1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This header file contains the basic data structures which the 29 * virtual switch (vsw) uses to communicate with vnet clients. 30 * 31 * The virtual switch reads the machine description (MD) to 32 * determine how many port_t structures to create (each port_t 33 * can support communications to a single network device). The 34 * port_t's are maintained in a linked list. 35 * 36 * Each port in turn contains a number of logical domain channels 37 * (ldc's) which are inter domain communications channels which 38 * are used for passing small messages between the domains. Their 39 * may be an unlimited number of channels associated with each port, 40 * though most devices only use a single channel. 41 * 42 * The ldc is a bi-directional channel, which is divided up into 43 * two directional 'lanes', one outbound from the switch to the 44 * virtual network device, the other inbound to the switch. 45 * Depending on the type of device each lane may have seperate 46 * communication paramaters (such as mtu etc). 47 * 48 * For those network clients which use descriptor rings the 49 * rings are associated with the appropriate lane. I.e. rings 50 * which the switch exports are associated with the outbound lanes 51 * while those which the network clients are exporting to the switch 52 * are associated with the inbound lane. 53 * 54 * In diagram form the data structures look as follows: 55 * 56 * vsw instance 57 * | 58 * +----->port_t----->port_t----->port_t-----> 59 * | 60 * +--->ldc_t--->ldc_t--->ldc_t---> 61 * | 62 * +--->lane_t (inbound) 63 * | | 64 * | +--->dring--->dring---> 65 * | 66 * +--->lane_t (outbound) 67 * | 68 * +--->dring--->dring---> 69 * 70 */ 71 72 #ifndef _VSW_LDC_H 73 #define _VSW_LDC_H 74 75 #pragma ident "%Z%%M% %I% %E% SMI" 76 77 #ifdef __cplusplus 78 extern "C" { 79 #endif 80 81 /* 82 * Default message type. 83 */ 84 typedef struct def_msg { 85 uint64_t data[8]; 86 } def_msg_t; 87 88 /* 89 * Currently only support one major/minor pair. 90 */ 91 #define VSW_NUM_VER 1 92 93 typedef struct ver_sup { 94 uint16_t ver_major; /* major version number */ 95 uint16_t ver_minor; /* minor version number */ 96 } ver_sup_t; 97 98 /* 99 * Lane states. 100 */ 101 #define VSW_LANE_INACTIV 0x0 /* No params set for lane */ 102 103 #define VSW_VER_INFO_SENT 0x1 /* Version # sent to peer */ 104 #define VSW_VER_INFO_RECV 0x2 /* Version # recv from peer */ 105 #define VSW_VER_ACK_RECV 0x4 106 #define VSW_VER_ACK_SENT 0x8 107 #define VSW_VER_NACK_RECV 0x10 108 #define VSW_VER_NACK_SENT 0x20 109 110 #define VSW_ATTR_INFO_SENT 0x40 /* Attributes sent to peer */ 111 #define VSW_ATTR_INFO_RECV 0x80 /* Peer attributes received */ 112 #define VSW_ATTR_ACK_SENT 0x100 113 #define VSW_ATTR_ACK_RECV 0x200 114 #define VSW_ATTR_NACK_SENT 0x400 115 #define VSW_ATTR_NACK_RECV 0x800 116 117 #define VSW_DRING_INFO_SENT 0x1000 /* Dring info sent to peer */ 118 #define VSW_DRING_INFO_RECV 0x2000 /* Dring info received */ 119 #define VSW_DRING_ACK_SENT 0x4000 120 #define VSW_DRING_ACK_RECV 0x8000 121 #define VSW_DRING_NACK_SENT 0x10000 122 #define VSW_DRING_NACK_RECV 0x20000 123 124 #define VSW_RDX_INFO_SENT 0x40000 /* RDX sent to peer */ 125 #define VSW_RDX_INFO_RECV 0x80000 /* RDX received from peer */ 126 #define VSW_RDX_ACK_SENT 0x100000 127 #define VSW_RDX_ACK_RECV 0x200000 128 #define VSW_RDX_NACK_SENT 0x400000 129 #define VSW_RDX_NACK_RECV 0x800000 130 131 #define VSW_MCST_INFO_SENT 0x1000000 132 #define VSW_MCST_INFO_RECV 0x2000000 133 #define VSW_MCST_ACK_SENT 0x4000000 134 #define VSW_MCST_ACK_RECV 0x8000000 135 #define VSW_MCST_NACK_SENT 0x10000000 136 #define VSW_MCST_NACK_RECV 0x20000000 137 138 #define VSW_LANE_ACTIVE 0x40000000 /* Lane open to xmit data */ 139 140 /* Handshake milestones */ 141 #define VSW_MILESTONE0 0x1 /* ver info exchanged */ 142 #define VSW_MILESTONE1 0x2 /* attribute exchanged */ 143 #define VSW_MILESTONE2 0x4 /* dring info exchanged */ 144 #define VSW_MILESTONE3 0x8 /* rdx exchanged */ 145 #define VSW_MILESTONE4 0x10 /* handshake complete */ 146 147 /* 148 * Lane direction (relative to ourselves). 149 */ 150 #define INBOUND 0x1 151 #define OUTBOUND 0x2 152 153 /* Peer session id received */ 154 #define VSW_PEER_SESSION 0x1 155 156 /* 157 * Maximum number of consecutive reads of data from channel 158 */ 159 #define VSW_MAX_CHAN_READ 50 160 161 /* 162 * Currently only support one ldc per port. 163 */ 164 #define VSW_PORT_MAX_LDCS 1 /* max # of ldcs per port */ 165 166 /* 167 * Used for port add/deletion. 168 */ 169 #define VSW_PORT_UPDATED 0x1 170 171 #define LDC_TX_SUCCESS 0 /* ldc transmit success */ 172 #define LDC_TX_FAILURE 1 /* ldc transmit failure */ 173 #define LDC_TX_NORESOURCES 2 /* out of descriptors */ 174 175 /* 176 * Descriptor ring info 177 * 178 * Each descriptor element has a pre-allocated data buffer 179 * associated with it, into which data being transmitted is 180 * copied. By pre-allocating we speed up the copying process. 181 * The buffer is re-used once the peer has indicated that it is 182 * finished with the descriptor. 183 */ 184 #define VSW_RING_NUM_EL 512 /* Num of entries in ring */ 185 #define VSW_RING_EL_DATA_SZ 2048 /* Size of data section (bytes) */ 186 #define VSW_PRIV_SIZE sizeof (vnet_private_desc_t) 187 #define VSW_PUB_SIZE sizeof (vnet_public_desc_t) 188 189 #define VSW_MAX_COOKIES ((ETHERMTU >> MMU_PAGESHIFT) + 2) 190 191 /* 192 * LDC pkt tranfer MTU 193 */ 194 #define VSW_LDC_MTU sizeof (def_msg_t) 195 196 /* 197 * Size of the mblk in each mblk pool. 198 */ 199 #define VSW_MBLK_SZ_128 128 200 #define VSW_MBLK_SZ_256 256 201 #define VSW_MBLK_SZ_2048 2048 202 203 /* 204 * Number of mblks in each mblk pool. 205 */ 206 #define VSW_NUM_MBLKS 1024 207 208 /* 209 * Private descriptor 210 */ 211 typedef struct vsw_private_desc { 212 /* 213 * Below lock must be held when accessing the state of 214 * a descriptor on either the private or public sections 215 * of the ring. 216 */ 217 kmutex_t dstate_lock; 218 uint64_t dstate; 219 vnet_public_desc_t *descp; 220 ldc_mem_handle_t memhandle; 221 void *datap; 222 uint64_t datalen; 223 uint64_t ncookies; 224 ldc_mem_cookie_t memcookie[VSW_MAX_COOKIES]; 225 int bound; 226 } vsw_private_desc_t; 227 228 /* 229 * Descriptor ring structure 230 */ 231 typedef struct dring_info { 232 struct dring_info *next; /* next ring in chain */ 233 kmutex_t dlock; 234 uint32_t num_descriptors; 235 uint32_t descriptor_size; 236 uint32_t options; 237 uint32_t ncookies; 238 ldc_mem_cookie_t cookie[1]; 239 240 ldc_dring_handle_t handle; 241 uint64_t ident; /* identifier sent to peer */ 242 uint64_t end_idx; /* last idx processed */ 243 int64_t last_ack_recv; 244 245 kmutex_t restart_lock; 246 boolean_t restart_reqd; /* send restart msg */ 247 248 /* 249 * base address of private and public portions of the 250 * ring (where appropriate), and data block. 251 */ 252 void *pub_addr; /* base of public section */ 253 void *priv_addr; /* base of private section */ 254 void *data_addr; /* base of data section */ 255 size_t data_sz; /* size of data section */ 256 } dring_info_t; 257 258 /* 259 * Each ldc connection is comprised of two lanes, incoming 260 * from a peer, and outgoing to that peer. Each lane shares 261 * common ldc parameters and also has private lane-specific 262 * parameters. 263 */ 264 typedef struct lane { 265 uint64_t lstate; /* Lane state */ 266 uint16_t ver_major; /* Version major number */ 267 uint16_t ver_minor; /* Version minor number */ 268 uint64_t seq_num; /* Sequence number */ 269 uint64_t mtu; /* ETHERMTU */ 270 uint64_t addr; /* Unique physical address */ 271 uint8_t addr_type; /* Only MAC address at moment */ 272 uint8_t xfer_mode; /* Dring or Pkt based */ 273 uint8_t ack_freq; /* Only non zero for Pkt based xfer */ 274 krwlock_t dlistrw; /* Lock for dring list */ 275 dring_info_t *dringp; /* List of drings for this lane */ 276 } lane_t; 277 278 /* channel drain states */ 279 #define VSW_LDC_INIT 0x1 /* Initial non-drain state */ 280 #define VSW_LDC_DRAINING 0x2 /* Channel draining */ 281 282 /* ldc information associated with a vsw-port */ 283 typedef struct vsw_ldc { 284 struct vsw_ldc *ldc_next; /* next ldc in the list */ 285 struct vsw_port *ldc_port; /* associated port */ 286 struct vsw *ldc_vswp; /* associated vsw */ 287 kmutex_t ldc_cblock; /* sync callback processing */ 288 kmutex_t ldc_txlock; /* sync transmits */ 289 kmutex_t ldc_rxlock; /* sync rx */ 290 uint64_t ldc_id; /* channel number */ 291 ldc_handle_t ldc_handle; /* channel handle */ 292 kmutex_t drain_cv_lock; 293 kcondvar_t drain_cv; /* channel draining */ 294 int drain_state; 295 uint32_t hphase; /* handshake phase */ 296 int hcnt; /* # handshake attempts */ 297 kmutex_t status_lock; 298 ldc_status_t ldc_status; /* channel status */ 299 uint8_t reset_active; /* reset flag */ 300 uint64_t local_session; /* Our session id */ 301 uint64_t peer_session; /* Our peers session id */ 302 uint8_t session_status; /* Session recv'd, sent */ 303 uint32_t hss_id; /* Handshake session id */ 304 uint64_t next_ident; /* Next dring ident # to use */ 305 lane_t lane_in; /* Inbound lane */ 306 lane_t lane_out; /* Outbound lane */ 307 uint8_t dev_class; /* Peer device class */ 308 vio_multi_pool_t vmp; /* Receive mblk pools */ 309 310 /* tx thread fields */ 311 kthread_t *tx_thread; /* tx thread */ 312 uint32_t tx_thr_flags; /* tx thread flags */ 313 kmutex_t tx_thr_lock; /* lock for tx thread */ 314 kcondvar_t tx_thr_cv; /* cond.var for tx thread */ 315 mblk_t *tx_mhead; /* tx mblks head */ 316 mblk_t *tx_mtail; /* tx mblks tail */ 317 uint64_t tx_failures; /* tx failures */ 318 319 /* receive thread fields */ 320 kthread_t *rx_thread; /* receive thread */ 321 uint32_t rx_thr_flags; /* receive thread flags */ 322 kmutex_t rx_thr_lock; /* lock for receive thread */ 323 kcondvar_t rx_thr_cv; /* cond.var for recv thread */ 324 325 /* channel statistics */ 326 vgen_stats_t ldc_stats; /* channel statistics */ 327 kstat_t *ksp; /* channel kstats */ 328 } vsw_ldc_t; 329 330 /* worker thread flags */ 331 #define VSW_WTHR_RUNNING 0x01 /* worker thread running */ 332 #define VSW_WTHR_DATARCVD 0x02 /* data received */ 333 #define VSW_WTHR_STOP 0x04 /* stop worker thread request */ 334 335 /* list of ldcs per port */ 336 typedef struct vsw_ldc_list { 337 vsw_ldc_t *head; /* head of the list */ 338 krwlock_t lockrw; /* sync access(rw) to the list */ 339 int num_ldcs; /* number of ldcs in the list */ 340 } vsw_ldc_list_t; 341 342 /* multicast addresses port is interested in */ 343 typedef struct mcst_addr { 344 struct mcst_addr *nextp; 345 struct ether_addr mca; /* multicast address */ 346 uint64_t addr; /* mcast addr converted to hash key */ 347 boolean_t mac_added; /* added into physical device */ 348 } mcst_addr_t; 349 350 /* Port detach states */ 351 #define VSW_PORT_INIT 0x1 /* Initial non-detach state */ 352 #define VSW_PORT_DETACHING 0x2 /* In process of being detached */ 353 #define VSW_PORT_DETACHABLE 0x4 /* Safe to detach */ 354 355 #define VSW_ADDR_UNSET 0x0 /* Addr not set */ 356 #define VSW_ADDR_HW 0x1 /* Addr programmed in HW */ 357 #define VSW_ADDR_PROMISC 0x2 /* Card in promisc to see addr */ 358 359 /* port information associated with a vsw */ 360 typedef struct vsw_port { 361 int p_instance; /* port instance */ 362 struct vsw_port *p_next; /* next port in the list */ 363 struct vsw *p_vswp; /* associated vsw */ 364 vsw_ldc_list_t p_ldclist; /* list of ldcs for this port */ 365 366 kmutex_t tx_lock; /* transmit lock */ 367 int (*transmit)(vsw_ldc_t *, mblk_t *); 368 369 int state; /* port state */ 370 kmutex_t state_lock; 371 kcondvar_t state_cv; 372 373 uint32_t ref_cnt; /* # of active references */ 374 375 kmutex_t mca_lock; /* multicast lock */ 376 mcst_addr_t *mcap; /* list of multicast addrs */ 377 378 mac_addr_slot_t addr_slot; /* Unicast address slot */ 379 int addr_set; /* Addr set where */ 380 381 /* 382 * mac address of the port & connected device 383 */ 384 struct ether_addr p_macaddr; 385 } vsw_port_t; 386 387 /* list of ports per vsw */ 388 typedef struct vsw_port_list { 389 vsw_port_t *head; /* head of the list */ 390 krwlock_t lockrw; /* sync access(rw) to the list */ 391 int num_ports; /* number of ports in the list */ 392 } vsw_port_list_t; 393 394 /* 395 * Taskq control message 396 */ 397 typedef struct vsw_ctrl_task { 398 vsw_ldc_t *ldcp; 399 def_msg_t pktp; 400 uint32_t hss_id; 401 } vsw_ctrl_task_t; 402 403 /* 404 * State of connection to peer. Some of these states 405 * can be mapped to LDC events as follows: 406 * 407 * VSW_CONN_RESET -> LDC_RESET_EVT 408 * VSW_CONN_UP -> LDC_UP_EVT 409 */ 410 #define VSW_CONN_UP 0x1 /* Connection come up */ 411 #define VSW_CONN_RESET 0x2 /* Connection reset */ 412 #define VSW_CONN_RESTART 0x4 /* Restarting handshake on connection */ 413 414 typedef struct vsw_conn_evt { 415 uint16_t evt; /* Connection event */ 416 vsw_ldc_t *ldcp; 417 } vsw_conn_evt_t; 418 419 /* 420 * Ethernet broadcast address definition. 421 */ 422 static struct ether_addr etherbroadcastaddr = { 423 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 424 }; 425 426 #define IS_BROADCAST(ehp) \ 427 (ether_cmp(&ehp->ether_dhost, ðerbroadcastaddr) == 0) 428 #define IS_MULTICAST(ehp) \ 429 ((ehp->ether_dhost.ether_addr_octet[0] & 01) == 1) 430 431 #define READ_ENTER(x) rw_enter(x, RW_READER) 432 #define WRITE_ENTER(x) rw_enter(x, RW_WRITER) 433 #define RW_EXIT(x) rw_exit(x) 434 435 #define VSW_PORT_REFHOLD(portp) atomic_inc_32(&((portp)->ref_cnt)) 436 #define VSW_PORT_REFRELE(portp) atomic_dec_32(&((portp)->ref_cnt)) 437 438 #ifdef __cplusplus 439 } 440 #endif 441 442 #endif /* _VSW_LDC_H */ 443