1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/systm.h> 27 #include <sys/archsystm.h> 28 #include <sys/t_lock.h> 29 #include <sys/uadmin.h> 30 #include <sys/panic.h> 31 #include <sys/reboot.h> 32 #include <sys/autoconf.h> 33 #include <sys/machsystm.h> 34 #include <sys/promif.h> 35 #include <sys/membar.h> 36 #include <vm/hat_sfmmu.h> 37 #include <sys/cpu_module.h> 38 #include <sys/cpu_sgnblk_defs.h> 39 #include <sys/intreg.h> 40 #include <sys/consdev.h> 41 #include <sys/kdi_impl.h> 42 #include <sys/traptrace.h> 43 #include <sys/hypervisor_api.h> 44 #include <sys/vmsystm.h> 45 #include <sys/dtrace.h> 46 #include <sys/xc_impl.h> 47 #include <sys/callb.h> 48 #include <sys/mdesc.h> 49 #include <sys/mach_descrip.h> 50 #include <sys/wdt.h> 51 #include <sys/soft_state.h> 52 #include <sys/promimpl.h> 53 #include <sys/hsvc.h> 54 #include <sys/ldoms.h> 55 #include <sys/kldc.h> 56 #include <sys/clock_impl.h> 57 #include <sys/suspend.h> 58 #include <sys/dumphdr.h> 59 60 /* 61 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 62 * A value of NULL indicates that this area is not configured. 63 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 64 */ 65 66 caddr_t hvdump_buf_va; 67 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 68 static uint64_t hvdump_buf_pa; 69 70 u_longlong_t panic_tick; 71 72 extern u_longlong_t gettick(); 73 static void reboot_machine(char *); 74 static void update_hvdump_buffer(void); 75 76 /* 77 * For xt_sync synchronization. 78 */ 79 extern uint64_t xc_tick_limit; 80 extern uint64_t xc_tick_jump_limit; 81 extern uint64_t xc_sync_tick_limit; 82 83 /* 84 * Bring in the cpc PIL_15 handler for panic_enter_hw. 85 */ 86 extern uint64_t cpc_level15_inum; 87 88 /* 89 * We keep our own copies, used for cache flushing, because we can be called 90 * before cpu_fiximpl(). 91 */ 92 static int kdi_dcache_size; 93 static int kdi_dcache_linesize; 94 static int kdi_icache_size; 95 static int kdi_icache_linesize; 96 97 /* 98 * Assembly support for generic modules in sun4v/ml/mach_xc.s 99 */ 100 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 101 extern void kdi_flush_idcache(int, int, int, int); 102 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 103 104 105 #define BOOT_CMD_MAX_LEN 256 /* power of 2 & 16-byte aligned */ 106 #define BOOT_CMD_BASE "boot " 107 108 /* 109 * In an LDoms system we do not save the user's boot args in NVRAM 110 * as is done on legacy systems. Instead, we format and send a 111 * 'reboot-command' variable to the variable service. The contents 112 * of the variable are retrieved by OBP and used verbatim for 113 * the next boot. 114 */ 115 static void 116 store_boot_cmd(char *args, boolean_t add_boot_str, boolean_t invoke_cb) 117 { 118 static char *cmd_buf; 119 size_t len = 1; 120 pnode_t node; 121 size_t base_len = 0; 122 size_t args_len; 123 size_t args_max; 124 uint64_t majornum; 125 uint64_t minornum; 126 uint64_t buf_pa; 127 uint64_t status; 128 129 status = hsvc_version(HSVC_GROUP_REBOOT_DATA, &majornum, &minornum); 130 131 /* 132 * invoke_cb is set to true when we are in a normal shutdown sequence 133 * (interrupts are not blocked, the system is not panicking or being 134 * suspended). In that case, we can use any method to store the boot 135 * command. Otherwise storing the boot command can not be done using 136 * a domain service because it can not be safely used in that context. 137 */ 138 if ((status != H_EOK) && (invoke_cb == B_FALSE)) 139 return; 140 141 cmd_buf = contig_mem_alloc(BOOT_CMD_MAX_LEN); 142 if (cmd_buf == NULL) 143 return; 144 145 if (add_boot_str) { 146 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 147 148 base_len = strlen(BOOT_CMD_BASE); 149 len = base_len + 1; 150 } 151 152 if (args != NULL) { 153 args_len = strlen(args); 154 args_max = BOOT_CMD_MAX_LEN - len; 155 156 if (args_len > args_max) { 157 cmn_err(CE_WARN, "Reboot command too long (%ld), " 158 "truncating command arguments", len + args_len); 159 160 args_len = args_max; 161 } 162 163 len += args_len; 164 (void) strncpy(&cmd_buf[base_len], args, args_len); 165 } 166 167 /* 168 * Save the reboot-command with HV, if reboot data group is 169 * negotiated. Else save the reboot-command via vars-config domain 170 * services on the SP. 171 */ 172 if (status == H_EOK) { 173 buf_pa = va_to_pa(cmd_buf); 174 status = hv_reboot_data_set(buf_pa, len); 175 if (status != H_EOK) { 176 cmn_err(CE_WARN, "Unable to store boot command for " 177 "use on reboot with HV: error = 0x%lx", status); 178 } 179 } else { 180 node = prom_optionsnode(); 181 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 182 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 183 cmn_err(CE_WARN, "Unable to store boot command for " 184 "use on reboot"); 185 } 186 } 187 188 189 /* 190 * Machine dependent code to reboot. 191 * 192 * "bootstr", when non-null, points to a string to be used as the 193 * argument string when rebooting. 194 * 195 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 196 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 197 * we are in a normal shutdown sequence (interrupts are not blocked, the 198 * system is not panic'ing or being suspended). 199 */ 200 /*ARGSUSED*/ 201 void 202 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 203 { 204 extern void pm_cfb_check_and_powerup(void); 205 206 /* 207 * XXX - rconsvp is set to NULL to ensure that output messages 208 * are sent to the underlying "hardware" device using the 209 * monitor's printf routine since we are in the process of 210 * either rebooting or halting the machine. 211 */ 212 rconsvp = NULL; 213 214 switch (fcn) { 215 case AD_HALT: 216 /* 217 * LDoms: By storing a no-op command 218 * in the 'reboot-command' variable we cause OBP 219 * to ignore the setting of 'auto-boot?' after 220 * it completes the reset. This causes the system 221 * to stop at the ok prompt. 222 */ 223 if (domaining_enabled()) 224 store_boot_cmd("noop", B_FALSE, invoke_cb); 225 break; 226 227 case AD_POWEROFF: 228 break; 229 230 default: 231 if (bootstr == NULL) { 232 switch (fcn) { 233 234 case AD_FASTREBOOT: 235 case AD_BOOT: 236 bootstr = ""; 237 break; 238 239 case AD_IBOOT: 240 bootstr = "-a"; 241 break; 242 243 case AD_SBOOT: 244 bootstr = "-s"; 245 break; 246 247 case AD_SIBOOT: 248 bootstr = "-sa"; 249 break; 250 default: 251 cmn_err(CE_WARN, 252 "mdboot: invalid function %d", fcn); 253 bootstr = ""; 254 break; 255 } 256 } 257 258 /* 259 * If LDoms is running, we must save the boot string 260 * before we enter restricted mode. This is possible 261 * only if we are not being called from panic. 262 */ 263 if (domaining_enabled()) 264 store_boot_cmd(bootstr, B_TRUE, invoke_cb); 265 } 266 267 /* 268 * At a high interrupt level we can't: 269 * 1) bring up the console 270 * or 271 * 2) wait for pending interrupts prior to redistribution 272 * to the current CPU 273 * 274 * so we do them now. 275 */ 276 pm_cfb_check_and_powerup(); 277 278 /* make sure there are no more changes to the device tree */ 279 devtree_freeze(); 280 281 if (invoke_cb) 282 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 283 284 /* 285 * Clear any unresolved UEs from memory. 286 */ 287 page_retire_mdboot(); 288 289 /* 290 * stop other cpus which also raise our priority. since there is only 291 * one active cpu after this, and our priority will be too high 292 * for us to be preempted, we're essentially single threaded 293 * from here on out. 294 */ 295 stop_other_cpus(); 296 297 /* 298 * try and reset leaf devices. reset_leaves() should only 299 * be called when there are no other threads that could be 300 * accessing devices 301 */ 302 reset_leaves(); 303 304 watchdog_clear(); 305 306 if (fcn == AD_HALT) { 307 mach_set_soft_state(SIS_TRANSITION, 308 &SOLARIS_SOFT_STATE_HALT_MSG); 309 halt((char *)NULL); 310 } else if (fcn == AD_POWEROFF) { 311 mach_set_soft_state(SIS_TRANSITION, 312 &SOLARIS_SOFT_STATE_POWER_MSG); 313 power_down(NULL); 314 } else { 315 mach_set_soft_state(SIS_TRANSITION, 316 &SOLARIS_SOFT_STATE_REBOOT_MSG); 317 reboot_machine(bootstr); 318 } 319 /* MAYBE REACHED */ 320 } 321 322 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 323 /*ARGSUSED*/ 324 void 325 mdpreboot(int cmd, int fcn, char *bootstr) 326 { 327 } 328 329 /* 330 * Halt the machine and then reboot with the device 331 * and arguments specified in bootstr. 332 */ 333 static void 334 reboot_machine(char *bootstr) 335 { 336 flush_windows(); 337 stop_other_cpus(); /* send stop signal to other CPUs */ 338 prom_printf("rebooting...\n"); 339 /* 340 * For platforms that use CPU signatures, we 341 * need to set the signature block to OS and 342 * the state to exiting for all the processors. 343 */ 344 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 345 prom_reboot(bootstr); 346 /*NOTREACHED*/ 347 } 348 349 /* 350 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 351 * Once in panic_idle() they raise spl, record their location, and spin. 352 */ 353 static void 354 panic_idle(void) 355 { 356 (void) spl7(); 357 358 debug_flush_windows(); 359 (void) setjmp(&curthread->t_pcb); 360 361 CPU->cpu_m.in_prom = 1; 362 membar_stld(); 363 364 dumpsys_helper(); 365 366 for (;;) 367 ; 368 } 369 370 /* 371 * Force the other CPUs to trap into panic_idle(), and then remove them 372 * from the cpu_ready_set so they will no longer receive cross-calls. 373 */ 374 /*ARGSUSED*/ 375 void 376 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 377 { 378 cpuset_t cps; 379 int i; 380 381 (void) splzs(); 382 CPUSET_ALL_BUT(cps, cp->cpu_id); 383 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 384 385 for (i = 0; i < NCPU; i++) { 386 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 387 int ntries = 0x10000; 388 389 while (!cpu[i]->cpu_m.in_prom && ntries) { 390 DELAY(50); 391 ntries--; 392 } 393 394 if (!cpu[i]->cpu_m.in_prom) 395 printf("panic: failed to stop cpu%d\n", i); 396 397 cpu[i]->cpu_flags &= ~CPU_READY; 398 cpu[i]->cpu_flags |= CPU_QUIESCED; 399 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 400 } 401 } 402 } 403 404 /* 405 * Platform callback following each entry to panicsys(). If we've panicked at 406 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 407 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 408 * was made and so we re-enqueue an interrupt request structure to allow 409 * further level 14 interrupts to be processed once we lower PIL. This allows 410 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 411 * 412 * In case we panic at level 15, ensure that the cpc handler has been 413 * reinstalled otherwise we could run the risk of hitting a missing interrupt 414 * handler when this thread drops PIL and the cpc counter overflows. 415 */ 416 void 417 panic_enter_hw(int spl) 418 { 419 uint_t opstate; 420 421 if (!panic_tick) { 422 panic_tick = gettick(); 423 if (mach_htraptrace_enable) { 424 uint64_t prev_freeze; 425 426 /* there are no possible error codes for this hcall */ 427 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 428 &prev_freeze); 429 } 430 #ifdef TRAPTRACE 431 TRAPTRACE_FREEZE; 432 #endif 433 } 434 435 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 436 437 if (spl == ipltospl(PIL_14)) { 438 opstate = disable_vec_intr(); 439 440 if (curthread->t_panic_trap != NULL) { 441 tickcmpr_disable(); 442 intr_dequeue_req(PIL_14, cbe_level14_inum); 443 } else { 444 if (!tickcmpr_disabled()) 445 intr_enqueue_req(PIL_14, cbe_level14_inum); 446 /* 447 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 448 * and SOFTINT<16> (STICK_INT) to indicate 449 * that the current level 14 has been serviced. 450 */ 451 wr_clr_softint((1 << PIL_14) | 452 TICK_INT_MASK | STICK_INT_MASK); 453 } 454 455 enable_vec_intr(opstate); 456 } else if (spl == ipltospl(PIL_15)) { 457 opstate = disable_vec_intr(); 458 intr_enqueue_req(PIL_15, cpc_level15_inum); 459 wr_clr_softint(1 << PIL_15); 460 enable_vec_intr(opstate); 461 } 462 } 463 464 /* 465 * Miscellaneous hardware-specific code to execute after panicstr is set 466 * by the panic code: we also print and record PTL1 panic information here. 467 */ 468 /*ARGSUSED*/ 469 void 470 panic_quiesce_hw(panic_data_t *pdp) 471 { 472 extern uint_t getpstate(void); 473 extern void setpstate(uint_t); 474 475 /* 476 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 477 */ 478 if (!panic_tick) { 479 panic_tick = gettick(); 480 if (mach_htraptrace_enable) { 481 uint64_t prev_freeze; 482 483 /* there are no possible error codes for this hcall */ 484 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 485 &prev_freeze); 486 } 487 #ifdef TRAPTRACE 488 TRAPTRACE_FREEZE; 489 #endif 490 } 491 /* 492 * For Platforms that use CPU signatures, we 493 * need to set the signature block to OS, the state to 494 * exiting, and the substate to panic for all the processors. 495 */ 496 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 497 498 update_hvdump_buffer(); 499 500 /* 501 * Disable further ECC errors from the bus nexus. 502 */ 503 (void) bus_func_invoke(BF_TYPE_ERRDIS); 504 505 /* 506 * Redirect all interrupts to the current CPU. 507 */ 508 intr_redist_all_cpus_shutdown(); 509 510 /* 511 * This call exists solely to support dumps to network 512 * devices after sync from OBP. 513 * 514 * If we came here via the sync callback, then on some 515 * platforms, interrupts may have arrived while we were 516 * stopped in OBP. OBP will arrange for those interrupts to 517 * be redelivered if you say "go", but not if you invoke a 518 * client callback like 'sync'. For some dump devices 519 * (network swap devices), we need interrupts to be 520 * delivered in order to dump, so we have to call the bus 521 * nexus driver to reset the interrupt state machines. 522 */ 523 (void) bus_func_invoke(BF_TYPE_RESINTR); 524 525 setpstate(getpstate() | PSTATE_IE); 526 } 527 528 /* 529 * Platforms that use CPU signatures need to set the signature block to OS and 530 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 531 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 532 * reboot the machine if the dump never completes. 533 */ 534 /*ARGSUSED*/ 535 void 536 panic_dump_hw(int spl) 537 { 538 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 539 } 540 541 /* 542 * for ptl1_panic 543 */ 544 void 545 ptl1_init_cpu(struct cpu *cpu) 546 { 547 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 548 549 /*CONSTCOND*/ 550 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 551 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 552 "stack, sizeof (struct cpu) = %lu", 553 (unsigned long)sizeof (struct cpu)); 554 } 555 556 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 557 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 558 } 559 560 void 561 ptl1_panic_handler(ptl1_state_t *pstate) 562 { 563 static const char *ptl1_reasons[] = { 564 #ifdef PTL1_PANIC_DEBUG 565 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 566 #else 567 "unknown trap", /* PTL1_BAD_DEBUG */ 568 #endif 569 "register window trap", /* PTL1_BAD_WTRAP */ 570 "kernel MMU miss", /* PTL1_BAD_KMISS */ 571 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 572 "ISM MMU miss", /* PTL1_BAD_ISM */ 573 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 574 "kernel trap handler state", /* PTL1_BAD_TRAP */ 575 "floating point trap", /* PTL1_BAD_FPTRAP */ 576 #ifdef DEBUG 577 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 578 #else 579 "unknown trap", /* PTL1_BAD_INTR_VEC */ 580 #endif 581 #ifdef TRAPTRACE 582 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 583 #else 584 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 585 #endif 586 "stack overflow", /* PTL1_BAD_STACK */ 587 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 588 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 589 "CPU ECC error loop", /* PTL1_BAD_ECC */ 590 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 591 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 592 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 593 "unexpected RED mode trap", /* PTL1_BAD_RED */ 594 "return value EINVAL from hcall: "\ 595 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 596 "return value ENOMAP from hcall: "\ 597 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 598 "error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */ 599 "missing shared TSB" /* PTL1_NO_SCDTSB8K */ 600 }; 601 602 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 603 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 604 struct panic_trap_info ti = { 0 }; 605 606 /* 607 * Use trap_info for a place holder to call panic_savetrap() and 608 * panic_showtrap() to save and print out ptl1_panic information. 609 */ 610 if (curthread->t_panic_trap == NULL) 611 curthread->t_panic_trap = &ti; 612 613 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 614 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 615 else 616 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 617 } 618 619 void 620 clear_watchdog_on_exit(void) 621 { 622 if (watchdog_enabled && watchdog_activated) { 623 prom_printf("Debugging requested; hardware watchdog " 624 "suspended.\n"); 625 (void) watchdog_suspend(); 626 } 627 } 628 629 /* 630 * Restore the watchdog timer when returning from a debugger 631 * after a panic or L1-A and resume watchdog pat. 632 */ 633 void 634 restore_watchdog_on_entry() 635 { 636 watchdog_resume(); 637 } 638 639 int 640 kdi_watchdog_disable(void) 641 { 642 watchdog_suspend(); 643 644 return (0); 645 } 646 647 void 648 kdi_watchdog_restore(void) 649 { 650 watchdog_resume(); 651 } 652 653 void 654 mach_dump_buffer_init(void) 655 { 656 uint64_t ret, minsize = 0; 657 658 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 659 hvdump_buf_sz = HVDUMP_SIZE_MAX; 660 661 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 662 if (hvdump_buf_va == NULL) 663 return; 664 665 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 666 667 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 668 &minsize); 669 670 if (ret != H_EOK) { 671 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 672 hvdump_buf_va = NULL; 673 cmn_err(CE_NOTE, "!Error in setting up hvstate" 674 "dump buffer. Error = 0x%lx, size = 0x%lx," 675 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 676 hvdump_buf_pa); 677 678 if (ret == H_EINVAL) { 679 cmn_err(CE_NOTE, "!Buffer size too small." 680 "Available buffer size = 0x%lx," 681 "Minimum buffer size required = 0x%lx", 682 hvdump_buf_sz, minsize); 683 } 684 } 685 } 686 687 688 static void 689 update_hvdump_buffer(void) 690 { 691 uint64_t ret, dummy_val; 692 693 if (hvdump_buf_va == NULL) 694 return; 695 696 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 697 &dummy_val); 698 if (ret != H_EOK) { 699 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 700 "buffer. Error = 0x%lx", ret); 701 } 702 } 703 704 705 static int 706 getintprop(pnode_t node, char *name, int deflt) 707 { 708 int value; 709 710 switch (prom_getproplen(node, name)) { 711 case 0: 712 value = 1; /* boolean properties */ 713 break; 714 715 case sizeof (int): 716 (void) prom_getprop(node, name, (caddr_t)&value); 717 break; 718 719 default: 720 value = deflt; 721 break; 722 } 723 724 return (value); 725 } 726 727 /* 728 * Called by setcpudelay 729 */ 730 void 731 cpu_init_tick_freq(void) 732 { 733 md_t *mdp; 734 mde_cookie_t rootnode; 735 int listsz; 736 mde_cookie_t *listp = NULL; 737 int num_nodes; 738 uint64_t stick_prop; 739 740 if (broken_md_flag) { 741 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 742 return; 743 } 744 745 if ((mdp = md_get_handle()) == NULL) 746 panic("stick_frequency property not found in MD"); 747 748 rootnode = md_root_node(mdp); 749 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 750 751 num_nodes = md_node_count(mdp); 752 753 ASSERT(num_nodes > 0); 754 listsz = num_nodes * sizeof (mde_cookie_t); 755 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 756 757 if (listp == NULL) 758 panic("cannot allocate list for MD properties"); 759 760 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 761 md_find_name(mdp, "fwd"), listp); 762 763 ASSERT(num_nodes == 1); 764 765 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 766 panic("stick_frequency property not found in MD"); 767 768 sys_tick_freq = stick_prop; 769 770 prom_free((caddr_t)listp, listsz); 771 (void) md_fini_handle(mdp); 772 } 773 774 int shipit(int n, uint64_t cpu_list_ra); 775 776 #ifdef DEBUG 777 #define SEND_MONDO_STATS 1 778 #endif 779 780 #ifdef SEND_MONDO_STATS 781 uint32_t x_one_stimes[64]; 782 uint32_t x_one_ltimes[16]; 783 uint32_t x_set_stimes[64]; 784 uint32_t x_set_ltimes[16]; 785 uint32_t x_set_cpus[NCPU]; 786 #endif 787 788 void 789 send_one_mondo(int cpuid) 790 { 791 int retries, stat; 792 uint64_t starttick, endtick, tick, lasttick; 793 struct machcpu *mcpup = &(CPU->cpu_m); 794 795 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 796 starttick = lasttick = gettick(); 797 mcpup->cpu_list[0] = (uint16_t)cpuid; 798 stat = shipit(1, mcpup->cpu_list_ra); 799 endtick = starttick + xc_tick_limit; 800 retries = 0; 801 while (stat != H_EOK) { 802 if (stat != H_EWOULDBLOCK) { 803 if (panic_quiesce) 804 return; 805 if (stat == H_ECPUERROR) 806 cmn_err(CE_PANIC, "send_one_mondo: " 807 "cpuid: 0x%x has been marked in " 808 "error", cpuid); 809 else 810 cmn_err(CE_PANIC, "send_one_mondo: " 811 "unexpected hypervisor error 0x%x " 812 "while sending a mondo to cpuid: " 813 "0x%x", stat, cpuid); 814 } 815 tick = gettick(); 816 /* 817 * If there is a big jump between the current tick 818 * count and lasttick, we have probably hit a break 819 * point. Adjust endtick accordingly to avoid panic. 820 */ 821 if (tick > (lasttick + xc_tick_jump_limit)) 822 endtick += (tick - lasttick); 823 lasttick = tick; 824 if (tick > endtick) { 825 if (panic_quiesce) 826 return; 827 cmn_err(CE_PANIC, "send mondo timeout " 828 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 829 cpuid, retries, stat); 830 } 831 drv_usecwait(1); 832 stat = shipit(1, mcpup->cpu_list_ra); 833 retries++; 834 } 835 #ifdef SEND_MONDO_STATS 836 { 837 uint64_t n = gettick() - starttick; 838 if (n < 8192) 839 x_one_stimes[n >> 7]++; 840 else if (n < 15*8192) 841 x_one_ltimes[n >> 13]++; 842 else 843 x_one_ltimes[0xf]++; 844 } 845 #endif 846 } 847 848 void 849 send_mondo_set(cpuset_t set) 850 { 851 uint64_t starttick, endtick, tick, lasttick; 852 uint_t largestid, smallestid; 853 int i, j; 854 int ncpuids = 0; 855 int shipped = 0; 856 int retries = 0; 857 struct machcpu *mcpup = &(CPU->cpu_m); 858 859 ASSERT(!CPUSET_ISNULL(set)); 860 CPUSET_BOUNDS(set, smallestid, largestid); 861 if (smallestid == CPUSET_NOTINSET) { 862 return; 863 } 864 865 starttick = lasttick = gettick(); 866 endtick = starttick + xc_tick_limit; 867 868 /* 869 * Assemble CPU list for HV argument. We already know 870 * smallestid and largestid are members of set. 871 */ 872 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 873 if (largestid != smallestid) { 874 for (i = smallestid+1; i <= largestid-1; i++) { 875 if (CPU_IN_SET(set, i)) { 876 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 877 } 878 } 879 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 880 } 881 882 do { 883 int stat; 884 885 stat = shipit(ncpuids, mcpup->cpu_list_ra); 886 if (stat == H_EOK) { 887 shipped += ncpuids; 888 break; 889 } 890 891 /* 892 * Either not all CPU mondos were sent, or an 893 * error occurred. CPUs that were sent mondos 894 * have their CPU IDs overwritten in cpu_list. 895 * Reset cpu_list so that it only holds those 896 * CPU IDs that still need to be sent. 897 */ 898 for (i = 0, j = 0; i < ncpuids; i++) { 899 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 900 shipped++; 901 } else { 902 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 903 } 904 } 905 ncpuids = j; 906 907 /* 908 * Now handle possible errors returned 909 * from hypervisor. 910 */ 911 if (stat == H_ECPUERROR) { 912 int errorcpus; 913 914 if (!panic_quiesce) 915 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 916 917 /* 918 * Remove any CPUs in the error state from 919 * cpu_list. At this point cpu_list only 920 * contains the CPU IDs for mondos not 921 * succesfully sent. 922 */ 923 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 924 uint64_t state = CPU_STATE_INVALID; 925 uint16_t id = mcpup->cpu_list[i]; 926 927 (void) hv_cpu_state(id, &state); 928 if (state == CPU_STATE_ERROR) { 929 if (!panic_quiesce) 930 cmn_err(CE_CONT, "0x%x ", id); 931 errorcpus++; 932 } else if (errorcpus > 0) { 933 mcpup->cpu_list[i - errorcpus] = 934 mcpup->cpu_list[i]; 935 } 936 } 937 ncpuids -= errorcpus; 938 939 if (!panic_quiesce) { 940 if (errorcpus == 0) { 941 cmn_err(CE_CONT, "<none> have been " 942 "marked in error\n"); 943 cmn_err(CE_PANIC, "send_mondo_set: " 944 "hypervisor returned " 945 "H_ECPUERROR but no CPU in " 946 "cpu_list in error state"); 947 } else { 948 cmn_err(CE_CONT, "have been marked in " 949 "error\n"); 950 cmn_err(CE_PANIC, "send_mondo_set: " 951 "CPU(s) in error state"); 952 } 953 } 954 } else if (stat != H_EWOULDBLOCK) { 955 if (panic_quiesce) 956 return; 957 /* 958 * For all other errors, panic. 959 */ 960 cmn_err(CE_CONT, "send_mondo_set: unexpected " 961 "hypervisor error 0x%x while sending a " 962 "mondo to cpuid(s):", stat); 963 for (i = 0; i < ncpuids; i++) { 964 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 965 } 966 cmn_err(CE_CONT, "\n"); 967 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 968 "hypervisor error"); 969 } 970 971 tick = gettick(); 972 /* 973 * If there is a big jump between the current tick 974 * count and lasttick, we have probably hit a break 975 * point. Adjust endtick accordingly to avoid panic. 976 */ 977 if (tick > (lasttick + xc_tick_jump_limit)) 978 endtick += (tick - lasttick); 979 lasttick = tick; 980 if (tick > endtick) { 981 if (panic_quiesce) 982 return; 983 cmn_err(CE_CONT, "send mondo timeout " 984 "[retries: 0x%x] cpuids: ", retries); 985 for (i = 0; i < ncpuids; i++) 986 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 987 cmn_err(CE_CONT, "\n"); 988 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 989 } 990 991 while (gettick() < (tick + sys_clock_mhz)) 992 ; 993 retries++; 994 } while (ncpuids > 0); 995 996 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 997 998 #ifdef SEND_MONDO_STATS 999 { 1000 uint64_t n = gettick() - starttick; 1001 if (n < 8192) 1002 x_set_stimes[n >> 7]++; 1003 else if (n < 15*8192) 1004 x_set_ltimes[n >> 13]++; 1005 else 1006 x_set_ltimes[0xf]++; 1007 } 1008 x_set_cpus[shipped]++; 1009 #endif 1010 } 1011 1012 void 1013 syncfpu(void) 1014 { 1015 } 1016 1017 void 1018 sticksync_slave(void) 1019 { 1020 suspend_sync_tick_stick_npt(); 1021 } 1022 1023 void 1024 sticksync_master(void) 1025 {} 1026 1027 void 1028 cpu_init_cache_scrub(void) 1029 { 1030 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 1031 } 1032 1033 int 1034 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 1035 { 1036 int ret, watched; 1037 1038 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 1039 ret = dtrace_blksuword32(addr, data, 0); 1040 if (watched) 1041 watch_enable_addr((void *)addr, 4, S_WRITE); 1042 1043 return (ret); 1044 } 1045 1046 int 1047 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 1048 { 1049 if (suword32((void *)addr, *data) == -1) 1050 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 1051 dtrace_flush_sec(addr); 1052 1053 return (0); 1054 } 1055 1056 /*ARGSUSED*/ 1057 void 1058 cpu_faulted_enter(struct cpu *cp) 1059 { 1060 } 1061 1062 /*ARGSUSED*/ 1063 void 1064 cpu_faulted_exit(struct cpu *cp) 1065 { 1066 } 1067 1068 static int 1069 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 1070 { 1071 int rc, i; 1072 1073 for (rc = 0, i = 0; i < NCPU; i++) { 1074 if (CPU_IN_SET(cpu_ready_set, i)) 1075 rc += cb(i, arg); 1076 } 1077 1078 return (rc); 1079 } 1080 1081 /* 1082 * Sends a cross-call to a specified processor. The caller assumes 1083 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1084 * debugging). 1085 */ 1086 static int 1087 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1088 uintptr_t arg2) 1089 { 1090 int stat; 1091 struct machcpu *mcpup; 1092 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1093 1094 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1095 1096 /* 1097 * if (idsr_busy()) 1098 * return (KDI_XC_RES_ERR); 1099 */ 1100 1101 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1102 1103 mcpup->cpu_list[0] = (uint16_t)cpuid; 1104 stat = shipit(1, mcpup->cpu_list_ra); 1105 1106 if (stat == 0) 1107 return (KDI_XC_RES_OK); 1108 else 1109 return (KDI_XC_RES_NACK); 1110 } 1111 1112 static void 1113 kdi_tickwait(clock_t nticks) 1114 { 1115 clock_t endtick = gettick() + nticks; 1116 1117 while (gettick() < endtick) 1118 ; 1119 } 1120 1121 static void 1122 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1123 int icache_linesize) 1124 { 1125 kdi_dcache_size = dcache_size; 1126 kdi_dcache_linesize = dcache_linesize; 1127 kdi_icache_size = icache_size; 1128 kdi_icache_linesize = icache_linesize; 1129 } 1130 1131 /* used directly by kdi_read/write_phys */ 1132 void 1133 kdi_flush_caches(void) 1134 { 1135 /* Not required on sun4v architecture. */ 1136 } 1137 1138 /*ARGSUSED*/ 1139 int 1140 kdi_get_stick(uint64_t *stickp) 1141 { 1142 return (-1); 1143 } 1144 1145 void 1146 cpu_kdi_init(kdi_t *kdi) 1147 { 1148 kdi->kdi_flush_caches = kdi_flush_caches; 1149 kdi->mkdi_cpu_init = kdi_cpu_init; 1150 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1151 kdi->mkdi_xc_one = kdi_xc_one; 1152 kdi->mkdi_tickwait = kdi_tickwait; 1153 kdi->mkdi_get_stick = kdi_get_stick; 1154 } 1155 1156 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1157 static uint64_t soft_state_saved_state = (uint64_t)-1; 1158 static int soft_state_initialized = 0; 1159 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1160 static hsvc_info_t soft_state_hsvc = { 1161 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1162 1163 1164 static void 1165 sun4v_system_claim(void) 1166 { 1167 lbolt_debug_entry(); 1168 1169 watchdog_suspend(); 1170 kldc_debug_enter(); 1171 /* 1172 * For "mdb -K", set soft state to debugging 1173 */ 1174 if (soft_state_saved_state == -1) { 1175 mach_get_soft_state(&soft_state_saved_state, 1176 &SOLARIS_SOFT_STATE_SAVED_MSG); 1177 } 1178 /* 1179 * check again as the read above may or may not have worked and if 1180 * it didn't then soft state will still be -1 1181 */ 1182 if (soft_state_saved_state != -1) { 1183 mach_set_soft_state(SIS_TRANSITION, 1184 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1185 } 1186 } 1187 1188 static void 1189 sun4v_system_release(void) 1190 { 1191 watchdog_resume(); 1192 /* 1193 * For "mdb -K", set soft_state state back to original state on exit 1194 */ 1195 if (soft_state_saved_state != -1) { 1196 mach_set_soft_state(soft_state_saved_state, 1197 &SOLARIS_SOFT_STATE_SAVED_MSG); 1198 soft_state_saved_state = -1; 1199 } 1200 1201 lbolt_debug_return(); 1202 } 1203 1204 void 1205 plat_kdi_init(kdi_t *kdi) 1206 { 1207 kdi->pkdi_system_claim = sun4v_system_claim; 1208 kdi->pkdi_system_release = sun4v_system_release; 1209 } 1210 1211 /* 1212 * Routine to return memory information associated 1213 * with a physical address and syndrome. 1214 */ 1215 /* ARGSUSED */ 1216 int 1217 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1218 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1219 int *segsp, int *banksp, int *mcidp) 1220 { 1221 return (ENOTSUP); 1222 } 1223 1224 /* 1225 * This routine returns the size of the kernel's FRU name buffer. 1226 */ 1227 size_t 1228 cpu_get_name_bufsize() 1229 { 1230 return (UNUM_NAMLEN); 1231 } 1232 1233 /* 1234 * This routine is a more generic interface to cpu_get_mem_unum(), 1235 * that may be used by other modules (e.g. mm). 1236 */ 1237 /* ARGSUSED */ 1238 int 1239 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1240 char *buf, int buflen, int *lenp) 1241 { 1242 return (ENOTSUP); 1243 } 1244 1245 /* ARGSUSED */ 1246 int 1247 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1248 { 1249 return (ENOTSUP); 1250 } 1251 1252 /* ARGSUSED */ 1253 int 1254 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1255 { 1256 return (ENOTSUP); 1257 } 1258 1259 /* 1260 * xt_sync - wait for previous x-traps to finish 1261 */ 1262 void 1263 xt_sync(cpuset_t cpuset) 1264 { 1265 union { 1266 uint8_t volatile byte[NCPU]; 1267 uint64_t volatile xword[NCPU / 8]; 1268 } cpu_sync; 1269 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1270 uint_t largestid, smallestid; 1271 int i, j; 1272 1273 kpreempt_disable(); 1274 CPUSET_DEL(cpuset, CPU->cpu_id); 1275 CPUSET_AND(cpuset, cpu_ready_set); 1276 1277 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1278 if (smallestid == CPUSET_NOTINSET) 1279 goto out; 1280 1281 /* 1282 * Sun4v uses a queue for receiving mondos. Successful 1283 * transmission of a mondo only indicates that the mondo 1284 * has been written into the queue. 1285 * 1286 * We use an array of bytes to let each cpu to signal back 1287 * to the cross trap sender that the cross trap has been 1288 * executed. Set the byte to 1 before sending the cross trap 1289 * and wait until other cpus reset it to 0. 1290 */ 1291 bzero((void *)&cpu_sync, NCPU); 1292 cpu_sync.byte[smallestid] = 1; 1293 if (largestid != smallestid) { 1294 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1295 if (CPU_IN_SET(cpuset, i)) 1296 cpu_sync.byte[i] = 1; 1297 cpu_sync.byte[largestid] = 1; 1298 } 1299 1300 /* 1301 * To help debug xt_sync panic, each mondo is uniquely identified 1302 * by passing the tick value, traptrace_id as the second mondo 1303 * argument to xt_some which is logged in CPU's mondo queue, 1304 * traptrace buffer and the panic message. 1305 */ 1306 traptrace_id = gettick(); 1307 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1308 (uint64_t)cpu_sync.byte, traptrace_id); 1309 1310 starttick = lasttick = gettick(); 1311 endtick = starttick + xc_sync_tick_limit; 1312 1313 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1314 while (cpu_sync.xword[i] != 0) { 1315 tick = gettick(); 1316 /* 1317 * If there is a big jump between the current tick 1318 * count and lasttick, we have probably hit a break 1319 * point. Adjust endtick accordingly to avoid panic. 1320 */ 1321 if (tick > (lasttick + xc_tick_jump_limit)) { 1322 endtick += (tick - lasttick); 1323 } 1324 lasttick = tick; 1325 if (tick > endtick) { 1326 if (panic_quiesce) 1327 goto out; 1328 cmn_err(CE_CONT, "Cross trap sync timeout: " 1329 "at cpu_sync.xword[%d]: 0x%lx " 1330 "cpu_sync.byte: 0x%lx " 1331 "starttick: 0x%lx endtick: 0x%lx " 1332 "traptrace_id = 0x%lx\n", 1333 i, cpu_sync.xword[i], 1334 (uint64_t)cpu_sync.byte, 1335 starttick, endtick, traptrace_id); 1336 cmn_err(CE_CONT, "CPUIDs:"); 1337 for (j = (i * 8); j <= largestid; j++) { 1338 if (cpu_sync.byte[j] != 0) 1339 cmn_err(CE_CONT, " 0x%x", j); 1340 } 1341 cmn_err(CE_PANIC, "xt_sync: timeout"); 1342 } 1343 } 1344 } 1345 1346 out: 1347 kpreempt_enable(); 1348 } 1349 1350 #define QFACTOR 200 1351 /* 1352 * Recalculate the values of the cross-call timeout variables based 1353 * on the value of the 'inter-cpu-latency' property of the platform node. 1354 * The property sets the number of nanosec to wait for a cross-call 1355 * to be acknowledged. Other timeout variables are derived from it. 1356 * 1357 * N.B. This implementation is aware of the internals of xc_init() 1358 * and updates many of the same variables. 1359 */ 1360 void 1361 recalc_xc_timeouts(void) 1362 { 1363 typedef union { 1364 uint64_t whole; 1365 struct { 1366 uint_t high; 1367 uint_t low; 1368 } half; 1369 } u_number; 1370 1371 /* See x_call.c for descriptions of these extern variables. */ 1372 extern uint64_t xc_tick_limit_scale; 1373 extern uint64_t xc_mondo_time_limit; 1374 extern uint64_t xc_func_time_limit; 1375 extern uint64_t xc_scale; 1376 extern uint64_t xc_mondo_multiplier; 1377 extern uint_t nsec_shift; 1378 1379 /* Temp versions of the target variables */ 1380 uint64_t tick_limit; 1381 uint64_t tick_jump_limit; 1382 uint64_t mondo_time_limit; 1383 uint64_t func_time_limit; 1384 uint64_t scale; 1385 1386 uint64_t latency; /* nanoseconds */ 1387 uint64_t maxfreq; 1388 uint64_t tick_limit_save = xc_tick_limit; 1389 uint64_t sync_tick_limit_save = xc_sync_tick_limit; 1390 uint_t tick_scale; 1391 uint64_t top; 1392 uint64_t bottom; 1393 u_number tk; 1394 1395 md_t *mdp; 1396 int nrnode; 1397 mde_cookie_t *platlist; 1398 1399 /* 1400 * Look up the 'inter-cpu-latency' (optional) property in the 1401 * platform node of the MD. The units are nanoseconds. 1402 */ 1403 if ((mdp = md_get_handle()) == NULL) { 1404 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1405 "Unable to initialize machine description"); 1406 return; 1407 } 1408 1409 nrnode = md_alloc_scan_dag(mdp, 1410 md_root_node(mdp), "platform", "fwd", &platlist); 1411 1412 ASSERT(nrnode == 1); 1413 if (nrnode < 1) { 1414 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1415 goto done; 1416 } 1417 if (md_get_prop_val(mdp, platlist[0], 1418 "inter-cpu-latency", &latency) == -1) 1419 goto done; 1420 1421 /* 1422 * clock.h defines an assembly-language macro 1423 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1424 * units to nanoseconds. Since the inter-cpu-latency 1425 * units are nanoseconds and the xc_* variables require 1426 * %stick units, we need the inverse of that function. 1427 * The trick is to perform the calculation without 1428 * floating point, but also without integer truncation 1429 * or overflow. To understand the calculation below, 1430 * please read the discussion of the macro in clock.h. 1431 * Since this new code will be invoked infrequently, 1432 * we can afford to implement it in C. 1433 * 1434 * tick_scale is the reciprocal of nsec_scale which is 1435 * calculated at startup in setcpudelay(). The calc 1436 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1437 * except we use tick_scale instead of nsec_scale and 1438 * C instead of assembler. 1439 */ 1440 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1441 << (32 - nsec_shift)) / NANOSEC); 1442 1443 tk.whole = latency; 1444 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1445 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1446 tick_limit = top + bottom; 1447 1448 /* 1449 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1450 * and used it to derive some of the timeout variables that we 1451 * recalculate below. We can back into the original value by 1452 * using the inverse of one of those calculations. 1453 */ 1454 maxfreq = xc_mondo_time_limit / xc_scale; 1455 1456 /* 1457 * Don't allow the new timeout (xc_tick_limit) to fall below 1458 * the system tick frequency (stick). Allowing the timeout 1459 * to be set more tightly than this empirically determined 1460 * value may cause panics. 1461 */ 1462 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1463 1464 tick_jump_limit = tick_limit / 32; 1465 tick_limit *= xc_tick_limit_scale; 1466 1467 /* 1468 * Recalculate xc_scale since it is used in a callback function 1469 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1470 * Make the change in xc_scale proportional to the change in 1471 * xc_tick_limit. 1472 */ 1473 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1474 if (scale == 0) 1475 scale = 1; 1476 1477 mondo_time_limit = maxfreq * scale; 1478 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1479 1480 /* 1481 * Don't modify the timeouts if nothing has changed. Else, 1482 * stuff the variables with the freshly calculated (temp) 1483 * variables. This minimizes the window where the set of 1484 * values could be inconsistent. 1485 */ 1486 if (tick_limit != xc_tick_limit) { 1487 xc_tick_limit = tick_limit; 1488 xc_tick_jump_limit = tick_jump_limit; 1489 xc_scale = scale; 1490 xc_mondo_time_limit = mondo_time_limit; 1491 xc_func_time_limit = func_time_limit; 1492 } 1493 1494 done: 1495 /* 1496 * Increase the timeout limit for xt_sync() cross calls. 1497 */ 1498 xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR); 1499 xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ? 1500 xc_tick_limit : xc_sync_tick_limit; 1501 1502 /* 1503 * Force the new values to be used for future cross calls. 1504 * This is necessary only when we increase the timeouts. 1505 */ 1506 if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit > 1507 sync_tick_limit_save)) { 1508 cpuset_t cpuset = cpu_ready_set; 1509 xt_sync(cpuset); 1510 } 1511 1512 if (nrnode > 0) 1513 md_free_scan_dag(mdp, &platlist); 1514 (void) md_fini_handle(mdp); 1515 } 1516 1517 void 1518 mach_soft_state_init(void) 1519 { 1520 int i; 1521 uint64_t ra; 1522 1523 /* 1524 * Try to register soft_state api. If it fails, soft_state api has not 1525 * been implemented in the firmware, so do not bother to setup 1526 * soft_state in the kernel. 1527 */ 1528 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1529 return; 1530 } 1531 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1532 ASSERT(strlen((const char *)(void *) 1533 soft_state_message_strings + i) < SSM_SIZE); 1534 if ((ra = va_to_pa( 1535 (void *)(soft_state_message_strings + i))) == -1ll) { 1536 return; 1537 } 1538 soft_state_message_ra[i] = ra; 1539 } 1540 /* 1541 * Tell OBP that we are supporting Guest State 1542 */ 1543 prom_sun4v_soft_state_supported(); 1544 soft_state_initialized = 1; 1545 } 1546 1547 void 1548 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1549 { 1550 uint64_t rc; 1551 1552 if (soft_state_initialized && *string_ra) { 1553 rc = hv_soft_state_set(state, *string_ra); 1554 if (rc != H_EOK) { 1555 cmn_err(CE_WARN, 1556 "hv_soft_state_set returned %ld\n", rc); 1557 } 1558 } 1559 } 1560 1561 void 1562 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1563 { 1564 uint64_t rc; 1565 1566 if (soft_state_initialized && *string_ra) { 1567 rc = hv_soft_state_get(*string_ra, state); 1568 if (rc != H_EOK) { 1569 cmn_err(CE_WARN, 1570 "hv_soft_state_get returned %ld\n", rc); 1571 *state = -1; 1572 } 1573 } 1574 } 1575