1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file contains functions to implement automatic configuration 28 * of scsi disks. 29 */ 30 #include "global.h" 31 32 #include <fcntl.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <strings.h> 36 #include <stdlib.h> 37 #include <ctype.h> 38 39 #include "misc.h" 40 #include "param.h" 41 #include "ctlr_scsi.h" 42 #include "auto_sense.h" 43 #include "partition.h" 44 #include "label.h" 45 #include "startup.h" 46 #include "analyze.h" 47 #include "io.h" 48 #include "hardware_structs.h" 49 #include "menu_fdisk.h" 50 51 52 #define DISK_NAME_MAX 256 53 54 extern int nctypes; 55 extern struct ctlr_type ctlr_types[]; 56 57 58 /* 59 * Marker for free hog partition 60 */ 61 #define HOG (-1) 62 63 64 65 /* 66 * Default partition tables 67 * 68 * Disk capacity root swap usr 69 * ------------- ---- ---- --- 70 * 0mb to 64mb 0 0 remainder 71 * 64mb to 180mb 16mb 16mb remainder 72 * 180mb to 280mb 16mb 32mb remainder 73 * 280mb to 380mb 24mb 32mb remainder 74 * 380mb to 600mb 32mb 32mb remainder 75 * 600mb to 1gb 32mb 64mb remainder 76 * 1gb to 2gb 64mb 128mb remainder 77 * 2gb on up 128mb 128mb remainder 78 */ 79 struct part_table { 80 int partitions[NDKMAP]; 81 }; 82 83 static struct part_table part_table_64mb = { 84 { 0, 0, 0, 0, 0, 0, HOG, 0} 85 }; 86 87 static struct part_table part_table_180mb = { 88 { 16, 16, 0, 0, 0, 0, HOG, 0} 89 }; 90 91 static struct part_table part_table_280mb = { 92 { 16, 32, 0, 0, 0, 0, HOG, 0} 93 }; 94 95 static struct part_table part_table_380mb = { 96 { 24, 32, 0, 0, 0, 0, HOG, 0} 97 }; 98 99 static struct part_table part_table_600mb = { 100 { 32, 32, 0, 0, 0, 0, HOG, 0} 101 }; 102 103 static struct part_table part_table_1gb = { 104 { 32, 64, 0, 0, 0, 0, HOG, 0} 105 }; 106 107 static struct part_table part_table_2gb = { 108 { 64, 128, 0, 0, 0, 0, HOG, 0} 109 }; 110 111 static struct part_table part_table_infinity = { 112 { 128, 128, 0, 0, 0, 0, HOG, 0} 113 }; 114 115 116 static struct default_partitions { 117 diskaddr_t min_capacity; 118 diskaddr_t max_capacity; 119 struct part_table *part_table; 120 } default_partitions[] = { 121 { 0, 64, &part_table_64mb }, /* 0 to 64 mb */ 122 { 64, 180, &part_table_180mb }, /* 64 to 180 mb */ 123 { 180, 280, &part_table_280mb }, /* 180 to 280 mb */ 124 { 280, 380, &part_table_380mb }, /* 280 to 380 mb */ 125 { 380, 600, &part_table_600mb }, /* 380 to 600 mb */ 126 { 600, 1024, &part_table_1gb }, /* 600 to 1 gb */ 127 { 1024, 2048, &part_table_2gb }, /* 1 to 2 gb */ 128 { 2048, INFINITY, &part_table_infinity }, /* 2 gb on up */ 129 }; 130 131 #define DEFAULT_PARTITION_TABLE_SIZE \ 132 (sizeof (default_partitions) / sizeof (struct default_partitions)) 133 134 /* 135 * msgs for check() 136 */ 137 #define FORMAT_MSG "Auto configuration via format.dat" 138 #define GENERIC_MSG "Auto configuration via generic SCSI-2" 139 140 /* 141 * Disks on symbios(Hardwire raid controller) return a fixed number 142 * of heads(64)/cylinders(64) and adjust the cylinders depending 143 * capacity of the configured lun. 144 * In such a case we get number of physical cylinders < 3 which 145 * is the minimum required by solaris(2 reserved + 1 data cylinders). 146 * Hence try to adjust the cylinders by reducing the "nsect/nhead". 147 * 148 */ 149 /* 150 * assuming a minimum of 32 block cylinders. 151 */ 152 #define MINIMUM_NO_HEADS 2 153 #define MINIMUM_NO_SECTORS 16 154 155 #define MINIMUM_NO_CYLINDERS 128 156 157 #if defined(_SUNOS_VTOC_8) 158 159 /* These are 16-bit fields */ 160 #define MAXIMUM_NO_HEADS 65535 161 #define MAXIMUM_NO_SECTORS 65535 162 #define MAXIMUM_NO_CYLINDERS 65535 163 164 #endif /* defined(_SUNOS_VTOC_8) */ 165 166 /* 167 * minimum number of cylinders required by Solaris. 168 */ 169 #define SUN_MIN_CYL 3 170 171 172 173 /* 174 * ANSI prototypes for local static functions 175 */ 176 static struct disk_type *generic_disk_sense( 177 int fd, 178 int can_prompt, 179 struct dk_label *label, 180 struct scsi_inquiry *inquiry, 181 struct scsi_capacity_16 *capacity, 182 char *disk_name); 183 static int use_existing_disk_type( 184 int fd, 185 int can_prompt, 186 struct dk_label *label, 187 struct scsi_inquiry *inquiry, 188 struct disk_type *disk_type, 189 struct scsi_capacity_16 *capacity); 190 int build_default_partition(struct dk_label *label, 191 int ctrl_type); 192 static struct disk_type *find_scsi_disk_type( 193 char *disk_name, 194 struct dk_label *label); 195 static struct disk_type *find_scsi_disk_by_name( 196 char *disk_name); 197 static struct ctlr_type *find_scsi_ctlr_type(void); 198 static struct ctlr_info *find_scsi_ctlr_info( 199 struct dk_cinfo *dkinfo); 200 static struct disk_type *new_scsi_disk_type( 201 int fd, 202 char *disk_name, 203 struct dk_label *label); 204 static struct disk_info *find_scsi_disk_info( 205 struct dk_cinfo *dkinfo); 206 207 static struct disk_type *new_direct_disk_type(int fd, char *disk_name, 208 struct dk_label *label); 209 210 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo); 211 static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc); 212 static int auto_label_init(struct dk_label *label); 213 static struct ctlr_type *find_direct_ctlr_type(void); 214 static struct ctlr_info *find_direct_ctlr_info(struct dk_cinfo *dkinfo); 215 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo); 216 static struct ctlr_type *find_vbd_ctlr_type(void); 217 static struct ctlr_info *find_vbd_ctlr_info(struct dk_cinfo *dkinfo); 218 static struct disk_info *find_vbd_disk_info(struct dk_cinfo *dkinfo); 219 220 static char *get_sun_disk_name( 221 char *disk_name, 222 struct scsi_inquiry *inquiry); 223 static char *get_generic_disk_name( 224 char *disk_name, 225 struct scsi_inquiry *inquiry); 226 static char *strcopy( 227 char *dst, 228 char *src, 229 int n); 230 static int adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, 231 uint_t *nsect, uint_t *nhead); 232 static void compute_chs_values(diskaddr_t total_capacity, 233 diskaddr_t usable_capacity, uint_t *pcylp, 234 uint_t *nheadp, uint_t *nsectp); 235 #if defined(_SUNOS_VTOC_8) 236 static diskaddr_t square_box( 237 diskaddr_t capacity, 238 uint_t *dim1, uint_t lim1, 239 uint_t *dim2, uint_t lim2, 240 uint_t *dim3, uint_t lim3); 241 #endif /* defined(_SUNOS_VTOC_8) */ 242 243 244 /* 245 * We need to get information necessary to construct a *new* efi 246 * label type 247 */ 248 struct disk_type * 249 auto_efi_sense(int fd, struct efi_info *label) 250 { 251 252 struct dk_gpt *vtoc; 253 int i; 254 255 struct disk_type *disk, *dp; 256 struct disk_info *disk_info; 257 struct ctlr_info *ctlr; 258 struct dk_cinfo dkinfo; 259 struct partition_info *part; 260 261 /* 262 * get vendor, product, revision and capacity info. 263 */ 264 if (get_disk_info(fd, label) == -1) { 265 return ((struct disk_type *)NULL); 266 } 267 /* 268 * Now build the default partition table 269 */ 270 if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) { 271 err_print("efi_alloc_and_init failed. \n"); 272 return ((struct disk_type *)NULL); 273 } 274 275 label->e_parts = vtoc; 276 277 /* 278 * Create a whole hog EFI partition table: 279 * S0 takes the whole disk except the primary EFI label, 280 * backup EFI label, and the reserved partition. 281 */ 282 vtoc->efi_parts[0].p_tag = V_USR; 283 vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba; 284 vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba - vtoc->efi_first_u_lba 285 - EFI_MIN_RESV_SIZE + 1; 286 287 /* 288 * S1-S6 are unassigned slices. 289 */ 290 for (i = 1; i < vtoc->efi_nparts - 2; i ++) { 291 vtoc->efi_parts[i].p_tag = V_UNASSIGNED; 292 vtoc->efi_parts[i].p_start = 0; 293 vtoc->efi_parts[i].p_size = 0; 294 } 295 296 /* 297 * The reserved slice 298 */ 299 vtoc->efi_parts[vtoc->efi_nparts - 1].p_tag = V_RESERVED; 300 vtoc->efi_parts[vtoc->efi_nparts - 1].p_start = 301 vtoc->efi_last_u_lba - EFI_MIN_RESV_SIZE + 1; 302 vtoc->efi_parts[vtoc->efi_nparts - 1].p_size = EFI_MIN_RESV_SIZE; 303 304 /* 305 * Now stick all of it into the disk_type struct 306 */ 307 308 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 309 if (option_msg && diag_msg) { 310 err_print("DKIOCINFO failed\n"); 311 } 312 return (NULL); 313 } 314 if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_DIRECT)) { 315 ctlr = find_direct_ctlr_info(&dkinfo); 316 disk_info = find_direct_disk_info(&dkinfo); 317 } else if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_VBD)) { 318 ctlr = find_vbd_ctlr_info(&dkinfo); 319 disk_info = find_vbd_disk_info(&dkinfo); 320 } else { 321 ctlr = find_scsi_ctlr_info(&dkinfo); 322 disk_info = find_scsi_disk_info(&dkinfo); 323 } 324 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 325 assert(disk_info->disk_ctlr == ctlr); 326 dp = ctlr->ctlr_ctype->ctype_dlist; 327 if (dp == NULL) { 328 ctlr->ctlr_ctype->ctype_dlist = dp; 329 } else { 330 while (dp->dtype_next != NULL) { 331 dp = dp->dtype_next; 332 } 333 dp->dtype_next = disk; 334 } 335 disk->dtype_next = NULL; 336 337 (void) strlcpy(disk->vendor, label->vendor, 338 sizeof (disk->vendor)); 339 (void) strlcpy(disk->product, label->product, 340 sizeof (disk->product)); 341 (void) strlcpy(disk->revision, label->revision, 342 sizeof (disk->revision)); 343 disk->capacity = label->capacity; 344 345 part = (struct partition_info *) 346 zalloc(sizeof (struct partition_info)); 347 disk->dtype_plist = part; 348 349 part->pinfo_name = alloc_string("default"); 350 part->pinfo_next = NULL; 351 part->etoc = vtoc; 352 353 bzero(disk_info->v_volume, LEN_DKL_VVOL); 354 disk_info->disk_parts = part; 355 return (disk); 356 } 357 358 static int 359 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 360 { 361 void *data = dk_ioc->dki_data; 362 int error; 363 364 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 365 error = ioctl(fd, cmd, (void *)dk_ioc); 366 dk_ioc->dki_data = data; 367 368 return (error); 369 } 370 371 static struct ctlr_type * 372 find_direct_ctlr_type() 373 { 374 struct mctlr_list *mlp; 375 376 mlp = controlp; 377 378 while (mlp != NULL) { 379 if (mlp->ctlr_type->ctype_ctype == DKC_DIRECT) { 380 return (mlp->ctlr_type); 381 } 382 mlp = mlp->next; 383 } 384 385 impossible("no DIRECT controller type"); 386 387 return ((struct ctlr_type *)NULL); 388 } 389 390 static struct ctlr_type * 391 find_vbd_ctlr_type() 392 { 393 struct mctlr_list *mlp; 394 395 mlp = controlp; 396 397 while (mlp != NULL) { 398 if (mlp->ctlr_type->ctype_ctype == DKC_VBD) { 399 return (mlp->ctlr_type); 400 } 401 mlp = mlp->next; 402 } 403 404 impossible("no VBD controller type"); 405 406 return ((struct ctlr_type *)NULL); 407 } 408 409 static struct ctlr_info * 410 find_direct_ctlr_info( 411 struct dk_cinfo *dkinfo) 412 { 413 struct ctlr_info *ctlr; 414 415 if (dkinfo->dki_ctype != DKC_DIRECT) 416 return (NULL); 417 418 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 419 if (ctlr->ctlr_addr == dkinfo->dki_addr && 420 ctlr->ctlr_space == dkinfo->dki_space && 421 ctlr->ctlr_ctype->ctype_ctype == DKC_DIRECT) { 422 return (ctlr); 423 } 424 } 425 426 impossible("no DIRECT controller info"); 427 /*NOTREACHED*/ 428 } 429 430 static struct ctlr_info * 431 find_vbd_ctlr_info( 432 struct dk_cinfo *dkinfo) 433 { 434 struct ctlr_info *ctlr; 435 436 if (dkinfo->dki_ctype != DKC_VBD) 437 return (NULL); 438 439 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 440 if (ctlr->ctlr_addr == dkinfo->dki_addr && 441 ctlr->ctlr_space == dkinfo->dki_space && 442 ctlr->ctlr_ctype->ctype_ctype == DKC_VBD) { 443 return (ctlr); 444 } 445 } 446 447 impossible("no VBD controller info"); 448 /*NOTREACHED*/ 449 } 450 451 static struct disk_info * 452 find_direct_disk_info( 453 struct dk_cinfo *dkinfo) 454 { 455 struct disk_info *disk; 456 struct dk_cinfo *dp; 457 458 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 459 assert(dkinfo->dki_ctype == DKC_DIRECT); 460 dp = &disk->disk_dkinfo; 461 if (dp->dki_ctype == dkinfo->dki_ctype && 462 dp->dki_cnum == dkinfo->dki_cnum && 463 dp->dki_unit == dkinfo->dki_unit && 464 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 465 return (disk); 466 } 467 } 468 469 impossible("No DIRECT disk info instance\n"); 470 /*NOTREACHED*/ 471 } 472 473 static struct disk_info * 474 find_vbd_disk_info( 475 struct dk_cinfo *dkinfo) 476 { 477 struct disk_info *disk; 478 struct dk_cinfo *dp; 479 480 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 481 assert(dkinfo->dki_ctype == DKC_VBD); 482 dp = &disk->disk_dkinfo; 483 if (dp->dki_ctype == dkinfo->dki_ctype && 484 dp->dki_cnum == dkinfo->dki_cnum && 485 dp->dki_unit == dkinfo->dki_unit && 486 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 487 return (disk); 488 } 489 } 490 491 impossible("No VBD disk info instance\n"); 492 /*NOTREACHED*/ 493 } 494 495 /* 496 * To convert EFI to SMI labels, we need to get label geometry. 497 * Unfortunately at this time there is no good way to do so. 498 * DKIOCGGEOM will fail if disk is EFI labeled. So we hack around 499 * it and clear EFI label, do a DKIOCGGEOM and put the EFI label 500 * back on disk. 501 * This routine gets the label geometry and initializes the label 502 * It uses cur_file as opened device. 503 * returns 0 if succeeds or -1 if failed. 504 */ 505 static int 506 auto_label_init(struct dk_label *label) 507 { 508 dk_efi_t dk_ioc; 509 dk_efi_t dk_ioc_back; 510 efi_gpt_t *data = NULL; 511 efi_gpt_t *databack = NULL; 512 struct dk_geom disk_geom; 513 struct dk_minfo disk_info; 514 efi_gpt_t *backsigp; 515 int fd = cur_file; 516 int rval = -1; 517 int efisize = EFI_LABEL_SIZE * 2; 518 int success = 0; 519 uint64_t sig; 520 uint64_t backsig; 521 522 if ((data = calloc(efisize, 1)) == NULL) { 523 err_print("auto_label_init: calloc failed\n"); 524 goto auto_label_init_out; 525 } 526 527 dk_ioc.dki_data = data; 528 dk_ioc.dki_lba = 1; 529 dk_ioc.dki_length = efisize; 530 531 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) { 532 err_print("auto_label_init: GETEFI failed\n"); 533 goto auto_label_init_out; 534 } 535 536 if ((databack = calloc(efisize, 1)) == NULL) { 537 err_print("auto_label_init calloc2 failed"); 538 goto auto_label_init_out; 539 } 540 541 /* get the LBA size and capacity */ 542 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 543 err_print("auto_label_init: dkiocgmediainfo failed\n"); 544 goto auto_label_init_out; 545 } 546 547 if (disk_info.dki_lbsize == 0) { 548 if (option_msg && diag_msg) { 549 err_print("auto_lbal_init: assuming 512 byte" 550 "block size"); 551 } 552 disk_info.dki_lbsize = DEV_BSIZE; 553 } 554 555 dk_ioc_back.dki_data = databack; 556 557 /* 558 * back up efi label goes to capacity - 1, we are reading an extra block 559 * before the back up label. 560 */ 561 dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1; 562 dk_ioc_back.dki_length = efisize; 563 564 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) { 565 err_print("auto_label_init: GETEFI backup failed\n"); 566 goto auto_label_init_out; 567 } 568 569 sig = dk_ioc.dki_data->efi_gpt_Signature; 570 dk_ioc.dki_data->efi_gpt_Signature = 0x0; 571 572 enter_critical(); 573 574 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 575 err_print("auto_label_init: SETEFI failed\n"); 576 exit_critical(); 577 goto auto_label_init_out; 578 } 579 580 backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + cur_blksz); 581 582 backsig = backsigp->efi_gpt_Signature; 583 584 backsigp->efi_gpt_Signature = 0; 585 586 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) { 587 err_print("auto_label_init: SETEFI backup failed\n"); 588 } 589 590 if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0) 591 err_print("auto_label_init: GGEOM failed\n"); 592 else 593 success = 1; 594 595 dk_ioc.dki_data->efi_gpt_Signature = sig; 596 backsigp->efi_gpt_Signature = backsig; 597 598 if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) { 599 err_print("auto_label_init: SETEFI revert backup failed\n"); 600 success = 0; 601 } 602 603 if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) { 604 err_print("auto_label_init: SETEFI revert failed\n"); 605 success = 0; 606 } 607 608 exit_critical(); 609 610 if (success == 0) 611 goto auto_label_init_out; 612 613 ncyl = disk_geom.dkg_ncyl; 614 acyl = disk_geom.dkg_acyl; 615 nhead = disk_geom.dkg_nhead; 616 nsect = disk_geom.dkg_nsect; 617 pcyl = ncyl + acyl; 618 619 label->dkl_pcyl = pcyl; 620 label->dkl_ncyl = ncyl; 621 label->dkl_acyl = acyl; 622 label->dkl_nhead = nhead; 623 label->dkl_nsect = nsect; 624 label->dkl_apc = 0; 625 label->dkl_intrlv = 1; 626 label->dkl_rpm = disk_geom.dkg_rpm; 627 628 label->dkl_magic = DKL_MAGIC; 629 630 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 631 "%s cyl %u alt %u hd %u sec %u", 632 "DEFAULT", ncyl, acyl, nhead, nsect); 633 634 rval = 0; 635 #if defined(_FIRMWARE_NEEDS_FDISK) 636 (void) auto_solaris_part(label); 637 ncyl = label->dkl_ncyl; 638 639 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 640 641 if (!build_default_partition(label, DKC_DIRECT)) { 642 rval = -1; 643 } 644 645 (void) checksum(label, CK_MAKESUM); 646 647 648 auto_label_init_out: 649 if (data) 650 free(data); 651 if (databack) 652 free(databack); 653 654 return (rval); 655 } 656 657 static struct disk_type * 658 new_direct_disk_type( 659 int fd, 660 char *disk_name, 661 struct dk_label *label) 662 { 663 struct disk_type *dp; 664 struct disk_type *disk; 665 struct ctlr_info *ctlr; 666 struct dk_cinfo dkinfo; 667 struct partition_info *part = NULL; 668 struct partition_info *pt; 669 struct disk_info *disk_info; 670 int i; 671 672 /* 673 * Get the disk controller info for this disk 674 */ 675 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 676 if (option_msg && diag_msg) { 677 err_print("DKIOCINFO failed\n"); 678 } 679 return (NULL); 680 } 681 682 /* 683 * Find the ctlr_info for this disk. 684 */ 685 ctlr = find_direct_ctlr_info(&dkinfo); 686 687 /* 688 * Allocate a new disk type for the direct controller. 689 */ 690 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 691 692 /* 693 * Find the disk_info instance for this disk. 694 */ 695 disk_info = find_direct_disk_info(&dkinfo); 696 697 /* 698 * The controller and the disk should match. 699 */ 700 assert(disk_info->disk_ctlr == ctlr); 701 702 /* 703 * Link the disk into the list of disks 704 */ 705 dp = ctlr->ctlr_ctype->ctype_dlist; 706 if (dp == NULL) { 707 ctlr->ctlr_ctype->ctype_dlist = dp; 708 } else { 709 while (dp->dtype_next != NULL) { 710 dp = dp->dtype_next; 711 } 712 dp->dtype_next = disk; 713 } 714 disk->dtype_next = NULL; 715 716 /* 717 * Allocate and initialize the disk name. 718 */ 719 disk->dtype_asciilabel = alloc_string(disk_name); 720 721 /* 722 * Initialize disk geometry info 723 */ 724 disk->dtype_pcyl = label->dkl_pcyl; 725 disk->dtype_ncyl = label->dkl_ncyl; 726 disk->dtype_acyl = label->dkl_acyl; 727 disk->dtype_nhead = label->dkl_nhead; 728 disk->dtype_nsect = label->dkl_nsect; 729 disk->dtype_rpm = label->dkl_rpm; 730 731 part = (struct partition_info *) 732 zalloc(sizeof (struct partition_info)); 733 pt = disk->dtype_plist; 734 if (pt == NULL) { 735 disk->dtype_plist = part; 736 } else { 737 while (pt->pinfo_next != NULL) { 738 pt = pt->pinfo_next; 739 } 740 pt->pinfo_next = part; 741 } 742 743 part->pinfo_next = NULL; 744 745 /* 746 * Set up the partition name 747 */ 748 part->pinfo_name = alloc_string("default"); 749 750 /* 751 * Fill in the partition info from the label 752 */ 753 for (i = 0; i < NDKMAP; i++) { 754 755 #if defined(_SUNOS_VTOC_8) 756 part->pinfo_map[i] = label->dkl_map[i]; 757 758 #elif defined(_SUNOS_VTOC_16) 759 part->pinfo_map[i].dkl_cylno = 760 label->dkl_vtoc.v_part[i].p_start / 761 ((blkaddr_t)(disk->dtype_nhead * 762 disk->dtype_nsect - apc)); 763 part->pinfo_map[i].dkl_nblk = 764 label->dkl_vtoc.v_part[i].p_size; 765 #else 766 #error No VTOC format defined. 767 #endif /* defined(_SUNOS_VTOC_8) */ 768 } 769 770 /* 771 * Use the VTOC if valid, or install a default 772 */ 773 if (label->dkl_vtoc.v_version == V_VERSION) { 774 (void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume, 775 LEN_DKL_VVOL); 776 part->vtoc = label->dkl_vtoc; 777 } else { 778 (void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL); 779 set_vtoc_defaults(part); 780 } 781 782 /* 783 * Link the disk to the partition map 784 */ 785 disk_info->disk_parts = part; 786 787 return (disk); 788 } 789 790 /* 791 * Get a disk type that has label info. This is used to convert 792 * EFI label to SMI label 793 */ 794 struct disk_type * 795 auto_direct_get_geom_label(int fd, struct dk_label *label) 796 { 797 struct disk_type *disk_type; 798 799 if (auto_label_init(label) != 0) { 800 err_print("auto_direct_get_geom_label: failed to get label" 801 "geometry"); 802 return (NULL); 803 } else { 804 disk_type = new_direct_disk_type(fd, "DEFAULT", label); 805 return (disk_type); 806 } 807 } 808 809 /* 810 * Auto-sense a scsi disk configuration, ie get the information 811 * necessary to construct a label. We have two different 812 * ways to auto-sense a scsi disk: 813 * - format.dat override, via inquiry name 814 * - generic scsi, via standard mode sense and inquiry 815 * Depending on how and when we are called, and/or 816 * change geometry and reformat. 817 */ 818 struct disk_type * 819 auto_sense( 820 int fd, 821 int can_prompt, 822 struct dk_label *label) 823 { 824 struct scsi_inquiry inquiry; 825 struct scsi_capacity_16 capacity; 826 struct disk_type *disk_type; 827 char disk_name[DISK_NAME_MAX]; 828 int force_format_dat = 0; 829 int force_generic = 0; 830 u_ioparam_t ioparam; 831 int deflt; 832 833 /* 834 * First, if expert mode, find out if the user 835 * wants to override any of the standard methods. 836 */ 837 if (can_prompt && expert_mode) { 838 deflt = 1; 839 ioparam.io_charlist = confirm_list; 840 if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam, 841 &deflt, DATA_INPUT) == 0) { 842 force_format_dat = 1; 843 } else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam, 844 &deflt, DATA_INPUT) == 0) { 845 force_generic = 1; 846 } 847 } 848 849 /* 850 * Get the Inquiry data. If this fails, there's 851 * no hope for this disk, so give up. 852 */ 853 if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) { 854 return ((struct disk_type *)NULL); 855 } 856 if (option_msg && diag_msg) { 857 err_print("Product id: "); 858 print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid)); 859 err_print("\n"); 860 } 861 862 /* 863 * Get the Read Capacity 864 */ 865 if (uscsi_read_capacity(fd, &capacity)) { 866 return ((struct disk_type *)NULL); 867 } 868 869 /* 870 * If the reported capacity is set to zero, then the disk 871 * is not usable. If the reported capacity is set to all 872 * 0xf's, then this disk is too large. These could only 873 * happen with a device that supports LBAs larger than 64 874 * bits which are not defined by any current T10 standards 875 * or by error responding from target. 876 */ 877 if ((capacity.sc_capacity == 0) || 878 (capacity.sc_capacity == UINT_MAX64)) { 879 if (option_msg && diag_msg) { 880 err_print("Invalid capacity\n"); 881 } 882 return ((struct disk_type *)NULL); 883 } 884 if (option_msg && diag_msg) { 885 err_print("blocks: %llu (0x%llx)\n", 886 capacity.sc_capacity, capacity.sc_capacity); 887 err_print("blksize: %u\n", capacity.sc_lbasize); 888 } 889 890 /* 891 * Extract the disk name for the format.dat override 892 */ 893 (void) get_sun_disk_name(disk_name, &inquiry); 894 if (option_msg && diag_msg) { 895 err_print("disk name: `%s`\n", disk_name); 896 } 897 898 if (scsi_rdwr(DIR_READ, fd, (diskaddr_t)0, 1, (caddr_t)label, 899 F_SILENT, NULL)) 900 return ((struct disk_type *)NULL); 901 902 /* 903 * Figure out which method we use for auto sense. 904 * If a particular method fails, we fall back to 905 * the next possibility. 906 */ 907 908 if (force_generic) { 909 return (generic_disk_sense(fd, can_prompt, label, 910 &inquiry, &capacity, disk_name)); 911 } 912 913 /* 914 * Try for an existing format.dat first 915 */ 916 if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) { 917 if (use_existing_disk_type(fd, can_prompt, label, 918 &inquiry, disk_type, &capacity)) { 919 return (disk_type); 920 } 921 if (force_format_dat) { 922 return (NULL); 923 } 924 } 925 926 /* 927 * Otherwise, try using generic SCSI-2 sense and inquiry. 928 */ 929 930 return (generic_disk_sense(fd, can_prompt, label, 931 &inquiry, &capacity, disk_name)); 932 } 933 934 935 936 /*ARGSUSED*/ 937 static struct disk_type * 938 generic_disk_sense( 939 int fd, 940 int can_prompt, 941 struct dk_label *label, 942 struct scsi_inquiry *inquiry, 943 struct scsi_capacity_16 *capacity, 944 char *disk_name) 945 { 946 struct disk_type *disk; 947 int setdefault = 0; 948 uint_t pcyl = 0; 949 uint_t ncyl = 0; 950 uint_t acyl = 0; 951 uint_t nhead = 0; 952 uint_t nsect = 0; 953 int rpm = 0; 954 diskaddr_t nblocks = 0; 955 diskaddr_t tblocks = 0; 956 union { 957 struct mode_format page3; 958 uchar_t buf3[MAX_MODE_SENSE_SIZE]; 959 } u_page3; 960 union { 961 struct mode_geometry page4; 962 uchar_t buf4[MAX_MODE_SENSE_SIZE]; 963 } u_page4; 964 struct mode_format *page3 = &u_page3.page3; 965 struct mode_geometry *page4 = &u_page4.page4; 966 struct scsi_ms_header header; 967 968 /* 969 * If the name of this disk appears to be "SUN", use it, 970 * otherwise construct a name out of the generic 971 * Inquiry info. If it turns out that we already 972 * have a SUN disk type of this name that differs 973 * in geometry, we will revert to the generic name 974 * anyway. 975 */ 976 if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) { 977 (void) get_generic_disk_name(disk_name, inquiry); 978 } 979 980 /* 981 * Get the number of blocks from Read Capacity data. Note that 982 * the logical block address range from 0 to capacity->sc_capacity. 983 * Limit the size to 2 TB (UINT32_MAX) to use with SMI labels. 984 */ 985 tblocks = (capacity->sc_capacity + 1); 986 if (tblocks > UINT32_MAX) 987 nblocks = UINT32_MAX; 988 else 989 nblocks = tblocks; 990 991 /* 992 * Get current Page 3 - Format Parameters page 993 */ 994 if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT, 995 (caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) { 996 setdefault = 1; 997 } 998 999 /* 1000 * Get current Page 4 - Drive Geometry page 1001 */ 1002 if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT, 1003 (caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) { 1004 setdefault = 1; 1005 } 1006 1007 if (setdefault != 1) { 1008 /* The inquiry of mode page 3 & page 4 are successful */ 1009 /* 1010 * Correct for byte order if necessary 1011 */ 1012 page4->rpm = BE_16(page4->rpm); 1013 page4->step_rate = BE_16(page4->step_rate); 1014 page3->tracks_per_zone = BE_16(page3->tracks_per_zone); 1015 page3->alt_sect_zone = BE_16(page3->alt_sect_zone); 1016 page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone); 1017 page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol); 1018 page3->sect_track = BE_16(page3->sect_track); 1019 page3->data_bytes_sect = BE_16(page3->data_bytes_sect); 1020 page3->interleave = BE_16(page3->interleave); 1021 page3->track_skew = BE_16(page3->track_skew); 1022 page3->cylinder_skew = BE_16(page3->cylinder_skew); 1023 1024 1025 /* 1026 * Construct a new label out of the sense data, 1027 * Inquiry and Capacity. 1028 * 1029 * If the disk capacity is > 1TB then simply compute 1030 * the CHS values based on the total disk capacity and 1031 * not use the values from mode-sense data. 1032 */ 1033 if (tblocks > INT32_MAX) { 1034 compute_chs_values(tblocks, nblocks, &pcyl, &nhead, 1035 &nsect); 1036 } else { 1037 pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) + 1038 page4->cyl_lb; 1039 nhead = page4->heads; 1040 nsect = page3->sect_track; 1041 } 1042 1043 rpm = page4->rpm; 1044 1045 /* 1046 * If the number of physical cylinders reported is less 1047 * the SUN_MIN_CYL(3) then try to adjust the geometry so that 1048 * we have atleast SUN_MIN_CYL cylinders. 1049 */ 1050 if (pcyl < SUN_MIN_CYL) { 1051 if (nhead == 0 || nsect == 0) { 1052 setdefault = 1; 1053 } else if (adjust_disk_geometry( 1054 (diskaddr_t)(capacity->sc_capacity + 1), 1055 &pcyl, &nhead, &nsect)) { 1056 setdefault = 1; 1057 } 1058 } 1059 } 1060 1061 /* 1062 * Mode sense page 3 and page 4 are obsolete in SCSI-3. For 1063 * newly developed large sector size disk, we will not rely on 1064 * those two pages but compute geometry directly. 1065 */ 1066 if ((setdefault == 1) || (capacity->sc_lbasize != DEV_BSIZE)) { 1067 /* 1068 * If the number of cylinders or the number of heads reported 1069 * is zero, we think the inquiry of page 3 and page 4 failed. 1070 * We will set the geometry infomation by ourselves. 1071 */ 1072 compute_chs_values(tblocks, nblocks, &pcyl, &nhead, &nsect); 1073 } 1074 1075 /* 1076 * The sd driver reserves 2 cylinders the backup disk label and 1077 * the deviceid. Set the number of data cylinders to pcyl-acyl. 1078 */ 1079 acyl = DK_ACYL; 1080 ncyl = pcyl - acyl; 1081 1082 if (option_msg && diag_msg) { 1083 err_print("Geometry:\n"); 1084 err_print(" pcyl: %u\n", pcyl); 1085 err_print(" ncyl: %u\n", ncyl); 1086 err_print(" heads: %u\n", nhead); 1087 err_print(" nsects: %u\n", nsect); 1088 err_print(" acyl: %u\n", acyl); 1089 1090 #if defined(_SUNOS_VTOC_16) 1091 err_print(" bcyl: %u\n", bcyl); 1092 #endif /* defined(_SUNOS_VTOC_16) */ 1093 1094 err_print(" rpm: %d\n", rpm); 1095 err_print(" nblocks: %llu\n", nblocks); 1096 } 1097 1098 /* 1099 * Some drives do not support page4 or report 0 for page4->rpm, 1100 * adjust it to AVG_RPM, 3600. 1101 */ 1102 if (rpm < MIN_RPM || rpm > MAX_RPM) { 1103 if (option_msg && diag_msg) 1104 err_print("The current rpm value %d is invalid," 1105 " adjusting it to %d\n", rpm, AVG_RPM); 1106 rpm = AVG_RPM; 1107 } 1108 1109 /* 1110 * Some drives report 0 for nsect (page 3, byte 10 and 11) if they 1111 * have variable number of sectors per track. So adjust nsect. 1112 * Also the value is defined as vendor specific, hence check if 1113 * it is in a tolerable range. The values (32 and 4 below) are 1114 * chosen so that this change below does not generate a different 1115 * geometry for currently supported sun disks. 1116 */ 1117 if ((nsect == 0) || 1118 ((diskaddr_t)pcyl * nhead * nsect) < (nblocks - nblocks/32) || 1119 ((diskaddr_t)pcyl * nhead * nsect) > (nblocks + nblocks/4)) { 1120 if (nblocks > (pcyl * nhead)) { 1121 err_print("Mode sense page(3) reports nsect value" 1122 " as %d, adjusting it to %llu\n", 1123 nsect, nblocks / (pcyl * nhead)); 1124 nsect = nblocks / (pcyl * nhead); 1125 } else { 1126 /* convert capacity to nsect * nhead * pcyl */ 1127 err_print("\nWARNING: Disk geometry is based on " 1128 "capacity data.\n\n"); 1129 compute_chs_values(tblocks, nblocks, &pcyl, &nhead, 1130 &nsect); 1131 ncyl = pcyl - acyl; 1132 if (option_msg && diag_msg) { 1133 err_print("Geometry:(after adjustment)\n"); 1134 err_print(" pcyl: %u\n", pcyl); 1135 err_print(" ncyl: %u\n", ncyl); 1136 err_print(" heads: %u\n", nhead); 1137 err_print(" nsects: %u\n", nsect); 1138 err_print(" acyl: %u\n", acyl); 1139 1140 #if defined(_SUNOS_VTOC_16) 1141 err_print(" bcyl: %u\n", bcyl); 1142 #endif 1143 1144 err_print(" rpm: %d\n", rpm); 1145 err_print(" nblocks: %llu\n", nblocks); 1146 } 1147 } 1148 } 1149 1150 /* 1151 * Some drives report their physical geometry such that 1152 * it is greater than the actual capacity. Adjust the 1153 * geometry to allow for this, so we don't run off 1154 * the end of the disk. 1155 */ 1156 if (((diskaddr_t)pcyl * nhead * nsect) > nblocks) { 1157 uint_t p = pcyl; 1158 if (option_msg && diag_msg) { 1159 err_print("Computed capacity (%llu) exceeds actual " 1160 "disk capacity (%llu)\n", 1161 (diskaddr_t)pcyl * nhead * nsect, nblocks); 1162 } 1163 do { 1164 pcyl--; 1165 } while (((diskaddr_t)pcyl * nhead * nsect) > nblocks); 1166 1167 if (can_prompt && expert_mode && !option_f) { 1168 /* 1169 * Try to adjust nsect instead of pcyl to see if we 1170 * can optimize. For compatability reasons do this 1171 * only in expert mode (refer to bug 1144812). 1172 */ 1173 uint_t n = nsect; 1174 do { 1175 n--; 1176 } while (((diskaddr_t)p * nhead * n) > nblocks); 1177 if (((diskaddr_t)p * nhead * n) > 1178 ((diskaddr_t)pcyl * nhead * nsect)) { 1179 u_ioparam_t ioparam; 1180 int deflt = 1; 1181 /* 1182 * Ask the user for a choice here. 1183 */ 1184 ioparam.io_bounds.lower = 1; 1185 ioparam.io_bounds.upper = 2; 1186 err_print("1. Capacity = %llu, with pcyl = %u " 1187 "nhead = %u nsect = %u\n", 1188 ((diskaddr_t)pcyl * nhead * nsect), 1189 pcyl, nhead, nsect); 1190 err_print("2. Capacity = %llu, with pcyl = %u " 1191 "nhead = %u nsect = %u\n", 1192 ((diskaddr_t)p * nhead * n), 1193 p, nhead, n); 1194 if (input(FIO_INT, "Select one of the above " 1195 "choices ", ':', &ioparam, 1196 &deflt, DATA_INPUT) == 2) { 1197 pcyl = p; 1198 nsect = n; 1199 } 1200 } 1201 } 1202 } 1203 1204 #if defined(_SUNOS_VTOC_8) 1205 /* 1206 * Finally, we need to make sure we don't overflow any of the 1207 * fields in our disk label. To do this we need to `square 1208 * the box' so to speak. We will lose bits here. 1209 */ 1210 1211 if ((pcyl > MAXIMUM_NO_CYLINDERS && 1212 ((nsect > MAXIMUM_NO_SECTORS) || 1213 (nhead > MAXIMUM_NO_HEADS))) || 1214 ((nsect > MAXIMUM_NO_SECTORS) && 1215 (nhead > MAXIMUM_NO_HEADS))) { 1216 err_print("This disk is too big to label. " 1217 " You will lose some blocks.\n"); 1218 } 1219 if ((pcyl > MAXIMUM_NO_CYLINDERS) || 1220 (nsect > MAXIMUM_NO_SECTORS) || 1221 (nhead > MAXIMUM_NO_HEADS)) { 1222 u_ioparam_t ioparam; 1223 int order; 1224 char msg[256]; 1225 1226 order = ((pcyl > nhead)<<2) | 1227 ((pcyl > nsect)<<1) | 1228 (nhead > nsect); 1229 switch (order) { 1230 case 0x7: /* pcyl > nhead > nsect */ 1231 nblocks = 1232 square_box(nblocks, 1233 &pcyl, MAXIMUM_NO_CYLINDERS, 1234 &nhead, MAXIMUM_NO_HEADS, 1235 &nsect, MAXIMUM_NO_SECTORS); 1236 break; 1237 case 0x6: /* pcyl > nsect > nhead */ 1238 nblocks = 1239 square_box(nblocks, 1240 &pcyl, MAXIMUM_NO_CYLINDERS, 1241 &nsect, MAXIMUM_NO_SECTORS, 1242 &nhead, MAXIMUM_NO_HEADS); 1243 break; 1244 case 0x4: /* nsect > pcyl > nhead */ 1245 nblocks = 1246 square_box(nblocks, 1247 &nsect, MAXIMUM_NO_SECTORS, 1248 &pcyl, MAXIMUM_NO_CYLINDERS, 1249 &nhead, MAXIMUM_NO_HEADS); 1250 break; 1251 case 0x0: /* nsect > nhead > pcyl */ 1252 nblocks = 1253 square_box(nblocks, 1254 &nsect, MAXIMUM_NO_SECTORS, 1255 &nhead, MAXIMUM_NO_HEADS, 1256 &pcyl, MAXIMUM_NO_CYLINDERS); 1257 break; 1258 case 0x3: /* nhead > pcyl > nsect */ 1259 nblocks = 1260 square_box(nblocks, 1261 &nhead, MAXIMUM_NO_HEADS, 1262 &pcyl, MAXIMUM_NO_CYLINDERS, 1263 &nsect, MAXIMUM_NO_SECTORS); 1264 break; 1265 case 0x1: /* nhead > nsect > pcyl */ 1266 nblocks = 1267 square_box(nblocks, 1268 &nhead, MAXIMUM_NO_HEADS, 1269 &nsect, MAXIMUM_NO_SECTORS, 1270 &pcyl, MAXIMUM_NO_CYLINDERS); 1271 break; 1272 default: 1273 /* How did we get here? */ 1274 impossible("label overflow adjustment"); 1275 1276 /* Do something useful */ 1277 nblocks = 1278 square_box(nblocks, 1279 &nhead, MAXIMUM_NO_HEADS, 1280 &nsect, MAXIMUM_NO_SECTORS, 1281 &pcyl, MAXIMUM_NO_CYLINDERS); 1282 break; 1283 } 1284 if (option_msg && diag_msg && 1285 (capacity->sc_capacity + 1 != nblocks)) { 1286 err_print("After adjusting geometry you lost" 1287 " %llu of %llu blocks.\n", 1288 (capacity->sc_capacity + 1 - nblocks), 1289 capacity->sc_capacity + 1); 1290 } 1291 while (can_prompt && expert_mode && !option_f) { 1292 int deflt = 1; 1293 1294 /* 1295 * Allow user to modify this by hand if desired. 1296 */ 1297 (void) sprintf(msg, 1298 "\nGeometry: %u heads, %u sectors %u cylinders" 1299 " result in %llu out of %llu blocks.\n" 1300 "Do you want to modify the device geometry", 1301 nhead, nsect, pcyl, 1302 nblocks, capacity->sc_capacity + 1); 1303 1304 ioparam.io_charlist = confirm_list; 1305 if (input(FIO_MSTR, msg, '?', &ioparam, 1306 &deflt, DATA_INPUT) != 0) 1307 break; 1308 1309 ioparam.io_bounds.lower = MINIMUM_NO_HEADS; 1310 ioparam.io_bounds.upper = MAXIMUM_NO_HEADS; 1311 nhead = input(FIO_INT, "Number of heads", ':', 1312 &ioparam, (int *)&nhead, DATA_INPUT); 1313 ioparam.io_bounds.lower = MINIMUM_NO_SECTORS; 1314 ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS; 1315 nsect = input(FIO_INT, 1316 "Number of sectors per track", 1317 ':', &ioparam, (int *)&nsect, DATA_INPUT); 1318 ioparam.io_bounds.lower = SUN_MIN_CYL; 1319 ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS; 1320 pcyl = input(FIO_INT, "Number of cylinders", 1321 ':', &ioparam, (int *)&pcyl, DATA_INPUT); 1322 nblocks = (diskaddr_t)nhead * nsect * pcyl; 1323 if (nblocks > capacity->sc_capacity + 1) { 1324 err_print("Warning: %llu blocks exceeds " 1325 "disk capacity of %llu blocks\n", 1326 nblocks, 1327 capacity->sc_capacity + 1); 1328 } 1329 } 1330 } 1331 #endif /* defined(_SUNOS_VTOC_8) */ 1332 1333 ncyl = pcyl - acyl; 1334 1335 if (option_msg && diag_msg) { 1336 err_print("\nGeometry after adjusting for capacity:\n"); 1337 err_print(" pcyl: %u\n", pcyl); 1338 err_print(" ncyl: %u\n", ncyl); 1339 err_print(" heads: %u\n", nhead); 1340 err_print(" nsects: %u\n", nsect); 1341 err_print(" acyl: %u\n", acyl); 1342 err_print(" rpm: %d\n", rpm); 1343 } 1344 1345 (void) memset((char *)label, 0, sizeof (struct dk_label)); 1346 1347 label->dkl_magic = DKL_MAGIC; 1348 1349 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 1350 "%s cyl %u alt %u hd %u sec %u", 1351 disk_name, ncyl, acyl, nhead, nsect); 1352 1353 label->dkl_pcyl = pcyl; 1354 label->dkl_ncyl = ncyl; 1355 label->dkl_acyl = acyl; 1356 label->dkl_nhead = nhead; 1357 label->dkl_nsect = nsect; 1358 label->dkl_apc = 0; 1359 label->dkl_intrlv = 1; 1360 label->dkl_rpm = rpm; 1361 1362 #if defined(_FIRMWARE_NEEDS_FDISK) 1363 if (auto_solaris_part(label) == -1) 1364 goto err; 1365 ncyl = label->dkl_ncyl; 1366 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 1367 1368 1369 if (!build_default_partition(label, DKC_SCSI_CCS)) { 1370 goto err; 1371 } 1372 1373 (void) checksum(label, CK_MAKESUM); 1374 1375 /* 1376 * Find an existing disk type defined for this disk. 1377 * For this to work, both the name and geometry must 1378 * match. If there is no such type, but there already 1379 * is a disk defined with that name, but with a different 1380 * geometry, construct a new generic disk name out of 1381 * the inquiry information. Whatever name we're 1382 * finally using, if there's no such disk type defined, 1383 * build a new disk definition. 1384 */ 1385 if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) { 1386 if (find_scsi_disk_by_name(disk_name) != NULL) { 1387 char old_name[DISK_NAME_MAX]; 1388 (void) strcpy(old_name, disk_name); 1389 (void) get_generic_disk_name(disk_name, 1390 inquiry); 1391 if (option_msg && diag_msg) { 1392 err_print( 1393 "Changing disk type name from '%s' to '%s'\n", old_name, disk_name); 1394 } 1395 (void) snprintf(label->dkl_asciilabel, 1396 sizeof (label->dkl_asciilabel), 1397 "%s cyl %u alt %u hd %u sec %u", 1398 disk_name, ncyl, acyl, nhead, nsect); 1399 (void) checksum(label, CK_MAKESUM); 1400 disk = find_scsi_disk_type(disk_name, label); 1401 } 1402 if (disk == NULL) { 1403 disk = new_scsi_disk_type(fd, disk_name, label); 1404 if (disk == NULL) 1405 goto err; 1406 } 1407 } 1408 1409 return (disk); 1410 1411 err: 1412 if (option_msg && diag_msg) { 1413 err_print( 1414 "Configuration via generic SCSI-2 information failed\n"); 1415 } 1416 return (NULL); 1417 } 1418 1419 1420 /*ARGSUSED*/ 1421 static int 1422 use_existing_disk_type( 1423 int fd, 1424 int can_prompt, 1425 struct dk_label *label, 1426 struct scsi_inquiry *inquiry, 1427 struct disk_type *disk_type, 1428 struct scsi_capacity_16 *capacity) 1429 { 1430 int pcyl; 1431 int acyl; 1432 int nhead; 1433 int nsect; 1434 int rpm; 1435 1436 /* 1437 * Construct a new label out of the format.dat 1438 */ 1439 pcyl = disk_type->dtype_pcyl; 1440 acyl = disk_type->dtype_acyl; 1441 ncyl = disk_type->dtype_ncyl; 1442 nhead = disk_type->dtype_nhead; 1443 nsect = disk_type->dtype_nsect; 1444 rpm = disk_type->dtype_rpm; 1445 1446 if (option_msg && diag_msg) { 1447 err_print("Format.dat geometry:\n"); 1448 err_print(" pcyl: %u\n", pcyl); 1449 err_print(" heads: %u\n", nhead); 1450 err_print(" nsects: %u\n", nsect); 1451 err_print(" acyl: %u\n", acyl); 1452 err_print(" rpm: %d\n", rpm); 1453 } 1454 1455 (void) memset((char *)label, 0, sizeof (struct dk_label)); 1456 1457 label->dkl_magic = DKL_MAGIC; 1458 1459 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 1460 "%s cyl %u alt %u hd %u sec %u", 1461 disk_type->dtype_asciilabel, 1462 ncyl, acyl, nhead, nsect); 1463 1464 label->dkl_pcyl = pcyl; 1465 label->dkl_ncyl = ncyl; 1466 label->dkl_acyl = acyl; 1467 label->dkl_nhead = nhead; 1468 label->dkl_nsect = nsect; 1469 label->dkl_apc = 0; 1470 label->dkl_intrlv = 1; 1471 label->dkl_rpm = rpm; 1472 1473 if (!build_default_partition(label, DKC_SCSI_CCS)) { 1474 goto err; 1475 } 1476 1477 (void) checksum(label, CK_MAKESUM); 1478 return (1); 1479 1480 err: 1481 if (option_msg && diag_msg) { 1482 err_print( 1483 "Configuration via format.dat geometry failed\n"); 1484 } 1485 return (0); 1486 } 1487 1488 int 1489 build_default_partition( 1490 struct dk_label *label, 1491 int ctrl_type) 1492 { 1493 int i; 1494 int ncyls[NDKMAP]; 1495 diskaddr_t nblks; 1496 int cyl; 1497 struct dk_vtoc *vtoc; 1498 struct part_table *pt; 1499 struct default_partitions *dpt; 1500 diskaddr_t capacity; 1501 int freecyls; 1502 int blks_per_cyl; 1503 int ncyl; 1504 1505 #ifdef lint 1506 ctrl_type = ctrl_type; 1507 #endif 1508 1509 /* 1510 * Install a default vtoc 1511 */ 1512 vtoc = &label->dkl_vtoc; 1513 vtoc->v_version = V_VERSION; 1514 vtoc->v_nparts = NDKMAP; 1515 vtoc->v_sanity = VTOC_SANE; 1516 1517 for (i = 0; i < NDKMAP; i++) { 1518 vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag; 1519 vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag; 1520 } 1521 1522 /* 1523 * Find a partition that matches this disk. Capacity 1524 * is in integral number of megabytes. 1525 */ 1526 capacity = ((diskaddr_t)(label->dkl_ncyl) * label->dkl_nhead * 1527 label->dkl_nsect) / (diskaddr_t)((1024 * 1024) / cur_blksz); 1528 dpt = default_partitions; 1529 for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) { 1530 if (capacity >= dpt->min_capacity && 1531 capacity < dpt->max_capacity) { 1532 break; 1533 } 1534 } 1535 if (i == DEFAULT_PARTITION_TABLE_SIZE) { 1536 if (option_msg && diag_msg) { 1537 err_print("No matching default partition (%llu)\n", 1538 capacity); 1539 } 1540 return (0); 1541 } 1542 pt = dpt->part_table; 1543 1544 /* 1545 * Go through default partition table, finding fixed 1546 * sized entries. 1547 */ 1548 freecyls = label->dkl_ncyl; 1549 blks_per_cyl = label->dkl_nhead * label->dkl_nsect; 1550 for (i = 0; i < NDKMAP; i++) { 1551 if (pt->partitions[i] == HOG || pt->partitions[i] == 0) { 1552 ncyls[i] = 0; 1553 } else { 1554 /* 1555 * Calculate number of cylinders necessary 1556 * for specified size, rounding up to 1557 * the next greatest integral number of 1558 * cylinders. Always give what they 1559 * asked or more, never less. 1560 */ 1561 nblks = pt->partitions[i] * ((1024*1024)/cur_blksz); 1562 nblks += (blks_per_cyl - 1); 1563 ncyls[i] = nblks / blks_per_cyl; 1564 freecyls -= ncyls[i]; 1565 } 1566 } 1567 1568 if (freecyls < 0) { 1569 if (option_msg && diag_msg) { 1570 for (i = 0; i < NDKMAP; i++) { 1571 if (ncyls[i] == 0) 1572 continue; 1573 err_print("Partition %d: %u cyls\n", 1574 i, ncyls[i]); 1575 } 1576 err_print("Free cylinders exhausted (%d)\n", 1577 freecyls); 1578 } 1579 return (0); 1580 } 1581 #if defined(i386) 1582 /* 1583 * Set the default boot partition to 1 cylinder 1584 */ 1585 ncyls[8] = 1; 1586 freecyls -= 1; 1587 1588 /* 1589 * If current disk type is not a SCSI disk, 1590 * set the default alternates partition to 2 cylinders 1591 */ 1592 if (ctrl_type != DKC_SCSI_CCS) { 1593 ncyls[9] = 2; 1594 freecyls -= 2; 1595 } 1596 #endif /* defined(i386) */ 1597 1598 /* 1599 * Set the free hog partition to whatever space remains. 1600 * It's an error to have more than one HOG partition, 1601 * but we don't verify that here. 1602 */ 1603 for (i = 0; i < NDKMAP; i++) { 1604 if (pt->partitions[i] == HOG) { 1605 assert(ncyls[i] == 0); 1606 ncyls[i] = freecyls; 1607 break; 1608 } 1609 } 1610 1611 /* 1612 * Error checking 1613 */ 1614 ncyl = 0; 1615 for (i = 0; i < NDKMAP; i++) { 1616 ncyl += ncyls[i]; 1617 } 1618 assert(ncyl == (label->dkl_ncyl)); 1619 1620 /* 1621 * Finally, install the partition in the label. 1622 */ 1623 cyl = 0; 1624 1625 #if defined(_SUNOS_VTOC_16) 1626 for (i = NDKMAP/2; i < NDKMAP; i++) { 1627 if (i == 2 || ncyls[i] == 0) 1628 continue; 1629 label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl; 1630 label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl; 1631 cyl += ncyls[i]; 1632 } 1633 for (i = 0; i < NDKMAP/2; i++) { 1634 1635 #elif defined(_SUNOS_VTOC_8) 1636 for (i = 0; i < NDKMAP; i++) { 1637 1638 #else 1639 #error No VTOC format defined. 1640 #endif /* defined(_SUNOS_VTOC_16) */ 1641 1642 if (i == 2 || ncyls[i] == 0) { 1643 #if defined(_SUNOS_VTOC_8) 1644 if (i != 2) { 1645 label->dkl_map[i].dkl_cylno = 0; 1646 label->dkl_map[i].dkl_nblk = 0; 1647 } 1648 #endif 1649 continue; 1650 } 1651 #if defined(_SUNOS_VTOC_8) 1652 label->dkl_map[i].dkl_cylno = cyl; 1653 label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl; 1654 #elif defined(_SUNOS_VTOC_16) 1655 label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl; 1656 label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl; 1657 1658 #else 1659 #error No VTOC format defined. 1660 #endif /* defined(_SUNOS_VTOC_8) */ 1661 1662 cyl += ncyls[i]; 1663 } 1664 1665 /* 1666 * Set the whole disk partition 1667 */ 1668 #if defined(_SUNOS_VTOC_8) 1669 label->dkl_map[2].dkl_cylno = 0; 1670 label->dkl_map[2].dkl_nblk = 1671 label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect; 1672 1673 #elif defined(_SUNOS_VTOC_16) 1674 label->dkl_vtoc.v_part[2].p_start = 0; 1675 label->dkl_vtoc.v_part[2].p_size = 1676 (label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead * 1677 label->dkl_nsect; 1678 #else 1679 #error No VTOC format defined. 1680 #endif /* defined(_SUNOS_VTOC_8) */ 1681 1682 1683 if (option_msg && diag_msg) { 1684 float scaled; 1685 err_print("\n"); 1686 for (i = 0; i < NDKMAP; i++) { 1687 #if defined(_SUNOS_VTOC_8) 1688 if (label->dkl_map[i].dkl_nblk == 0) 1689 1690 #elif defined(_SUNOS_VTOC_16) 1691 if (label->dkl_vtoc.v_part[i].p_size == 0) 1692 1693 #else 1694 #error No VTOC format defined. 1695 #endif /* defined(_SUNOS_VTOC_8) */ 1696 1697 continue; 1698 err_print("Partition %d: ", i); 1699 #if defined(_SUNOS_VTOC_8) 1700 scaled = bn2mb(label->dkl_map[i].dkl_nblk); 1701 1702 #elif defined(_SUNOS_VTOC_16) 1703 1704 scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size); 1705 #else 1706 #error No VTOC format defined. 1707 #endif /* defined(_SUNOS_VTOC_8) */ 1708 1709 if (scaled > 1024.0) { 1710 err_print("%6.2fGB ", scaled/1024.0); 1711 } else { 1712 err_print("%6.2fMB ", scaled); 1713 } 1714 #if defined(_SUNOS_VTOC_8) 1715 err_print(" %6d cylinders\n", 1716 label->dkl_map[i].dkl_nblk/blks_per_cyl); 1717 #elif defined(_SUNOS_VTOC_16) 1718 err_print(" %6d cylinders\n", 1719 label->dkl_vtoc.v_part[i].p_size/blks_per_cyl); 1720 #else 1721 #error No VTOC format defined. 1722 #endif /* defined(_SUNOS_VTOC_8) */ 1723 1724 } 1725 err_print("\n"); 1726 } 1727 1728 return (1); 1729 } 1730 1731 1732 1733 /* 1734 * Find an existing scsi disk definition by this name, 1735 * if possible. 1736 */ 1737 static struct disk_type * 1738 find_scsi_disk_type( 1739 char *disk_name, 1740 struct dk_label *label) 1741 { 1742 struct ctlr_type *ctlr; 1743 struct disk_type *dp; 1744 1745 ctlr = find_scsi_ctlr_type(); 1746 for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) { 1747 if (dp->dtype_asciilabel) { 1748 if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) && 1749 dp->dtype_pcyl == label->dkl_pcyl && 1750 dp->dtype_ncyl == label->dkl_ncyl && 1751 dp->dtype_acyl == label->dkl_acyl && 1752 dp->dtype_nhead == label->dkl_nhead && 1753 dp->dtype_nsect == label->dkl_nsect) { 1754 return (dp); 1755 } 1756 } 1757 } 1758 1759 return ((struct disk_type *)NULL); 1760 } 1761 1762 1763 /* 1764 * Find an existing scsi disk definition by this name, 1765 * if possible. 1766 */ 1767 static struct disk_type * 1768 find_scsi_disk_by_name( 1769 char *disk_name) 1770 { 1771 struct ctlr_type *ctlr; 1772 struct disk_type *dp; 1773 1774 ctlr = find_scsi_ctlr_type(); 1775 for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) { 1776 if (dp->dtype_asciilabel) { 1777 if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) { 1778 return (dp); 1779 } 1780 } 1781 } 1782 1783 return ((struct disk_type *)NULL); 1784 } 1785 1786 1787 /* 1788 * Return a pointer to the ctlr_type structure for SCSI 1789 * disks. This list is built into the program, so there's 1790 * no chance of not being able to find it, unless someone 1791 * totally mangles the code. 1792 */ 1793 static struct ctlr_type * 1794 find_scsi_ctlr_type() 1795 { 1796 struct mctlr_list *mlp; 1797 1798 mlp = controlp; 1799 1800 while (mlp != NULL) { 1801 if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) { 1802 return (mlp->ctlr_type); 1803 } 1804 mlp = mlp->next; 1805 } 1806 1807 impossible("no SCSI controller type"); 1808 1809 return ((struct ctlr_type *)NULL); 1810 } 1811 1812 1813 1814 /* 1815 * Return a pointer to the scsi ctlr_info structure. This 1816 * structure is allocated the first time format sees a 1817 * disk on this controller, so it must be present. 1818 */ 1819 static struct ctlr_info * 1820 find_scsi_ctlr_info( 1821 struct dk_cinfo *dkinfo) 1822 { 1823 struct ctlr_info *ctlr; 1824 1825 if (dkinfo->dki_ctype != DKC_SCSI_CCS) { 1826 return (NULL); 1827 } 1828 1829 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 1830 if (ctlr->ctlr_addr == dkinfo->dki_addr && 1831 ctlr->ctlr_space == dkinfo->dki_space && 1832 ctlr->ctlr_ctype->ctype_ctype == DKC_SCSI_CCS) { 1833 return (ctlr); 1834 } 1835 } 1836 1837 impossible("no SCSI controller info"); 1838 1839 return ((struct ctlr_info *)NULL); 1840 } 1841 1842 1843 1844 static struct disk_type * 1845 new_scsi_disk_type( 1846 int fd, 1847 char *disk_name, 1848 struct dk_label *label) 1849 { 1850 struct disk_type *dp; 1851 struct disk_type *disk; 1852 struct ctlr_info *ctlr; 1853 struct dk_cinfo dkinfo; 1854 struct partition_info *part; 1855 struct partition_info *pt; 1856 struct disk_info *disk_info; 1857 int i; 1858 1859 /* 1860 * Get the disk controller info for this disk 1861 */ 1862 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 1863 if (option_msg && diag_msg) { 1864 err_print("DKIOCINFO failed\n"); 1865 } 1866 return (NULL); 1867 } 1868 1869 /* 1870 * Find the ctlr_info for this disk. 1871 */ 1872 ctlr = find_scsi_ctlr_info(&dkinfo); 1873 1874 /* 1875 * Allocate a new disk type for the SCSI controller. 1876 */ 1877 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 1878 1879 /* 1880 * Find the disk_info instance for this disk. 1881 */ 1882 disk_info = find_scsi_disk_info(&dkinfo); 1883 1884 /* 1885 * The controller and the disk should match. 1886 */ 1887 assert(disk_info->disk_ctlr == ctlr); 1888 1889 /* 1890 * Link the disk into the list of disks 1891 */ 1892 dp = ctlr->ctlr_ctype->ctype_dlist; 1893 if (dp == NULL) { 1894 ctlr->ctlr_ctype->ctype_dlist = disk; 1895 } else { 1896 while (dp->dtype_next != NULL) { 1897 dp = dp->dtype_next; 1898 } 1899 dp->dtype_next = disk; 1900 } 1901 disk->dtype_next = NULL; 1902 1903 /* 1904 * Allocate and initialize the disk name. 1905 */ 1906 disk->dtype_asciilabel = alloc_string(disk_name); 1907 1908 /* 1909 * Initialize disk geometry info 1910 */ 1911 disk->dtype_pcyl = label->dkl_pcyl; 1912 disk->dtype_ncyl = label->dkl_ncyl; 1913 disk->dtype_acyl = label->dkl_acyl; 1914 disk->dtype_nhead = label->dkl_nhead; 1915 disk->dtype_nsect = label->dkl_nsect; 1916 disk->dtype_rpm = label->dkl_rpm; 1917 1918 /* 1919 * Attempt to match the partition map in the label 1920 * with a know partition for this disk type. 1921 */ 1922 for (part = disk->dtype_plist; part; part = part->pinfo_next) { 1923 if (parts_match(label, part)) { 1924 break; 1925 } 1926 } 1927 1928 /* 1929 * If no match was made, we need to create a partition 1930 * map for this disk. 1931 */ 1932 if (part == NULL) { 1933 part = (struct partition_info *) 1934 zalloc(sizeof (struct partition_info)); 1935 pt = disk->dtype_plist; 1936 if (pt == NULL) { 1937 disk->dtype_plist = part; 1938 } else { 1939 while (pt->pinfo_next != NULL) { 1940 pt = pt->pinfo_next; 1941 } 1942 pt->pinfo_next = part; 1943 } 1944 part->pinfo_next = NULL; 1945 1946 /* 1947 * Set up the partition name 1948 */ 1949 part->pinfo_name = alloc_string("default"); 1950 1951 /* 1952 * Fill in the partition info from the label 1953 */ 1954 for (i = 0; i < NDKMAP; i++) { 1955 1956 #if defined(_SUNOS_VTOC_8) 1957 part->pinfo_map[i] = label->dkl_map[i]; 1958 1959 #elif defined(_SUNOS_VTOC_16) 1960 part->pinfo_map[i].dkl_cylno = 1961 label->dkl_vtoc.v_part[i].p_start / 1962 ((blkaddr32_t)(disk->dtype_nhead * 1963 disk->dtype_nsect - apc)); 1964 part->pinfo_map[i].dkl_nblk = 1965 label->dkl_vtoc.v_part[i].p_size; 1966 #else 1967 #error No VTOC format defined. 1968 #endif /* defined(_SUNOS_VTOC_8) */ 1969 1970 } 1971 } 1972 1973 1974 /* 1975 * Use the VTOC if valid, or install a default 1976 */ 1977 if (label->dkl_vtoc.v_version == V_VERSION) { 1978 (void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume, 1979 LEN_DKL_VVOL); 1980 part->vtoc = label->dkl_vtoc; 1981 } else { 1982 (void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL); 1983 set_vtoc_defaults(part); 1984 } 1985 1986 /* 1987 * Link the disk to the partition map 1988 */ 1989 disk_info->disk_parts = part; 1990 1991 return (disk); 1992 } 1993 1994 1995 /* 1996 * Delete a disk type from disk type list. 1997 */ 1998 int 1999 delete_disk_type( 2000 struct disk_type *disk_type) 2001 { 2002 struct ctlr_type *ctlr; 2003 struct disk_type *dp, *disk; 2004 2005 if (cur_ctype->ctype_ctype == DKC_DIRECT) 2006 ctlr = find_direct_ctlr_type(); 2007 else if (cur_ctype->ctype_ctype == DKC_VBD) 2008 ctlr = find_vbd_ctlr_type(); 2009 else 2010 ctlr = find_scsi_ctlr_type(); 2011 if (ctlr == NULL || ctlr->ctype_dlist == NULL) { 2012 return (-1); 2013 } 2014 2015 disk = ctlr->ctype_dlist; 2016 if (disk == disk_type) { 2017 ctlr->ctype_dlist = disk->dtype_next; 2018 if (cur_label == L_TYPE_EFI) 2019 free(disk->dtype_plist->etoc); 2020 free(disk->dtype_plist); 2021 free(disk); 2022 return (0); 2023 } else { 2024 for (dp = disk->dtype_next; dp != NULL; 2025 disk = disk->dtype_next, dp = dp->dtype_next) { 2026 if (dp == disk_type) { 2027 disk->dtype_next = dp->dtype_next; 2028 if (cur_label == L_TYPE_EFI) 2029 free(dp->dtype_plist->etoc); 2030 free(dp->dtype_plist); 2031 free(dp); 2032 return (0); 2033 } 2034 } 2035 return (-1); 2036 } 2037 } 2038 2039 2040 static struct disk_info * 2041 find_scsi_disk_info( 2042 struct dk_cinfo *dkinfo) 2043 { 2044 struct disk_info *disk; 2045 struct dk_cinfo *dp; 2046 2047 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 2048 assert(dkinfo->dki_ctype == DKC_SCSI_CCS); 2049 dp = &disk->disk_dkinfo; 2050 if (dp->dki_ctype == dkinfo->dki_ctype && 2051 dp->dki_cnum == dkinfo->dki_cnum && 2052 dp->dki_unit == dkinfo->dki_unit && 2053 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 2054 return (disk); 2055 } 2056 } 2057 2058 impossible("No SCSI disk info instance\n"); 2059 2060 return ((struct disk_info *)NULL); 2061 } 2062 2063 2064 static char * 2065 get_sun_disk_name( 2066 char *disk_name, 2067 struct scsi_inquiry *inquiry) 2068 { 2069 /* 2070 * Extract the sun name of the disk 2071 */ 2072 (void) memset(disk_name, 0, DISK_NAME_MAX); 2073 (void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7); 2074 2075 return (disk_name); 2076 } 2077 2078 2079 static char * 2080 get_generic_disk_name( 2081 char *disk_name, 2082 struct scsi_inquiry *inquiry) 2083 { 2084 char *p; 2085 2086 (void) memset(disk_name, 0, DISK_NAME_MAX); 2087 p = strcopy(disk_name, inquiry->inq_vid, 2088 sizeof (inquiry->inq_vid)); 2089 *p++ = '-'; 2090 p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid)); 2091 *p++ = '-'; 2092 p = strcopy(p, inquiry->inq_revision, 2093 sizeof (inquiry->inq_revision)); 2094 2095 return (disk_name); 2096 } 2097 2098 /* 2099 * Copy a string of characters from src to dst, for at 2100 * most n bytes. Strip all leading and trailing spaces, 2101 * and stop if there are any non-printable characters. 2102 * Return ptr to the next character to be filled. 2103 */ 2104 static char * 2105 strcopy( 2106 char *dst, 2107 char *src, 2108 int n) 2109 { 2110 int i; 2111 2112 while (*src == ' ' && n > 0) { 2113 src++; 2114 n--; 2115 } 2116 2117 for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) { 2118 if (*src == ' ') { 2119 i++; 2120 } else { 2121 while (i-- > 0) 2122 *dst++ = ' '; 2123 *dst++ = *src; 2124 } 2125 } 2126 2127 *dst = 0; 2128 return (dst); 2129 } 2130 2131 /* 2132 * adjust disk geometry. 2133 * This is used when disk reports a disk geometry page having 2134 * no of physical cylinders is < 3 which is the minimum required 2135 * by Solaris (2 for storing labels and at least one as a data 2136 * cylinder ) 2137 */ 2138 int 2139 adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, uint_t *nhead, 2140 uint_t *nsect) 2141 { 2142 uint_t lcyl = *cyl; 2143 uint_t lnhead = *nhead; 2144 uint_t lnsect = *nsect; 2145 2146 assert(lcyl < SUN_MIN_CYL); 2147 2148 /* 2149 * reduce nsect by 2 for each iteration and re-calculate 2150 * the number of cylinders. 2151 */ 2152 while (lnsect > MINIMUM_NO_SECTORS && 2153 lcyl < MINIMUM_NO_CYLINDERS) { 2154 /* 2155 * make sure that we do not go below MINIMUM_NO_SECTORS. 2156 */ 2157 lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2); 2158 lcyl = (capacity) / (lnhead * lnsect); 2159 } 2160 /* 2161 * If the geometry still does not satisfy 2162 * MINIMUM_NO_CYLINDERS then try to reduce the 2163 * no of heads. 2164 */ 2165 while (lnhead > MINIMUM_NO_HEADS && 2166 lcyl < MINIMUM_NO_CYLINDERS) { 2167 lnhead = max(MINIMUM_NO_HEADS, lnhead / 2); 2168 lcyl = (capacity) / (lnhead * lnsect); 2169 } 2170 /* 2171 * now we should have atleast SUN_MIN_CYL cylinders. 2172 * If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS 2173 * and MINIMUM_NO_HEADS then return error. 2174 */ 2175 if (lcyl < SUN_MIN_CYL) 2176 return (1); 2177 else { 2178 *cyl = lcyl; 2179 *nhead = lnhead; 2180 *nsect = lnsect; 2181 return (0); 2182 } 2183 } 2184 2185 #if defined(_SUNOS_VTOC_8) 2186 /* 2187 * Reduce the size of one dimention below a specified 2188 * limit with a minimum loss of volume. Dimenstions are 2189 * assumed to be passed in form the largest value (the one 2190 * that needs to be reduced) to the smallest value. The 2191 * values will be twiddled until they are all less than or 2192 * equal to their limit. Returns the number in the new geometry. 2193 */ 2194 static diskaddr_t 2195 square_box( 2196 diskaddr_t capacity, 2197 uint_t *dim1, uint_t lim1, 2198 uint_t *dim2, uint_t lim2, 2199 uint_t *dim3, uint_t lim3) 2200 { 2201 uint_t i; 2202 2203 /* 2204 * Although the routine should work with any ordering of 2205 * parameters, it's most efficient if they are passed in 2206 * in decreasing magnitude. 2207 */ 2208 assert(*dim1 >= *dim2); 2209 assert(*dim2 >= *dim3); 2210 2211 /* 2212 * This is done in a very arbitrary manner. We could try to 2213 * find better values but I can't come up with a method that 2214 * would run in a reasonable amount of time. That could take 2215 * approximately 65535 * 65535 iterations of a dozen flops each 2216 * or well over 4G flops. 2217 * 2218 * First: 2219 * 2220 * Let's see how far we can go with bitshifts w/o losing 2221 * any blocks. 2222 */ 2223 2224 for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++) 2225 ; 2226 if (i) { 2227 *dim1 = ((*dim1)>>i); 2228 *dim3 = ((*dim3)<<i); 2229 } 2230 2231 if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) { 2232 double d[4]; 2233 2234 /* 2235 * Second: 2236 * 2237 * Set the highest value at its limit then calculate errors, 2238 * adjusting the 2nd highest value (we get better resolution 2239 * that way). 2240 */ 2241 d[1] = lim1; 2242 d[3] = *dim3; 2243 d[2] = (double)capacity/(d[1]*d[3]); 2244 2245 /* 2246 * If we overflowed the middle term, set it to its limit and 2247 * chose a new low term. 2248 */ 2249 if (d[2] > lim2) { 2250 d[2] = lim2; 2251 d[3] = (double)capacity/(d[1]*d[2]); 2252 } 2253 /* 2254 * Convert to integers. 2255 */ 2256 *dim1 = (int)d[1]; 2257 *dim2 = (int)d[2]; 2258 *dim3 = (int)d[3]; 2259 } 2260 /* 2261 * Fixup any other possible problems. 2262 * If this happens, we need a new disklabel format. 2263 */ 2264 if (*dim1 > lim1) *dim1 = lim1; 2265 if (*dim2 > lim2) *dim2 = lim2; 2266 if (*dim3 > lim3) *dim3 = lim3; 2267 return (*dim1 * *dim2 * *dim3); 2268 } 2269 #endif /* defined(_SUNOS_VTOC_8) */ 2270 2271 /* 2272 * Calculate CHS values based on the capacity data. 2273 * 2274 * NOTE: This function is same as cmlb_convert_geomerty() function in 2275 * cmlb kernel module. 2276 */ 2277 static void 2278 compute_chs_values(diskaddr_t total_capacity, diskaddr_t usable_capacity, 2279 uint_t *pcylp, uint_t *nheadp, uint_t *nsectp) 2280 { 2281 2282 /* Unlabeled SCSI floppy device */ 2283 if (total_capacity <= 0x1000) { 2284 *nheadp = 2; 2285 *pcylp = 80; 2286 *nsectp = total_capacity / (80 * 2); 2287 return; 2288 } 2289 2290 /* 2291 * For all devices we calculate cylinders using the heads and sectors 2292 * we assign based on capacity of the device. The algorithm is 2293 * designed to be compatible with the way other operating systems 2294 * lay out fdisk tables for X86 and to insure that the cylinders never 2295 * exceed 65535 to prevent problems with X86 ioctls that report 2296 * geometry. 2297 * For some smaller disk sizes we report geometry that matches those 2298 * used by X86 BIOS usage. For larger disks, we use SPT that are 2299 * multiples of 63, since other OSes that are not limited to 16-bits 2300 * for cylinders stop at 63 SPT we make do by using multiples of 63 SPT. 2301 * 2302 * The following table (in order) illustrates some end result 2303 * calculations: 2304 * 2305 * Maximum number of blocks nhead nsect 2306 * 2307 * 2097152 (1GB) 64 32 2308 * 16777216 (8GB) 128 32 2309 * 1052819775 (502.02GB) 255 63 2310 * 2105639550 (0.98TB) 255 126 2311 * 3158459325 (1.47TB) 255 189 2312 * 4211279100 (1.96TB) 255 252 2313 * 5264098875 (2.45TB) 255 315 2314 * ... 2315 */ 2316 2317 if (total_capacity <= 0x200000) { 2318 *nheadp = 64; 2319 *nsectp = 32; 2320 } else if (total_capacity <= 0x01000000) { 2321 *nheadp = 128; 2322 *nsectp = 32; 2323 } else { 2324 *nheadp = 255; 2325 2326 /* make nsect be smallest multiple of 63 */ 2327 *nsectp = ((total_capacity + 2328 (UINT16_MAX * 255 * 63) - 1) / 2329 (UINT16_MAX * 255 * 63)) * 63; 2330 2331 if (*nsectp == 0) 2332 *nsectp = (UINT16_MAX / 63) * 63; 2333 } 2334 2335 if (usable_capacity < total_capacity) 2336 *pcylp = usable_capacity / ((*nheadp) * (*nsectp)); 2337 else 2338 *pcylp = total_capacity / ((*nheadp) * (*nsectp)); 2339 } 2340