1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <stdlib.h> 28 #include <assert.h> 29 #include <errno.h> 30 #include <locale.h> 31 #include <string.h> 32 #include <unistd.h> 33 #include <signal.h> 34 #include <stdio.h> 35 #include <stdio_ext.h> 36 #include <dhcp_hostconf.h> 37 #include <dhcpagent_ipc.h> 38 #include <dhcpagent_util.h> 39 #include <dhcpmsg.h> 40 #include <netinet/dhcp.h> 41 #include <net/route.h> 42 #include <sys/sockio.h> 43 #include <sys/stat.h> 44 #include <stropts.h> 45 #include <fcntl.h> 46 #include <sys/scsi/adapters/iscsi_if.h> 47 48 #include "async.h" 49 #include "agent.h" 50 #include "script_handler.h" 51 #include "util.h" 52 #include "class_id.h" 53 #include "states.h" 54 #include "packet.h" 55 #include "interface.h" 56 #include "defaults.h" 57 58 #ifndef TEXT_DOMAIN 59 #define TEXT_DOMAIN "SYS_TEST" 60 #endif 61 62 iu_timer_id_t inactivity_id; 63 int class_id_len = 0; 64 char *class_id; 65 iu_eh_t *eh; 66 iu_tq_t *tq; 67 pid_t grandparent; 68 int rtsock_fd; 69 70 static boolean_t shutdown_started = B_FALSE; 71 static boolean_t do_adopt = B_FALSE; 72 static unsigned int debug_level = 0; 73 static iu_eh_callback_t accept_event, ipc_event, rtsock_event; 74 75 /* 76 * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in 77 * which states; a non-zero value indicates the command is permitted. 78 * 79 * START is permitted if the state machine is fresh, or if we are in the 80 * process of trying to obtain a lease (as a convenience to save the 81 * administrator from having to do an explicit DROP). EXTEND, RELEASE, and 82 * GET_TAG require a lease to be obtained in order to make sense. INFORM is 83 * permitted if the interface is fresh or has an INFORM in progress or 84 * previously done on it -- otherwise a DROP or RELEASE is first required. 85 * PING and STATUS always make sense and thus are always permitted, as is DROP 86 * in order to permit the administrator to always bail out. 87 */ 88 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { 89 /* D E P R S S I G */ 90 /* R X I E T T N E */ 91 /* O T N L A A F T */ 92 /* P E G E R T O _ */ 93 /* . N . A T U R T */ 94 /* . D . S . S M A */ 95 /* . . . E . . . G */ 96 /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 97 /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 98 /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 99 /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 100 /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 101 /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 102 /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 103 /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, 104 /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, 105 /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, 106 /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 107 /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 108 /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, 109 }; 110 111 #define CMD_ISPRIV 0x1 /* Command requires privileges */ 112 #define CMD_CREATE 0x2 /* Command creates an interface */ 113 #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ 114 #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ 115 116 static uint_t ipc_cmd_flags[DHCP_NIPC] = { 117 /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, 118 /* DHCP_EXTEND */ CMD_ISPRIV, 119 /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, 120 /* DHCP_RELEASE */ CMD_ISPRIV, 121 /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, 122 /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, 123 /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, 124 /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED 125 }; 126 127 static boolean_t is_iscsi_active(void); 128 129 int 130 main(int argc, char **argv) 131 { 132 boolean_t is_daemon = B_TRUE; 133 boolean_t is_verbose; 134 int ipc_fd; 135 int c; 136 int aware = RTAW_UNDER_IPMP; 137 struct rlimit rl; 138 139 debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); 140 is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); 141 142 /* 143 * -l is ignored for compatibility with old agent. 144 */ 145 146 while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { 147 148 switch (c) { 149 150 case 'a': 151 do_adopt = B_TRUE; 152 grandparent = getpid(); 153 break; 154 155 case 'd': 156 debug_level = strtoul(optarg, NULL, 0); 157 break; 158 159 case 'f': 160 is_daemon = B_FALSE; 161 break; 162 163 case 'v': 164 is_verbose = B_TRUE; 165 break; 166 167 case '?': 168 (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" 169 "\n", argv[0]); 170 return (EXIT_FAILURE); 171 172 default: 173 break; 174 } 175 } 176 177 (void) setlocale(LC_ALL, ""); 178 (void) textdomain(TEXT_DOMAIN); 179 180 if (geteuid() != 0) { 181 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 182 dhcpmsg(MSG_ERROR, "must be super-user"); 183 dhcpmsg_fini(); 184 return (EXIT_FAILURE); 185 } 186 187 if (is_daemon && daemonize() == 0) { 188 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 189 dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); 190 dhcpmsg_fini(); 191 return (EXIT_FAILURE); 192 } 193 194 /* 195 * Seed the random number generator, since we're going to need it 196 * to set transaction id's and for exponential backoff. 197 */ 198 srand48(gethrtime() ^ gethostid() ^ getpid()); 199 200 dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); 201 (void) atexit(dhcpmsg_fini); 202 203 tq = iu_tq_create(); 204 eh = iu_eh_create(); 205 206 if (eh == NULL || tq == NULL) { 207 errno = ENOMEM; 208 dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); 209 return (EXIT_FAILURE); 210 } 211 212 /* 213 * ignore most signals that could be reasonably generated. 214 */ 215 216 (void) signal(SIGTERM, graceful_shutdown); 217 (void) signal(SIGQUIT, graceful_shutdown); 218 (void) signal(SIGPIPE, SIG_IGN); 219 (void) signal(SIGUSR1, SIG_IGN); 220 (void) signal(SIGUSR2, SIG_IGN); 221 (void) signal(SIGINT, SIG_IGN); 222 (void) signal(SIGHUP, SIG_IGN); 223 (void) signal(SIGCHLD, SIG_IGN); 224 225 /* 226 * upon SIGTHAW we need to refresh any non-infinite leases. 227 */ 228 229 (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); 230 231 class_id = get_class_id(); 232 if (class_id != NULL) 233 class_id_len = strlen(class_id); 234 else 235 dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " 236 "with no vendor class id"); 237 238 /* 239 * the inactivity timer is enabled any time there are no 240 * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT 241 * seconds transpire without an interface under DHCP control, 242 * the agent shuts down. 243 */ 244 245 inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, 246 inactivity_shutdown, NULL); 247 248 /* 249 * max out the number available descriptors, just in case.. 250 */ 251 252 rl.rlim_cur = RLIM_INFINITY; 253 rl.rlim_max = RLIM_INFINITY; 254 if (setrlimit(RLIMIT_NOFILE, &rl) == -1) 255 dhcpmsg(MSG_ERR, "setrlimit failed"); 256 257 (void) enable_extended_FILE_stdio(-1, -1); 258 259 /* 260 * Create and bind default IP sockets used to control interfaces and to 261 * catch stray packets. 262 */ 263 264 if (!dhcp_ip_default()) 265 return (EXIT_FAILURE); 266 267 /* 268 * create the ipc channel that the agent will listen for 269 * requests on, and register it with the event handler so that 270 * `accept_event' will be called back. 271 */ 272 273 switch (dhcp_ipc_init(&ipc_fd)) { 274 275 case 0: 276 break; 277 278 case DHCP_IPC_E_BIND: 279 dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " 280 "%i (agent already running?)", IPPORT_DHCPAGENT); 281 return (EXIT_FAILURE); 282 283 default: 284 dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); 285 return (EXIT_FAILURE); 286 } 287 288 if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { 289 dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); 290 return (EXIT_FAILURE); 291 } 292 293 /* 294 * Create the global routing socket. This is used for monitoring 295 * interface transitions, so that we learn about the kernel's Duplicate 296 * Address Detection status, and for inserting and removing default 297 * routes as learned from DHCP servers. Both v4 and v6 are handed 298 * with this one socket. 299 */ 300 rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); 301 if (rtsock_fd == -1) { 302 dhcpmsg(MSG_ERR, "cannot open routing socket"); 303 return (EXIT_FAILURE); 304 } 305 306 /* 307 * We're IPMP-aware and can manage IPMP test addresses, so issue 308 * RT_AWARE to get routing socket messages for interfaces under IPMP. 309 */ 310 if (setsockopt(rtsock_fd, SOL_ROUTE, RT_AWARE, &aware, 311 sizeof (aware)) == -1) { 312 dhcpmsg(MSG_ERR, "cannot set RT_AWARE on routing socket"); 313 return (EXIT_FAILURE); 314 } 315 316 if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { 317 dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); 318 return (EXIT_FAILURE); 319 } 320 321 /* 322 * if the -a (adopt) option was specified, try to adopt the 323 * kernel-managed interface before we start. 324 */ 325 326 if (do_adopt && !dhcp_adopt()) 327 return (EXIT_FAILURE); 328 329 /* 330 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As 331 * we're starting operation here, if there are any of those interfaces 332 * lingering around, they're strays, and need to be removed. 333 * 334 * It might be nice to save these addresses off somewhere -- for both 335 * v4 and v6 -- and use them as hints for later negotiation. 336 */ 337 remove_v6_strays(); 338 339 /* 340 * enter the main event loop; this is where all the real work 341 * takes place (through registering events and scheduling timers). 342 * this function only returns when the agent is shutting down. 343 */ 344 345 switch (iu_handle_events(eh, tq)) { 346 347 case -1: 348 dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); 349 break; 350 351 case DHCP_REASON_INACTIVITY: 352 dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); 353 break; 354 355 case DHCP_REASON_TERMINATE: 356 dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); 357 break; 358 359 case DHCP_REASON_SIGNAL: 360 dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " 361 "down..."); 362 break; 363 } 364 365 (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); 366 367 iu_eh_destroy(eh); 368 iu_tq_destroy(tq); 369 370 return (EXIT_SUCCESS); 371 } 372 373 /* 374 * drain_script(): event loop callback during shutdown 375 * 376 * input: eh_t *: unused 377 * void *: unused 378 * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise 379 */ 380 381 /* ARGSUSED */ 382 boolean_t 383 drain_script(iu_eh_t *ehp, void *arg) 384 { 385 if (shutdown_started == B_FALSE) { 386 shutdown_started = B_TRUE; 387 /* 388 * Check if the system is diskless client and/or 389 * there are active iSCSI sessions 390 * 391 * Do not drop the lease, or the system will be 392 * unable to sync(dump) through nfs/iSCSI driver 393 */ 394 if (!do_adopt && !is_iscsi_active()) { 395 nuke_smach_list(); 396 } 397 } 398 return (script_count == 0); 399 } 400 401 /* 402 * accept_event(): accepts a new connection on the ipc socket and registers 403 * to receive its messages with the event handler 404 * 405 * input: iu_eh_t *: unused 406 * int: the file descriptor in the iu_eh_t * the connection came in on 407 * (other arguments unused) 408 * output: void 409 */ 410 411 /* ARGSUSED */ 412 static void 413 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 414 { 415 int client_fd; 416 int is_priv; 417 418 if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { 419 dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); 420 return; 421 } 422 423 if (iu_register_event(eh, client_fd, POLLIN, ipc_event, 424 (void *)is_priv) == -1) { 425 dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " 426 "for callback"); 427 } 428 } 429 430 /* 431 * ipc_event(): processes incoming ipc requests 432 * 433 * input: iu_eh_t *: unused 434 * int: the file descriptor in the iu_eh_t * the request came in on 435 * short: unused 436 * iu_event_id_t: event ID 437 * void *: indicates whether the request is from a privileged client 438 * output: void 439 */ 440 441 /* ARGSUSED */ 442 static void 443 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 444 { 445 ipc_action_t ia, *iap; 446 dhcp_smach_t *dsmp; 447 int error, is_priv = (int)arg; 448 const char *ifname; 449 boolean_t isv6; 450 451 ipc_action_init(&ia); 452 error = dhcp_ipc_recv_request(fd, &ia.ia_request, 453 DHCP_IPC_REQUEST_WAIT); 454 if (error != DHCP_IPC_SUCCESS) { 455 if (error != DHCP_IPC_E_EOF) { 456 dhcpmsg(MSG_ERROR, 457 "ipc_event: dhcp_ipc_recv_request failed: %s", 458 dhcp_ipc_strerror(error)); 459 } else { 460 dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); 461 } 462 if ((dsmp = lookup_smach_by_event(id)) != NULL) { 463 ipc_action_finish(dsmp, error); 464 } else { 465 (void) iu_unregister_event(eh, id, NULL); 466 (void) dhcp_ipc_close(fd); 467 } 468 return; 469 } 470 471 /* Fill in temporary ipc_action structure for utility functions */ 472 ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); 473 ia.ia_fd = fd; 474 ia.ia_eid = id; 475 476 if (ia.ia_cmd >= DHCP_NIPC) { 477 dhcpmsg(MSG_ERROR, 478 "ipc_event: invalid command (%s) attempted on %s", 479 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 480 send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); 481 return; 482 } 483 484 /* return EPERM for any of the privileged actions */ 485 486 if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { 487 dhcpmsg(MSG_WARNING, 488 "ipc_event: privileged ipc command (%s) attempted on %s", 489 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 490 send_error_reply(&ia, DHCP_IPC_E_PERM); 491 return; 492 } 493 494 /* 495 * Try to locate the state machine associated with this command. If 496 * the command is DHCP_START or DHCP_INFORM and there isn't a state 497 * machine already, make one (there may already be one from a previous 498 * failed attempt to START or INFORM). Otherwise, verify the reference 499 * is still valid. 500 * 501 * The interface name may be blank. In that case, we look up the 502 * primary interface, and the requested type (v4 or v6) doesn't matter. 503 */ 504 505 isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; 506 ifname = ia.ia_request->ifname; 507 if (*ifname == '\0') 508 dsmp = primary_smach(isv6); 509 else 510 dsmp = lookup_smach(ifname, isv6); 511 512 if (dsmp != NULL) { 513 /* Note that verify_smach drops a reference */ 514 hold_smach(dsmp); 515 if (!verify_smach(dsmp)) 516 dsmp = NULL; 517 } 518 519 if (dsmp == NULL) { 520 /* 521 * If the user asked for the primary DHCP interface by giving 522 * an empty string and there is no primary, then check if we're 523 * handling dhcpinfo. If so, then simulate primary selection. 524 * Otherwise, report failure. 525 */ 526 if (ifname[0] == '\0') { 527 if (ia.ia_cmd == DHCP_GET_TAG) 528 dsmp = info_primary_smach(isv6); 529 if (dsmp == NULL) 530 error = DHCP_IPC_E_NOPRIMARY; 531 532 /* 533 * If there's no interface, and we're starting up, then create 534 * it now, along with a state machine for it. Note that if 535 * insert_smach fails, it discards the LIF reference. 536 */ 537 } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { 538 dhcp_lif_t *lif; 539 540 lif = attach_lif(ifname, isv6, &error); 541 if (lif != NULL && 542 (dsmp = insert_smach(lif, &error)) != NULL) { 543 /* 544 * Get client ID and set "DHCPRUNNING" flag on 545 * logical interface. (V4 only, because V6 546 * plumbs its own interfaces.) 547 */ 548 error = get_smach_cid(dsmp); 549 if (error == DHCP_IPC_SUCCESS) 550 error = set_lif_dhcp(lif, B_FALSE); 551 if (error != DHCP_IPC_SUCCESS) { 552 remove_smach(dsmp); 553 dsmp = NULL; 554 } 555 } 556 557 /* 558 * Otherwise, this is an operation on an unknown interface. 559 */ 560 } else { 561 error = DHCP_IPC_E_UNKIF; 562 } 563 if (dsmp == NULL) { 564 send_error_reply(&ia, error); 565 return; 566 } 567 } 568 569 if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && 570 !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { 571 dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", 572 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 573 send_error_reply(&ia, DHCP_IPC_E_BOOTP); 574 return; 575 } 576 577 /* 578 * verify that the state machine is in a state which will allow the 579 * command. we do this up front so that we can return an error 580 * *before* needlessly cancelling an in-progress transaction. 581 */ 582 583 if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { 584 dhcpmsg(MSG_DEBUG, 585 "in state %s; not allowing %s command on %s", 586 dhcp_state_to_string(dsmp->dsm_state), 587 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 588 send_error_reply(&ia, 589 ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? 590 DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); 591 return; 592 } 593 594 dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", 595 dhcp_state_to_string(dsmp->dsm_state), 596 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 597 598 if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) 599 make_primary(dsmp); 600 601 /* 602 * The current design dictates that there can be only one outstanding 603 * transaction per state machine -- this simplifies the code 604 * considerably and also fits well with RFCs 2131 and 3315. It is 605 * worth classifying the different DHCP commands into synchronous 606 * (those which we will handle now and reply to immediately) and 607 * asynchronous (those which require transactions and will be completed 608 * at an indeterminate time in the future): 609 * 610 * DROP: removes the agent's management of a state machine. 611 * asynchronous as the script program may be invoked. 612 * 613 * PING: checks to see if the agent has a named state machine. 614 * synchronous, since no packets need to be sent 615 * to the DHCP server. 616 * 617 * STATUS: returns information about a state machine. 618 * synchronous, since no packets need to be sent 619 * to the DHCP server. 620 * 621 * RELEASE: releases the agent's management of a state machine 622 * and brings the associated interfaces down. asynchronous 623 * as the script program may be invoked. 624 * 625 * EXTEND: renews a lease. asynchronous, since the agent 626 * needs to wait for an ACK, etc. 627 * 628 * START: starts DHCP on a named state machine. asynchronous since 629 * the agent needs to wait for OFFERs, ACKs, etc. 630 * 631 * INFORM: obtains configuration parameters for the system using 632 * externally configured interface. asynchronous, since the 633 * agent needs to wait for an ACK. 634 * 635 * Notice that EXTEND, INFORM, START, DROP and RELEASE are 636 * asynchronous. Notice also that asynchronous commands may occur from 637 * within the agent -- for instance, the agent will need to do implicit 638 * EXTENDs to extend the lease. In order to make the code simpler, the 639 * following rules apply for asynchronous commands: 640 * 641 * There can only be one asynchronous command at a time per state 642 * machine. The current asynchronous command is managed by the async_* 643 * api: async_start(), async_finish(), and async_cancel(). 644 * async_start() starts management of a new asynchronous command on an 645 * state machine, which should only be done after async_cancel() to 646 * terminate a previous command. When the command is completed, 647 * async_finish() should be called. 648 * 649 * Asynchronous commands started by a user command have an associated 650 * ipc_action which provides the agent with information for how to get 651 * in touch with the user command when the action completes. These 652 * ipc_action records also have an associated timeout which may be 653 * infinite. ipc_action_start() should be called when starting an 654 * asynchronous command requested by a user, which sets up the timer 655 * and keeps track of the ipc information (file descriptor, request 656 * type). When the asynchronous command completes, ipc_action_finish() 657 * should be called to return a command status code to the user and 658 * close the ipc connection). If the command does not complete before 659 * the timer fires, ipc_action_timeout() is called which closes the ipc 660 * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that 661 * independent of ipc_action_timeout(), ipc_action_finish() should be 662 * called. 663 * 664 * on a case-by-case basis, here is what happens (per state machine): 665 * 666 * o When an asynchronous command is requested, then 667 * async_cancel() is called to terminate any non-user 668 * action in progress. If there's a user action running, 669 * the user command is sent DHCP_IPC_E_PEND. 670 * 671 * o otherwise, the the transaction is started with 672 * async_start(). if the transaction is on behalf 673 * of a user, ipc_action_start() is called to keep 674 * track of the ipc information and set up the 675 * ipc_action timer. 676 * 677 * o if the command completes normally and before a 678 * timeout fires, then async_finish() is called. 679 * if there was an associated ipc_action, 680 * ipc_action_finish() is called to complete it. 681 * 682 * o if the command fails before a timeout fires, then 683 * async_finish() is called, and the state machine is 684 * is returned to a known state based on the command. 685 * if there was an associated ipc_action, 686 * ipc_action_finish() is called to complete it. 687 * 688 * o if the ipc_action timer fires before command 689 * completion, then DHCP_IPC_E_TIMEOUT is returned to 690 * the user. however, the transaction continues to 691 * be carried out asynchronously. 692 */ 693 694 if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { 695 /* 696 * Only immediate commands (ping, status, get_tag) need to 697 * worry about freeing ia through one of the reply functions 698 * before returning. 699 */ 700 iap = &ia; 701 } else { 702 /* 703 * if shutdown request has been received, send back an error. 704 */ 705 if (shutdown_started) { 706 send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); 707 return; 708 } 709 710 if (dsmp->dsm_dflags & DHCP_IF_BUSY) { 711 send_error_reply(&ia, DHCP_IPC_E_PEND); 712 return; 713 } 714 715 if (!ipc_action_start(dsmp, &ia)) { 716 dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " 717 "failed for %s", dsmp->dsm_name); 718 send_error_reply(&ia, DHCP_IPC_E_MEMORY); 719 return; 720 } 721 722 /* Action structure consumed by above function */ 723 iap = &dsmp->dsm_ia; 724 } 725 726 switch (iap->ia_cmd) { 727 728 case DHCP_DROP: 729 if (dsmp->dsm_droprelease) 730 break; 731 dsmp->dsm_droprelease = B_TRUE; 732 733 /* 734 * Ensure that a timer associated with the existing state 735 * doesn't pop while we're waiting for the script to complete. 736 * (If so, chaos can result -- e.g., a timer causes us to end 737 * up in dhcp_selecting() would start acquiring a new lease on 738 * dsmp while our DHCP_DROP dismantling is ongoing.) 739 */ 740 cancel_smach_timers(dsmp); 741 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, 742 dhcp_drop, NULL, NULL); 743 break; /* not an immediate function */ 744 745 case DHCP_EXTEND: 746 (void) dhcp_extending(dsmp); 747 break; 748 749 case DHCP_GET_TAG: { 750 dhcp_optnum_t optnum; 751 void *opt = NULL; 752 uint_t optlen; 753 boolean_t did_alloc = B_FALSE; 754 PKT_LIST *ack = dsmp->dsm_ack; 755 int i; 756 757 /* 758 * verify the request makes sense. 759 */ 760 761 if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || 762 iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { 763 send_error_reply(iap, DHCP_IPC_E_PROTO); 764 break; 765 } 766 767 (void) memcpy(&optnum, iap->ia_request->buffer, 768 sizeof (dhcp_optnum_t)); 769 770 load_option: 771 switch (optnum.category) { 772 773 case DSYM_SITE: /* FALLTHRU */ 774 case DSYM_STANDARD: 775 for (i = 0; i < dsmp->dsm_pillen; i++) { 776 if (dsmp->dsm_pil[i] == optnum.code) 777 break; 778 } 779 if (i < dsmp->dsm_pillen) 780 break; 781 if (isv6) { 782 opt = dhcpv6_pkt_option(ack, NULL, optnum.code, 783 NULL); 784 } else { 785 if (optnum.code <= DHCP_LAST_OPT) 786 opt = ack->opts[optnum.code]; 787 } 788 break; 789 790 case DSYM_VENDOR: 791 if (isv6) { 792 dhcpv6_option_t *d6o; 793 uint32_t ent; 794 795 /* 796 * Look through vendor options to find our 797 * enterprise number. 798 */ 799 d6o = NULL; 800 for (;;) { 801 d6o = dhcpv6_pkt_option(ack, d6o, 802 DHCPV6_OPT_VENDOR_OPT, &optlen); 803 if (d6o == NULL) 804 break; 805 optlen -= sizeof (*d6o); 806 if (optlen < sizeof (ent)) 807 continue; 808 (void) memcpy(&ent, d6o + 1, 809 sizeof (ent)); 810 if (ntohl(ent) != DHCPV6_SUN_ENT) 811 continue; 812 break; 813 } 814 if (d6o != NULL) { 815 /* 816 * Now find the requested vendor option 817 * within the vendor options block. 818 */ 819 opt = dhcpv6_find_option( 820 (char *)(d6o + 1) + sizeof (ent), 821 optlen - sizeof (ent), NULL, 822 optnum.code, NULL); 823 } 824 } else { 825 /* 826 * the test against VS_OPTION_START is broken 827 * up into two tests to avoid compiler warnings 828 * under intel. 829 */ 830 if ((optnum.code > VS_OPTION_START || 831 optnum.code == VS_OPTION_START) && 832 optnum.code <= VS_OPTION_END) 833 opt = ack->vs[optnum.code]; 834 } 835 break; 836 837 case DSYM_FIELD: 838 if (isv6) { 839 dhcpv6_message_t *d6m = 840 (dhcpv6_message_t *)ack->pkt; 841 dhcpv6_option_t *d6o; 842 843 /* Validate the packet field the user wants */ 844 optlen = optnum.code + optnum.size; 845 if (d6m->d6m_msg_type == 846 DHCPV6_MSG_RELAY_FORW || 847 d6m->d6m_msg_type == 848 DHCPV6_MSG_RELAY_REPL) { 849 if (optlen > sizeof (dhcpv6_relay_t)) 850 break; 851 } else { 852 if (optlen > sizeof (*d6m)) 853 break; 854 } 855 856 opt = malloc(sizeof (*d6o) + optnum.size); 857 if (opt != NULL) { 858 d6o = opt; 859 d6o->d6o_code = htons(optnum.code); 860 d6o->d6o_len = htons(optnum.size); 861 (void) memcpy(d6o + 1, (caddr_t)d6m + 862 optnum.code, optnum.size); 863 } 864 } else { 865 if (optnum.code + optnum.size > sizeof (PKT)) 866 break; 867 868 /* 869 * + 2 to account for option code and length 870 * byte 871 */ 872 opt = malloc(optnum.size + 2); 873 if (opt != NULL) { 874 DHCP_OPT *v4opt = opt; 875 876 v4opt->len = optnum.size; 877 v4opt->code = optnum.code; 878 (void) memcpy(v4opt->value, 879 (caddr_t)ack->pkt + optnum.code, 880 optnum.size); 881 } 882 } 883 884 if (opt == NULL) { 885 send_error_reply(iap, DHCP_IPC_E_MEMORY); 886 return; 887 } 888 did_alloc = B_TRUE; 889 break; 890 891 default: 892 send_error_reply(iap, DHCP_IPC_E_PROTO); 893 return; 894 } 895 896 /* 897 * return the option payload, if there was one. the "+ 2" 898 * accounts for the option code number and length byte. 899 */ 900 901 if (opt != NULL) { 902 if (isv6) { 903 dhcpv6_option_t d6ov; 904 905 (void) memcpy(&d6ov, opt, sizeof (d6ov)); 906 optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); 907 } else { 908 optlen = ((DHCP_OPT *)opt)->len + 2; 909 } 910 send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); 911 912 if (did_alloc) 913 free(opt); 914 break; 915 } else if (ack != dsmp->dsm_orig_ack) { 916 /* 917 * There wasn't any definition for the option in the 918 * current ack, so now retry with the original ack if 919 * the original ack is not the current ack. 920 */ 921 ack = dsmp->dsm_orig_ack; 922 goto load_option; 923 } 924 925 /* 926 * note that an "okay" response is returned either in 927 * the case of an unknown option or a known option 928 * with no payload. this is okay (for now) since 929 * dhcpinfo checks whether an option is valid before 930 * ever performing ipc with the agent. 931 */ 932 933 send_ok_reply(iap); 934 break; 935 } 936 937 case DHCP_INFORM: 938 dhcp_inform(dsmp); 939 /* next destination: dhcp_acknak() */ 940 break; /* not an immediate function */ 941 942 case DHCP_PING: 943 if (dsmp->dsm_dflags & DHCP_IF_FAILED) 944 send_error_reply(iap, DHCP_IPC_E_FAILEDIF); 945 else 946 send_ok_reply(iap); 947 break; 948 949 case DHCP_RELEASE: 950 if (dsmp->dsm_droprelease) 951 break; 952 dsmp->dsm_droprelease = B_TRUE; 953 cancel_smach_timers(dsmp); /* see comment in DHCP_DROP above */ 954 (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : 955 EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); 956 break; /* not an immediate function */ 957 958 case DHCP_START: { 959 PKT_LIST *ack, *oack; 960 PKT_LIST *plp[2]; 961 962 deprecate_leases(dsmp); 963 964 /* 965 * if we have a valid hostconf lying around, then jump 966 * into INIT_REBOOT. if it fails, we'll end up going 967 * through the whole selecting() procedure again. 968 */ 969 970 error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); 971 ack = error > 0 ? plp[0] : NULL; 972 oack = error > 1 ? plp[1] : NULL; 973 974 /* 975 * If the allocation of the old ack fails, that's fine; 976 * continue without it. 977 */ 978 if (oack == NULL) 979 oack = ack; 980 981 /* 982 * As long as we've allocated something, start using it. 983 */ 984 if (ack != NULL) { 985 dsmp->dsm_orig_ack = oack; 986 dsmp->dsm_ack = ack; 987 dhcp_init_reboot(dsmp); 988 /* next destination: dhcp_acknak() */ 989 break; 990 } 991 992 /* 993 * if not debugging, wait for a few seconds before 994 * going into SELECTING. 995 */ 996 997 if (debug_level == 0 && set_start_timer(dsmp)) { 998 /* next destination: dhcp_start() */ 999 break; 1000 } else { 1001 dhcp_selecting(dsmp); 1002 /* next destination: dhcp_requesting() */ 1003 break; 1004 } 1005 } 1006 1007 case DHCP_STATUS: { 1008 dhcp_status_t status; 1009 dhcp_lease_t *dlp; 1010 1011 status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); 1012 1013 /* 1014 * We return information on just the first lease as being 1015 * representative of the lot. A better status mechanism is 1016 * needed. 1017 */ 1018 dlp = dsmp->dsm_leases; 1019 1020 if (dlp == NULL || 1021 dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { 1022 status.if_t1 = DHCP_PERM; 1023 status.if_t2 = DHCP_PERM; 1024 status.if_lease = DHCP_PERM; 1025 } else { 1026 status.if_t1 = status.if_began + 1027 dlp->dl_t1.dt_start; 1028 status.if_t2 = status.if_began + 1029 dlp->dl_t2.dt_start; 1030 status.if_lease = status.if_began + 1031 dlp->dl_lifs->lif_expire.dt_start; 1032 } 1033 1034 status.version = DHCP_STATUS_VER; 1035 status.if_state = dsmp->dsm_state; 1036 status.if_dflags = dsmp->dsm_dflags; 1037 status.if_sent = dsmp->dsm_sent; 1038 status.if_recv = dsmp->dsm_received; 1039 status.if_bad_offers = dsmp->dsm_bad_offers; 1040 1041 (void) strlcpy(status.if_name, dsmp->dsm_name, LIFNAMSIZ); 1042 1043 send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, 1044 sizeof (dhcp_status_t)); 1045 break; 1046 } 1047 } 1048 } 1049 1050 /* 1051 * check_rtm_addr(): determine if routing socket message matches interface 1052 * address 1053 * 1054 * input: const struct if_msghdr *: pointer to routing socket message 1055 * int: routing socket message length 1056 * boolean_t: set to B_TRUE if IPv6 1057 * const in6_addr_t *: pointer to IP address 1058 * output: boolean_t: B_TRUE if address is a match 1059 */ 1060 1061 static boolean_t 1062 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, 1063 const in6_addr_t *addr) 1064 { 1065 const char *cp, *lim; 1066 uint_t flag; 1067 const struct sockaddr *sa; 1068 1069 if (!(ifam->ifam_addrs & RTA_IFA)) 1070 return (B_FALSE); 1071 1072 cp = (const char *)(ifam + 1); 1073 lim = (const char *)ifam + msglen; 1074 for (flag = 1; flag < RTA_IFA; flag <<= 1) { 1075 if (ifam->ifam_addrs & flag) { 1076 /* LINTED: alignment */ 1077 sa = (const struct sockaddr *)cp; 1078 if ((const char *)(sa + 1) > lim) 1079 return (B_FALSE); 1080 switch (sa->sa_family) { 1081 case AF_INET: 1082 cp += sizeof (struct sockaddr_in); 1083 break; 1084 case AF_LINK: 1085 cp += sizeof (struct sockaddr_dl); 1086 break; 1087 case AF_INET6: 1088 cp += sizeof (struct sockaddr_in6); 1089 break; 1090 default: 1091 cp += sizeof (struct sockaddr); 1092 break; 1093 } 1094 } 1095 } 1096 if (isv6) { 1097 const struct sockaddr_in6 *sin6; 1098 1099 /* LINTED: alignment */ 1100 sin6 = (const struct sockaddr_in6 *)cp; 1101 if ((const char *)(sin6 + 1) > lim) 1102 return (B_FALSE); 1103 if (sin6->sin6_family != AF_INET6) 1104 return (B_FALSE); 1105 return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); 1106 } else { 1107 const struct sockaddr_in *sinp; 1108 ipaddr_t v4addr; 1109 1110 /* LINTED: alignment */ 1111 sinp = (const struct sockaddr_in *)cp; 1112 if ((const char *)(sinp + 1) > lim) 1113 return (B_FALSE); 1114 if (sinp->sin_family != AF_INET) 1115 return (B_FALSE); 1116 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 1117 return (sinp->sin_addr.s_addr == v4addr); 1118 } 1119 } 1120 1121 /* 1122 * is_rtm_v6(): determine if routing socket message is IPv6 1123 * 1124 * input: struct ifa_msghdr *: pointer to routing socket message 1125 * int: message length 1126 * output: boolean_t 1127 */ 1128 1129 static boolean_t 1130 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) 1131 { 1132 const char *cp, *lim; 1133 uint_t flag; 1134 const struct sockaddr *sa; 1135 1136 cp = (const char *)(ifam + 1); 1137 lim = (const char *)ifam + msglen; 1138 for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { 1139 /* LINTED: alignment */ 1140 sa = (const struct sockaddr *)cp; 1141 if ((const char *)(sa + 1) > lim) 1142 return (B_FALSE); 1143 switch (sa->sa_family) { 1144 case AF_INET: 1145 return (B_FALSE); 1146 case AF_LINK: 1147 cp += sizeof (struct sockaddr_dl); 1148 break; 1149 case AF_INET6: 1150 return (B_TRUE); 1151 default: 1152 cp += sizeof (struct sockaddr); 1153 break; 1154 } 1155 } 1156 return (B_FALSE); 1157 } 1158 1159 /* 1160 * check_lif(): check the state of a given logical interface and its DHCP 1161 * lease. We've been told by the routing socket that the 1162 * corresponding ifIndex has changed. This may mean that DAD has 1163 * completed or failed. 1164 * 1165 * input: dhcp_lif_t *: pointer to the LIF 1166 * const struct ifa_msghdr *: routing socket message 1167 * int: size of routing socket message 1168 * output: boolean_t: B_TRUE if DAD has completed on this interface 1169 */ 1170 1171 static boolean_t 1172 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) 1173 { 1174 boolean_t isv6, dad_wait, unplumb; 1175 int fd; 1176 struct lifreq lifr; 1177 1178 isv6 = lif->lif_pif->pif_isv6; 1179 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1180 1181 /* 1182 * Get the real (64 bit) logical interface flags. Note that the 1183 * routing socket message has flags, but these are just the lower 32 1184 * bits. 1185 */ 1186 unplumb = B_FALSE; 1187 (void) memset(&lifr, 0, sizeof (lifr)); 1188 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1189 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { 1190 /* 1191 * Failing to retrieve flags means that the interface is gone. 1192 * It hasn't failed to verify with DAD, but we still have to 1193 * give up on it. 1194 */ 1195 lifr.lifr_flags = 0; 1196 if (errno == ENXIO) { 1197 lif->lif_plumbed = B_FALSE; 1198 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1199 lif->lif_name); 1200 if (!isv6) 1201 discard_default_routes(lif->lif_smachs); 1202 } else { 1203 dhcpmsg(MSG_ERR, 1204 "unable to retrieve interface flags on %s", 1205 lif->lif_name); 1206 } 1207 unplumb = B_TRUE; 1208 } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { 1209 /* 1210 * If the message is not about this logical interface, 1211 * then just ignore it. 1212 */ 1213 return (B_FALSE); 1214 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1215 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1216 lif->lif_name); 1217 lif_mark_decline(lif, "duplicate address"); 1218 close_ip_lif(lif); 1219 (void) open_ip_lif(lif, INADDR_ANY, B_TRUE); 1220 } 1221 1222 dad_wait = lif->lif_dad_wait; 1223 if (dad_wait) { 1224 dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", 1225 lif->lif_name); 1226 lif->lif_dad_wait = B_FALSE; 1227 } 1228 1229 if (unplumb) 1230 unplumb_lif(lif); 1231 1232 return (dad_wait); 1233 } 1234 1235 /* 1236 * check_main_lif(): check the state of a main logical interface for a state 1237 * machine. This is used only for DHCPv6. 1238 * 1239 * input: dhcp_smach_t *: pointer to the state machine 1240 * const struct ifa_msghdr *: routing socket message 1241 * int: size of routing socket message 1242 * output: boolean_t: B_TRUE if LIF is ok. 1243 */ 1244 1245 static boolean_t 1246 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) 1247 { 1248 dhcp_lif_t *lif = dsmp->dsm_lif; 1249 struct lifreq lifr; 1250 1251 /* 1252 * Get the real (64 bit) logical interface flags. Note that the 1253 * routing socket message has flags, but these are just the lower 32 1254 * bits. 1255 */ 1256 (void) memset(&lifr, 0, sizeof (lifr)); 1257 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1258 if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { 1259 /* 1260 * Failing to retrieve flags means that the interface is gone. 1261 * Our state machine is now trash. 1262 */ 1263 if (errno == ENXIO) { 1264 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1265 lif->lif_name); 1266 } else { 1267 dhcpmsg(MSG_ERR, 1268 "unable to retrieve interface flags on %s", 1269 lif->lif_name); 1270 } 1271 return (B_FALSE); 1272 } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { 1273 /* 1274 * If the message is not about this logical interface, 1275 * then just ignore it. 1276 */ 1277 return (B_TRUE); 1278 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1279 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1280 lif->lif_name); 1281 return (B_FALSE); 1282 } else { 1283 return (B_TRUE); 1284 } 1285 } 1286 1287 /* 1288 * process_link_up_down(): check the state of a physical interface for up/down 1289 * transitions; must go through INIT_REBOOT state if 1290 * the link flaps. 1291 * 1292 * input: dhcp_pif_t *: pointer to the physical interface to check 1293 * const struct if_msghdr *: routing socket message 1294 * output: none 1295 */ 1296 1297 static void 1298 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) 1299 { 1300 struct lifreq lifr; 1301 boolean_t isv6; 1302 int fd; 1303 1304 /* 1305 * If the message implies no change of flags, then we're done; no need 1306 * to check further. Note that if we have multiple state machines on a 1307 * single physical interface, this test keeps us from issuing an ioctl 1308 * for each one. 1309 */ 1310 if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || 1311 !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) 1312 return; 1313 1314 /* 1315 * We don't know what the real interface flags are, because the 1316 * if_index number is only 16 bits; we must go ask. 1317 */ 1318 isv6 = pif->pif_isv6; 1319 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1320 (void) memset(&lifr, 0, sizeof (lifr)); 1321 (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); 1322 1323 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || 1324 !(lifr.lifr_flags & IFF_RUNNING)) { 1325 /* 1326 * If we've lost the interface or it has gone down, then 1327 * nothing special to do; just turn off the running flag. 1328 */ 1329 pif_status(pif, B_FALSE); 1330 } else { 1331 /* 1332 * Interface has come back up: go through verification process. 1333 */ 1334 pif_status(pif, B_TRUE); 1335 } 1336 } 1337 1338 /* 1339 * rtsock_event(): fetches routing socket messages and updates internal 1340 * interface state based on those messages. 1341 * 1342 * input: iu_eh_t *: unused 1343 * int: the routing socket file descriptor 1344 * (other arguments unused) 1345 * output: void 1346 */ 1347 1348 /* ARGSUSED */ 1349 static void 1350 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 1351 { 1352 dhcp_smach_t *dsmp, *dsmnext; 1353 union { 1354 struct ifa_msghdr ifam; 1355 struct if_msghdr ifm; 1356 char buf[1024]; 1357 } msg; 1358 uint16_t ifindex; 1359 int msglen; 1360 boolean_t isv6; 1361 1362 if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) 1363 return; 1364 1365 /* Note that the routing socket interface index is just 16 bits */ 1366 if (msg.ifm.ifm_type == RTM_IFINFO) { 1367 ifindex = msg.ifm.ifm_index; 1368 isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; 1369 } else if (msg.ifam.ifam_type == RTM_DELADDR || 1370 msg.ifam.ifam_type == RTM_NEWADDR) { 1371 ifindex = msg.ifam.ifam_index; 1372 isv6 = is_rtm_v6(&msg.ifam, msglen); 1373 } else { 1374 return; 1375 } 1376 1377 for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); 1378 dsmp != NULL; dsmp = dsmnext) { 1379 DHCPSTATE oldstate; 1380 boolean_t lif_finished; 1381 boolean_t lease_removed; 1382 dhcp_lease_t *dlp, *dlnext; 1383 1384 /* 1385 * Note that script_start can call dhcp_drop directly, and 1386 * that will do release_smach. 1387 */ 1388 dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); 1389 oldstate = dsmp->dsm_state; 1390 1391 /* 1392 * Ignore state machines that are currently processing drop or 1393 * release; there is nothing more we can do for them. 1394 */ 1395 if (dsmp->dsm_droprelease) 1396 continue; 1397 1398 /* 1399 * Look for link up/down notifications. These occur on a 1400 * physical interface basis. 1401 */ 1402 if (msg.ifm.ifm_type == RTM_IFINFO) { 1403 process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); 1404 continue; 1405 } 1406 1407 /* 1408 * Since we cannot trust the flags reported by the routing 1409 * socket (they're just 32 bits -- and thus never include 1410 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 1411 * bits and also doesn't reflect the alias in use), we get 1412 * flags on all matching interfaces, and go by that. 1413 */ 1414 lif_finished = B_FALSE; 1415 lease_removed = B_FALSE; 1416 for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { 1417 dhcp_lif_t *lif, *lifnext; 1418 uint_t nlifs = dlp->dl_nlifs; 1419 1420 dlnext = dlp->dl_next; 1421 for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; 1422 lif = lifnext, nlifs--) { 1423 lifnext = lif->lif_next; 1424 if (check_lif(lif, &msg.ifam, msglen)) { 1425 dsmp->dsm_lif_wait--; 1426 lif_finished = B_TRUE; 1427 } 1428 } 1429 if (dlp->dl_nlifs == 0) { 1430 remove_lease(dlp); 1431 lease_removed = B_TRUE; 1432 } 1433 } 1434 1435 if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || 1436 (!isv6 && !verify_lif(dsmp->dsm_lif))) { 1437 dsmp->dsm_droprelease = B_TRUE; 1438 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : 1439 EVENT_DROP, dhcp_drop, NULL, NULL); 1440 continue; 1441 } 1442 1443 /* 1444 * Ignore this state machine if nothing interesting has 1445 * happened. 1446 */ 1447 if (!lif_finished && dsmp->dsm_lif_down == 0 && 1448 (dsmp->dsm_leases != NULL || !lease_removed)) 1449 continue; 1450 1451 /* 1452 * If we're still waiting for DAD to complete on some of the 1453 * configured LIFs, then don't send a response. 1454 */ 1455 if (dsmp->dsm_lif_wait != 0) { 1456 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " 1457 "LIFs waiting on DAD", dsmp->dsm_name, 1458 dsmp->dsm_lif_wait); 1459 continue; 1460 } 1461 1462 /* 1463 * If we have some failed LIFs, then handle them now. We'll 1464 * remove them from the list. Any leases that become empty are 1465 * also removed as part of the decline-generation process. 1466 */ 1467 if (dsmp->dsm_lif_down != 0) 1468 send_declines(dsmp); 1469 1470 if (dsmp->dsm_leases == NULL) { 1471 dsmp->dsm_bad_offers++; 1472 /* 1473 * For DHCPv6, we'll process the restart once we're 1474 * done sending Decline messages, because these are 1475 * supposed to be acknowledged. With DHCPv4, there's 1476 * no acknowledgment for a DECLINE, so after sending 1477 * it, we just restart right away. 1478 */ 1479 if (!dsmp->dsm_isv6) { 1480 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " 1481 "LIFs left", dsmp->dsm_name); 1482 dhcp_restart(dsmp); 1483 } 1484 } else { 1485 /* 1486 * If we're now up on at least some of the leases and 1487 * we were waiting for that, then kick off the rest of 1488 * configuration. Lease validation and DAD are done. 1489 */ 1490 dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " 1491 "on %s in %s state", dsmp->dsm_name, 1492 dhcp_state_to_string(oldstate)); 1493 if (oldstate == PRE_BOUND || 1494 oldstate == ADOPTING) 1495 dhcp_bound_complete(dsmp); 1496 if (oldstate == ADOPTING) 1497 dhcp_adopt_complete(dsmp); 1498 } 1499 } 1500 } 1501 1502 /* 1503 * check_cmd_allowed(): check whether the requested command is allowed in the 1504 * state specified. 1505 * 1506 * input: DHCPSTATE: current state 1507 * dhcp_ipc_type_t: requested command 1508 * output: boolean_t: B_TRUE if command is allowed in this state 1509 */ 1510 1511 boolean_t 1512 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) 1513 { 1514 return (ipc_cmd_allowed[state][cmd] != 0); 1515 } 1516 1517 static boolean_t 1518 is_iscsi_active(void) 1519 { 1520 int fd; 1521 int active = 0; 1522 1523 if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) != -1) { 1524 if (ioctl(fd, ISCSI_IS_ACTIVE, &active) != 0) 1525 active = 0; 1526 (void) close(fd); 1527 } 1528 1529 return (active != 0); 1530 } 1531