1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This header file contains the basic data structures which the 29 * virtual switch (vsw) uses to communicate with its clients and 30 * the outside world. 31 * 32 * The virtual switch reads the machine description (MD) to 33 * determine how many port_t structures to create (each port_t 34 * can support communications to a single network device). The 35 * port_t's are maintained in a linked list. 36 * 37 * Each port in turn contains a number of logical domain channels 38 * (ldc's) which are inter domain communications channels which 39 * are used for passing small messages between the domains. Their 40 * may be an unlimited number of channels associated with each port, 41 * though most devices only use a single channel. 42 * 43 * The ldc is a bi-directional channel, which is divided up into 44 * two directional 'lanes', one outbound from the switch to the 45 * virtual network device, the other inbound to the switch. 46 * Depending on the type of device each lane may have seperate 47 * communication paramaters (such as mtu etc). 48 * 49 * For those network clients which use descriptor rings the 50 * rings are associated with the appropriate lane. I.e. rings 51 * which the switch exports are associated with the outbound lanes 52 * while those which the network clients are exporting to the switch 53 * are associated with the inbound lane. 54 * 55 * In diagram form the data structures look as follows: 56 * 57 * vsw instance 58 * | 59 * +----->port_t----->port_t----->port_t-----> 60 * | 61 * +--->ldc_t--->ldc_t--->ldc_t---> 62 * | 63 * +--->lane_t (inbound) 64 * | | 65 * | +--->dring--->dring---> 66 * | 67 * +--->lane_t (outbound) 68 * | 69 * +--->dring--->dring---> 70 * 71 */ 72 73 #ifndef _VSW_H 74 #define _VSW_H 75 76 #pragma ident "%Z%%M% %I% %E% SMI" 77 78 #ifdef __cplusplus 79 extern "C" { 80 #endif 81 82 #include <sys/vio_mailbox.h> 83 #include <sys/vnet_common.h> 84 #include <sys/ethernet.h> 85 #include <sys/vio_util.h> 86 87 /* 88 * Default message type. 89 */ 90 typedef struct def_msg { 91 uint64_t data[8]; 92 } def_msg_t; 93 94 /* 95 * Currently only support one major/minor pair. 96 */ 97 #define VSW_NUM_VER 1 98 99 typedef struct ver_sup { 100 uint32_t ver_major:16, 101 ver_minor:16; 102 } ver_sup_t; 103 104 /* 105 * Only support ETHER mtu at moment. 106 */ 107 #define VSW_MTU ETHERMAX 108 109 /* 110 * Lane states. 111 */ 112 #define VSW_LANE_INACTIV 0x0 /* No params set for lane */ 113 114 #define VSW_VER_INFO_SENT 0x1 /* Version # sent to peer */ 115 #define VSW_VER_INFO_RECV 0x2 /* Version # recv from peer */ 116 #define VSW_VER_ACK_RECV 0x4 117 #define VSW_VER_ACK_SENT 0x8 118 #define VSW_VER_NACK_RECV 0x10 119 #define VSW_VER_NACK_SENT 0x20 120 121 #define VSW_ATTR_INFO_SENT 0x40 /* Attributes sent to peer */ 122 #define VSW_ATTR_INFO_RECV 0x80 /* Peer attributes received */ 123 #define VSW_ATTR_ACK_SENT 0x100 124 #define VSW_ATTR_ACK_RECV 0x200 125 #define VSW_ATTR_NACK_SENT 0x400 126 #define VSW_ATTR_NACK_RECV 0x800 127 128 #define VSW_DRING_INFO_SENT 0x1000 /* Dring info sent to peer */ 129 #define VSW_DRING_INFO_RECV 0x2000 /* Dring info received */ 130 #define VSW_DRING_ACK_SENT 0x4000 131 #define VSW_DRING_ACK_RECV 0x8000 132 #define VSW_DRING_NACK_SENT 0x10000 133 #define VSW_DRING_NACK_RECV 0x20000 134 135 #define VSW_RDX_INFO_SENT 0x40000 /* RDX sent to peer */ 136 #define VSW_RDX_INFO_RECV 0x80000 /* RDX received from peer */ 137 #define VSW_RDX_ACK_SENT 0x100000 138 #define VSW_RDX_ACK_RECV 0x200000 139 #define VSW_RDX_NACK_SENT 0x400000 140 #define VSW_RDX_NACK_RECV 0x800000 141 142 #define VSW_MCST_INFO_SENT 0x1000000 143 #define VSW_MCST_INFO_RECV 0x2000000 144 #define VSW_MCST_ACK_SENT 0x4000000 145 #define VSW_MCST_ACK_RECV 0x8000000 146 #define VSW_MCST_NACK_SENT 0x10000000 147 #define VSW_MCST_NACK_RECV 0x20000000 148 149 #define VSW_LANE_ACTIVE 0x40000000 /* Lane open to xmit data */ 150 151 /* Handshake milestones */ 152 #define VSW_MILESTONE0 0x1 /* ver info exchanged */ 153 #define VSW_MILESTONE1 0x2 /* attribute exchanged */ 154 #define VSW_MILESTONE2 0x4 /* dring info exchanged */ 155 #define VSW_MILESTONE3 0x8 /* rdx exchanged */ 156 #define VSW_MILESTONE4 0x10 /* handshake complete */ 157 158 /* 159 * Lane direction (relative to ourselves). 160 */ 161 #define INBOUND 0x1 162 #define OUTBOUND 0x2 163 164 /* Peer session id received */ 165 #define VSW_PEER_SESSION 0x1 166 167 /* 168 * Maximum number of consecutive reads of data from channel 169 */ 170 #define VSW_MAX_CHAN_READ 50 171 172 /* 173 * Currently only support one ldc per port. 174 */ 175 #define VSW_PORT_MAX_LDCS 1 /* max # of ldcs per port */ 176 177 /* 178 * Used for port add/deletion. 179 */ 180 #define VSW_PORT_UPDATED 0x1 181 182 #define LDC_TX_SUCCESS 0 /* ldc transmit success */ 183 #define LDC_TX_FAILURE 1 /* ldc transmit failure */ 184 #define LDC_TX_NORESOURCES 2 /* out of descriptors */ 185 186 /* ID of the source of a frame being switched */ 187 #define VSW_PHYSDEV 1 /* physical device associated */ 188 #define VSW_VNETPORT 2 /* port connected to vnet (over ldc) */ 189 #define VSW_LOCALDEV 4 /* vsw configured as an eth interface */ 190 191 /* 192 * Descriptor ring info 193 * 194 * Each descriptor element has a pre-allocated data buffer 195 * associated with it, into which data being transmitted is 196 * copied. By pre-allocating we speed up the copying process. 197 * The buffer is re-used once the peer has indicated that it is 198 * finished with the descriptor. 199 */ 200 #define VSW_RING_NUM_EL 512 /* Num of entries in ring */ 201 #define VSW_RING_EL_DATA_SZ 2048 /* Size of data section (bytes) */ 202 #define VSW_PRIV_SIZE sizeof (vnet_private_desc_t) 203 #define VSW_PUB_SIZE sizeof (vnet_public_desc_t) 204 205 #define VSW_MAX_COOKIES ((ETHERMTU >> MMU_PAGESHIFT) + 2) 206 207 /* 208 * LDC pkt tranfer MTU 209 */ 210 #define VSW_LDC_MTU sizeof (def_msg_t) 211 212 /* 213 * Size and number of mblks to be created in free pool. 214 */ 215 #define VSW_MBLK_SIZE 2048 216 #define VSW_NUM_MBLKS 1024 217 218 /* 219 * Private descriptor 220 */ 221 typedef struct vsw_private_desc { 222 /* 223 * Below lock must be held when accessing the state of 224 * a descriptor on either the private or public sections 225 * of the ring. 226 */ 227 kmutex_t dstate_lock; 228 uint64_t dstate; 229 vnet_public_desc_t *descp; 230 ldc_mem_handle_t memhandle; 231 void *datap; 232 uint64_t datalen; 233 uint64_t ncookies; 234 ldc_mem_cookie_t memcookie[VSW_MAX_COOKIES]; 235 int bound; 236 } vsw_private_desc_t; 237 238 /* 239 * Descriptor ring structure 240 */ 241 typedef struct dring_info { 242 struct dring_info *next; /* next ring in chain */ 243 kmutex_t dlock; 244 uint32_t num_descriptors; 245 uint32_t descriptor_size; 246 uint32_t options; 247 uint32_t ncookies; 248 ldc_mem_cookie_t cookie[1]; 249 250 ldc_dring_handle_t handle; 251 uint64_t ident; /* identifier sent to peer */ 252 uint64_t end_idx; /* last idx processed */ 253 int64_t last_ack_recv; 254 255 kmutex_t restart_lock; 256 boolean_t restart_reqd; /* send restart msg */ 257 258 /* 259 * base address of private and public portions of the 260 * ring (where appropriate), and data block. 261 */ 262 void *pub_addr; /* base of public section */ 263 void *priv_addr; /* base of private section */ 264 void *data_addr; /* base of data section */ 265 size_t data_sz; /* size of data section */ 266 } dring_info_t; 267 268 /* 269 * Each ldc connection is comprised of two lanes, incoming 270 * from a peer, and outgoing to that peer. Each lane shares 271 * common ldc parameters and also has private lane-specific 272 * parameters. 273 */ 274 typedef struct lane { 275 uint64_t lstate; /* Lane state */ 276 uint32_t ver_major:16, /* Version major number */ 277 ver_minor:16; /* Version minor number */ 278 kmutex_t seq_lock; 279 uint64_t seq_num; /* Sequence number */ 280 uint64_t mtu; /* ETHERMTU */ 281 uint64_t addr; /* Unique physical address */ 282 uint8_t addr_type; /* Only MAC address at moment */ 283 uint8_t xfer_mode; /* Dring or Pkt based */ 284 uint8_t ack_freq; /* Only non zero for Pkt based xfer */ 285 krwlock_t dlistrw; /* Lock for dring list */ 286 dring_info_t *dringp; /* List of drings for this lane */ 287 } lane_t; 288 289 /* channel drain states */ 290 #define VSW_LDC_INIT 0x1 /* Initial non-drain state */ 291 #define VSW_LDC_DRAINING 0x2 /* Channel draining */ 292 293 /* ldc information associated with a vsw-port */ 294 typedef struct vsw_ldc { 295 struct vsw_ldc *ldc_next; /* next ldc in the list */ 296 struct vsw_port *ldc_port; /* associated port */ 297 struct vsw *ldc_vswp; /* associated vsw */ 298 kmutex_t ldc_cblock; /* sync callback processing */ 299 kmutex_t ldc_txlock; /* sync transmits */ 300 uint64_t ldc_id; /* channel number */ 301 ldc_handle_t ldc_handle; /* channel handle */ 302 kmutex_t drain_cv_lock; 303 kcondvar_t drain_cv; /* channel draining */ 304 int drain_state; 305 uint32_t hphase; /* handshake phase */ 306 int hcnt; /* # handshake attempts */ 307 kmutex_t status_lock; 308 ldc_status_t ldc_status; /* channel status */ 309 uint8_t reset_active; /* reset flag */ 310 uint64_t local_session; /* Our session id */ 311 uint64_t peer_session; /* Our peers session id */ 312 uint8_t session_status; /* Session recv'd, sent */ 313 kmutex_t hss_lock; 314 uint32_t hss_id; /* Handshake session id */ 315 uint64_t next_ident; /* Next dring ident # to use */ 316 lane_t lane_in; /* Inbound lane */ 317 lane_t lane_out; /* Outbound lane */ 318 uint8_t dev_class; /* Peer device class */ 319 vio_mblk_pool_t *rxh; /* Receive pool handle */ 320 } vsw_ldc_t; 321 322 /* list of ldcs per port */ 323 typedef struct vsw_ldc_list { 324 vsw_ldc_t *head; /* head of the list */ 325 krwlock_t lockrw; /* sync access(rw) to the list */ 326 int num_ldcs; /* number of ldcs in the list */ 327 } vsw_ldc_list_t; 328 329 /* multicast addresses port is interested in */ 330 typedef struct mcst_addr { 331 struct mcst_addr *nextp; 332 uint64_t addr; 333 } mcst_addr_t; 334 335 /* Port detach states */ 336 #define VSW_PORT_INIT 0x1 /* Initial non-detach state */ 337 #define VSW_PORT_DETACHING 0x2 /* In process of being detached */ 338 #define VSW_PORT_DETACHABLE 0x4 /* Safe to detach */ 339 340 #define VSW_ADDR_UNSET 0x0 /* Addr not set */ 341 #define VSW_ADDR_HW 0x1 /* Addr programmed in HW */ 342 #define VSW_ADDR_PROMISC 0x2 /* Card in promisc to see addr */ 343 344 /* port information associated with a vsw */ 345 typedef struct vsw_port { 346 int p_instance; /* port instance */ 347 struct vsw_port *p_next; /* next port in the list */ 348 struct vsw *p_vswp; /* associated vsw */ 349 vsw_ldc_list_t p_ldclist; /* list of ldcs for this port */ 350 351 kmutex_t tx_lock; /* transmit lock */ 352 int (*transmit)(vsw_ldc_t *, mblk_t *); 353 354 int state; /* port state */ 355 kmutex_t state_lock; 356 kcondvar_t state_cv; 357 358 int ref_cnt; /* # of active references */ 359 kmutex_t ref_lock; 360 kcondvar_t ref_cv; 361 362 kmutex_t mca_lock; /* multicast lock */ 363 mcst_addr_t *mcap; /* list of multicast addrs */ 364 365 mac_addr_slot_t addr_slot; /* Unicast address slot */ 366 int addr_set; /* Addr set where */ 367 368 /* 369 * mac address of the port & connected device 370 */ 371 struct ether_addr p_macaddr; 372 } vsw_port_t; 373 374 /* list of ports per vsw */ 375 typedef struct vsw_port_list { 376 vsw_port_t *head; /* head of the list */ 377 krwlock_t lockrw; /* sync access(rw) to the list */ 378 int num_ports; /* number of ports in the list */ 379 } vsw_port_list_t; 380 381 /* 382 * Taskq control message 383 */ 384 typedef struct vsw_ctrl_task { 385 vsw_ldc_t *ldcp; 386 def_msg_t pktp; 387 uint32_t hss_id; 388 } vsw_ctrl_task_t; 389 390 /* 391 * State of connection to peer. Some of these states 392 * can be mapped to LDC events as follows: 393 * 394 * VSW_CONN_RESET -> LDC_RESET_EVT 395 * VSW_CONN_UP -> LDC_UP_EVT 396 */ 397 #define VSW_CONN_UP 0x1 /* Connection come up */ 398 #define VSW_CONN_RESET 0x2 /* Connection reset */ 399 #define VSW_CONN_RESTART 0x4 /* Restarting handshake on connection */ 400 401 typedef struct vsw_conn_evt { 402 uint16_t evt; /* Connection event */ 403 vsw_ldc_t *ldcp; 404 } vsw_conn_evt_t; 405 406 /* 407 * Vsw queue -- largely modeled after squeue 408 * 409 * VSW_QUEUE_RUNNING, vqueue thread for queue is running. 410 * VSW_QUEUE_DRAINED, vqueue thread has drained current work and is exiting. 411 * VSW_QUEUE_STOP, request for the vqueue thread to stop. 412 * VSW_QUEUE_STOPPED, vqueue thread is not running. 413 */ 414 #define VSW_QUEUE_RUNNING 0x01 415 #define VSW_QUEUE_DRAINED 0x02 416 #define VSW_QUEUE_STOP 0x04 417 #define VSW_QUEUE_STOPPED 0x08 418 419 typedef struct vsw_queue_s { 420 kmutex_t vq_lock; /* Lock, before using any member. */ 421 kcondvar_t vq_cv; /* Async threads block on. */ 422 uint32_t vq_state; /* State flags. */ 423 424 mblk_t *vq_first; /* First mblk chain or NULL. */ 425 mblk_t *vq_last; /* Last mblk chain. */ 426 427 processorid_t vq_bind; /* Process to bind to */ 428 kthread_t *vq_worker; /* Queue's thread */ 429 } vsw_queue_t; 430 431 /* 432 * VSW MAC Ring Resources. 433 * MAC Ring resource is composed of this state structure and 434 * a kernel thread to perform the processing of the ring. 435 */ 436 typedef struct vsw_mac_ring_s { 437 uint32_t ring_state; 438 439 mac_blank_t ring_blank; 440 void *ring_arg; 441 442 vsw_queue_t *ring_vqp; 443 struct vsw *ring_vswp; 444 } vsw_mac_ring_t; 445 446 /* 447 * Maximum Ring Resources. 448 */ 449 #define VSW_MAC_RX_RINGS 0x40 450 451 /* 452 * States for entry in ring table. 453 */ 454 #define VSW_MAC_RING_FREE 1 455 #define VSW_MAC_RING_INUSE 2 456 457 /* 458 * Number of hash chains in the multicast forwarding database. 459 */ 460 #define VSW_NCHAINS 8 461 462 /* 463 * State of interface if switch plumbed as network device. 464 */ 465 #define VSW_IF_REG 0x1 /* interface was registered */ 466 #define VSW_IF_UP 0x2 /* Interface UP */ 467 #define VSW_IF_PROMISC 0x4 /* Interface in promiscious mode */ 468 469 #define VSW_U_P(state) \ 470 (state == (VSW_IF_UP | VSW_IF_PROMISC)) 471 472 /* 473 * Switching modes. 474 */ 475 #define VSW_LAYER2 0x1 /* Layer 2 - MAC switching */ 476 #define VSW_LAYER2_PROMISC 0x2 /* Layer 2 + promisc mode */ 477 #define VSW_LAYER3 0x4 /* Layer 3 - IP switching */ 478 479 #define NUM_SMODES 3 /* number of switching modes */ 480 481 /* 482 * Bits indicating which properties we've read from MD or physical device. 483 */ 484 #define VSW_MD_PHYSNAME 0x1 485 #define VSW_MD_MACADDR 0x2 486 #define VSW_DEV_MACADDR 0x4 487 #define VSW_MD_SMODE 0x8 488 489 /* 490 * vsw instance state information. 491 */ 492 typedef struct vsw { 493 int instance; /* instance # */ 494 dev_info_t *dip; /* associated dev_info */ 495 struct vsw *next; /* next in list */ 496 char physname[LIFNAMSIZ]; /* phys-dev */ 497 uint8_t smode[NUM_SMODES]; /* switching mode */ 498 int smode_idx; /* curr pos in smode array */ 499 int smode_num; /* # of modes specified */ 500 uint8_t mdprops; /* bitmask of props found */ 501 vsw_port_list_t plist; /* associated ports */ 502 ddi_taskq_t *taskq_p; /* VIO ctrl msg taskq */ 503 mod_hash_t *fdb; /* forwarding database */ 504 505 mod_hash_t *mfdb; /* multicast FDB */ 506 krwlock_t mfdbrw; /* rwlock for mFDB */ 507 508 vio_mblk_pool_t *rxh; /* Receive pool handle */ 509 void (*vsw_switch_frame) 510 (struct vsw *, mblk_t *, int, 511 vsw_port_t *, mac_resource_handle_t); 512 513 /* mac layer */ 514 kmutex_t mac_lock; /* protect fields below */ 515 mac_handle_t mh; 516 mac_rx_handle_t mrh; 517 multiaddress_capab_t maddr; /* Multiple uni addr capable */ 518 const mac_txinfo_t *txinfo; /* MAC tx routine */ 519 boolean_t mstarted; /* Mac Started? */ 520 boolean_t mresources; /* Mac Resources cb? */ 521 522 /* 523 * MAC Ring Resources. 524 */ 525 kmutex_t mac_ring_lock; /* Lock for the table. */ 526 uint32_t mac_ring_tbl_sz; 527 vsw_mac_ring_t *mac_ring_tbl; /* Mac ring table. */ 528 529 kmutex_t hw_lock; /* sync access to HW */ 530 boolean_t recfg_reqd; /* Reconfig of addrs needed */ 531 int promisc_cnt; 532 533 /* Machine Description updates */ 534 mdeg_node_spec_t *inst_spec; 535 mdeg_handle_t mdeg_hdl; 536 mdeg_handle_t mdeg_port_hdl; 537 538 /* if configured as an ethernet interface */ 539 mac_handle_t if_mh; /* MAC handle */ 540 struct ether_addr if_addr; /* interface address */ 541 krwlock_t if_lockrw; 542 uint8_t if_state; /* interface state */ 543 544 mac_addr_slot_t addr_slot; /* Unicast address slot */ 545 int addr_set; /* Addr set where */ 546 547 /* multicast addresses when configured as eth interface */ 548 kmutex_t mca_lock; /* multicast lock */ 549 mcst_addr_t *mcap; /* list of multicast addrs */ 550 } vsw_t; 551 552 553 /* 554 * Ethernet broadcast address definition. 555 */ 556 static struct ether_addr etherbroadcastaddr = { 557 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 558 }; 559 560 #define IS_BROADCAST(ehp) \ 561 (ether_cmp(&ehp->ether_dhost, ðerbroadcastaddr) == 0) 562 #define IS_MULTICAST(ehp) \ 563 ((ehp->ether_dhost.ether_addr_octet[0] & 01) == 1) 564 565 #define READ_ENTER(x) rw_enter(x, RW_READER) 566 #define WRITE_ENTER(x) rw_enter(x, RW_WRITER) 567 #define RW_EXIT(x) rw_exit(x) 568 569 #ifdef __cplusplus 570 } 571 #endif 572 573 #endif /* _VSW_H */ 574