1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/prom_plat.h> 32 #include <sys/promif.h> 33 #include <sys/vm.h> 34 #include <sys/cpu.h> 35 #include <sys/atomic.h> 36 #include <sys/cpupart.h> 37 #include <sys/disp.h> 38 #include <sys/hypervisor_api.h> 39 #include <sys/traptrace.h> 40 #include <sys/modctl.h> 41 #include <sys/ldoms.h> 42 43 #ifdef TRAPTRACE 44 int mach_htraptrace_enable = 1; 45 #else 46 int mach_htraptrace_enable = 0; 47 #endif 48 int htrap_tr0_inuse = 0; 49 extern char htrap_tr0[]; /* prealloc buf for boot cpu */ 50 51 caddr_t mmu_fault_status_area; 52 53 extern void sfmmu_set_tsbs(void); 54 /* 55 * CPU IDLE optimization variables/routines 56 */ 57 static int enable_halt_idle_cpus = 1; 58 59 void 60 setup_trap_table(void) 61 { 62 caddr_t mmfsa_va; 63 extern caddr_t mmu_fault_status_area; 64 mmfsa_va = 65 mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id); 66 67 intr_init(CPU); /* init interrupt request free list */ 68 setwstate(WSTATE_KERN); 69 set_mmfsa_scratchpad(mmfsa_va); 70 prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va)); 71 sfmmu_set_tsbs(); 72 } 73 74 void 75 phys_install_has_changed(void) 76 { 77 78 } 79 80 /* 81 * Halt the present CPU until awoken via an interrupt 82 */ 83 static void 84 cpu_halt(void) 85 { 86 cpu_t *cpup = CPU; 87 processorid_t cpun = cpup->cpu_id; 88 cpupart_t *cp = cpup->cpu_part; 89 int hset_update = 1; 90 uint_t s; 91 92 /* 93 * If this CPU is online, and there's multiple CPUs 94 * in the system, then we should notate our halting 95 * by adding ourselves to the partition's halted CPU 96 * bitmap. This allows other CPUs to find/awaken us when 97 * work becomes available. 98 */ 99 if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1) 100 hset_update = 0; 101 102 /* 103 * Add ourselves to the partition's halted CPUs bitmask 104 * and set our HALTED flag, if necessary. 105 * 106 * When a thread becomes runnable, it is placed on the queue 107 * and then the halted cpuset is checked to determine who 108 * (if anyone) should be awoken. We therefore need to first 109 * add ourselves to the halted cpuset, and then check if there 110 * is any work available. 111 */ 112 if (hset_update) { 113 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 114 membar_producer(); 115 CPUSET_ATOMIC_ADD(cp->cp_haltset, cpun); 116 } 117 118 /* 119 * Check to make sure there's really nothing to do. 120 * Work destined for this CPU may become available after 121 * this check. We'll be notified through the clearing of our 122 * bit in the halted CPU bitmask, and a poke. 123 */ 124 if (disp_anywork()) { 125 if (hset_update) { 126 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 127 CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun); 128 } 129 return; 130 } 131 132 /* 133 * We're on our way to being halted. 134 * 135 * Disable interrupts now, so that we'll awaken immediately 136 * after halting if someone tries to poke us between now and 137 * the time we actually halt. 138 * 139 * We check for the presence of our bit after disabling interrupts. 140 * If it's cleared, we'll return. If the bit is cleared after 141 * we check then the poke will pop us out of the halted state. 142 * 143 * The ordering of the poke and the clearing of the bit by cpu_wakeup 144 * is important. 145 * cpu_wakeup() must clear, then poke. 146 * cpu_halt() must disable interrupts, then check for the bit. 147 */ 148 s = disable_vec_intr(); 149 150 if (hset_update && !CPU_IN_SET(cp->cp_haltset, cpun)) { 151 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 152 enable_vec_intr(s); 153 return; 154 } 155 156 /* 157 * The check for anything locally runnable is here for performance 158 * and isn't needed for correctness. disp_nrunnable ought to be 159 * in our cache still, so it's inexpensive to check, and if there 160 * is anything runnable we won't have to wait for the poke. 161 */ 162 if (cpup->cpu_disp->disp_nrunnable != 0) { 163 if (hset_update) { 164 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 165 CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun); 166 } 167 enable_vec_intr(s); 168 return; 169 } 170 171 /* 172 * Halt the strand 173 */ 174 (void) hv_cpu_yield(); 175 176 /* 177 * We're no longer halted 178 */ 179 enable_vec_intr(s); 180 if (hset_update) { 181 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 182 CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun); 183 } 184 } 185 186 /* 187 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 188 * Otherwise, see if other CPUs in the cpu partition are halted and need to 189 * be woken up so that they can steal the thread we placed on this CPU. 190 * This function is only used on MP systems. 191 */ 192 static void 193 cpu_wakeup(cpu_t *cpu, int bound) 194 { 195 uint_t cpu_found; 196 int result; 197 cpupart_t *cp; 198 199 cp = cpu->cpu_part; 200 if (CPU_IN_SET(cp->cp_haltset, cpu->cpu_id)) { 201 /* 202 * Clear the halted bit for that CPU since it will be 203 * poked in a moment. 204 */ 205 CPUSET_ATOMIC_DEL(cp->cp_haltset, cpu->cpu_id); 206 /* 207 * We may find the current CPU present in the halted cpuset 208 * if we're in the context of an interrupt that occurred 209 * before we had a chance to clear our bit in cpu_halt(). 210 * Poking ourself is obviously unnecessary, since if 211 * we're here, we're not halted. 212 */ 213 if (cpu != CPU) 214 poke_cpu(cpu->cpu_id); 215 return; 216 } else { 217 /* 218 * This cpu isn't halted, but it's idle or undergoing a 219 * context switch. No need to awaken anyone else. 220 */ 221 if (cpu->cpu_thread == cpu->cpu_idle_thread || 222 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 223 return; 224 } 225 226 /* 227 * No need to wake up other CPUs if the thread we just enqueued 228 * is bound. 229 */ 230 if (bound) 231 return; 232 233 /* 234 * See if there's any other halted CPUs. If there are, then 235 * select one, and awaken it. 236 * It's possible that after we find a CPU, somebody else 237 * will awaken it before we get the chance. 238 * In that case, look again. 239 */ 240 do { 241 CPUSET_FIND(cp->cp_haltset, cpu_found); 242 if (cpu_found == CPUSET_NOTINSET) 243 return; 244 245 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 246 CPUSET_ATOMIC_XDEL(cp->cp_haltset, cpu_found, result); 247 } while (result < 0); 248 249 if (cpu_found != CPU->cpu_id) 250 poke_cpu(cpu_found); 251 } 252 253 void 254 mach_cpu_halt_idle() 255 { 256 if (enable_halt_idle_cpus) { 257 idle_cpu = cpu_halt; 258 disp_enq_thread = cpu_wakeup; 259 } 260 } 261 262 int 263 ndata_alloc_mmfsa(struct memlist *ndata) 264 { 265 size_t size; 266 267 size = MMFSA_SIZE * max_ncpus; 268 mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize); 269 if (mmu_fault_status_area == NULL) 270 return (-1); 271 return (0); 272 } 273 274 void 275 mach_memscrub(void) 276 { 277 /* no memscrub support for sun4v for now */ 278 } 279 280 void 281 mach_fpras() 282 { 283 /* no fpras support for sun4v for now */ 284 } 285 286 void 287 mach_hw_copy_limit(void) 288 { 289 /* HW copy limits set by individual CPU module */ 290 } 291 292 /* 293 * We need to enable soft ring functionality on Niagara platform since 294 * one strand can't handle interrupts for a 1Gb NIC. Set the tunable 295 * ip_squeue_soft_ring by default on this platform. We can also set 296 * ip_threads_per_cpu to track number of threads per core. The variables 297 * themselves are defined in space.c and used by IP module 298 */ 299 extern uint_t ip_threads_per_cpu; 300 extern boolean_t ip_squeue_soft_ring; 301 void 302 startup_platform(void) 303 { 304 ip_squeue_soft_ring = B_TRUE; 305 } 306 307 /* 308 * This function sets up hypervisor traptrace buffer 309 * This routine is called by the boot cpu only 310 */ 311 void 312 mach_htraptrace_setup(int cpuid) 313 { 314 TRAP_TRACE_CTL *ctlp; 315 int bootcpuid = getprocessorid(); /* invoked on boot cpu only */ 316 317 if (mach_htraptrace_enable && ((cpuid != bootcpuid) || 318 !htrap_tr0_inuse)) { 319 ctlp = &trap_trace_ctl[cpuid]; 320 ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 : 321 contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE); 322 if (ctlp->d.hvaddr_base == NULL) { 323 ctlp->d.hlimit = 0; 324 ctlp->d.hpaddr_base = NULL; 325 cmn_err(CE_WARN, "!cpu%d: failed to allocate HV " 326 "traptrace buffer", cpuid); 327 } else { 328 ctlp->d.hlimit = HTRAP_TSIZE; 329 ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base); 330 } 331 } 332 } 333 334 /* 335 * This function enables or disables the hypervisor traptracing 336 */ 337 void 338 mach_htraptrace_configure(int cpuid) 339 { 340 uint64_t ret; 341 uint64_t prev_buf, prev_bufsize; 342 uint64_t prev_enable; 343 uint64_t size; 344 TRAP_TRACE_CTL *ctlp; 345 346 ctlp = &trap_trace_ctl[cpuid]; 347 if (mach_htraptrace_enable) { 348 if ((ctlp->d.hvaddr_base != NULL) && 349 ((ctlp->d.hvaddr_base != htrap_tr0) || 350 (!htrap_tr0_inuse))) { 351 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 352 if ((ret == H_EOK) && (prev_bufsize != 0)) { 353 cmn_err(CE_CONT, 354 "!cpu%d: previous HV traptrace buffer of " 355 "size 0x%lx at address 0x%lx", cpuid, 356 prev_bufsize, prev_buf); 357 } 358 359 ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base, 360 ctlp->d.hlimit / 361 (sizeof (struct htrap_trace_record)), &size); 362 if (ret == H_EOK) { 363 ret = hv_ttrace_enable(\ 364 (uint64_t)TRAP_TENABLE_ALL, &prev_enable); 365 if (ret != H_EOK) { 366 cmn_err(CE_WARN, 367 "!cpu%d: HV traptracing not " 368 "enabled, ta: 0x%x returned error: " 369 "%ld", cpuid, TTRACE_ENABLE, ret); 370 } else { 371 if (ctlp->d.hvaddr_base == htrap_tr0) 372 htrap_tr0_inuse = 1; 373 } 374 } else { 375 cmn_err(CE_WARN, 376 "!cpu%d: HV traptrace buffer not " 377 "configured, ta: 0x%x returned error: %ld", 378 cpuid, TTRACE_BUF_CONF, ret); 379 } 380 /* 381 * set hvaddr_base to NULL when traptrace buffer 382 * registration fails 383 */ 384 if (ret != H_EOK) { 385 ctlp->d.hvaddr_base = NULL; 386 ctlp->d.hlimit = 0; 387 ctlp->d.hpaddr_base = NULL; 388 } 389 } 390 } else { 391 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 392 if ((ret == H_EOK) && (prev_bufsize != 0)) { 393 ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL, 394 &prev_enable); 395 if (ret == H_EOK) { 396 if (ctlp->d.hvaddr_base == htrap_tr0) 397 htrap_tr0_inuse = 0; 398 ctlp->d.hvaddr_base = NULL; 399 ctlp->d.hlimit = 0; 400 ctlp->d.hpaddr_base = NULL; 401 } else 402 cmn_err(CE_WARN, 403 "!cpu%d: HV traptracing is not disabled, " 404 "ta: 0x%x returned error: %ld", 405 cpuid, TTRACE_ENABLE, ret); 406 } 407 } 408 } 409 410 /* 411 * This function cleans up the hypervisor traptrace buffer 412 */ 413 void 414 mach_htraptrace_cleanup(int cpuid) 415 { 416 if (mach_htraptrace_enable) { 417 TRAP_TRACE_CTL *ctlp; 418 caddr_t httrace_buf_va; 419 420 ASSERT(cpuid < max_ncpus); 421 ctlp = &trap_trace_ctl[cpuid]; 422 httrace_buf_va = ctlp->d.hvaddr_base; 423 if (httrace_buf_va == htrap_tr0) { 424 bzero(httrace_buf_va, HTRAP_TSIZE); 425 } else if (httrace_buf_va != NULL) { 426 contig_mem_free(httrace_buf_va, HTRAP_TSIZE); 427 } 428 ctlp->d.hvaddr_base = NULL; 429 ctlp->d.hlimit = 0; 430 ctlp->d.hpaddr_base = NULL; 431 } 432 } 433 434 /* 435 * Load any required machine class (sun4v) specific drivers. 436 */ 437 void 438 load_mach_drivers(void) 439 { 440 /* 441 * We don't want to load these LDOMs-specific 442 * modules if domaining is not supported. Also, 443 * we must be able to run on non-LDOMs firmware. 444 */ 445 if (!(domaining_capabilities & DOMAINING_SUPPORTED)) 446 return; 447 448 /* 449 * Load the core domain services module 450 */ 451 if (modload("misc", "ds") == -1) 452 cmn_err(CE_NOTE, "!'ds' module failed to load"); 453 454 /* 455 * Load the rest of the domain services 456 */ 457 if (modload("misc", "fault_iso") == -1) 458 cmn_err(CE_NOTE, "!'fault_iso' module failed to load"); 459 460 if (modload("misc", "platsvc") == -1) 461 cmn_err(CE_NOTE, "!'platsvc' module failed to load"); 462 463 if ((domaining_capabilities & DOMAINING_ENABLED) && 464 modload("misc", "dr_cpu") == -1) 465 cmn_err(CE_NOTE, "!'dr_cpu' module failed to load"); 466 467 /* 468 * Attempt to attach any virtual device servers. These 469 * drivers must be loaded at start of day so that they 470 * can respond to any updates to the machine description. 471 * 472 * Since it is quite likely that a domain will not support 473 * one or more of these servers, failures are ignored. 474 */ 475 476 /* virtual disk server */ 477 (void) i_ddi_attach_hw_nodes("vds"); 478 479 /* virtual network switch */ 480 (void) i_ddi_attach_hw_nodes("vsw"); 481 482 /* virtual console concentrator */ 483 (void) i_ddi_attach_hw_nodes("vcc"); 484 } 485