined somewhere...
110  */
111 #define	NINTR		16
112 
113 #define	KILOS		10
114 #define	MEGS		20
115 #define	GIGS		30
116 
117 #ifndef STACK_BIAS
118 #define	STACK_BIAS	0
119 #endif
120 
121 static char
122 pstat2ch(uchar_t state)
123 {
124 	switch (state) {
125 		case SSLEEP: return ('S');
126 		case SRUN: return ('R');
127 		case SZOMB: return ('Z');
128 		case SIDL: return ('I');
129 		case SONPROC: return ('O');
130 		case SSTOP: return ('T');
131 		case SWAIT: return ('W');
132 		default: return ('?');
133 	}
134 }
135 
136 #define	PS_PRTTHREADS	0x1
137 #define	PS_PRTLWPS	0x2
138 #define	PS_PSARGS	0x4
139 #define	PS_TASKS	0x8
140 #define	PS_PROJECTS	0x10
141 #define	PS_ZONES	0x20
142 
143 static int
144 ps_threadprint(uintptr_t addr, const void *data, void *private)
145 {
146 	const kthread_t *t = (const kthread_t *)data;
147 	uint_t prt_flags = *((uint_t *)private);
148 
149 	static const mdb_bitmask_t t_state_bits[] = {
150 		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
151 		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
152 		{ "TS_RUN",	TS_RUN,		TS_RUN		},
153 		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
154 		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
155 		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
156 		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
157 		{ NULL,		0,		0		}
158 	};
159 
160 	if (prt_flags & PS_PRTTHREADS)
161 		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
162 
163 	if (prt_flags & PS_PRTLWPS)
164 		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
165 
166 	return (WALK_NEXT);
167 }
168 
169 int
170 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
171 {
172 	uint_t prt_flags = 0;
173 	proc_t pr;
174 	struct pid pid, pgid, sid;
175 	sess_t session;
176 	cred_t cred;
177 	task_t tk;
178 	kproject_t pj;
179 	zone_t zn;
180 
181 	if (!(flags & DCMD_ADDRSPEC)) {
182 		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
183 			mdb_warn("can't walk 'proc'");
184 			return (DCMD_ERR);
185 		}
186 		return (DCMD_OK);
187 	}
188 
189 	if (mdb_getopts(argc, argv,
190 	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
191 	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
192 	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
193 	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
194 	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
195 	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
196 		return (DCMD_USAGE);
197 
198 	if (DCMD_HDRSPEC(flags)) {
199 		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
200 		    "S", "PID", "PPID", "PGID", "SID");
201 		if (prt_flags & PS_TASKS)
202 			mdb_printf("%5s ", "TASK");
203 		if (prt_flags & PS_PROJECTS)
204 			mdb_printf("%5s ", "PROJ");
205 		if (prt_flags & PS_ZONES)
206 			mdb_printf("%5s ", "ZONE");
207 		mdb_printf("%6s %10s %?s %s%</u>\n",
208 		    "UID", "FLAGS", "ADDR", "NAME");
209 	}
210 
211 	mdb_vread(&pr, sizeof (pr), addr);
212 	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
213 	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
214 	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
215 	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
216 	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
217 	if (prt_flags & (PS_TASKS | PS_PROJECTS))
218 		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
219 	if (prt_flags & PS_PROJECTS)
220 		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
221 	if (prt_flags & PS_ZONES)
222 		mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
223 
224 	mdb_printf("%c %6d %6d %6d %6d ",
225 	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
226 	    sid.pid_id);
227 	if (prt_flags & PS_TASKS)
228 		mdb_printf("%5d ", tk.tk_tkid);
229 	if (prt_flags & PS_PROJECTS)
230 		mdb_printf("%5d ", pj.kpj_id);
231 	if (prt_flags & PS_ZONES)
232 		mdb_printf("%5d ", zn.zone_id);
233 	mdb_printf("%6d 0x%08x %0?p %s\n",
234 	    cred.cr_uid, pr.p_flag, addr,
235 	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
236 
237 	if (prt_flags & ~PS_PSARGS)
238 		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
239 
240 	return (DCMD_OK);
241 }
242 
243 #define	PG_NEWEST	0x0001
244 #define	PG_OLDEST	0x0002
245 #define	PG_PIPE_OUT	0x0004
246 #define	PG_EXACT_MATCH	0x0008
247 
248 typedef struct pgrep_data {
249 	uint_t pg_flags;
250 	uint_t pg_psflags;
251 	uintptr_t pg_xaddr;
252 	hrtime_t pg_xstart;
253 	const char *pg_pat;
254 #ifndef _KMDB
255 	regex_t pg_reg;
256 #endif
257 } pgrep_data_t;
258 
259 /*ARGSUSED*/
260 static int
261 pgrep_cb(uintptr_t addr, const void *pdata, void *data)
262 {
263 	const proc_t *prp = pdata;
264 	pgrep_data_t *pgp = data;
265 #ifndef _KMDB
266 	regmatch_t pmatch;
267 #endif
268 
269 	/*
270 	 * kmdb doesn't have access to the reg* functions, so we fall back
271 	 * to strstr/strcmp.
272 	 */
273 #ifdef _KMDB
274 	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
275 	    (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
276 	    (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
277 		return (WALK_NEXT);
278 #else
279 	if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
280 		return (WALK_NEXT);
281 
282 	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
283 	    (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
284 		return (WALK_NEXT);
285 #endif
286 
287 	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
288 		hrtime_t start;
289 
290 		start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
291 		    prp->p_user.u_start.tv_nsec;
292 
293 		if (pgp->pg_flags & PG_NEWEST) {
294 			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
295 				pgp->pg_xaddr = addr;
296 				pgp->pg_xstart = start;
297 			}
298 		} else {
299 			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
300 				pgp->pg_xaddr = addr;
301 				pgp->pg_xstart = start;
302 			}
303 		}
304 
305 	} else if (pgp->pg_flags & PG_PIPE_OUT) {
306 		mdb_printf("%p\n", addr);
307 
308 	} else {
309 		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
310 			mdb_warn("can't invoke 'ps'");
311 			return (WALK_DONE);
312 		}
313 		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
314 	}
315 
316 	return (WALK_NEXT);
317 }
318 
319 /*ARGSUSED*/
320 int
321 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
322 {
323 	pgrep_data_t pg;
324 	int i;
325 #ifndef _KMDB
326 	int err;
327 #endif
328 
329 	if (flags & DCMD_ADDRSPEC)
330 		return (DCMD_USAGE);
331 
332 	pg.pg_flags = 0;
333 	pg.pg_xaddr = 0;
334 
335 	i = mdb_getopts(argc, argv,
336 	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
337 	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
338 	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
339 	    NULL);
340 
341 	argc -= i;
342 	argv += i;
343 
344 	if (argc != 1)
345 		return (DCMD_USAGE);
346 
347 	/*
348 	 * -n and -o are mutually exclusive.
349 	 */
350 	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
351 		return (DCMD_USAGE);
352 
353 	if (argv->a_type != MDB_TYPE_STRING)
354 		return (DCMD_USAGE);
355 
356 	if (flags & DCMD_PIPE_OUT)
357 		pg.pg_flags |= PG_PIPE_OUT;
358 
359 	pg.pg_pat = argv->a_un.a_str;
360 	if (DCMD_HDRSPEC(flags))
361 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
362 	else
363 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
364 
365 #ifndef _KMDB
366 	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
367 		size_t nbytes;
368 		char *buf;
369 
370 		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
371 		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
372 		(void) regerror(err, &pg.pg_reg, buf, nbytes);
373 		mdb_warn("%s\n", buf);
374 
375 		return (DCMD_ERR);
376 	}
377 #endif
378 
379 	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
380 		mdb_warn("can't walk 'proc'");
381 		return (DCMD_ERR);
382 	}
383 
384 	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
385 		if (pg.pg_flags & PG_PIPE_OUT) {
386 			mdb_printf("%p\n", pg.pg_xaddr);
387 		} else {
388 			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
389 			    0, NULL) != 0) {
390 				mdb_warn("can't invoke 'ps'");
391 				return (DCMD_ERR);
392 			}
393 		}
394 	}
395 
396 	return (DCMD_OK);
397 }
398 
399 int
400 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
401 {
402 	task_t tk;
403 	kproject_t pj;
404 
405 	if (!(flags & DCMD_ADDRSPEC)) {
406 		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
407 			mdb_warn("can't walk task_cache");
408 			return (DCMD_ERR);
409 		}
410 		return (DCMD_OK);
411 	}
412 	if (DCMD_HDRSPEC(flags)) {
413 		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
414 		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
415 	}
416 	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
417 		mdb_warn("can't read task_t structure at %p", addr);
418 		return (DCMD_ERR);
419 	}
420 	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
421 		mdb_warn("can't read project_t structure at %p", addr);
422 		return (DCMD_ERR);
423 	}
424 	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
425 	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
426 	    tk.tk_flags);
427 	return (DCMD_OK);
428 }
429 
430 int
431 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
432 {
433 	kproject_t pj;
434 
435 	if (!(flags & DCMD_ADDRSPEC)) {
436 		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
437 			mdb_warn("can't walk projects");
438 			return (DCMD_ERR);
439 		}
440 		return (DCMD_OK);
441 	}
442 	if (DCMD_HDRSPEC(flags)) {
443 		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
444 		    "ADDR", "PROJID", "ZONEID", "REFCNT");
445 	}
446 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
447 		mdb_warn("can't read kproject_t structure at %p", addr);
448 		return (DCMD_ERR);
449 	}
450 	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
451 	    pj.kpj_count);
452 	return (DCMD_OK);
453 }
454 
455 /*ARGSUSED*/
456 int
457 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
458 {
459 	callout_table_t	*co_ktable[CALLOUT_TABLES];
460 	int co_kfanout;
461 	callout_table_t co_table;
462 	callout_t co_callout;
463 	callout_t *co_ptr;
464 	int co_id;
465 	clock_t lbolt;
466 	int i, j, k;
467 	const char *lbolt_sym;
468 	uintptr_t panicstr;
469 
470 	if ((flags & DCMD_ADDRSPEC) || argc != 0)
471 		return (DCMD_USAGE);
472 
473 	if (mdb_readvar(&panicstr, "panicstr") == -1 ||
474 	    panicstr == NULL) {
475 		lbolt_sym = "lbolt";
476 	} else {
477 		lbolt_sym = "panic_lbolt";
478 	}
479 
480 	if (mdb_readvar(&lbolt, lbolt_sym) == -1) {
481 		mdb_warn("failed to read '%s'", lbolt_sym);
482 		return (DCMD_ERR);
483 	}
484 
485 	if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) {
486 		mdb_warn("failed to read callout_fanout");
487 		return (DCMD_ERR);
488 	}
489 
490 	if (mdb_readvar(&co_ktable, "callout_table") == -1) {
491 		mdb_warn("failed to read callout_table");
492 		return (DCMD_ERR);
493 	}
494 
495 	mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n",
496 	    "FUNCTION", "ARGUMENT", "ID", "TIME");
497 
498 	for (i = 0; i < CALLOUT_NTYPES; i++) {
499 		for (j = 0; j < co_kfanout; j++) {
500 
501 			co_id = CALLOUT_TABLE(i, j);
502 
503 			if (mdb_vread(&co_table, sizeof (co_table),
504 			    (uintptr_t)co_ktable[co_id]) == -1) {
505 				mdb_warn("failed to read table at %p",
506 				    (uintptr_t)co_ktable[co_id]);
507 				continue;
508 			}
509 
510 			for (k = 0; k < CALLOUT_BUCKETS; k++) {
511 				co_ptr = co_table.ct_idhash[k];
512 
513 				while (co_ptr != NULL) {
514 					mdb_vread(&co_callout,
515 					    sizeof (co_callout),
516 					    (uintptr_t)co_ptr);
517 
518 					mdb_printf("%-24a %0?p %0?lx %?lx "
519 					    "(T%+ld)\n", co_callout.c_func,
520 					    co_callout.c_arg, co_callout.c_xid,
521 					    co_callout.c_runtime,
522 					    co_callout.c_runtime - lbolt);
523 
524 					co_ptr = co_callout.c_idnext;
525 				}
526 			}
527 		}
528 	}
529 
530 	return (DCMD_OK);
531 }
532 
533 /*ARGSUSED*/
534 int
535 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
536 {
537 	long num_classes, i;
538 	sclass_t *class_tbl;
539 	GElf_Sym g_sclass;
540 	char class_name[PC_CLNMSZ];
541 	size_t tbl_size;
542 
543 	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
544 		mdb_warn("failed to find symbol sclass\n");
545 		return (DCMD_ERR);
546 	}
547 
548 	tbl_size = (size_t)g_sclass.st_size;
549 	num_classes = tbl_size / (sizeof (sclass_t));
550 	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
551 
552 	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
553 		mdb_warn("failed to read sclass");
554 		return (DCMD_ERR);
555 	}
556 
557 	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
558 	    "INIT FCN", "CLASS FCN");
559 
560 	for (i = 0; i < num_classes; i++) {
561 		if (mdb_vread(class_name, sizeof (class_name),
562 		    (uintptr_t)class_tbl[i].cl_name) == -1)
563 			(void) strcpy(class_name, "???");
564 
565 		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
566 		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
567 	}
568 
569 	return (DCMD_OK);
570 }
571 
572 #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
573 
574 int
575 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
576 {
577 	uintptr_t rootdir;
578 	vnode_t vn;
579 	char buf[MAXPATHLEN];
580 
581 	uint_t opt_F = FALSE;
582 
583 	if (mdb_getopts(argc, argv,
584 	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
585 		return (DCMD_USAGE);
586 
587 	if (!(flags & DCMD_ADDRSPEC)) {
588 		mdb_warn("expected explicit vnode_t address before ::\n");
589 		return (DCMD_USAGE);
590 	}
591 
592 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
593 		mdb_warn("failed to read rootdir");
594 		return (DCMD_ERR);
595 	}
596 
597 	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
598 		return (DCMD_ERR);
599 
600 	if (*buf == '\0') {
601 		mdb_printf("??\n");
602 		return (DCMD_OK);
603 	}
604 
605 	mdb_printf("%s", buf);
606 	if (opt_F && buf[strlen(buf)-1] != '/' &&
607 	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
608 		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
609 	mdb_printf("\n");
610 
611 	return (DCMD_OK);
612 }
613 
614 int
615 ld_walk_init(mdb_walk_state_t *wsp)
616 {
617 	wsp->walk_data = (void *)wsp->walk_addr;
618 	return (WALK_NEXT);
619 }
620 
621 int
622 ld_walk_step(mdb_walk_state_t *wsp)
623 {
624 	int status;
625 	lock_descriptor_t ld;
626 
627 	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
628 		mdb_warn("couldn't read lock_descriptor_t at %p\n",
629 		    wsp->walk_addr);
630 		return (WALK_ERR);
631 	}
632 
633 	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
634 	if (status == WALK_ERR)
635 		return (WALK_ERR);
636 
637 	wsp->walk_addr = (uintptr_t)ld.l_next;
638 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
639 		return (WALK_DONE);
640 
641 	return (status);
642 }
643 
644 int
645 lg_walk_init(mdb_walk_state_t *wsp)
646 {
647 	GElf_Sym sym;
648 
649 	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
650 		mdb_warn("failed to find symbol 'lock_graph'\n");
651 		return (WALK_ERR);
652 	}
653 
654 	wsp->walk_addr = (uintptr_t)sym.st_value;
655 	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
656 
657 	return (WALK_NEXT);
658 }
659 
660 typedef struct lg_walk_data {
661 	uintptr_t startaddr;
662 	mdb_walk_cb_t callback;
663 	void *data;
664 } lg_walk_data_t;
665 
666 /*
667  * We can't use ::walk lock_descriptor directly, because the head of each graph
668  * is really a dummy lock.  Rather than trying to dynamically determine if this
669  * is a dummy node or not, we just filter out the initial element of the
670  * list.
671  */
672 static int
673 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
674 {
675 	lg_walk_data_t *lw = priv;
676 
677 	if (addr != lw->startaddr)
678 		return (lw->callback(addr, data, lw->data));
679 
680 	return (WALK_NEXT);
681 }
682 
683 int
684 lg_walk_step(mdb_walk_state_t *wsp)
685 {
686 	graph_t *graph;
687 	lg_walk_data_t lw;
688 
689 	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
690 		return (WALK_DONE);
691 
692 	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
693 		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
694 		return (WALK_ERR);
695 	}
696 
697 	wsp->walk_addr += sizeof (graph);
698 
699 	if (graph == NULL)
700 		return (WALK_NEXT);
701 
702 	lw.callback = wsp->walk_callback;
703 	lw.data = wsp->walk_cbdata;
704 
705 	lw.startaddr = (uintptr_t)&(graph->active_locks);
706 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
707 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
708 		return (WALK_ERR);
709 	}
710 
711 	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
712 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
713 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
714 		return (WALK_ERR);
715 	}
716 
717 	return (WALK_NEXT);
718 }
719 
720 /*
721  * The space available for the path corresponding to the locked vnode depends
722  * on whether we are printing 32- or 64-bit addresses.
723  */
724 #ifdef _LP64
725 #define	LM_VNPATHLEN	20
726 #else
727 #define	LM_VNPATHLEN	30
728 #endif
729 
730 /*ARGSUSED*/
731 static int
732 lminfo_cb(uintptr_t addr, const void *data, void *priv)
733 {
734 	const lock_descriptor_t *ld = data;
735 	char buf[LM_VNPATHLEN];
736 	proc_t p;
737 
738 	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
739 	    addr, ld->l_type == F_RDLCK ? "RD" :
740 	    ld->l_type == F_WRLCK ? "WR" : "??",
741 	    ld->l_state, ld->l_flock.l_pid,
742 	    ld->l_flock.l_pid == 0 ? "<kernel>" :
743 	    mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
744 	    "<defunct>" : p.p_user.u_comm,
745 	    ld->l_vnode);
746 
747 	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
748 	    sizeof (buf));
749 	mdb_printf("%s\n", buf);
750 
751 	return (WALK_NEXT);
752 }
753 
754 /*ARGSUSED*/
755 int
756 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
757 {
758 	if (DCMD_HDRSPEC(flags))
759 		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
760 		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
761 
762 	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
763 }
764 
765 /*ARGSUSED*/
766 int
767 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
768 {
769 	struct seg s;
770 
771 	if (argc != 0)
772 		return (DCMD_USAGE);
773 
774 	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
775 		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
776 		    "SEG", "BASE", "SIZE", "DATA", "OPS");
777 	}
778 
779 	if (mdb_vread(&s, sizeof (s), addr) == -1) {
780 		mdb_warn("failed to read seg at %p", addr);
781 		return (DCMD_ERR);
782 	}
783 
784 	mdb_printf("%?p %?p %?lx %?p %a\n",
785 	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
786 
787 	return (DCMD_OK);
788 }
789 
790 /*ARGSUSED*/
791 static int
792 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
793 {
794 	uintptr_t pp =
795 	    mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
796 
797 	if (pp != NULL)
798 		(*nres)++;
799 
800 	return (WALK_NEXT);
801 }
802 
803 static int
804 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
805 {
806 
807 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
808 
809 	if (segvn == (uintptr_t)seg->s_ops) {
810 		struct segvn_data svn;
811 		int nres = 0;
812 
813 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
814 
815 		if (svn.amp == NULL) {
816 			mdb_printf(" %8s", "");
817 			goto drive_on;
818 		}
819 
820 		/*
821 		 * We've got an amp for this segment; walk through
822 		 * the amp, and determine mappings.
823 		 */
824 		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
825 		    &nres, (uintptr_t)svn.amp) == -1)
826 			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
827 
828 		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
829 drive_on:
830 
831 		if (svn.vp != NULL) {
832 			char buf[29];
833 
834 			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
835 			mdb_printf(" %s", buf);
836 		} else
837 			mdb_printf(" [ anon ]");
838 	}
839 
840 	mdb_printf("\n");
841 	return (WALK_NEXT);
842 }
843 
844 static int
845 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
846 {
847 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
848 
849 	if (segvn == (uintptr_t)seg->s_ops) {
850 		struct segvn_data svn;
851 
852 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
853 
854 		if (svn.vp != NULL) {
855 			mdb_printf(" %0?p", svn.vp);
856 		} else {
857 			mdb_printf(" [ anon ]");
858 		}
859 	}
860 
861 	mdb_printf("\n");
862 	return (WALK_NEXT);
863 }
864 
865 /*ARGSUSED*/
866 int
867 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
868 {
869 	uintptr_t segvn;
870 	proc_t proc;
871 	uint_t quick = FALSE;
872 	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
873 
874 	GElf_Sym sym;
875 
876 	if (!(flags & DCMD_ADDRSPEC))
877 		return (DCMD_USAGE);
878 
879 	if (mdb_getopts(argc, argv,
880 	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
881 		return (DCMD_USAGE);
882 
883 	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
884 		mdb_warn("failed to read proc at %p", addr);
885 		return (DCMD_ERR);
886 	}
887 
888 	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
889 		segvn = (uintptr_t)sym.st_value;
890 	else
891 		segvn = NULL;
892 
893 	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
894 
895 	if (quick) {
896 		mdb_printf("VNODE\n");
897 		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
898 	} else {
899 		mdb_printf("%8s %s\n", "RES", "PATH");
900 	}
901 
902 	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
903 		mdb_warn("failed to walk segments of as %p", proc.p_as);
904 		return (DCMD_ERR);
905 	}
906 
907 	return (DCMD_OK);
908 }
909 
910 typedef struct anon_walk_data {
911 	uintptr_t *aw_levone;
912 	uintptr_t *aw_levtwo;
913 	int aw_nlevone;
914 	int aw_levone_ndx;
915 	int aw_levtwo_ndx;
916 	struct anon_map aw_amp;
917 	struct anon_hdr aw_ahp;
918 } anon_walk_data_t;
919 
920 int
921 anon_walk_init(mdb_walk_state_t *wsp)
922 {
923 	anon_walk_data_t *aw;
924 
925 	if (wsp->walk_addr == NULL) {
926 		mdb_warn("anon walk doesn't support global walks\n");
927 		return (WALK_ERR);
928 	}
929 
930 	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
931 
932 	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
933 		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
934 		mdb_free(aw, sizeof (anon_walk_data_t));
935 		return (WALK_ERR);
936 	}
937 
938 	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
939 	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
940 		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
941 		mdb_free(aw, sizeof (anon_walk_data_t));
942 		return (WALK_ERR);
943 	}
944 
945 	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
946 	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
947 		aw->aw_nlevone = aw->aw_ahp.size;
948 		aw->aw_levtwo = NULL;
949 	} else {
950 		aw->aw_nlevone =
951 		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
952 		aw->aw_levtwo =
953 		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
954 	}
955 
956 	aw->aw_levone =
957 	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
958 
959 	aw->aw_levone_ndx = 0;
960 	aw->aw_levtwo_ndx = 0;
961 
962 	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
963 	    (uintptr_t)aw->aw_ahp.array_chunk);
964 
965 	if (aw->aw_levtwo != NULL) {
966 		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
967 			aw->aw_levone_ndx++;
968 			if (aw->aw_levone_ndx == aw->aw_nlevone) {
969 				mdb_warn("corrupt anon; couldn't"
970 				    "find ptr to lev two map");
971 				goto out;
972 			}
973 		}
974 
975 		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
976 		    aw->aw_levone[aw->aw_levone_ndx]);
977 	}
978 
979 out:
980 	wsp->walk_data = aw;
981 	return (0);
982 }
983 
984 int
985 anon_walk_step(mdb_walk_state_t *wsp)
986 {
987 	int status;
988 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
989 	struct anon anon;
990 	uintptr_t anonptr;
991 
992 again:
993 	/*
994 	 * Once we've walked through level one, we're done.
995 	 */
996 	if (aw->aw_levone_ndx == aw->aw_nlevone)
997 		return (WALK_DONE);
998 
999 	if (aw->aw_levtwo == NULL) {
1000 		anonptr = aw->aw_levone[aw->aw_levone_ndx];
1001 		aw->aw_levone_ndx++;
1002 	} else {
1003 		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
1004 		aw->aw_levtwo_ndx++;
1005 
1006 		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
1007 			aw->aw_levtwo_ndx = 0;
1008 
1009 			do {
1010 				aw->aw_levone_ndx++;
1011 
1012 				if (aw->aw_levone_ndx == aw->aw_nlevone)
1013 					return (WALK_DONE);
1014 			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
1015 
1016 			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
1017 			    sizeof (uintptr_t),
1018 			    aw->aw_levone[aw->aw_levone_ndx]);
1019 		}
1020 	}
1021 
1022 	if (anonptr != NULL) {
1023 		mdb_vread(&anon, sizeof (anon), anonptr);
1024 		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
1025 	} else
1026 		goto again;
1027 
1028 	return (status);
1029 }
1030 
1031 void
1032 anon_walk_fini(mdb_walk_state_t *wsp)
1033 {
1034 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1035 
1036 	if (aw->aw_levtwo != NULL)
1037 		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1038 
1039 	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1040 	mdb_free(aw, sizeof (anon_walk_data_t));
1041 }
1042 
1043 /*ARGSUSED*/
1044 int
1045 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1046 {
1047 	if ((uintptr_t)f->f_vnode == *target) {
1048 		mdb_printf("file %p\n", addr);
1049 		*target = NULL;
1050 	}
1051 
1052 	return (WALK_NEXT);
1053 }
1054 
1055 /*ARGSUSED*/
1056 int
1057 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1058 {
1059 	uintptr_t t = *target;
1060 
1061 	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1062 		mdb_warn("couldn't file walk proc %p", addr);
1063 		return (WALK_ERR);
1064 	}
1065 
1066 	if (t == NULL)
1067 		mdb_printf("%p\n", addr);
1068 
1069 	return (WALK_NEXT);
1070 }
1071 
1072 /*ARGSUSED*/
1073 int
1074 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1075 {
1076 	uintptr_t target = addr;
1077 
1078 	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1079 		return (DCMD_USAGE);
1080 
1081 	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1082 		mdb_warn("can't proc walk");
1083 		return (DCMD_ERR);
1084 	}
1085 
1086 	return (DCMD_OK);
1087 }
1088 
1089 typedef struct datafmt {
1090 	char	*hdr1;
1091 	char	*hdr2;
1092 	char	*dashes;
1093 	char	*fmt;
1094 } datafmt_t;
1095 
1096 static datafmt_t kmemfmt[] = {
1097 	{ "cache                    ", "name                     ",
1098 	"-------------------------", "%-25s "				},
1099 	{ "   buf",	"  size",	"------",	"%6u "		},
1100 	{ "   buf",	"in use",	"------",	"%6u "		},
1101 	{ "   buf",	" total",	"------",	"%6u "		},
1102 	{ "   memory",	"   in use",	"----------",	"%9u%c "	},
1103 	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
1104 	{ "alloc",	" fail",	"-----",	"%5u "		},
1105 	{ NULL,		NULL,		NULL,		NULL		}
1106 };
1107 
1108 static datafmt_t vmemfmt[] = {
1109 	{ "vmem                     ", "name                     ",
1110 	"-------------------------", "%-*s "				},
1111 	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
1112 	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
1113 	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
1114 	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
1115 	{ "alloc",	" fail",	"-----",	"%5llu "	},
1116 	{ NULL,		NULL,		NULL,		NULL		}
1117 };
1118 
1119 /*ARGSUSED*/
1120 static int
1121 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1122 {
1123 	if (ccp->cc_rounds > 0)
1124 		*avail += ccp->cc_rounds;
1125 	if (ccp->cc_prounds > 0)
1126 		*avail += ccp->cc_prounds;
1127 
1128 	return (WALK_NEXT);
1129 }
1130 
1131 /*ARGSUSED*/
1132 static int
1133 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1134 {
1135 	*alloc += ccp->cc_alloc;
1136 
1137 	return (WALK_NEXT);
1138 }
1139 
1140 /*ARGSUSED*/
1141 static int
1142 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1143 {
1144 	*avail += sp->slab_chunks - sp->slab_refcnt;
1145 
1146 	return (WALK_NEXT);
1147 }
1148 
1149 typedef struct kmastat_vmem {
1150 	uintptr_t kv_addr;
1151 	struct kmastat_vmem *kv_next;
1152 	int kv_meminuse;
1153 	int kv_alloc;
1154 	int kv_fail;
1155 } kmastat_vmem_t;
1156 
1157 typedef struct kmastat_args {
1158 	kmastat_vmem_t **ka_kvpp;
1159 	uint_t ka_shift;
1160 } kmastat_args_t;
1161 
1162 static int
1163 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1164 {
1165 	kmastat_vmem_t **kvp = kap->ka_kvpp;
1166 	kmastat_vmem_t *kv;
1167 	datafmt_t *dfp = kmemfmt;
1168 	int magsize;
1169 
1170 	int avail, alloc, total;
1171 	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1172 	    cp->cache_slabsize;
1173 
1174 	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1175 	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1176 	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1177 
1178 	magsize = kmem_get_magsize(cp);
1179 
1180 	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1181 	avail = cp->cache_full.ml_total * magsize;
1182 	total = cp->cache_buftotal;
1183 
1184 	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
1185 	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
1186 	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
1187 
1188 	for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
1189 		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
1190 			goto out;
1191 	}
1192 
1193 	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
1194 	kv->kv_next = *kvp;
1195 	kv->kv_addr = (uintptr_t)cp->cache_arena;
1196 	*kvp = kv;
1197 out:
1198 	kv->kv_meminuse += meminuse;
1199 	kv->kv_alloc += alloc;
1200 	kv->kv_fail += cp->cache_alloc_fail;
1201 
1202 	mdb_printf((dfp++)->fmt, cp->cache_name);
1203 	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
1204 	mdb_printf((dfp++)->fmt, total - avail);
1205 	mdb_printf((dfp++)->fmt, total);
1206 	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
1207 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
1208 	    kap->ka_shift == KILOS ? 'K' : 'B');
1209 	mdb_printf((dfp++)->fmt, alloc);
1210 	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
1211 	mdb_printf("\n");
1212 
1213 	return (WALK_NEXT);
1214 }
1215 
1216 static int
1217 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
1218 {
1219 	kmastat_vmem_t *kv = *kap->ka_kvpp;
1220 	size_t len;
1221 
1222 	while (kv != NULL && kv->kv_addr != addr)
1223 		kv = kv->kv_next;
1224 
1225 	if (kv == NULL || kv->kv_alloc == 0)
1226 		return (WALK_NEXT);
1227 
1228 	len = MIN(17, strlen(v->vm_name));
1229 
1230 	mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name,
1231 	    17 - len, "", "", "", "",
1232 	    kv->kv_meminuse >> kap->ka_shift,
1233 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
1234 	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
1235 
1236 	return (WALK_NEXT);
1237 }
1238 
1239 /*ARGSUSED*/
1240 static int
1241 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
1242 {
1243 	datafmt_t *dfp = vmemfmt;
1244 	const vmem_kstat_t *vkp = &v->vm_kstat;
1245 	uintptr_t paddr;
1246 	vmem_t parent;
1247 	int ident = 0;
1248 
1249 	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
1250 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
1251 			mdb_warn("couldn't trace %p's ancestry", addr);
1252 			ident = 0;
1253 			break;
1254 		}
1255 		paddr = (uintptr_t)parent.vm_source;
1256 	}
1257 
1258 	mdb_printf("%*s", ident, "");
1259 	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
1260 	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
1261 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1262 	    *shiftp == KILOS ? 'K' : 'B');
1263 	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
1264 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1265 	    *shiftp == KILOS ? 'K' : 'B');
1266 	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
1267 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1268 	    *shiftp == KILOS ? 'K' : 'B');
1269 	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
1270 	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
1271 
1272 	mdb_printf("\n");
1273 
1274 	return (WALK_NEXT);
1275 }
1276 
1277 /*ARGSUSED*/
1278 int
1279 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1280 {
1281 	kmastat_vmem_t *kv = NULL;
1282 	datafmt_t *dfp;
1283 	kmastat_args_t ka;
1284 
1285 	ka.ka_shift = 0;
1286 	if (mdb_getopts(argc, argv,
1287 	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
1288 	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
1289 	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
1290 		return (DCMD_USAGE);
1291 
1292 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1293 		mdb_printf("%s ", dfp->hdr1);
1294 	mdb_printf("\n");
1295 
1296 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1297 		mdb_printf("%s ", dfp->hdr2);
1298 	mdb_printf("\n");
1299 
1300 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1301 		mdb_printf("%s ", dfp->dashes);
1302 	mdb_printf("\n");
1303 
1304 	ka.ka_kvpp = &kv;
1305 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
1306 		mdb_warn("can't walk 'kmem_cache'");
1307 		return (DCMD_ERR);
1308 	}
1309 
1310 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1311 		mdb_printf("%s ", dfp->dashes);
1312 	mdb_printf("\n");
1313 
1314 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
1315 		mdb_warn("can't walk 'vmem'");
1316 		return (DCMD_ERR);
1317 	}
1318 
1319 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1320 		mdb_printf("%s ", dfp->dashes);
1321 	mdb_printf("\n");
1322 
1323 	mdb_printf("\n");
1324 
1325 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1326 		mdb_printf("%s ", dfp->hdr1);
1327 	mdb_printf("\n");
1328 
1329 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1330 		mdb_printf("%s ", dfp->hdr2);
1331 	mdb_printf("\n");
1332 
1333 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1334 		mdb_printf("%s ", dfp->dashes);
1335 	mdb_printf("\n");
1336 
1337 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
1338 		mdb_warn("can't walk 'vmem'");
1339 		return (DCMD_ERR);
1340 	}
1341 
1342 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1343 		mdb_printf("%s ", dfp->dashes);
1344 	mdb_printf("\n");
1345 	return (DCMD_OK);
1346 }
1347 
1348 /*
1349  * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
1350  * up of a set of 'struct seg's.  We could just scan each seg en masse, but
1351  * unfortunately, a few of the segs are both large and sparse, so we could
1352  * spend quite a bit of time scanning VAs which have no backing pages.
1353  *
1354  * So for the few very sparse segs, we skip the segment itself, and scan
1355  * the allocated vmem_segs in the vmem arena which manages that part of kas.
1356  * Currently, we do this for:
1357  *
1358  *	SEG		VMEM ARENA
1359  *	kvseg		heap_arena
1360  *	kvseg32		heap32_arena
1361  *	kvseg_core	heap_core_arena
1362  *
1363  * In addition, we skip the segkpm segment in its entirety, since it is very
1364  * sparse, and contains no new kernel data.
1365  */
1366 typedef struct kgrep_walk_data {
1367 	kgrep_cb_func *kg_cb;
1368 	void *kg_cbdata;
1369 	uintptr_t kg_kvseg;
1370 	uintptr_t kg_kvseg32;
1371 	uintptr_t kg_kvseg_core;
1372 	uintptr_t kg_segkpm;
1373 	uintptr_t kg_heap_lp_base;
1374 	uintptr_t kg_heap_lp_end;
1375 } kgrep_walk_data_t;
1376 
1377 static int
1378 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
1379 {
1380 	uintptr_t base = (uintptr_t)seg->s_base;
1381 
1382 	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
1383 	    addr == kg->kg_kvseg_core)
1384 		return (WALK_NEXT);
1385 
1386 	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
1387 		return (WALK_NEXT);
1388 
1389 	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
1390 }
1391 
1392 /*ARGSUSED*/
1393 static int
1394 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1395 {
1396 	/*
1397 	 * skip large page heap address range - it is scanned by walking
1398 	 * allocated vmem_segs in the heap_lp_arena
1399 	 */
1400 	if (seg->vs_start == kg->kg_heap_lp_base &&
1401 	    seg->vs_end == kg->kg_heap_lp_end)
1402 		return (WALK_NEXT);
1403 
1404 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1405 }
1406 
1407 /*ARGSUSED*/
1408 static int
1409 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1410 {
1411 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1412 }
1413 
1414 static int
1415 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
1416 {
1417 	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
1418 
1419 	if (strcmp(vmem->vm_name, "heap") != 0 &&
1420 	    strcmp(vmem->vm_name, "heap32") != 0 &&
1421 	    strcmp(vmem->vm_name, "heap_core") != 0 &&
1422 	    strcmp(vmem->vm_name, "heap_lp") != 0)
1423 		return (WALK_NEXT);
1424 
1425 	if (strcmp(vmem->vm_name, "heap_lp") == 0)
1426 		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
1427 
1428 	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
1429 		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
1430 		return (WALK_ERR);
1431 	}
1432 
1433 	return (WALK_NEXT);
1434 }
1435 
1436 int
1437 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
1438 {
1439 	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
1440 	kgrep_walk_data_t kg;
1441 
1442 	if (mdb_get_state() == MDB_STATE_RUNNING) {
1443 		mdb_warn("kgrep can only be run on a system "
1444 		    "dump or under kmdb; see dumpadm(1M)\n");
1445 		return (DCMD_ERR);
1446 	}
1447 
1448 	if (mdb_lookup_by_name("kas", &kas) == -1) {
1449 		mdb_warn("failed to locate 'kas' symbol\n");
1450 		return (DCMD_ERR);
1451 	}
1452 
1453 	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
1454 		mdb_warn("failed to locate 'kvseg' symbol\n");
1455 		return (DCMD_ERR);
1456 	}
1457 
1458 	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
1459 		mdb_warn("failed to locate 'kvseg32' symbol\n");
1460 		return (DCMD_ERR);
1461 	}
1462 
1463 	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
1464 		mdb_warn("failed to locate 'kvseg_core' symbol\n");
1465 		return (DCMD_ERR);
1466 	}
1467 
1468 	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
1469 		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
1470 		return (DCMD_ERR);
1471 	}
1472 
1473 	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
1474 		mdb_warn("failed to read 'heap_lp_base'\n");
1475 		return (DCMD_ERR);
1476 	}
1477 
1478 	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
1479 		mdb_warn("failed to read 'heap_lp_end'\n");
1480 		return (DCMD_ERR);
1481 	}
1482 
1483 	kg.kg_cb = cb;
1484 	kg.kg_cbdata = cbdata;
1485 	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
1486 	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
1487 	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
1488 	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
1489 
1490 	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
1491 	    &kg, kas.st_value) == -1) {
1492 		mdb_warn("failed to walk kas segments");
1493 		return (DCMD_ERR);
1494 	}
1495 
1496 	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
1497 		mdb_warn("failed to walk heap/heap32 vmem arenas");
1498 		return (DCMD_ERR);
1499 	}
1500 
1501 	return (DCMD_OK);
1502 }
1503 
1504 size_t
1505 kgrep_subr_pagesize(void)
1506 {
1507 	return (PAGESIZE);
1508 }
1509 
1510 typedef struct file_walk_data {
1511 	struct uf_entry *fw_flist;
1512 	int fw_flistsz;
1513 	int fw_ndx;
1514 	int fw_nofiles;
1515 } file_walk_data_t;
1516 
1517 int
1518 file_walk_init(mdb_walk_state_t *wsp)
1519 {
1520 	file_walk_data_t *fw;
1521 	proc_t p;
1522 
1523 	if (wsp->walk_addr == NULL) {
1524 		mdb_warn("file walk doesn't support global walks\n");
1525 		return (WALK_ERR);
1526 	}
1527 
1528 	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
1529 
1530 	if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
1531 		mdb_free(fw, sizeof (file_walk_data_t));
1532 		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
1533 		return (WALK_ERR);
1534 	}
1535 
1536 	if (p.p_user.u_finfo.fi_nfiles == 0) {
1537 		mdb_free(fw, sizeof (file_walk_data_t));
1538 		return (WALK_DONE);
1539 	}
1540 
1541 	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
1542 	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
1543 	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
1544 
1545 	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
1546 	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
1547 		mdb_warn("failed to read file array at %p",
1548 		    p.p_user.u_finfo.fi_list);
1549 		mdb_free(fw->fw_flist, fw->fw_flistsz);
1550 		mdb_free(fw, sizeof (file_walk_data_t));
1551 		return (WALK_ERR);
1552 	}
1553 
1554 	fw->fw_ndx = 0;
1555 	wsp->walk_data = fw;
1556 
1557 	return (WALK_NEXT);
1558 }
1559 
1560 int
1561 file_walk_step(mdb_walk_state_t *wsp)
1562 {
1563 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1564 	struct file file;
1565 	uintptr_t fp;
1566 
1567 again:
1568 	if (fw->fw_ndx == fw->fw_nofiles)
1569 		return (WALK_DONE);
1570 
1571 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
1572 		goto again;
1573 
1574 	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1575 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1576 }
1577 
1578 int
1579 allfile_walk_step(mdb_walk_state_t *wsp)
1580 {
1581 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1582 	struct file file;
1583 	uintptr_t fp;
1584 
1585 	if (fw->fw_ndx == fw->fw_nofiles)
1586 		return (WALK_DONE);
1587 
1588 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
1589 		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1590 	else
1591 		bzero(&file, sizeof (file));
1592 
1593 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1594 }
1595 
1596 void
1597 file_walk_fini(mdb_walk_state_t *wsp)
1598 {
1599 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1600 
1601 	mdb_free(fw->fw_flist, fw->fw_flistsz);
1602 	mdb_free(fw, sizeof (file_walk_data_t));
1603 }
1604 
1605 int
1606 port_walk_init(mdb_walk_state_t *wsp)
1607 {
1608 	if (wsp->walk_addr == NULL) {
1609 		mdb_warn("port walk doesn't support global walks\n");
1610 		return (WALK_ERR);
1611 	}
1612 
1613 	if (mdb_layered_walk("file", wsp) == -1) {
1614 		mdb_warn("couldn't walk 'file'");
1615 		return (WALK_ERR);
1616 	}
1617 	return (WALK_NEXT);
1618 }
1619 
1620 int
1621 port_walk_step(mdb_walk_state_t *wsp)
1622 {
1623 	struct vnode	vn;
1624 	uintptr_t	vp;
1625 	uintptr_t	pp;
1626 	struct port	port;
1627 
1628 	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
1629 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1630 		mdb_warn("failed to read vnode_t at %p", vp);
1631 		return (WALK_ERR);
1632 	}
1633 	if (vn.v_type != VPORT)
1634 		return (WALK_NEXT);
1635 
1636 	pp = (uintptr_t)vn.v_data;
1637 	if (mdb_vread(&port, sizeof (port), pp) == -1) {
1638 		mdb_warn("failed to read port_t at %p", pp);
1639 		return (WALK_ERR);
1640 	}
1641 	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
1642 }
1643 
1644 typedef struct portev_walk_data {
1645 	list_node_t	*pev_node;
1646 	list_node_t	*pev_last;
1647 	size_t		pev_offset;
1648 } portev_walk_data_t;
1649 
1650 int
1651 portev_walk_init(mdb_walk_state_t *wsp)
1652 {
1653 	portev_walk_data_t *pevd;
1654 	struct port	port;
1655 	struct vnode	vn;
1656 	struct list	*list;
1657 	uintptr_t	vp;
1658 
1659 	if (wsp->walk_addr == NULL) {
1660 		mdb_warn("portev walk doesn't support global walks\n");
1661 		return (WALK_ERR);
1662 	}
1663 
1664 	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
1665 
1666 	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
1667 		mdb_free(pevd, sizeof (portev_walk_data_t));
1668 		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
1669 		return (WALK_ERR);
1670 	}
1671 
1672 	vp = (uintptr_t)port.port_vnode;
1673 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1674 		mdb_free(pevd, sizeof (portev_walk_data_t));
1675 		mdb_warn("failed to read vnode_t at %p", vp);
1676 		return (WALK_ERR);
1677 	}
1678 
1679 	if (vn.v_type != VPORT) {
1680 		mdb_free(pevd, sizeof (portev_walk_data_t));
1681 		mdb_warn("input address (%p) does not point to an event port",
1682 		    wsp->walk_addr);
1683 		return (WALK_ERR);
1684 	}
1685 
1686 	if (port.port_queue.portq_nent == 0) {
1687 		mdb_free(pevd, sizeof (portev_walk_data_t));
1688 		return (WALK_DONE);
1689 	}
1690 	list = &port.port_queue.portq_list;
1691 	pevd->pev_offset = list->list_offset;
1692 	pevd->pev_last = list->list_head.list_prev;
1693 	pevd->pev_node = list->list_head.list_next;
1694 	wsp->walk_data = pevd;
1695 	return (WALK_NEXT);
1696 }
1697 
1698 int
1699 portev_walk_step(mdb_walk_state_t *wsp)
1700 {
1701 	portev_walk_data_t	*pevd;
1702 	struct port_kevent	ev;
1703 	uintptr_t		evp;
1704 
1705 	pevd = (portev_walk_data_t *)wsp->walk_data;
1706 
1707 	if (pevd->pev_last == NULL)
1708 		return (WALK_DONE);
1709 	if (pevd->pev_node == pevd->pev_last)
1710 		pevd->pev_last = NULL;		/* last round */
1711 
1712 	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
1713 	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
1714 		mdb_warn("failed to read port_kevent at %p", evp);
1715 		return (WALK_DONE);
1716 	}
1717 	pevd->pev_node = ev.portkev_node.list_next;
1718 	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
1719 }
1720 
1721 void
1722 portev_walk_fini(mdb_walk_state_t *wsp)
1723 {
1724 	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
1725 
1726 	if (pevd != NULL)
1727 		mdb_free(pevd, sizeof (portev_walk_data_t));
1728 }
1729 
1730 typedef struct proc_walk_data {
1731 	uintptr_t *pw_stack;
1732 	int pw_depth;
1733 	int pw_max;
1734 } proc_walk_data_t;
1735 
1736 int
1737 proc_walk_init(mdb_walk_state_t *wsp)
1738 {
1739 	GElf_Sym sym;
1740 	proc_walk_data_t *pw;
1741 
1742 	if (wsp->walk_addr == NULL) {
1743 		if (mdb_lookup_by_name("p0", &sym) == -1) {
1744 			mdb_warn("failed to read 'practive'");
1745 			return (WALK_ERR);
1746 		}
1747 		wsp->walk_addr = (uintptr_t)sym.st_value;
1748 	}
1749 
1750 	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
1751 
1752 	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
1753 		mdb_warn("failed to read 'nproc'");
1754 		mdb_free(pw, sizeof (pw));
1755 		return (WALK_ERR);
1756 	}
1757 
1758 	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
1759 	wsp->walk_data = pw;
1760 
1761 	return (WALK_NEXT);
1762 }
1763 
1764 int
1765 proc_walk_step(mdb_walk_state_t *wsp)
1766 {
1767 	proc_walk_data_t *pw = wsp->walk_data;
1768 	uintptr_t addr = wsp->walk_addr;
1769 	uintptr_t cld, sib;
1770 
1771 	int status;
1772 	proc_t pr;
1773 
1774 	if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
1775 		mdb_warn("failed to read proc at %p", addr);
1776 		return (WALK_DONE);
1777 	}
1778 
1779 	cld = (uintptr_t)pr.p_child;
1780 	sib = (uintptr_t)pr.p_sibling;
1781 
1782 	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
1783 		pw->pw_depth--;
1784 		goto sib;
1785 	}
1786 
1787 	status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
1788 
1789 	if (status != WALK_NEXT)
1790 		return (status);
1791 
1792 	if ((wsp->walk_addr = cld) != NULL) {
1793 		if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
1794 			mdb_warn("proc %p has invalid p_child %p; skipping\n",
1795 			    addr, cld);
1796 			goto sib;
1797 		}
1798 
1799 		pw->pw_stack[pw->pw_depth++] = addr;
1800 
1801 		if (pw->pw_depth == pw->pw_max) {
1802 			mdb_warn("depth %d exceeds max depth; try again\n",
1803 			    pw->pw_depth);
1804 			return (WALK_DONE);
1805 		}
1806 		return (WALK_NEXT);
1807 	}
1808 
1809 sib:
1810 	/*
1811 	 * We know that p0 has no siblings, and if another starting proc
1812 	 * was given, we don't want to walk its siblings anyway.
1813 	 */
1814 	if (pw->pw_depth == 0)
1815 		return (WALK_DONE);
1816 
1817 	if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
1818 		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
1819 		    addr, sib);
1820 		sib = NULL;
1821 	}
1822 
1823 	if ((wsp->walk_addr = sib) == NULL) {
1824 		if (pw->pw_depth > 0) {
1825 			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
1826 			return (WALK_NEXT);
1827 		}
1828 		return (WALK_DONE);
1829 	}
1830 
1831 	return (WALK_NEXT);
1832 }
1833 
1834 void
1835 proc_walk_fini(mdb_walk_state_t *wsp)
1836 {
1837 	proc_walk_data_t *pw = wsp->walk_data;
1838 
1839 	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
1840 	mdb_free(pw, sizeof (proc_walk_data_t));
1841 }
1842 
1843 int
1844 task_walk_init(mdb_walk_state_t *wsp)
1845 {
1846 	task_t task;
1847 
1848 	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
1849 		mdb_warn("failed to read task at %p", wsp->walk_addr);
1850 		return (WALK_ERR);
1851 	}
1852 	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
1853 	wsp->walk_data = task.tk_memb_list;
1854 	return (WALK_NEXT);
1855 }
1856 
1857 int
1858 task_walk_step(mdb_walk_state_t *wsp)
1859 {
1860 	proc_t proc;
1861 	int status;
1862 
1863 	if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
1864 		mdb_warn("failed to read proc at %p", wsp->walk_addr);
1865 		return (WALK_DONE);
1866 	}
1867 
1868 	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
1869 
1870 	if (proc.p_tasknext == wsp->walk_data)
1871 		return (WALK_DONE);
1872 
1873 	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
1874 	return (status);
1875 }
1876 
1877 int
1878 project_walk_init(mdb_walk_state_t *wsp)
1879 {
1880 	if (wsp->walk_addr == NULL) {
1881 		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
1882 			mdb_warn("failed to read 'proj0p'");
1883 			return (WALK_ERR);
1884 		}
1885 	}
1886 	wsp->walk_data = (void *)wsp->walk_addr;
1887 	return (WALK_NEXT);
1888 }
1889 
1890 int
1891 project_walk_step(mdb_walk_state_t *wsp)
1892 {
1893 	uintptr_t addr = wsp->walk_addr;
1894 	kproject_t pj;
1895 	int status;
1896 
1897 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
1898 		mdb_warn("failed to read project at %p", addr);
1899 		return (WALK_DONE);
1900 	}
1901 	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
1902 	if (status != WALK_NEXT)
1903 		return (status);
1904 	wsp->walk_addr = (uintptr_t)pj.kpj_next;
1905 	if ((void *)wsp->walk_addr == wsp->walk_data)
1906 		return (WALK_DONE);
1907 	return (WALK_NEXT);
1908 }
1909 
1910 static int
1911 generic_walk_step(mdb_walk_state_t *wsp)
1912 {
1913 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
1914 	    wsp->walk_cbdata));
1915 }
1916 
1917 int
1918 seg_walk_init(mdb_walk_state_t *wsp)
1919 {
1920 	if (wsp->walk_addr == NULL) {
1921 		mdb_warn("seg walk must begin at struct as *\n");
1922 		return (WALK_ERR);
1923 	}
1924 
1925 	/*
1926 	 * this is really just a wrapper to AVL tree walk
1927 	 */
1928 	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
1929 	return (avl_walk_init(wsp));
1930 }
1931 
1932 static int
1933 cpu_walk_cmp(const void *l, const void *r)
1934 {
1935 	uintptr_t lhs = *((uintptr_t *)l);
1936 	uintptr_t rhs = *((uintptr_t *)r);
1937 	cpu_t lcpu, rcpu;
1938 
1939 	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
1940 	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
1941 
1942 	if (lcpu.cpu_id < rcpu.cpu_id)
1943 		return (-1);
1944 
1945 	if (lcpu.cpu_id > rcpu.cpu_id)
1946 		return (1);
1947 
1948 	return (0);
1949 }
1950 
1951 typedef struct cpu_walk {
1952 	uintptr_t *cw_array;
1953 	int cw_ndx;
1954 } cpu_walk_t;
1955 
1956 int
1957 cpu_walk_init(mdb_walk_state_t *wsp)
1958 {
1959 	cpu_walk_t *cw;
1960 	int max_ncpus, i = 0;
1961 	uintptr_t current, first;
1962 	cpu_t cpu, panic_cpu;
1963 	uintptr_t panicstr, addr;
1964 	GElf_Sym sym;
1965 
1966 	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
1967 
1968 	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
1969 		mdb_warn("failed to read 'max_ncpus'");
1970 		return (WALK_ERR);
1971 	}
1972 
1973 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
1974 		mdb_warn("failed to read 'panicstr'");
1975 		return (WALK_ERR);
1976 	}
1977 
1978 	if (panicstr != NULL) {
1979 		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
1980 			mdb_warn("failed to find 'panic_cpu'");
1981 			return (WALK_ERR);
1982 		}
1983 
1984 		addr = (uintptr_t)sym.st_value;
1985 
1986 		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
1987 			mdb_warn("failed to read 'panic_cpu'");
1988 			return (WALK_ERR);
1989 		}
1990 	}
1991 
1992 	/*
1993 	 * Unfortunately, there is no platform-independent way to walk
1994 	 * CPUs in ID order.  We therefore loop through in cpu_next order,
1995 	 * building an array of CPU pointers which will subsequently be
1996 	 * sorted.
1997 	 */
1998 	cw->cw_array =
1999 	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2000 
2001 	if (mdb_readvar(&first, "cpu_list") == -1) {
2002 		mdb_warn("failed to read 'cpu_list'");
2003 		return (WALK_ERR);
2004 	}
2005 
2006 	current = first;
2007 	do {
2008 		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2009 			mdb_warn("failed to read cpu at %p", current);
2010 			return (WALK_ERR);
2011 		}
2012 
2013 		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2014 			cw->cw_array[i++] = addr;
2015 		} else {
2016 			cw->cw_array[i++] = current;
2017 		}
2018 	} while ((current = (uintptr_t)cpu.cpu_next) != first);
2019 
2020 	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2021 	wsp->walk_data = cw;
2022 
2023 	return (WALK_NEXT);
2024 }
2025 
2026 int
2027 cpu_walk_step(mdb_walk_state_t *wsp)
2028 {
2029 	cpu_walk_t *cw = wsp->walk_data;
2030 	cpu_t cpu;
2031 	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2032 
2033 	if (addr == NULL)
2034 		return (WALK_DONE);
2035 
2036 	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2037 		mdb_warn("failed to read cpu at %p", addr);
2038 		return (WALK_DONE);
2039 	}
2040 
2041 	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2042 }
2043 
2044 typedef struct cpuinfo_data {
2045 	intptr_t cid_cpu;
2046 	uintptr_t cid_lbolt;
2047 	uintptr_t **cid_ithr;
2048 	char	cid_print_head;
2049 	char	cid_print_thr;
2050 	char	cid_print_ithr;
2051 	char	cid_print_flags;
2052 } cpuinfo_data_t;
2053 
2054 int
2055 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2056 {
2057 	cpu_t c;
2058 	int id;
2059 	uint8_t pil;
2060 
2061 	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2062 		return (WALK_NEXT);
2063 
2064 	if (thr->t_bound_cpu == NULL) {
2065 		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2066 		return (WALK_NEXT);
2067 	}
2068 
2069 	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2070 
2071 	if ((id = c.cpu_id) >= NCPU) {
2072 		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2073 		    thr->t_bound_cpu, id, NCPU);
2074 		return (WALK_NEXT);
2075 	}
2076 
2077 	if ((pil = thr->t_pil) >= NINTR) {
2078 		mdb_warn("thread %p has pil (%d) greater than %d\n",
2079 		    addr, pil, NINTR);
2080 		return (WALK_NEXT);
2081 	}
2082 
2083 	if (cid->cid_ithr[id][pil] != NULL) {
2084 		mdb_warn("CPU %d has multiple threads at pil %d (at least "
2085 		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2086 		return (WALK_NEXT);
2087 	}
2088 
2089 	cid->cid_ithr[id][pil] = addr;
2090 
2091 	return (WALK_NEXT);
2092 }
2093 
2094 #define	CPUINFO_IDWIDTH		3
2095 #define	CPUINFO_FLAGWIDTH	9
2096 
2097 #ifdef _LP64
2098 #if defined(__amd64)
2099 #define	CPUINFO_TWIDTH		16
2100 #define	CPUINFO_CPUWIDTH	16
2101 #else
2102 #define	CPUINFO_CPUWIDTH	11
2103 #define	CPUINFO_TWIDTH		11
2104 #endif
2105 #else
2106 #define	CPUINFO_CPUWIDTH	8
2107 #define	CPUINFO_TWIDTH		8
2108 #endif
2109 
2110 #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2111 #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2112 #define	CPUINFO_ITHRDELT	4
2113 
2114 #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
2115     flagline < nflaglines ? flagbuf[flagline++] : "")
2116 
2117 int
2118 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2119 {
2120 	kthread_t t;
2121 	disp_t disp;
2122 	proc_t p;
2123 	uintptr_t pinned;
2124 	char **flagbuf;
2125 	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2126 
2127 	const char *flags[] = {
2128 	    "RUNNING", "READY", "QUIESCED", "EXISTS",
2129 	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2130 	    "SPARE", "FAULTED", NULL
2131 	};
2132 
2133 	if (cid->cid_cpu != -1) {
2134 		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2135 			return (WALK_NEXT);
2136 
2137 		/*
2138 		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2139 		 */
2140 		cid->cid_cpu = -1;
2141 		rval = WALK_DONE;
2142 	}
2143 
2144 	if (cid->cid_print_head) {
2145 		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2146 		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2147 		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2148 		    "PROC");
2149 		cid->cid_print_head = FALSE;
2150 	}
2151 
2152 	bspl = cpu->cpu_base_spl;
2153 
2154 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2155 		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2156 		return (WALK_ERR);
2157 	}
2158 
2159 	mdb_printf("%3d %0*p %3x %4d %4d ",
2160 	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2161 	    disp.disp_nrunnable, bspl);
2162 
2163 	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2164 		mdb_printf("%3d ", t.t_pri);
2165 	} else {
2166 		mdb_printf("%3s ", "-");
2167 	}
2168 
2169 	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2170 	    cpu->cpu_kprunrun ? "yes" : "no");
2171 
2172 	if (cpu->cpu_last_swtch) {
2173 		clock_t lbolt;
2174 
2175 		if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
2176 			mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
2177 			return (WALK_ERR);
2178 		}
2179 		mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
2180 	} else {
2181 		mdb_printf("%-6s ", "-");
2182 	}
2183 
2184 	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2185 
2186 	if (cpu->cpu_thread == cpu->cpu_idle_thread)
2187 		mdb_printf(" (idle)\n");
2188 	else if (cpu->cpu_thread == NULL)
2189 		mdb_printf(" -\n");
2190 	else {
2191 		if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2192 			mdb_printf(" %s\n", p.p_user.u_comm);
2193 		} else {
2194 			mdb_printf(" ?\n");
2195 		}
2196 	}
2197 
2198 	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2199 
2200 	if (cid->cid_print_flags) {
2201 		int first = 1, i, j, k;
2202 		char *s;
2203 
2204 		cid->cid_print_head = TRUE;
2205 
2206 		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
2207 			if (!(cpu->cpu_flags & i))
2208 				continue;
2209 
2210 			if (first) {
2211 				s = mdb_alloc(CPUINFO_THRDELT + 1,
2212 				    UM_GC | UM_SLEEP);
2213 
2214 				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
2215 				    "%*s|%*s", CPUINFO_FLAGDELT, "",
2216 				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
2217 				flagbuf[nflaglines++] = s;
2218 			}
2219 
2220 			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
2221 			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
2222 			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
2223 			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
2224 			    first ? "<--+" : "");
2225 
2226 			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
2227 				s[k] = ' ';
2228 			s[k] = '\0';
2229 
2230 			flagbuf[nflaglines++] = s;
2231 			first = 0;
2232 		}
2233 	}
2234 
2235 	if (cid->cid_print_ithr) {
2236 		int i, found_one = FALSE;
2237 		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
2238 
2239 		for (i = NINTR - 1; i >= 0; i--) {
2240 			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
2241 
2242 			if (iaddr == NULL)
2243 				continue;
2244 
2245 			if (!found_one) {
2246 				found_one = TRUE;
2247 
2248 				CPUINFO_INDENT;
2249 				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
2250 				    CPUINFO_ITHRDELT, "");
2251 
2252 				CPUINFO_INDENT;
2253 				mdb_printf("%c%*s+--> %3s %s\n",
2254 				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
2255 				    "", "PIL", "THREAD");
2256 			}
2257 
2258 			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
2259 				mdb_warn("failed to read kthread_t at %p",
2260 				    iaddr);
2261 				return (WALK_ERR);
2262 			}
2263 
2264 			CPUINFO_INDENT;
2265 			mdb_printf("%c%*s     %3d %0*p\n",
2266 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
2267 			    t.t_pil, CPUINFO_TWIDTH, iaddr);
2268 
2269 			pinned = (uintptr_t)t.t_intr;
2270 		}
2271 
2272 		if (found_one && pinned != NULL) {
2273 			cid->cid_print_head = TRUE;
2274 			(void) strcpy(p.p_user.u_comm, "?");
2275 
2276 			if (mdb_vread(&t, sizeof (t),
2277 			    (uintptr_t)pinned) == -1) {
2278 				mdb_warn("failed to read kthread_t at %p",
2279 				    pinned);
2280 				return (WALK_ERR);
2281 			}
2282 			if (mdb_vread(&p, sizeof (p),
2283 			    (uintptr_t)t.t_procp) == -1) {
2284 				mdb_warn("failed to read proc_t at %p",
2285 				    t.t_procp);
2286 				return (WALK_ERR);
2287 			}
2288 
2289 			CPUINFO_INDENT;
2290 			mdb_printf("%c%*s     %3s %0*p %s\n",
2291 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
2292 			    CPUINFO_TWIDTH, pinned,
2293 			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
2294 			    "(idle)" : p.p_user.u_comm);
2295 		}
2296 	}
2297 
2298 	if (disp.disp_nrunnable && cid->cid_print_thr) {
2299 		dispq_t *dq;
2300 
2301 		int i, npri = disp.disp_npri;
2302 
2303 		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
2304 
2305 		if (mdb_vread(dq, sizeof (dispq_t) * npri,
2306 		    (uintptr_t)disp.disp_q) == -1) {
2307 			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
2308 			return (WALK_ERR);
2309 		}
2310 
2311 		CPUINFO_INDENT;
2312 		mdb_printf("|\n");
2313 
2314 		CPUINFO_INDENT;
2315 		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
2316 		    CPUINFO_TWIDTH, "THREAD", "PROC");
2317 
2318 		for (i = npri - 1; i >= 0; i--) {
2319 			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
2320 
2321 			while (taddr != NULL) {
2322 				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
2323 					mdb_warn("failed to read kthread_t "
2324 					    "at %p", taddr);
2325 					return (WALK_ERR);
2326 				}
2327 				if (mdb_vread(&p, sizeof (p),
2328 				    (uintptr_t)t.t_procp) == -1) {
2329 					mdb_warn("failed to read proc_t at %p",
2330 					    t.t_procp);
2331 					return (WALK_ERR);
2332 				}
2333 
2334 				CPUINFO_INDENT;
2335 				mdb_printf("      %3d %0*p %s\n", t.t_pri,
2336 				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
2337 
2338 				taddr = (uintptr_t)t.t_link;
2339 			}
2340 		}
2341 		cid->cid_print_head = TRUE;
2342 	}
2343 
2344 	while (flagline < nflaglines)
2345 		mdb_printf("%s\n", flagbuf[flagline++]);
2346 
2347 	if (cid->cid_print_head)
2348 		mdb_printf("\n");
2349 
2350 	return (rval);
2351 }
2352 
2353 int
2354 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2355 {
2356 	uint_t verbose = FALSE;
2357 	cpuinfo_data_t cid;
2358 	GElf_Sym sym;
2359 	clock_t lbolt;
2360 
2361 	cid.cid_print_ithr = FALSE;
2362 	cid.cid_print_thr = FALSE;
2363 	cid.cid_print_flags = FALSE;
2364 	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
2365 	cid.cid_cpu = -1;
2366 
2367 	if (flags & DCMD_ADDRSPEC)
2368 		cid.cid_cpu = addr;
2369 
2370 	if (mdb_getopts(argc, argv,
2371 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
2372 		return (DCMD_USAGE);
2373 
2374 	if (verbose) {
2375 		cid.cid_print_ithr = TRUE;
2376 		cid.cid_print_thr = TRUE;
2377 		cid.cid_print_flags = TRUE;
2378 		cid.cid_print_head = TRUE;
2379 	}
2380 
2381 	if (cid.cid_print_ithr) {
2382 		int i;
2383 
2384 		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
2385 		    * NCPU, UM_SLEEP | UM_GC);
2386 
2387 		for (i = 0; i < NCPU; i++)
2388 			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
2389 			    NINTR, UM_SLEEP | UM_GC);
2390 
2391 		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
2392 		    &cid) == -1) {
2393 			mdb_warn("couldn't walk thread");
2394 			return (DCMD_ERR);
2395 		}
2396 	}
2397 
2398 	if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
2399 		mdb_warn("failed to find panic_lbolt");
2400 		return (DCMD_ERR);
2401 	}
2402 
2403 	cid.cid_lbolt = (uintptr_t)sym.st_value;
2404 
2405 	if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
2406 		mdb_warn("failed to read panic_lbolt");
2407 		return (DCMD_ERR);
2408 	}
2409 
2410 	if (lbolt == 0) {
2411 		if (mdb_lookup_by_name("lbolt", &sym) == -1) {
2412 			mdb_warn("failed to find lbolt");
2413 			return (DCMD_ERR);
2414 		}
2415 		cid.cid_lbolt = (uintptr_t)sym.st_value;
2416 	}
2417 
2418 	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
2419 		mdb_warn("can't walk cpus");
2420 		return (DCMD_ERR);
2421 	}
2422 
2423 	if (cid.cid_cpu != -1) {
2424 		/*
2425 		 * We didn't find this CPU when we walked through the CPUs
2426 		 * (i.e. the address specified doesn't show up in the "cpu"
2427 		 * walk).  However, the specified address may still correspond
2428 		 * to a valid cpu_t (for example, if the specified address is
2429 		 * the actual panicking cpu_t and not the cached panic_cpu).
2430 		 * Point is:  even if we didn't find it, we still want to try
2431 		 * to print the specified address as a cpu_t.
2432 		 */
2433 		cpu_t cpu;
2434 
2435 		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
2436 			mdb_warn("%p is neither a valid CPU ID nor a "
2437 			    "valid cpu_t address\n", cid.cid_cpu);
2438 			return (DCMD_ERR);
2439 		}
2440 
2441 		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
2442 	}
2443 
2444 	return (DCMD_OK);
2445 }
2446 
2447 /*ARGSUSED*/
2448 int
2449 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2450 {
2451 	int i;
2452 
2453 	if (!(flags & DCMD_ADDRSPEC))
2454 		return (DCMD_USAGE);
2455 
2456 	for (i = 0; i < sizeof (addr) * NBBY; i++)
2457 		mdb_printf("%p\n", addr ^ (1UL << i));
2458 
2459 	return (DCMD_OK);
2460 }
2461 
2462 /*
2463  * Grumble, grumble.
2464  */
2465 #define	SMAP_HASHFUNC(vp, off)	\
2466 	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
2467 	((off) >> MAXBSHIFT)) & smd_hashmsk)
2468 
2469 int
2470 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2471 {
2472 	long smd_hashmsk;
2473 	int hash;
2474 	uintptr_t offset = 0;
2475 	struct smap smp;
2476 	uintptr_t saddr, kaddr;
2477 	uintptr_t smd_hash, smd_smap;
2478 	struct seg seg;
2479 
2480 	if (!(flags & DCMD_ADDRSPEC))
2481 		return (DCMD_USAGE);
2482 
2483 	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
2484 		mdb_warn("failed to read smd_hashmsk");
2485 		return (DCMD_ERR);
2486 	}
2487 
2488 	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
2489 		mdb_warn("failed to read smd_hash");
2490 		return (DCMD_ERR);
2491 	}
2492 
2493 	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
2494 		mdb_warn("failed to read smd_hash");
2495 		return (DCMD_ERR);
2496 	}
2497 
2498 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2499 		mdb_warn("failed to read segkmap");
2500 		return (DCMD_ERR);
2501 	}
2502 
2503 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2504 		mdb_warn("failed to read segkmap at %p", kaddr);
2505 		return (DCMD_ERR);
2506 	}
2507 
2508 	if (argc != 0) {
2509 		const mdb_arg_t *arg = &argv[0];
2510 
2511 		if (arg->a_type == MDB_TYPE_IMMEDIATE)
2512 			offset = arg->a_un.a_val;
2513 		else
2514 			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
2515 	}
2516 
2517 	hash = SMAP_HASHFUNC(addr, offset);
2518 
2519 	if (mdb_vread(&saddr, sizeof (saddr),
2520 	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
2521 		mdb_warn("couldn't read smap at %p",
2522 		    smd_hash + hash * sizeof (uintptr_t));
2523 		return (DCMD_ERR);
2524 	}
2525 
2526 	do {
2527 		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
2528 			mdb_warn("couldn't read smap at %p", saddr);
2529 			return (DCMD_ERR);
2530 		}
2531 
2532 		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
2533 			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
2534 			    addr, offset, saddr, ((saddr - smd_smap) /
2535 			    sizeof (smp)) * MAXBSIZE + seg.s_base);
2536 			return (DCMD_OK);
2537 		}
2538 
2539 		saddr = (uintptr_t)smp.sm_hash;
2540 	} while (saddr != NULL);
2541 
2542 	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
2543 	return (DCMD_OK);
2544 }
2545 
2546 /*ARGSUSED*/
2547 int
2548 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2549 {
2550 	uintptr_t kaddr;
2551 	struct seg seg;
2552 	struct segmap_data sd;
2553 
2554 	if (!(flags & DCMD_ADDRSPEC))
2555 		return (DCMD_USAGE);
2556 
2557 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2558 		mdb_warn("failed to read segkmap");
2559 		return (DCMD_ERR);
2560 	}
2561 
2562 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2563 		mdb_warn("failed to read segkmap at %p", kaddr);
2564 		return (DCMD_ERR);
2565 	}
2566 
2567 	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
2568 		mdb_warn("failed to read segmap_data at %p", seg.s_data);
2569 		return (DCMD_ERR);
2570 	}
2571 
2572 	mdb_printf("%p is smap %p\n", addr,
2573 	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
2574 	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
2575 
2576 	return (DCMD_OK);
2577 }
2578 
2579 int
2580 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
2581 {
2582 	if (p->p_as == *asp)
2583 		mdb_printf("%p\n", addr);
2584 	return (WALK_NEXT);
2585 }
2586 
2587 /*ARGSUSED*/
2588 int
2589 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2590 {
2591 	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
2592 		return (DCMD_USAGE);
2593 
2594 	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
2595 		mdb_warn("failed to walk proc");
2596 		return (DCMD_ERR);
2597 	}
2598 
2599 	return (DCMD_OK);
2600 }
2601 
2602 /*ARGSUSED*/
2603 int
2604 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
2605 {
2606 	proc_t parent;
2607 	int ident = 0;
2608 	uintptr_t paddr;
2609 
2610 	for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
2611 		mdb_vread(&parent, sizeof (parent), paddr);
2612 		paddr = (uintptr_t)parent.p_parent;
2613 	}
2614 
2615 	mdb_inc_indent(ident);
2616 	mdb_printf("%0?p  %s\n", addr, p->p_user.u_comm);
2617 	mdb_dec_indent(ident);
2618 
2619 	return (WALK_NEXT);
2620 }
2621 
2622 void
2623 ptree_ancestors(uintptr_t addr, uintptr_t start)
2624 {
2625 	proc_t p;
2626 
2627 	if (mdb_vread(&p, sizeof (p), addr) == -1) {
2628 		mdb_warn("couldn't read ancestor at %p", addr);
2629 		return;
2630 	}
2631 
2632 	if (p.p_parent != NULL)
2633 		ptree_ancestors((uintptr_t)p.p_parent, start);
2634 
2635 	if (addr != start)
2636 		(void) ptree_walk(addr, &p, NULL);
2637 }
2638 
2639 /*ARGSUSED*/
2640 int
2641 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2642 {
2643 	if (!(flags & DCMD_ADDRSPEC))
2644 		addr = NULL;
2645 	else
2646 		ptree_ancestors(addr, addr);
2647 
2648 	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
2649 		mdb_warn("couldn't walk 'proc'");
2650 		return (DCMD_ERR);
2651 	}
2652 
2653 	return (DCMD_OK);
2654 }
2655 
2656 /*ARGSUSED*/
2657 static int
2658 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2659 {
2660 	int fdnum;
2661 	const mdb_arg_t *argp = &argv[0];
2662 	proc_t p;
2663 	uf_entry_t uf;
2664 
2665 	if ((flags & DCMD_ADDRSPEC) == 0) {
2666 		mdb_warn("fd doesn't give global information\n");
2667 		return (DCMD_ERR);
2668 	}
2669 	if (argc != 1)
2670 		return (DCMD_USAGE);
2671 
2672 	if (argp->a_type == MDB_TYPE_IMMEDIATE)
2673 		fdnum = argp->a_un.a_val;
2674 	else
2675 		fdnum = mdb_strtoull(argp->a_un.a_str);
2676 
2677 	if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
2678 		mdb_warn("couldn't read proc_t at %p", addr);
2679 		return (DCMD_ERR);
2680 	}
2681 	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
2682 		mdb_warn("process %p only has %d files open.\n",
2683 		    addr, p.p_user.u_finfo.fi_nfiles);
2684 		return (DCMD_ERR);
2685 	}
2686 	if (mdb_vread(&uf, sizeof (uf_entry_t),
2687 	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
2688 		mdb_warn("couldn't read uf_entry_t at %p",
2689 		    &p.p_user.u_finfo.fi_list[fdnum]);
2690 		return (DCMD_ERR);
2691 	}
2692 
2693 	mdb_printf("%p\n", uf.uf_file);
2694 	return (DCMD_OK);
2695 }
2696 
2697 /*ARGSUSED*/
2698 static int
2699 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2700 {
2701 	pid_t pid = (pid_t)addr;
2702 
2703 	if (argc != 0)
2704 		return (DCMD_USAGE);
2705 
2706 	if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
2707 		mdb_warn("PID 0t%d not found\n", pid);
2708 		return (DCMD_ERR);
2709 	}
2710 
2711 	mdb_printf("%p\n", addr);
2712 	return (DCMD_OK);
2713 }
2714 
2715 static char *sysfile_cmd[] = {
2716 	"exclude:",
2717 	"include:",
2718 	"forceload:",
2719 	"rootdev:",
2720 	"rootfs:",
2721 	"swapdev:",
2722 	"swapfs:",
2723 	"moddir:",
2724 	"set",
2725 	"unknown",
2726 };
2727 
2728 static char *sysfile_ops[] = { "", "=", "&", "|" };
2729 
2730 /*ARGSUSED*/
2731 static int
2732 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
2733 {
2734 	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
2735 		*target = NULL;
2736 		return (WALK_DONE);
2737 	}
2738 	return (WALK_NEXT);
2739 }
2740 
2741 /*ARGSUSED*/
2742 static int
2743 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2744 {
2745 	struct sysparam *sysp, sys;
2746 	char var[256];
2747 	char modname[256];
2748 	char val[256];
2749 	char strval[256];
2750 	vmem_t *mod_sysfile_arena;
2751 	void *straddr;
2752 
2753 	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
2754 		mdb_warn("failed to read sysparam_hd");
2755 		return (DCMD_ERR);
2756 	}
2757 
2758 	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
2759 		mdb_warn("failed to read mod_sysfile_arena");
2760 		return (DCMD_ERR);
2761 	}
2762 
2763 	while (sysp != NULL) {
2764 		var[0] = '\0';
2765 		val[0] = '\0';
2766 		modname[0] = '\0';
2767 		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
2768 			mdb_warn("couldn't read sysparam %p", sysp);
2769 			return (DCMD_ERR);
2770 		}
2771 		if (sys.sys_modnam != NULL &&
2772 		    mdb_readstr(modname, 256,
2773 		    (uintptr_t)sys.sys_modnam) == -1) {
2774 			mdb_warn("couldn't read modname in %p", sysp);
2775 			return (DCMD_ERR);
2776 		}
2777 		if (sys.sys_ptr != NULL &&
2778 		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
2779 			mdb_warn("couldn't read ptr in %p", sysp);
2780 			return (DCMD_ERR);
2781 		}
2782 		if (sys.sys_op != SETOP_NONE) {
2783 			/*
2784 			 * Is this an int or a string?  We determine this
2785 			 * by checking whether straddr is contained in
2786 			 * mod_sysfile_arena.  If so, the walker will set
2787 			 * straddr to NULL.
2788 			 */
2789 			straddr = (void *)(uintptr_t)sys.sys_info;
2790 			if (sys.sys_op == SETOP_ASSIGN &&
2791 			    sys.sys_info != 0 &&
2792 			    mdb_pwalk("vmem_seg",
2793 			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
2794 			    (uintptr_t)mod_sysfile_arena) == 0 &&
2795 			    straddr == NULL &&
2796 			    mdb_readstr(strval, 256,
2797 			    (uintptr_t)sys.sys_info) != -1) {
2798 				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
2799 				    strval);
2800 			} else {
2801 				(void) mdb_snprintf(val, sizeof (val),
2802 				    "0x%llx [0t%llu]", sys.sys_info,
2803 				    sys.sys_info);
2804 			}
2805 		}
2806 		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
2807 		    modname, modname[0] == '\0' ? "" : ":",
2808 		    var, sysfile_ops[sys.sys_op], val);
2809 
2810 		sysp = sys.sys_next;
2811 	}
2812 
2813 	return (DCMD_OK);
2814 }
2815 
2816 /*
2817  * Dump a taskq_ent_t given its address.
2818  */
2819 /*ARGSUSED*/
2820 int
2821 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2822 {
2823 	taskq_ent_t	taskq_ent;
2824 	GElf_Sym	sym;
2825 	char		buf[MDB_SYM_NAMLEN+1];
2826 
2827 
2828 	if (!(flags & DCMD_ADDRSPEC)) {
2829 		mdb_warn("expected explicit taskq_ent_t address before ::\n");
2830 		return (DCMD_USAGE);
2831 	}
2832 
2833 	if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) {
2834 		mdb_warn("failed to read taskq_ent_t at %p", addr);
2835 		return (DCMD_ERR);
2836 	}
2837 
2838 	if (DCMD_HDRSPEC(flags)) {
2839 		mdb_printf("%<u>%-?s    %-?s    %-s%</u>\n",
2840 		"ENTRY", "ARG", "FUNCTION");
2841 	}
2842 
2843 	if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT,
2844 	    buf, sizeof (buf), &sym) == -1) {
2845 		(void) strcpy(buf, "????");
2846 	}
2847 
2848 	mdb_printf("%-?p    %-?p    %s\n", addr, taskq_ent.tqent_arg, buf);
2849 
2850 	return (DCMD_OK);
2851 }
2852 
2853 /*
2854  * Given the address of the (taskq_t) task queue head, walk the queue listing
2855  * the address of every taskq_ent_t.
2856  */
2857 int
2858 taskq_walk_init(mdb_walk_state_t *wsp)
2859 {
2860 	taskq_t	tq_head;
2861 
2862 
2863 	if (wsp->walk_addr == NULL) {
2864 		mdb_warn("start address required\n");
2865 		return (WALK_ERR);
2866 	}
2867 
2868 
2869 	/*
2870 	 * Save the address of the list head entry.  This terminates the list.
2871 	 */
2872 	wsp->walk_data = (void *)
2873 	    ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task));
2874 
2875 
2876 	/*
2877 	 * Read in taskq head, set walk_addr to point to first taskq_ent_t.
2878 	 */
2879 	if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) ==
2880 	    -1) {
2881 		mdb_warn("failed to read taskq list head at %p",
2882 		    wsp->walk_addr);
2883 	}
2884 	wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next;
2885 
2886 
2887 	/*
2888 	 * Check for null list (next=head)
2889 	 */
2890 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2891 		return (WALK_DONE);
2892 	}
2893 
2894 	return (WALK_NEXT);
2895 }
2896 
2897 
2898 int
2899 taskq_walk_step(mdb_walk_state_t *wsp)
2900 {
2901 	taskq_ent_t	tq_ent;
2902 	int		status;
2903 
2904 
2905 	if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) ==
2906 	    -1) {
2907 		mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr);
2908 		return (DCMD_ERR);
2909 	}
2910 
2911 	status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent,
2912 	    wsp->walk_cbdata);
2913 
2914 	wsp->walk_addr = (uintptr_t)tq_ent.tqent_next;
2915 
2916 
2917 	/* Check if we're at the last element (next=head) */
2918 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2919 		return (WALK_DONE);
2920 	}
2921 
2922 	return (status);
2923 }
2924 
2925 int
2926 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
2927 {
2928 
2929 	if (*didp == thr->t_did) {
2930 		mdb_printf("%p\n", addr);
2931 		return (WALK_DONE);
2932 	} else
2933 		return (WALK_NEXT);
2934 }
2935 
2936 /*ARGSUSED*/
2937 int
2938 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2939 {
2940 	const mdb_arg_t *argp = &argv[0];
2941 	kt_did_t	did;
2942 
2943 	if (argc != 1)
2944 		return (DCMD_USAGE);
2945 
2946 	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
2947 
2948 	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
2949 		mdb_warn("failed to walk thread");
2950 		return (DCMD_ERR);
2951 
2952 	}
2953 	return (DCMD_OK);
2954 
2955 }
2956 
2957 static int
2958 errorq_walk_init(mdb_walk_state_t *wsp)
2959 {
2960 	if (wsp->walk_addr == NULL &&
2961 	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
2962 		mdb_warn("failed to read errorq_list");
2963 		return (WALK_ERR);
2964 	}
2965 
2966 	return (WALK_NEXT);
2967 }
2968 
2969 static int
2970 errorq_walk_step(mdb_walk_state_t *wsp)
2971 {
2972 	uintptr_t addr = wsp->walk_addr;
2973 	errorq_t eq;
2974 
2975 	if (addr == NULL)
2976 		return (WALK_DONE);
2977 
2978 	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
2979 		mdb_warn("failed to read errorq at %p", addr);
2980 		return (WALK_ERR);
2981 	}
2982 
2983 	wsp->walk_addr = (uintptr_t)eq.eq_next;
2984 	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
2985 }
2986 
2987 typedef struct eqd_walk_data {
2988 	uintptr_t *eqd_stack;
2989 	void *eqd_buf;
2990 	ulong_t eqd_qpos;
2991 	ulong_t eqd_qlen;
2992 	size_t eqd_size;
2993 } eqd_walk_data_t;
2994 
2995 /*
2996  * In order to walk the list of pending error queue elements, we push the
2997  * addresses of the corresponding data buffers in to the eqd_stack array.
2998  * The error lists are in reverse chronological order when iterating using
2999  * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3000  * walker client gets addresses in order from oldest error to newest error.
3001  */
3002 static void
3003 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3004 {
3005 	errorq_elem_t eqe;
3006 
3007 	while (addr != NULL) {
3008 		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3009 			mdb_warn("failed to read errorq element at %p", addr);
3010 			break;
3011 		}
3012 
3013 		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3014 			mdb_warn("errorq is overfull -- more than %lu "
3015 			    "elems found\n", eqdp->eqd_qlen);
3016 			break;
3017 		}
3018 
3019 		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3020 		addr = (uintptr_t)eqe.eqe_prev;
3021 	}
3022 }
3023 
3024 static int
3025 eqd_walk_init(mdb_walk_state_t *wsp)
3026 {
3027 	eqd_walk_data_t *eqdp;
3028 	errorq_elem_t eqe, *addr;
3029 	errorq_t eq;
3030 	ulong_t i;
3031 
3032 	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3033 		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3034 		return (WALK_ERR);
3035 	}
3036 
3037 	if (eq.eq_ptail != NULL &&
3038 	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3039 		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3040 		return (WALK_ERR);
3041 	}
3042 
3043 	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3044 	wsp->walk_data = eqdp;
3045 
3046 	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3047 	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3048 	eqdp->eqd_qlen = eq.eq_qlen;
3049 	eqdp->eqd_qpos = 0;
3050 	eqdp->eqd_size = eq.eq_size;
3051 
3052 	/*
3053 	 * The newest elements in the queue are on the pending list, so we
3054 	 * push those on to our stack first.
3055 	 */
3056 	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3057 
3058 	/*
3059 	 * If eq_ptail is set, it may point to a subset of the errors on the
3060 	 * pending list in the event a casptr() failed; if ptail's data is
3061 	 * already in our stack, NULL out eq_ptail and ignore it.
3062 	 */
3063 	if (eq.eq_ptail != NULL) {
3064 		for (i = 0; i < eqdp->eqd_qpos; i++) {
3065 			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3066 				eq.eq_ptail = NULL;
3067 				break;
3068 			}
3069 		}
3070 	}
3071 
3072 	/*
3073 	 * If eq_phead is set, it has the processing list in order from oldest
3074 	 * to newest.  Use this to recompute eq_ptail as best we can and then
3075 	 * we nicely fall into eqd_push_list() of eq_ptail below.
3076 	 */
3077 	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3078 	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3079 		eq.eq_ptail = addr;
3080 
3081 	/*
3082 	 * The oldest elements in the queue are on the processing list, subject
3083 	 * to machinations in the if-clauses above.  Push any such elements.
3084 	 */
3085 	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3086 	return (WALK_NEXT);
3087 }
3088 
3089 static int
3090 eqd_walk_step(mdb_walk_state_t *wsp)
3091 {
3092 	eqd_walk_data_t *eqdp = wsp->walk_data;
3093 	uintptr_t addr;
3094 
3095 	if (eqdp->eqd_qpos == 0)
3096 		return (WALK_DONE);
3097 
3098 	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3099 
3100 	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3101 		mdb_warn("failed to read errorq data at %p", addr);
3102 		return (WALK_ERR);
3103 	}
3104 
3105 	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3106 }
3107 
3108 static void
3109 eqd_walk_fini(mdb_walk_state_t *wsp)
3110 {
3111 	eqd_walk_data_t *eqdp = wsp->walk_data;
3112 
3113 	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3114 	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3115 	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3116 }
3117 
3118 #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3119 
3120 static int
3121 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3122 {
3123 	int i;
3124 	errorq_t eq;
3125 	uint_t opt_v = FALSE;
3126 
3127 	if (!(flags & DCMD_ADDRSPEC)) {
3128 		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3129 			mdb_warn("can't walk 'errorq'");
3130 			return (DCMD_ERR);
3131 		}
3132 		return (DCMD_OK);
3133 	}
3134 
3135 	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3136 	argc -= i;
3137 	argv += i;
3138 
3139 	if (argc != 0)
3140 		return (DCMD_USAGE);
3141 
3142 	if (opt_v || DCMD_HDRSPEC(flags)) {
3143 		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3144 		    "ADDR", "NAME", "S", "V", "N");
3145 		if (!opt_v) {
3146 			mdb_printf("%7s %7s %7s%</u>\n",
3147 			    "ACCEPT", "DROP", "LOG");
3148 		} else {
3149 			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3150 			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3151 		}
3152 	}
3153 
3154 	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3155 		mdb_warn("failed to read errorq at %p", addr);
3156 		return (DCMD_ERR);
3157 	}
3158 
3159 	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3160 	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3161 	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3162 	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3163 
3164 	if (!opt_v) {
3165 		mdb_printf("%7llu %7llu %7llu\n",
3166 		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3167 		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3168 		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3169 	} else {
3170 		mdb_printf("%5s %6lu %6lu %3u %a\n",
3171 		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3172 		mdb_printf("%38s\n%41s"
3173 		    "%12s %llu\n"
3174 		    "%53s %llu\n"
3175 		    "%53s %llu\n"
3176 		    "%53s %llu\n"
3177 		    "%53s %llu\n"
3178 		    "%53s %llu\n"
3179 		    "%53s %llu\n"
3180 		    "%53s %llu\n\n",
3181 		    "|", "+-> ",
3182 		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3183 		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3184 		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3185 		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3186 		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3187 		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3188 		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3189 		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3190 	}
3191 
3192 	return (DCMD_OK);
3193 }
3194 
3195 /*ARGSUSED*/
3196 static int
3197 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3198 {
3199 	cpu_t panic_cpu;
3200 	kthread_t *panic_thread;
3201 	void *buf;
3202 	panic_data_t *pd;
3203 	int i, n;
3204 
3205 	if (!mdb_prop_postmortem) {
3206 		mdb_warn("panicinfo can only be run on a system "
3207 		    "dump; see dumpadm(1M)\n");
3208 		return (DCMD_ERR);
3209 	}
3210 
3211 	if (flags & DCMD_ADDRSPEC || argc != 0)
3212 		return (DCMD_USAGE);
3213 
3214 	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3215 		mdb_warn("failed to read 'panic_cpu'");
3216 	else
3217 		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3218 
3219 	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3220 		mdb_warn("failed to read 'panic_thread'");
3221 	else
3222 		mdb_printf("%16s %?p\n", "thread", panic_thread);
3223 
3224 	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3225 	pd = (panic_data_t *)buf;
3226 
3227 	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3228 	    pd->pd_version != PANICBUFVERS) {
3229 		mdb_warn("failed to read 'panicbuf'");
3230 		mdb_free(buf, PANICBUFSIZE);
3231 		return (DCMD_ERR);
3232 	}
3233 
3234 	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
3235 
3236 	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3237 	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3238 
3239 	for (i = 0; i < n; i++)
3240 		mdb_printf("%16s %?llx\n",
3241 		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3242 
3243 	mdb_free(buf, PANICBUFSIZE);
3244 	return (DCMD_OK);
3245 }
3246 
3247 static const mdb_dcmd_t dcmds[] = {
3248 
3249 	/* from genunix.c */
3250 	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
3251 	{ "as2proc", ":", "convert as to proc_t address", as2proc },
3252 	{ "binding_hash_entry", ":", "print driver names hash table entry",
3253 		binding_hash_entry },
3254 	{ "callout", NULL, "print callout table", callout },
3255 	{ "class", NULL, "print process scheduler classes", class },
3256 	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3257 	{ "did2thread", "? kt_did", "find kernel thread for this id",
3258 		did2thread },
3259 	{ "errorq", "?[-v]", "display kernel error queues", errorq },
3260 	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
3261 	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
3262 	{ "lminfo", NULL, "print lock manager information", lminfo },
3263 	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3264 	{ "panicinfo", NULL, "print panic information", panicinfo },
3265 	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3266 	{ "pmap", ":[-q]", "print process memory map", pmap },
3267 	{ "project", NULL, "display kernel project(s)", project },
3268 	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3269 	{ "pgrep", "[-x] [-n | -o] pattern",
3270 		"pattern match against all processes", pgrep },
3271 	{ "ptree", NULL, "print process tree", ptree },
3272 	{ "seg", ":", "print address space segment", seg },
3273 	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3274 		sysevent},
3275 	{ "sysevent_channel", "?", "print sysevent channel database",
3276 		sysevent_channel},
3277 	{ "sysevent_class_list", ":", "print sysevent class list",
3278 		sysevent_class_list},
3279 	{ "sysevent_subclass_list", ":",
3280 		"print sysevent subclass list", sysevent_subclass_list},
3281 	{ "system", NULL, "print contents of /etc/system file", sysfile },
3282 	{ "task", NULL, "display kernel task(s)", task },
3283 	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
3284 	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3285 	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
3286 	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
3287 	    whereopen },
3288 
3289 	/* from zone.c */
3290 	{ "zone", "?", "display kernel zone(s)", zoneprt },
3291 	{ "zsd", ":[zsd key]", "lookup zsd value from a key", zsd },
3292 
3293 	/* from bio.c */
3294 	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3295 
3296 	/* from contract.c */
3297 	{ "contract", "?", "display a contract", cmd_contract },
3298 	{ "ctevent", ":", "display a contract event", cmd_ctevent },
3299 	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3300 
3301 	/* from cpupart.c */
3302 	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
3303 
3304 	/* from cyclic.c */
3305 	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
3306 	{ "cycid", "?", "dump a cyclic id", cycid },
3307 	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3308 	{ "cyclic", ":", "developer information", cyclic },
3309 	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3310 
3311 	/* from devinfo.c */
3312 	{ "devbindings", "?[-qs] [device-name | major-num]",
3313 	    "print devinfo nodes bound to device-name or major-num",
3314 	    devbindings, devinfo_help },
3315 	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3316 	    devinfo_help },
3317 	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3318 	    devinfo_audit },
3319 	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3320 	    devinfo_audit_log },
3321 	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3322 	    devinfo_audit_node },
3323 	{ "devinfo2driver", ":", "find driver name for this devinfo node",
3324 	    devinfo2driver },
3325 	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
3326 	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
3327 	    dev2major },
3328 	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3329 	    dev2minor },
3330 	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3331 	    devt },
3332 	{ "major2name", "?<major-num>", "convert major number to dev name",
3333 	    major2name },
3334 	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
3335 	    minornodes },
3336 	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
3337 	    modctl2devinfo },
3338 	{ "name2major", "<dev-name>", "convert dev name to major number",
3339 	    name2major },
3340 	{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3341 	{ "softstate", ":<instance>", "retrieve soft-state pointer",
3342 	    softstate },
3343 	{ "devinfo_fm", ":", "devinfo fault managment configuration",
3344 	    devinfo_fm },
3345 	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
3346 	    devinfo_fmce},
3347 
3348 	/* from fm.c */
3349 	{ "ereport", "[-v]", "print ereports logged in dump",
3350 	    ereport },
3351 
3352 	/* from findstack.c */
3353 	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
3354 	{ "findstack_debug", NULL, "toggle findstack debugging",
3355 		findstack_debug },
3356 
3357 	/* from kgrep.c + genunix.c */
3358 	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3359 		kgrep_help },
3360 
3361 	/* from kmem.c */
3362 	{ "allocdby", ":", "given a thread, print its allocated buffers",
3363 		allocdby },
3364 	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3365 		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3366 	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
3367 	{ "kmalog", "?[ fail | slab ]",
3368 	    "display kmem transaction log and stack traces", kmalog },
3369 	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
3370 	    kmastat },
3371 	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3372 		"of the kmem allocator", kmausers, kmausers_help },
3373 	{ "kmem_cache", "?", "print kernel memory caches", kmem_cache },
3374 	{ "kmem_slabs", "?[-v] [-n cache] [-b maxbins] [-B minbinsize]",
3375 		"display slab usage per kmem cache",
3376 		kmem_slabs, kmem_slabs_help },
3377 	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3378 	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
3379 	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
3380 		kmem_verify },
3381 	{ "vmem", "?", "print a vmem_t", vmem },
3382 	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
3383 		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
3384 		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
3385 	{ "whatis", ":[-abiv]", "given an address, return information", whatis,
3386 		whatis_help },
3387 	{ "whatthread", ":[-v]", "print threads whose stack contains the "
3388 		"given address", whatthread },
3389 
3390 	/* from ldi.c */
3391 	{ "ldi_handle", "?[-i]", "display a layered driver handle",
3392 	    ldi_handle, ldi_handle_help },
3393 	{ "ldi_ident", NULL, "display a layered driver identifier",
3394 	    ldi_ident, ldi_ident_help },
3395 
3396 	/* from leaky.c + leaky_subr.c */
3397 	{ "findleaks", FINDLEAKS_USAGE,
3398 	    "search for potential kernel memory leaks", findleaks,
3399 	    findleaks_help },
3400 
3401 	/* from lgrp.c */
3402 	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
3403 	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
3404 
3405 	/* from log.c */
3406 	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
3407 
3408 	/* from memory.c */
3409 	{ "page", "?", "display a summarized page_t", page },
3410 	{ "memstat", NULL, "display memory usage summary", memstat },
3411 	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
3412 	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
3413 
3414 	/* from mmd.c */
3415 	{ "multidata", ":[-sv]", "display a summarized multidata_t",
3416 		multidata },
3417 	{ "pattbl", ":", "display a summarized multidata attribute table",
3418 		pattbl },
3419 	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
3420 		pattr2multidata },
3421 	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
3422 		pdesc2slab },
3423 	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
3424 	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
3425 		slab2multidata },
3426 
3427 	/* from modhash.c */
3428 	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
3429 		"display information about one or all mod_hash structures",
3430 		modhash, modhash_help },
3431 	{ "modent", ":[-k | -v | -t type]",
3432 		"display information about a mod_hash_entry", modent,
3433 		modent_help },
3434 
3435 	/* from net.c */
3436 	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
3437 		mi },
3438 	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]",
3439 		"show network statistics", netstat },
3440 	{ "sonode", "?[-f inet | inet6 | unix | #] "
3441 		"[-t stream | dgram | raw | #] [-p #]",
3442 		"filter and display sonode", sonode },
3443 
3444 	/* from netstack.c */
3445 	{ "netstack", "", "show stack instances", netstack },
3446 
3447 	/* from nvpair.c */
3448 	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
3449 		nvpair_print },
3450 	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
3451 		print_nvlist },
3452 
3453 	/* from pg.c */
3454 	{ "pg", "?[-q]", "display a pg", pg},
3455 	/* from group.c */
3456 	{ "group", "?[-q]", "display a group", group},
3457 
3458 	/* from log.c */
3459 	/* from rctl.c */
3460 	{ "rctl_dict", "?", "print systemwide default rctl definitions",
3461 		rctl_dict },
3462 	{ "rctl_list", ":[handle]", "print rctls for the given proc",
3463 		rctl_list },
3464 	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
3465 		rctl },
3466 	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
3467 		"sequence", rctl_validate },
3468 
3469 	/* from sobj.c */
3470 	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
3471 	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
3472 		mutex_help },
3473 	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
3474 	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
3475 	{ "turnstile", "?", "display a turnstile", turnstile },
3476 
3477 	/* from stream.c */
3478 	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
3479 		"print an mblk", mblk_prt, mblk_help },
3480 	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
3481 	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
3482 		mblk2dblk },
3483 	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
3484 	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
3485 	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
3486 	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
3487 	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
3488 	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
3489 		"filter and display STREAM queue", queue, queue_help },
3490 	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
3491 		"filter and display STREAM head", stdata, stdata_help },
3492 	{ "str2mate", ":", "print mate of this stream", str2mate },
3493 	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
3494 	{ "stream", ":", "display STREAM", stream },
3495 	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
3496 	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
3497 		"filter and display STREAM sync queue", syncq, syncq_help },
3498 	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
3499 
3500 	/* from thread.c */
3501 	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
3502 		thread_help },
3503 	{ "threadlist", "?[-t] [-v [count]]",
3504 		"display threads and associated C stack traces", threadlist,
3505 		threadlist_help },
3506 
3507 	/* from tsd.c */
3508 	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
3509 	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
3510 
3511 	/*
3512 	 * typegraph does not work under kmdb, as it requires too much memory
3513 	 * for its internal data structures.
3514 	 */
3515 #ifndef _KMDB
3516 	/* from typegraph.c */
3517 	{ "findlocks", ":", "find locks held by specified thread", findlocks },
3518 	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
3519 		findfalse },
3520 	{ "typegraph", NULL, "build type graph", typegraph },
3521 	{ "istype", ":type", "manually set object type", istype },
3522 	{ "notype", ":", "manually clear object type", notype },
3523 	{ "whattype", ":", "determine object type", whattype },
3524 #endif
3525 
3526 	/* from vfs.c */
3527 	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
3528 	{ "pfiles", ":[-fp]", "print process file information", pfiles,
3529 		pfiles_help },
3530 
3531 	/* from mdi.c */
3532 	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
3533 		"and detailed pi_prop list", mdipi },
3534 	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
3535 		mdiprops },
3536 	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
3537 		"list all paths", mdiphci },
3538 	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
3539 		"all phcis", mdivhci },
3540 	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
3541 		"client links", mdiclient_paths },
3542 	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
3543 		"phci links", mdiphci_paths },
3544 	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
3545 		mdiphcis },
3546 
3547 	{ NULL }
3548 };
3549 
3550 static const mdb_walker_t walkers[] = {
3551 
3552 	/* from genunix.c */
3553 	{ "anon", "given an amp, list of anon structures",
3554 		anon_walk_init, anon_walk_step, anon_walk_fini },
3555 	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
3556 	{ "ereportq_dump", "walk list of ereports in dump error queue",
3557 		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
3558 	{ "ereportq_pend", "walk list of ereports in pending error queue",
3559 		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
3560 	{ "errorq", "walk list of system error queues",
3561 		errorq_walk_init, errorq_walk_step, NULL },
3562 	{ "errorq_data", "walk pending error queue data buffers",
3563 		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
3564 	{ "allfile", "given a proc pointer, list all file pointers",
3565 		file_walk_init, allfile_walk_step, file_walk_fini },
3566 	{ "file", "given a proc pointer, list of open file pointers",
3567 		file_walk_init, file_walk_step, file_walk_fini },
3568 	{ "lock_descriptor", "walk lock_descriptor_t structures",
3569 		ld_walk_init, ld_walk_step, NULL },
3570 	{ "lock_graph", "walk lock graph",
3571 		lg_walk_init, lg_walk_step, NULL },
3572 	{ "port", "given a proc pointer, list of created event ports",
3573 		port_walk_init, port_walk_step, NULL },
3574 	{ "portev", "given a port pointer, list of events in the queue",
3575 		portev_walk_init, portev_walk_step, portev_walk_fini },
3576 	{ "proc", "list of active proc_t structures",
3577 		proc_walk_init, proc_walk_step, proc_walk_fini },
3578 	{ "projects", "walk a list of kernel projects",
3579 		project_walk_init, project_walk_step, NULL },
3580 	{ "seg", "given an as, list of segments",
3581 		seg_walk_init, avl_walk_step, avl_walk_fini },
3582 	{ "sysevent_pend", "walk sysevent pending queue",
3583 		sysevent_pend_walk_init, sysevent_walk_step,
3584 		sysevent_walk_fini},
3585 	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
3586 		sysevent_walk_step, sysevent_walk_fini},
3587 	{ "sysevent_channel", "walk sysevent channel subscriptions",
3588 		sysevent_channel_walk_init, sysevent_channel_walk_step,
3589 		sysevent_channel_walk_fini},
3590 	{ "sysevent_class_list", "walk sysevent subscription's class list",
3591 		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
3592 		sysevent_class_list_walk_fini},
3593 	{ "sysevent_subclass_list",
3594 		"walk sysevent subscription's subclass list",
3595 		sysevent_subclass_list_walk_init,
3596 		sysevent_subclass_list_walk_step,
3597 		sysevent_subclass_list_walk_fini},
3598 	{ "task", "given a task pointer, walk its processes",
3599 		task_walk_init, task_walk_step, NULL },
3600 	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
3601 		taskq_walk_init, taskq_walk_step, NULL, NULL },
3602 
3603 	/* from avl.c */
3604 	{ AVL_WALK_NAME, AVL_WALK_DESC,
3605 		avl_walk_init, avl_walk_step, avl_walk_fini },
3606 
3607 	/* from zone.c */
3608 	{ "zone", "walk a list of kernel zones",
3609 		zone_walk_init, zone_walk_step, NULL },
3610 	{ "zsd", "walk list of zsd entries for a zone",
3611 		zsd_walk_init, zsd_walk_step, NULL },
3612 
3613 	/* from bio.c */
3614 	{ "buf", "walk the bio buf hash",
3615 		buf_walk_init, buf_walk_step, buf_walk_fini },
3616 
3617 	/* from contract.c */
3618 	{ "contract", "walk all contracts, or those of the specified type",
3619 		ct_walk_init, generic_walk_step, NULL },
3620 	{ "ct_event", "walk events on a contract event queue",
3621 		ct_event_walk_init, generic_walk_step, NULL },
3622 	{ "ct_listener", "walk contract event queue listeners",
3623 		ct_listener_walk_init, generic_walk_step, NULL },
3624 
3625 	/* from cpupart.c */
3626 	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
3627 		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
3628 		NULL },
3629 	{ "cpupart_walk", "walk the set of cpu partitions",
3630 		cpupart_walk_init, cpupart_walk_step, NULL },
3631 
3632 	/* from ctxop.c */
3633 	{ "ctxop", "walk list of context ops on a thread",
3634 		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
3635 
3636 	/* from cyclic.c */
3637 	{ "cyccpu", "walk per-CPU cyc_cpu structures",
3638 		cyccpu_walk_init, cyccpu_walk_step, NULL },
3639 	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
3640 		cycomni_walk_init, cycomni_walk_step, NULL },
3641 	{ "cyctrace", "walk cyclic trace buffer",
3642 		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
3643 
3644 	/* from devinfo.c */
3645 	{ "binding_hash", "walk all entries in binding hash table",
3646 		binding_hash_walk_init, binding_hash_walk_step, NULL },
3647 	{ "devinfo", "walk devinfo tree or subtree",
3648 		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
3649 	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
3650 		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
3651 		devinfo_audit_log_walk_fini},
3652 	{ "devinfo_audit_node", "walk per-devinfo audit history",
3653 		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
3654 		devinfo_audit_node_walk_fini},
3655 	{ "devinfo_children", "walk children of devinfo node",
3656 		devinfo_children_walk_init, devinfo_children_walk_step,
3657 		devinfo_children_walk_fini },
3658 	{ "devinfo_parents", "walk ancestors of devinfo node",
3659 		devinfo_parents_walk_init, devinfo_parents_walk_step,
3660 		devinfo_parents_walk_fini },
3661 	{ "devinfo_siblings", "walk siblings of devinfo node",
3662 		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
3663 	{ "devi_next", "walk devinfo list",
3664 		NULL, devi_next_walk_step, NULL },
3665 	{ "devnames", "walk devnames array",
3666 		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
3667 	{ "minornode", "given a devinfo node, walk minor nodes",
3668 		minornode_walk_init, minornode_walk_step, NULL },
3669 	{ "softstate",
3670 		"given an i_ddi_soft_state*, list all in-use driver stateps",
3671 		soft_state_walk_init, soft_state_walk_step,
3672 		NULL, NULL },
3673 	{ "softstate_all",
3674 		"given an i_ddi_soft_state*, list all driver stateps",
3675 		soft_state_walk_init, soft_state_all_walk_step,
3676 		NULL, NULL },
3677 	{ "devinfo_fmc",
3678 		"walk a fault management handle cache active list",
3679 		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
3680 
3681 	/* from kmem.c */
3682 	{ "allocdby", "given a thread, walk its allocated bufctls",
3683 		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3684 	{ "bufctl", "walk a kmem cache's bufctls",
3685 		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
3686 	{ "bufctl_history", "walk the available history of a bufctl",
3687 		bufctl_history_walk_init, bufctl_history_walk_step,
3688 		bufctl_history_walk_fini },
3689 	{ "freedby", "given a thread, walk its freed bufctls",
3690 		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3691 	{ "freectl", "walk a kmem cache's free bufctls",
3692 		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
3693 	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
3694 		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3695 	{ "freemem", "walk a kmem cache's free memory",
3696 		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
3697 	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
3698 		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3699 	{ "kmem", "walk a kmem cache",
3700 		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
3701 	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
3702 		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
3703 	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
3704 		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
3705 	{ "kmem_log", "walk the kmem transaction log",
3706 		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
3707 	{ "kmem_slab", "given a kmem cache, walk its slabs",
3708 		kmem_slab_walk_init, kmem_slab_walk_step, NULL },
3709 	{ "kmem_slab_partial",
3710 	    "given a kmem cache, walk its partially allocated slabs (min 1)",
3711 		kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL },
3712 	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
3713 		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
3714 	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
3715 		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3716 	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
3717 		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3718 	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
3719 		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
3720 	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
3721 		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3722 	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
3723 		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3724 
3725 	/* from ldi.c */
3726 	{ "ldi_handle", "walk the layered driver handle hash",
3727 		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
3728 	{ "ldi_ident", "walk the layered driver identifier hash",
3729 		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
3730 
3731 	/* from leaky.c + leaky_subr.c */
3732 	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
3733 	    "stack trace",
3734 		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
3735 	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
3736 	    "leaks w/ same stack trace",
3737 		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
3738 
3739 	/* from lgrp.c */
3740 	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
3741 		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
3742 	{ "lgrptbl", "walk lgroup table",
3743 		lgrp_walk_init, lgrp_walk_step, NULL },
3744 	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
3745 		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
3746 	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
3747 		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
3748 	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
3749 		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
3750 
3751 	/* from group.c */
3752 	{ "group", "walk all elements of a group",
3753 		group_walk_init, group_walk_step, NULL },
3754 
3755 	/* from list.c */
3756 	{ LIST_WALK_NAME, LIST_WALK_DESC,
3757 		list_walk_init, list_walk_step, list_walk_fini },
3758 
3759 	/* from memory.c */
3760 	{ "page", "walk all pages, or those from the specified vnode",
3761 		page_walk_init, page_walk_step, page_walk_fini },
3762 	{ "memlist", "walk specified memlist",
3763 		NULL, memlist_walk_step, NULL },
3764 	{ "swapinfo", "walk swapinfo structures",
3765 		swap_walk_init, swap_walk_step, NULL },
3766 
3767 	/* from mmd.c */
3768 	{ "pattr", "walk pattr_t structures", pattr_walk_init,
3769 		mmdq_walk_step, mmdq_walk_fini },
3770 	{ "pdesc", "walk pdesc_t structures",
3771 		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
3772 	{ "pdesc_slab", "walk pdesc_slab_t structures",
3773 		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
3774 
3775 	/* from modhash.c */
3776 	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
3777 		modhash_walk_step, NULL },
3778 	{ "modent", "walk list of entries in a given mod_hash",
3779 		modent_walk_init, modent_walk_step, modent_walk_fini },
3780 	{ "modchain", "walk list of entries in a given mod_hash_entry",
3781 		NULL, modchain_walk_step, NULL },
3782 
3783 	/* from net.c */
3784 	{ "ar", "walk ar_t structures using MI for all stacks",
3785 		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg },
3786 	{ "icmp", "walk ICMP control structures using MI for all stacks",
3787 		mi_payload_walk_init, mi_payload_walk_step, NULL,
3788 		&mi_icmp_arg },
3789 	{ "ill", "walk ill_t structures using MI for all stacks",
3790 		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg },
3791 
3792 	{ "mi", "given a MI_O, walk the MI",
3793 		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
3794 	{ "sonode", "given a sonode, walk its children",
3795 		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
3796 
3797 	{ "ar_stacks", "walk all the ar_stack_t",
3798 		ar_stacks_walk_init, ar_stacks_walk_step, NULL },
3799 	{ "icmp_stacks", "walk all the icmp_stack_t",
3800 		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
3801 	{ "tcp_stacks", "walk all the tcp_stack_t",
3802 		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
3803 	{ "udp_stacks", "walk all the udp_stack_t",
3804 		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
3805 
3806 	/* from nvpair.c */
3807 	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
3808 		nvpair_walk_init, nvpair_walk_step, NULL },
3809 
3810 	/* from rctl.c */
3811 	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
3812 		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
3813 	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
3814 		rctl_set_walk_step, NULL },
3815 	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
3816 		rctl_val_walk_init, rctl_val_walk_step },
3817 
3818 	/* from sobj.c */
3819 	{ "blocked", "walk threads blocked on a given sobj",
3820 		blocked_walk_init, blocked_walk_step, NULL },
3821 	{ "wchan", "given a wchan, list of blocked threads",
3822 		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
3823 
3824 	/* from stream.c */
3825 	{ "b_cont", "walk mblk_t list using b_cont",
3826 		mblk_walk_init, b_cont_step, mblk_walk_fini },
3827 	{ "b_next", "walk mblk_t list using b_next",
3828 		mblk_walk_init, b_next_step, mblk_walk_fini },
3829 	{ "qlink", "walk queue_t list using q_link",
3830 		queue_walk_init, queue_link_step, queue_walk_fini },
3831 	{ "qnext", "walk queue_t list using q_next",
3832 		queue_walk_init, queue_next_step, queue_walk_fini },
3833 	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
3834 		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
3835 	{ "readq", "walk read queue side of stdata",
3836 		str_walk_init, strr_walk_step, str_walk_fini },
3837 	{ "writeq", "walk write queue side of stdata",
3838 		str_walk_init, strw_walk_step, str_walk_fini },
3839 
3840 	/* from thread.c */
3841 	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
3842 		deathrow_walk_init, deathrow_walk_step, NULL },
3843 	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
3844 		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3845 	{ "cpupart_dispq",
3846 		"given a cpupart_t, walk threads in dispatcher queues",
3847 		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3848 	{ "lwp_deathrow", "walk lwp_deathrow",
3849 		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
3850 	{ "thread", "global or per-process kthread_t structures",
3851 		thread_walk_init, thread_walk_step, thread_walk_fini },
3852 	{ "thread_deathrow", "walk threads on thread_deathrow",
3853 		thread_deathrow_walk_init, deathrow_walk_step, NULL },
3854 
3855 	/* from tsd.c */
3856 	{ "tsd", "walk list of thread-specific data",
3857 		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
3858 
3859 	/* from tsol.c */
3860 	{ "tnrh", "walk remote host cache structures",
3861 	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
3862 	{ "tnrhtp", "walk remote host template structures",
3863 	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
3864 
3865 	/*
3866 	 * typegraph does not work under kmdb, as it requires too much memory
3867 	 * for its internal data structures.
3868 	 */
3869 #ifndef _KMDB
3870 	/* from typegraph.c */
3871 	{ "typeconflict", "walk buffers with conflicting type inferences",
3872 		typegraph_walk_init, typeconflict_walk_step },
3873 	{ "typeunknown", "walk buffers with unknown types",
3874 		typegraph_walk_init, typeunknown_walk_step },
3875 #endif
3876 
3877 	/* from vfs.c */
3878 	{ "vfs", "walk file system list",
3879 		vfs_walk_init, vfs_walk_step },
3880 
3881 	/* from mdi.c */
3882 	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
3883 		mdi_pi_client_link_walk_init,
3884 		mdi_pi_client_link_walk_step,
3885 		mdi_pi_client_link_walk_fini },
3886 
3887 	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
3888 		mdi_pi_phci_link_walk_init,
3889 		mdi_pi_phci_link_walk_step,
3890 		mdi_pi_phci_link_walk_fini },
3891 
3892 	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
3893 		mdi_phci_ph_next_walk_init,
3894 		mdi_phci_ph_next_walk_step,
3895 		mdi_phci_ph_next_walk_fini },
3896 
3897 	/* from netstack.c */
3898 	{ "netstack", "walk a list of kernel netstacks",
3899 		netstack_walk_init, netstack_walk_step, NULL },
3900 
3901 	{ NULL }
3902 };
3903 
3904 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
3905 
3906 const mdb_modinfo_t *
3907 _mdb_init(void)
3908 {
3909 	if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) {
3910 		mdb_warn("failed to read 'top_devinfo'");
3911 		return (NULL);
3912 	}
3913 
3914 	if (findstack_init() != DCMD_OK)
3915 		return (NULL);
3916 
3917 	kmem_init();
3918 
3919 	return (&modinfo);
3920 }
3921 
3922 void
3923 _mdb_fini(void)
3924 {
3925 	/*
3926 	 * Force ::findleaks to let go any cached memory
3927 	 */
3928 	leaky_cleanup(1);
3929 }
3930