1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/systm.h> 27 #include <sys/archsystm.h> 28 #include <sys/t_lock.h> 29 #include <sys/uadmin.h> 30 #include <sys/panic.h> 31 #include <sys/reboot.h> 32 #include <sys/autoconf.h> 33 #include <sys/machsystm.h> 34 #include <sys/promif.h> 35 #include <sys/membar.h> 36 #include <vm/hat_sfmmu.h> 37 #include <sys/cpu_module.h> 38 #include <sys/cpu_sgnblk_defs.h> 39 #include <sys/intreg.h> 40 #include <sys/consdev.h> 41 #include <sys/kdi_impl.h> 42 #include <sys/traptrace.h> 43 #include <sys/hypervisor_api.h> 44 #include <sys/vmsystm.h> 45 #include <sys/dtrace.h> 46 #include <sys/xc_impl.h> 47 #include <sys/callb.h> 48 #include <sys/mdesc.h> 49 #include <sys/mach_descrip.h> 50 #include <sys/wdt.h> 51 #include <sys/soft_state.h> 52 #include <sys/promimpl.h> 53 #include <sys/hsvc.h> 54 #include <sys/ldoms.h> 55 #include <sys/kldc.h> 56 #include <sys/clock_impl.h> 57 #include <sys/suspend.h> 58 #include <sys/dumphdr.h> 59 60 /* 61 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 62 * A value of NULL indicates that this area is not configured. 63 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 64 */ 65 66 caddr_t hvdump_buf_va; 67 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 68 static uint64_t hvdump_buf_pa; 69 70 u_longlong_t panic_tick; 71 72 extern u_longlong_t gettick(); 73 static void reboot_machine(char *); 74 static void update_hvdump_buffer(void); 75 76 /* 77 * For xt_sync synchronization. 78 */ 79 extern uint64_t xc_tick_limit; 80 extern uint64_t xc_tick_jump_limit; 81 extern uint64_t xc_sync_tick_limit; 82 83 /* 84 * We keep our own copies, used for cache flushing, because we can be called 85 * before cpu_fiximpl(). 86 */ 87 static int kdi_dcache_size; 88 static int kdi_dcache_linesize; 89 static int kdi_icache_size; 90 static int kdi_icache_linesize; 91 92 /* 93 * Assembly support for generic modules in sun4v/ml/mach_xc.s 94 */ 95 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 96 extern void kdi_flush_idcache(int, int, int, int); 97 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 98 99 100 #define BOOT_CMD_MAX_LEN 256 /* power of 2 & 16-byte aligned */ 101 #define BOOT_CMD_BASE "boot " 102 103 /* 104 * In an LDoms system we do not save the user's boot args in NVRAM 105 * as is done on legacy systems. Instead, we format and send a 106 * 'reboot-command' variable to the variable service. The contents 107 * of the variable are retrieved by OBP and used verbatim for 108 * the next boot. 109 */ 110 static void 111 store_boot_cmd(char *args, boolean_t add_boot_str, boolean_t invoke_cb) 112 { 113 static char *cmd_buf; 114 size_t len = 1; 115 pnode_t node; 116 size_t base_len = 0; 117 size_t args_len; 118 size_t args_max; 119 uint64_t majornum; 120 uint64_t minornum; 121 uint64_t buf_pa; 122 uint64_t status; 123 124 status = hsvc_version(HSVC_GROUP_REBOOT_DATA, &majornum, &minornum); 125 126 /* 127 * invoke_cb is set to true when we are in a normal shutdown sequence 128 * (interrupts are not blocked, the system is not panicking or being 129 * suspended). In that case, we can use any method to store the boot 130 * command. Otherwise storing the boot command can not be done using 131 * a domain service because it can not be safely used in that context. 132 */ 133 if ((status != H_EOK) && (invoke_cb == B_FALSE)) 134 return; 135 136 cmd_buf = contig_mem_alloc(BOOT_CMD_MAX_LEN); 137 if (cmd_buf == NULL) 138 return; 139 140 if (add_boot_str) { 141 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 142 143 base_len = strlen(BOOT_CMD_BASE); 144 len = base_len + 1; 145 } 146 147 if (args != NULL) { 148 args_len = strlen(args); 149 args_max = BOOT_CMD_MAX_LEN - len; 150 151 if (args_len > args_max) { 152 cmn_err(CE_WARN, "Reboot command too long (%ld), " 153 "truncating command arguments", len + args_len); 154 155 args_len = args_max; 156 } 157 158 len += args_len; 159 (void) strncpy(&cmd_buf[base_len], args, args_len); 160 } 161 162 /* 163 * Save the reboot-command with HV, if reboot data group is 164 * negotiated. Else save the reboot-command via vars-config domain 165 * services on the SP. 166 */ 167 if (status == H_EOK) { 168 buf_pa = va_to_pa(cmd_buf); 169 status = hv_reboot_data_set(buf_pa, len); 170 if (status != H_EOK) { 171 cmn_err(CE_WARN, "Unable to store boot command for " 172 "use on reboot with HV: error = 0x%lx", status); 173 } 174 } else { 175 node = prom_optionsnode(); 176 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 177 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 178 cmn_err(CE_WARN, "Unable to store boot command for " 179 "use on reboot"); 180 } 181 } 182 183 184 /* 185 * Machine dependent code to reboot. 186 * 187 * "bootstr", when non-null, points to a string to be used as the 188 * argument string when rebooting. 189 * 190 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 191 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 192 * we are in a normal shutdown sequence (interrupts are not blocked, the 193 * system is not panic'ing or being suspended). 194 */ 195 /*ARGSUSED*/ 196 void 197 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 198 { 199 extern void pm_cfb_check_and_powerup(void); 200 201 /* 202 * XXX - rconsvp is set to NULL to ensure that output messages 203 * are sent to the underlying "hardware" device using the 204 * monitor's printf routine since we are in the process of 205 * either rebooting or halting the machine. 206 */ 207 rconsvp = NULL; 208 209 switch (fcn) { 210 case AD_HALT: 211 /* 212 * LDoms: By storing a no-op command 213 * in the 'reboot-command' variable we cause OBP 214 * to ignore the setting of 'auto-boot?' after 215 * it completes the reset. This causes the system 216 * to stop at the ok prompt. 217 */ 218 if (domaining_enabled()) 219 store_boot_cmd("noop", B_FALSE, invoke_cb); 220 break; 221 222 case AD_POWEROFF: 223 break; 224 225 default: 226 if (bootstr == NULL) { 227 switch (fcn) { 228 229 case AD_FASTREBOOT: 230 case AD_BOOT: 231 bootstr = ""; 232 break; 233 234 case AD_IBOOT: 235 bootstr = "-a"; 236 break; 237 238 case AD_SBOOT: 239 bootstr = "-s"; 240 break; 241 242 case AD_SIBOOT: 243 bootstr = "-sa"; 244 break; 245 default: 246 cmn_err(CE_WARN, 247 "mdboot: invalid function %d", fcn); 248 bootstr = ""; 249 break; 250 } 251 } 252 253 /* 254 * If LDoms is running, we must save the boot string 255 * before we enter restricted mode. This is possible 256 * only if we are not being called from panic. 257 */ 258 if (domaining_enabled()) 259 store_boot_cmd(bootstr, B_TRUE, invoke_cb); 260 } 261 262 /* 263 * At a high interrupt level we can't: 264 * 1) bring up the console 265 * or 266 * 2) wait for pending interrupts prior to redistribution 267 * to the current CPU 268 * 269 * so we do them now. 270 */ 271 pm_cfb_check_and_powerup(); 272 273 /* make sure there are no more changes to the device tree */ 274 devtree_freeze(); 275 276 if (invoke_cb) 277 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 278 279 /* 280 * Clear any unresolved UEs from memory. 281 */ 282 page_retire_mdboot(); 283 284 /* 285 * stop other cpus which also raise our priority. since there is only 286 * one active cpu after this, and our priority will be too high 287 * for us to be preempted, we're essentially single threaded 288 * from here on out. 289 */ 290 stop_other_cpus(); 291 292 /* 293 * try and reset leaf devices. reset_leaves() should only 294 * be called when there are no other threads that could be 295 * accessing devices 296 */ 297 reset_leaves(); 298 299 watchdog_clear(); 300 301 if (fcn == AD_HALT) { 302 mach_set_soft_state(SIS_TRANSITION, 303 &SOLARIS_SOFT_STATE_HALT_MSG); 304 halt((char *)NULL); 305 } else if (fcn == AD_POWEROFF) { 306 mach_set_soft_state(SIS_TRANSITION, 307 &SOLARIS_SOFT_STATE_POWER_MSG); 308 power_down(NULL); 309 } else { 310 mach_set_soft_state(SIS_TRANSITION, 311 &SOLARIS_SOFT_STATE_REBOOT_MSG); 312 reboot_machine(bootstr); 313 } 314 /* MAYBE REACHED */ 315 } 316 317 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 318 /*ARGSUSED*/ 319 void 320 mdpreboot(int cmd, int fcn, char *bootstr) 321 { 322 } 323 324 /* 325 * Halt the machine and then reboot with the device 326 * and arguments specified in bootstr. 327 */ 328 static void 329 reboot_machine(char *bootstr) 330 { 331 flush_windows(); 332 stop_other_cpus(); /* send stop signal to other CPUs */ 333 prom_printf("rebooting...\n"); 334 /* 335 * For platforms that use CPU signatures, we 336 * need to set the signature block to OS and 337 * the state to exiting for all the processors. 338 */ 339 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 340 prom_reboot(bootstr); 341 /*NOTREACHED*/ 342 } 343 344 /* 345 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 346 * Once in panic_idle() they raise spl, record their location, and spin. 347 */ 348 static void 349 panic_idle(void) 350 { 351 (void) spl7(); 352 353 debug_flush_windows(); 354 (void) setjmp(&curthread->t_pcb); 355 356 CPU->cpu_m.in_prom = 1; 357 membar_stld(); 358 359 dumpsys_helper(); 360 361 for (;;) 362 ; 363 } 364 365 /* 366 * Force the other CPUs to trap into panic_idle(), and then remove them 367 * from the cpu_ready_set so they will no longer receive cross-calls. 368 */ 369 /*ARGSUSED*/ 370 void 371 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 372 { 373 cpuset_t cps; 374 int i; 375 376 (void) splzs(); 377 CPUSET_ALL_BUT(cps, cp->cpu_id); 378 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 379 380 for (i = 0; i < NCPU; i++) { 381 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 382 int ntries = 0x10000; 383 384 while (!cpu[i]->cpu_m.in_prom && ntries) { 385 DELAY(50); 386 ntries--; 387 } 388 389 if (!cpu[i]->cpu_m.in_prom) 390 printf("panic: failed to stop cpu%d\n", i); 391 392 cpu[i]->cpu_flags &= ~CPU_READY; 393 cpu[i]->cpu_flags |= CPU_QUIESCED; 394 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 395 } 396 } 397 } 398 399 /* 400 * Platform callback following each entry to panicsys(). If we've panicked at 401 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 402 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 403 * was made and so we re-enqueue an interrupt request structure to allow 404 * further level 14 interrupts to be processed once we lower PIL. This allows 405 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 406 */ 407 void 408 panic_enter_hw(int spl) 409 { 410 if (!panic_tick) { 411 panic_tick = gettick(); 412 if (mach_htraptrace_enable) { 413 uint64_t prev_freeze; 414 415 /* there are no possible error codes for this hcall */ 416 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 417 &prev_freeze); 418 } 419 #ifdef TRAPTRACE 420 TRAPTRACE_FREEZE; 421 #endif 422 } 423 424 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 425 426 if (spl == ipltospl(PIL_14)) { 427 uint_t opstate = disable_vec_intr(); 428 429 if (curthread->t_panic_trap != NULL) { 430 tickcmpr_disable(); 431 intr_dequeue_req(PIL_14, cbe_level14_inum); 432 } else { 433 if (!tickcmpr_disabled()) 434 intr_enqueue_req(PIL_14, cbe_level14_inum); 435 /* 436 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 437 * and SOFTINT<16> (STICK_INT) to indicate 438 * that the current level 14 has been serviced. 439 */ 440 wr_clr_softint((1 << PIL_14) | 441 TICK_INT_MASK | STICK_INT_MASK); 442 } 443 444 enable_vec_intr(opstate); 445 } 446 } 447 448 /* 449 * Miscellaneous hardware-specific code to execute after panicstr is set 450 * by the panic code: we also print and record PTL1 panic information here. 451 */ 452 /*ARGSUSED*/ 453 void 454 panic_quiesce_hw(panic_data_t *pdp) 455 { 456 extern uint_t getpstate(void); 457 extern void setpstate(uint_t); 458 459 /* 460 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 461 */ 462 if (!panic_tick) { 463 panic_tick = gettick(); 464 if (mach_htraptrace_enable) { 465 uint64_t prev_freeze; 466 467 /* there are no possible error codes for this hcall */ 468 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 469 &prev_freeze); 470 } 471 #ifdef TRAPTRACE 472 TRAPTRACE_FREEZE; 473 #endif 474 } 475 /* 476 * For Platforms that use CPU signatures, we 477 * need to set the signature block to OS, the state to 478 * exiting, and the substate to panic for all the processors. 479 */ 480 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 481 482 update_hvdump_buffer(); 483 484 /* 485 * Disable further ECC errors from the bus nexus. 486 */ 487 (void) bus_func_invoke(BF_TYPE_ERRDIS); 488 489 /* 490 * Redirect all interrupts to the current CPU. 491 */ 492 intr_redist_all_cpus_shutdown(); 493 494 /* 495 * This call exists solely to support dumps to network 496 * devices after sync from OBP. 497 * 498 * If we came here via the sync callback, then on some 499 * platforms, interrupts may have arrived while we were 500 * stopped in OBP. OBP will arrange for those interrupts to 501 * be redelivered if you say "go", but not if you invoke a 502 * client callback like 'sync'. For some dump devices 503 * (network swap devices), we need interrupts to be 504 * delivered in order to dump, so we have to call the bus 505 * nexus driver to reset the interrupt state machines. 506 */ 507 (void) bus_func_invoke(BF_TYPE_RESINTR); 508 509 setpstate(getpstate() | PSTATE_IE); 510 } 511 512 /* 513 * Platforms that use CPU signatures need to set the signature block to OS and 514 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 515 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 516 * reboot the machine if the dump never completes. 517 */ 518 /*ARGSUSED*/ 519 void 520 panic_dump_hw(int spl) 521 { 522 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 523 } 524 525 /* 526 * for ptl1_panic 527 */ 528 void 529 ptl1_init_cpu(struct cpu *cpu) 530 { 531 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 532 533 /*CONSTCOND*/ 534 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 535 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 536 "stack, sizeof (struct cpu) = %lu", 537 (unsigned long)sizeof (struct cpu)); 538 } 539 540 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 541 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 542 } 543 544 void 545 ptl1_panic_handler(ptl1_state_t *pstate) 546 { 547 static const char *ptl1_reasons[] = { 548 #ifdef PTL1_PANIC_DEBUG 549 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 550 #else 551 "unknown trap", /* PTL1_BAD_DEBUG */ 552 #endif 553 "register window trap", /* PTL1_BAD_WTRAP */ 554 "kernel MMU miss", /* PTL1_BAD_KMISS */ 555 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 556 "ISM MMU miss", /* PTL1_BAD_ISM */ 557 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 558 "kernel trap handler state", /* PTL1_BAD_TRAP */ 559 "floating point trap", /* PTL1_BAD_FPTRAP */ 560 #ifdef DEBUG 561 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 562 #else 563 "unknown trap", /* PTL1_BAD_INTR_VEC */ 564 #endif 565 #ifdef TRAPTRACE 566 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 567 #else 568 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 569 #endif 570 "stack overflow", /* PTL1_BAD_STACK */ 571 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 572 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 573 "CPU ECC error loop", /* PTL1_BAD_ECC */ 574 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 575 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 576 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 577 "unexpected RED mode trap", /* PTL1_BAD_RED */ 578 "return value EINVAL from hcall: "\ 579 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 580 "return value ENOMAP from hcall: "\ 581 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 582 "error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */ 583 "missing shared TSB" /* PTL1_NO_SCDTSB8K */ 584 }; 585 586 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 587 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 588 struct panic_trap_info ti = { 0 }; 589 590 /* 591 * Use trap_info for a place holder to call panic_savetrap() and 592 * panic_showtrap() to save and print out ptl1_panic information. 593 */ 594 if (curthread->t_panic_trap == NULL) 595 curthread->t_panic_trap = &ti; 596 597 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 598 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 599 else 600 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 601 } 602 603 void 604 clear_watchdog_on_exit(void) 605 { 606 if (watchdog_enabled && watchdog_activated) { 607 prom_printf("Debugging requested; hardware watchdog " 608 "suspended.\n"); 609 (void) watchdog_suspend(); 610 } 611 } 612 613 /* 614 * Restore the watchdog timer when returning from a debugger 615 * after a panic or L1-A and resume watchdog pat. 616 */ 617 void 618 restore_watchdog_on_entry() 619 { 620 watchdog_resume(); 621 } 622 623 int 624 kdi_watchdog_disable(void) 625 { 626 watchdog_suspend(); 627 628 return (0); 629 } 630 631 void 632 kdi_watchdog_restore(void) 633 { 634 watchdog_resume(); 635 } 636 637 void 638 mach_dump_buffer_init(void) 639 { 640 uint64_t ret, minsize = 0; 641 642 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 643 hvdump_buf_sz = HVDUMP_SIZE_MAX; 644 645 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 646 if (hvdump_buf_va == NULL) 647 return; 648 649 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 650 651 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 652 &minsize); 653 654 if (ret != H_EOK) { 655 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 656 hvdump_buf_va = NULL; 657 cmn_err(CE_NOTE, "!Error in setting up hvstate" 658 "dump buffer. Error = 0x%lx, size = 0x%lx," 659 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 660 hvdump_buf_pa); 661 662 if (ret == H_EINVAL) { 663 cmn_err(CE_NOTE, "!Buffer size too small." 664 "Available buffer size = 0x%lx," 665 "Minimum buffer size required = 0x%lx", 666 hvdump_buf_sz, minsize); 667 } 668 } 669 } 670 671 672 static void 673 update_hvdump_buffer(void) 674 { 675 uint64_t ret, dummy_val; 676 677 if (hvdump_buf_va == NULL) 678 return; 679 680 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 681 &dummy_val); 682 if (ret != H_EOK) { 683 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 684 "buffer. Error = 0x%lx", ret); 685 } 686 } 687 688 689 static int 690 getintprop(pnode_t node, char *name, int deflt) 691 { 692 int value; 693 694 switch (prom_getproplen(node, name)) { 695 case 0: 696 value = 1; /* boolean properties */ 697 break; 698 699 case sizeof (int): 700 (void) prom_getprop(node, name, (caddr_t)&value); 701 break; 702 703 default: 704 value = deflt; 705 break; 706 } 707 708 return (value); 709 } 710 711 /* 712 * Called by setcpudelay 713 */ 714 void 715 cpu_init_tick_freq(void) 716 { 717 md_t *mdp; 718 mde_cookie_t rootnode; 719 int listsz; 720 mde_cookie_t *listp = NULL; 721 int num_nodes; 722 uint64_t stick_prop; 723 724 if (broken_md_flag) { 725 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 726 return; 727 } 728 729 if ((mdp = md_get_handle()) == NULL) 730 panic("stick_frequency property not found in MD"); 731 732 rootnode = md_root_node(mdp); 733 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 734 735 num_nodes = md_node_count(mdp); 736 737 ASSERT(num_nodes > 0); 738 listsz = num_nodes * sizeof (mde_cookie_t); 739 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 740 741 if (listp == NULL) 742 panic("cannot allocate list for MD properties"); 743 744 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 745 md_find_name(mdp, "fwd"), listp); 746 747 ASSERT(num_nodes == 1); 748 749 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 750 panic("stick_frequency property not found in MD"); 751 752 sys_tick_freq = stick_prop; 753 754 prom_free((caddr_t)listp, listsz); 755 (void) md_fini_handle(mdp); 756 } 757 758 int shipit(int n, uint64_t cpu_list_ra); 759 760 #ifdef DEBUG 761 #define SEND_MONDO_STATS 1 762 #endif 763 764 #ifdef SEND_MONDO_STATS 765 uint32_t x_one_stimes[64]; 766 uint32_t x_one_ltimes[16]; 767 uint32_t x_set_stimes[64]; 768 uint32_t x_set_ltimes[16]; 769 uint32_t x_set_cpus[NCPU]; 770 #endif 771 772 void 773 send_one_mondo(int cpuid) 774 { 775 int retries, stat; 776 uint64_t starttick, endtick, tick, lasttick; 777 struct machcpu *mcpup = &(CPU->cpu_m); 778 779 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 780 starttick = lasttick = gettick(); 781 mcpup->cpu_list[0] = (uint16_t)cpuid; 782 stat = shipit(1, mcpup->cpu_list_ra); 783 endtick = starttick + xc_tick_limit; 784 retries = 0; 785 while (stat != H_EOK) { 786 if (stat != H_EWOULDBLOCK) { 787 if (panic_quiesce) 788 return; 789 if (stat == H_ECPUERROR) 790 cmn_err(CE_PANIC, "send_one_mondo: " 791 "cpuid: 0x%x has been marked in " 792 "error", cpuid); 793 else 794 cmn_err(CE_PANIC, "send_one_mondo: " 795 "unexpected hypervisor error 0x%x " 796 "while sending a mondo to cpuid: " 797 "0x%x", stat, cpuid); 798 } 799 tick = gettick(); 800 /* 801 * If there is a big jump between the current tick 802 * count and lasttick, we have probably hit a break 803 * point. Adjust endtick accordingly to avoid panic. 804 */ 805 if (tick > (lasttick + xc_tick_jump_limit)) 806 endtick += (tick - lasttick); 807 lasttick = tick; 808 if (tick > endtick) { 809 if (panic_quiesce) 810 return; 811 cmn_err(CE_PANIC, "send mondo timeout " 812 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 813 cpuid, retries, stat); 814 } 815 drv_usecwait(1); 816 stat = shipit(1, mcpup->cpu_list_ra); 817 retries++; 818 } 819 #ifdef SEND_MONDO_STATS 820 { 821 uint64_t n = gettick() - starttick; 822 if (n < 8192) 823 x_one_stimes[n >> 7]++; 824 else if (n < 15*8192) 825 x_one_ltimes[n >> 13]++; 826 else 827 x_one_ltimes[0xf]++; 828 } 829 #endif 830 } 831 832 void 833 send_mondo_set(cpuset_t set) 834 { 835 uint64_t starttick, endtick, tick, lasttick; 836 uint_t largestid, smallestid; 837 int i, j; 838 int ncpuids = 0; 839 int shipped = 0; 840 int retries = 0; 841 struct machcpu *mcpup = &(CPU->cpu_m); 842 843 ASSERT(!CPUSET_ISNULL(set)); 844 CPUSET_BOUNDS(set, smallestid, largestid); 845 if (smallestid == CPUSET_NOTINSET) { 846 return; 847 } 848 849 starttick = lasttick = gettick(); 850 endtick = starttick + xc_tick_limit; 851 852 /* 853 * Assemble CPU list for HV argument. We already know 854 * smallestid and largestid are members of set. 855 */ 856 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 857 if (largestid != smallestid) { 858 for (i = smallestid+1; i <= largestid-1; i++) { 859 if (CPU_IN_SET(set, i)) { 860 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 861 } 862 } 863 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 864 } 865 866 do { 867 int stat; 868 869 stat = shipit(ncpuids, mcpup->cpu_list_ra); 870 if (stat == H_EOK) { 871 shipped += ncpuids; 872 break; 873 } 874 875 /* 876 * Either not all CPU mondos were sent, or an 877 * error occurred. CPUs that were sent mondos 878 * have their CPU IDs overwritten in cpu_list. 879 * Reset cpu_list so that it only holds those 880 * CPU IDs that still need to be sent. 881 */ 882 for (i = 0, j = 0; i < ncpuids; i++) { 883 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 884 shipped++; 885 } else { 886 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 887 } 888 } 889 ncpuids = j; 890 891 /* 892 * Now handle possible errors returned 893 * from hypervisor. 894 */ 895 if (stat == H_ECPUERROR) { 896 int errorcpus; 897 898 if (!panic_quiesce) 899 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 900 901 /* 902 * Remove any CPUs in the error state from 903 * cpu_list. At this point cpu_list only 904 * contains the CPU IDs for mondos not 905 * succesfully sent. 906 */ 907 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 908 uint64_t state = CPU_STATE_INVALID; 909 uint16_t id = mcpup->cpu_list[i]; 910 911 (void) hv_cpu_state(id, &state); 912 if (state == CPU_STATE_ERROR) { 913 if (!panic_quiesce) 914 cmn_err(CE_CONT, "0x%x ", id); 915 errorcpus++; 916 } else if (errorcpus > 0) { 917 mcpup->cpu_list[i - errorcpus] = 918 mcpup->cpu_list[i]; 919 } 920 } 921 ncpuids -= errorcpus; 922 923 if (!panic_quiesce) { 924 if (errorcpus == 0) { 925 cmn_err(CE_CONT, "<none> have been " 926 "marked in error\n"); 927 cmn_err(CE_PANIC, "send_mondo_set: " 928 "hypervisor returned " 929 "H_ECPUERROR but no CPU in " 930 "cpu_list in error state"); 931 } else { 932 cmn_err(CE_CONT, "have been marked in " 933 "error\n"); 934 cmn_err(CE_PANIC, "send_mondo_set: " 935 "CPU(s) in error state"); 936 } 937 } 938 } else if (stat != H_EWOULDBLOCK) { 939 if (panic_quiesce) 940 return; 941 /* 942 * For all other errors, panic. 943 */ 944 cmn_err(CE_CONT, "send_mondo_set: unexpected " 945 "hypervisor error 0x%x while sending a " 946 "mondo to cpuid(s):", stat); 947 for (i = 0; i < ncpuids; i++) { 948 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 949 } 950 cmn_err(CE_CONT, "\n"); 951 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 952 "hypervisor error"); 953 } 954 955 tick = gettick(); 956 /* 957 * If there is a big jump between the current tick 958 * count and lasttick, we have probably hit a break 959 * point. Adjust endtick accordingly to avoid panic. 960 */ 961 if (tick > (lasttick + xc_tick_jump_limit)) 962 endtick += (tick - lasttick); 963 lasttick = tick; 964 if (tick > endtick) { 965 if (panic_quiesce) 966 return; 967 cmn_err(CE_CONT, "send mondo timeout " 968 "[retries: 0x%x] cpuids: ", retries); 969 for (i = 0; i < ncpuids; i++) 970 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 971 cmn_err(CE_CONT, "\n"); 972 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 973 } 974 975 while (gettick() < (tick + sys_clock_mhz)) 976 ; 977 retries++; 978 } while (ncpuids > 0); 979 980 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 981 982 #ifdef SEND_MONDO_STATS 983 { 984 uint64_t n = gettick() - starttick; 985 if (n < 8192) 986 x_set_stimes[n >> 7]++; 987 else if (n < 15*8192) 988 x_set_ltimes[n >> 13]++; 989 else 990 x_set_ltimes[0xf]++; 991 } 992 x_set_cpus[shipped]++; 993 #endif 994 } 995 996 void 997 syncfpu(void) 998 { 999 } 1000 1001 void 1002 sticksync_slave(void) 1003 { 1004 suspend_sync_tick_stick_npt(); 1005 } 1006 1007 void 1008 sticksync_master(void) 1009 {} 1010 1011 void 1012 cpu_init_cache_scrub(void) 1013 { 1014 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 1015 } 1016 1017 int 1018 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 1019 { 1020 int ret, watched; 1021 1022 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 1023 ret = dtrace_blksuword32(addr, data, 0); 1024 if (watched) 1025 watch_enable_addr((void *)addr, 4, S_WRITE); 1026 1027 return (ret); 1028 } 1029 1030 int 1031 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 1032 { 1033 if (suword32((void *)addr, *data) == -1) 1034 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 1035 dtrace_flush_sec(addr); 1036 1037 return (0); 1038 } 1039 1040 /*ARGSUSED*/ 1041 void 1042 cpu_faulted_enter(struct cpu *cp) 1043 { 1044 } 1045 1046 /*ARGSUSED*/ 1047 void 1048 cpu_faulted_exit(struct cpu *cp) 1049 { 1050 } 1051 1052 static int 1053 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 1054 { 1055 int rc, i; 1056 1057 for (rc = 0, i = 0; i < NCPU; i++) { 1058 if (CPU_IN_SET(cpu_ready_set, i)) 1059 rc += cb(i, arg); 1060 } 1061 1062 return (rc); 1063 } 1064 1065 /* 1066 * Sends a cross-call to a specified processor. The caller assumes 1067 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1068 * debugging). 1069 */ 1070 static int 1071 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1072 uintptr_t arg2) 1073 { 1074 int stat; 1075 struct machcpu *mcpup; 1076 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1077 1078 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1079 1080 /* 1081 * if (idsr_busy()) 1082 * return (KDI_XC_RES_ERR); 1083 */ 1084 1085 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1086 1087 mcpup->cpu_list[0] = (uint16_t)cpuid; 1088 stat = shipit(1, mcpup->cpu_list_ra); 1089 1090 if (stat == 0) 1091 return (KDI_XC_RES_OK); 1092 else 1093 return (KDI_XC_RES_NACK); 1094 } 1095 1096 static void 1097 kdi_tickwait(clock_t nticks) 1098 { 1099 clock_t endtick = gettick() + nticks; 1100 1101 while (gettick() < endtick) 1102 ; 1103 } 1104 1105 static void 1106 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1107 int icache_linesize) 1108 { 1109 kdi_dcache_size = dcache_size; 1110 kdi_dcache_linesize = dcache_linesize; 1111 kdi_icache_size = icache_size; 1112 kdi_icache_linesize = icache_linesize; 1113 } 1114 1115 /* used directly by kdi_read/write_phys */ 1116 void 1117 kdi_flush_caches(void) 1118 { 1119 /* Not required on sun4v architecture. */ 1120 } 1121 1122 /*ARGSUSED*/ 1123 int 1124 kdi_get_stick(uint64_t *stickp) 1125 { 1126 return (-1); 1127 } 1128 1129 void 1130 cpu_kdi_init(kdi_t *kdi) 1131 { 1132 kdi->kdi_flush_caches = kdi_flush_caches; 1133 kdi->mkdi_cpu_init = kdi_cpu_init; 1134 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1135 kdi->mkdi_xc_one = kdi_xc_one; 1136 kdi->mkdi_tickwait = kdi_tickwait; 1137 kdi->mkdi_get_stick = kdi_get_stick; 1138 } 1139 1140 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1141 static uint64_t soft_state_saved_state = (uint64_t)-1; 1142 static int soft_state_initialized = 0; 1143 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1144 static hsvc_info_t soft_state_hsvc = { 1145 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1146 1147 1148 static void 1149 sun4v_system_claim(void) 1150 { 1151 lbolt_debug_entry(); 1152 1153 watchdog_suspend(); 1154 kldc_debug_enter(); 1155 /* 1156 * For "mdb -K", set soft state to debugging 1157 */ 1158 if (soft_state_saved_state == -1) { 1159 mach_get_soft_state(&soft_state_saved_state, 1160 &SOLARIS_SOFT_STATE_SAVED_MSG); 1161 } 1162 /* 1163 * check again as the read above may or may not have worked and if 1164 * it didn't then soft state will still be -1 1165 */ 1166 if (soft_state_saved_state != -1) { 1167 mach_set_soft_state(SIS_TRANSITION, 1168 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1169 } 1170 } 1171 1172 static void 1173 sun4v_system_release(void) 1174 { 1175 watchdog_resume(); 1176 /* 1177 * For "mdb -K", set soft_state state back to original state on exit 1178 */ 1179 if (soft_state_saved_state != -1) { 1180 mach_set_soft_state(soft_state_saved_state, 1181 &SOLARIS_SOFT_STATE_SAVED_MSG); 1182 soft_state_saved_state = -1; 1183 } 1184 1185 lbolt_debug_return(); 1186 } 1187 1188 void 1189 plat_kdi_init(kdi_t *kdi) 1190 { 1191 kdi->pkdi_system_claim = sun4v_system_claim; 1192 kdi->pkdi_system_release = sun4v_system_release; 1193 } 1194 1195 /* 1196 * Routine to return memory information associated 1197 * with a physical address and syndrome. 1198 */ 1199 /* ARGSUSED */ 1200 int 1201 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1202 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1203 int *segsp, int *banksp, int *mcidp) 1204 { 1205 return (ENOTSUP); 1206 } 1207 1208 /* 1209 * This routine returns the size of the kernel's FRU name buffer. 1210 */ 1211 size_t 1212 cpu_get_name_bufsize() 1213 { 1214 return (UNUM_NAMLEN); 1215 } 1216 1217 /* 1218 * This routine is a more generic interface to cpu_get_mem_unum(), 1219 * that may be used by other modules (e.g. mm). 1220 */ 1221 /* ARGSUSED */ 1222 int 1223 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1224 char *buf, int buflen, int *lenp) 1225 { 1226 return (ENOTSUP); 1227 } 1228 1229 /* ARGSUSED */ 1230 int 1231 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1232 { 1233 return (ENOTSUP); 1234 } 1235 1236 /* ARGSUSED */ 1237 int 1238 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1239 { 1240 return (ENOTSUP); 1241 } 1242 1243 /* 1244 * xt_sync - wait for previous x-traps to finish 1245 */ 1246 void 1247 xt_sync(cpuset_t cpuset) 1248 { 1249 union { 1250 uint8_t volatile byte[NCPU]; 1251 uint64_t volatile xword[NCPU / 8]; 1252 } cpu_sync; 1253 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1254 uint_t largestid, smallestid; 1255 int i, j; 1256 1257 kpreempt_disable(); 1258 CPUSET_DEL(cpuset, CPU->cpu_id); 1259 CPUSET_AND(cpuset, cpu_ready_set); 1260 1261 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1262 if (smallestid == CPUSET_NOTINSET) 1263 goto out; 1264 1265 /* 1266 * Sun4v uses a queue for receiving mondos. Successful 1267 * transmission of a mondo only indicates that the mondo 1268 * has been written into the queue. 1269 * 1270 * We use an array of bytes to let each cpu to signal back 1271 * to the cross trap sender that the cross trap has been 1272 * executed. Set the byte to 1 before sending the cross trap 1273 * and wait until other cpus reset it to 0. 1274 */ 1275 bzero((void *)&cpu_sync, NCPU); 1276 cpu_sync.byte[smallestid] = 1; 1277 if (largestid != smallestid) { 1278 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1279 if (CPU_IN_SET(cpuset, i)) 1280 cpu_sync.byte[i] = 1; 1281 cpu_sync.byte[largestid] = 1; 1282 } 1283 1284 /* 1285 * To help debug xt_sync panic, each mondo is uniquely identified 1286 * by passing the tick value, traptrace_id as the second mondo 1287 * argument to xt_some which is logged in CPU's mondo queue, 1288 * traptrace buffer and the panic message. 1289 */ 1290 traptrace_id = gettick(); 1291 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1292 (uint64_t)cpu_sync.byte, traptrace_id); 1293 1294 starttick = lasttick = gettick(); 1295 endtick = starttick + xc_sync_tick_limit; 1296 1297 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1298 while (cpu_sync.xword[i] != 0) { 1299 tick = gettick(); 1300 /* 1301 * If there is a big jump between the current tick 1302 * count and lasttick, we have probably hit a break 1303 * point. Adjust endtick accordingly to avoid panic. 1304 */ 1305 if (tick > (lasttick + xc_tick_jump_limit)) { 1306 endtick += (tick - lasttick); 1307 } 1308 lasttick = tick; 1309 if (tick > endtick) { 1310 if (panic_quiesce) 1311 goto out; 1312 cmn_err(CE_CONT, "Cross trap sync timeout: " 1313 "at cpu_sync.xword[%d]: 0x%lx " 1314 "cpu_sync.byte: 0x%lx " 1315 "starttick: 0x%lx endtick: 0x%lx " 1316 "traptrace_id = 0x%lx\n", 1317 i, cpu_sync.xword[i], 1318 (uint64_t)cpu_sync.byte, 1319 starttick, endtick, traptrace_id); 1320 cmn_err(CE_CONT, "CPUIDs:"); 1321 for (j = (i * 8); j <= largestid; j++) { 1322 if (cpu_sync.byte[j] != 0) 1323 cmn_err(CE_CONT, " 0x%x", j); 1324 } 1325 cmn_err(CE_PANIC, "xt_sync: timeout"); 1326 } 1327 } 1328 } 1329 1330 out: 1331 kpreempt_enable(); 1332 } 1333 1334 #define QFACTOR 200 1335 /* 1336 * Recalculate the values of the cross-call timeout variables based 1337 * on the value of the 'inter-cpu-latency' property of the platform node. 1338 * The property sets the number of nanosec to wait for a cross-call 1339 * to be acknowledged. Other timeout variables are derived from it. 1340 * 1341 * N.B. This implementation is aware of the internals of xc_init() 1342 * and updates many of the same variables. 1343 */ 1344 void 1345 recalc_xc_timeouts(void) 1346 { 1347 typedef union { 1348 uint64_t whole; 1349 struct { 1350 uint_t high; 1351 uint_t low; 1352 } half; 1353 } u_number; 1354 1355 /* See x_call.c for descriptions of these extern variables. */ 1356 extern uint64_t xc_tick_limit_scale; 1357 extern uint64_t xc_mondo_time_limit; 1358 extern uint64_t xc_func_time_limit; 1359 extern uint64_t xc_scale; 1360 extern uint64_t xc_mondo_multiplier; 1361 extern uint_t nsec_shift; 1362 1363 /* Temp versions of the target variables */ 1364 uint64_t tick_limit; 1365 uint64_t tick_jump_limit; 1366 uint64_t mondo_time_limit; 1367 uint64_t func_time_limit; 1368 uint64_t scale; 1369 1370 uint64_t latency; /* nanoseconds */ 1371 uint64_t maxfreq; 1372 uint64_t tick_limit_save = xc_tick_limit; 1373 uint64_t sync_tick_limit_save = xc_sync_tick_limit; 1374 uint_t tick_scale; 1375 uint64_t top; 1376 uint64_t bottom; 1377 u_number tk; 1378 1379 md_t *mdp; 1380 int nrnode; 1381 mde_cookie_t *platlist; 1382 1383 /* 1384 * Look up the 'inter-cpu-latency' (optional) property in the 1385 * platform node of the MD. The units are nanoseconds. 1386 */ 1387 if ((mdp = md_get_handle()) == NULL) { 1388 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1389 "Unable to initialize machine description"); 1390 return; 1391 } 1392 1393 nrnode = md_alloc_scan_dag(mdp, 1394 md_root_node(mdp), "platform", "fwd", &platlist); 1395 1396 ASSERT(nrnode == 1); 1397 if (nrnode < 1) { 1398 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1399 goto done; 1400 } 1401 if (md_get_prop_val(mdp, platlist[0], 1402 "inter-cpu-latency", &latency) == -1) 1403 goto done; 1404 1405 /* 1406 * clock.h defines an assembly-language macro 1407 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1408 * units to nanoseconds. Since the inter-cpu-latency 1409 * units are nanoseconds and the xc_* variables require 1410 * %stick units, we need the inverse of that function. 1411 * The trick is to perform the calculation without 1412 * floating point, but also without integer truncation 1413 * or overflow. To understand the calculation below, 1414 * please read the discussion of the macro in clock.h. 1415 * Since this new code will be invoked infrequently, 1416 * we can afford to implement it in C. 1417 * 1418 * tick_scale is the reciprocal of nsec_scale which is 1419 * calculated at startup in setcpudelay(). The calc 1420 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1421 * except we use tick_scale instead of nsec_scale and 1422 * C instead of assembler. 1423 */ 1424 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1425 << (32 - nsec_shift)) / NANOSEC); 1426 1427 tk.whole = latency; 1428 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1429 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1430 tick_limit = top + bottom; 1431 1432 /* 1433 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1434 * and used it to derive some of the timeout variables that we 1435 * recalculate below. We can back into the original value by 1436 * using the inverse of one of those calculations. 1437 */ 1438 maxfreq = xc_mondo_time_limit / xc_scale; 1439 1440 /* 1441 * Don't allow the new timeout (xc_tick_limit) to fall below 1442 * the system tick frequency (stick). Allowing the timeout 1443 * to be set more tightly than this empirically determined 1444 * value may cause panics. 1445 */ 1446 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1447 1448 tick_jump_limit = tick_limit / 32; 1449 tick_limit *= xc_tick_limit_scale; 1450 1451 /* 1452 * Recalculate xc_scale since it is used in a callback function 1453 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1454 * Make the change in xc_scale proportional to the change in 1455 * xc_tick_limit. 1456 */ 1457 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1458 if (scale == 0) 1459 scale = 1; 1460 1461 mondo_time_limit = maxfreq * scale; 1462 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1463 1464 /* 1465 * Don't modify the timeouts if nothing has changed. Else, 1466 * stuff the variables with the freshly calculated (temp) 1467 * variables. This minimizes the window where the set of 1468 * values could be inconsistent. 1469 */ 1470 if (tick_limit != xc_tick_limit) { 1471 xc_tick_limit = tick_limit; 1472 xc_tick_jump_limit = tick_jump_limit; 1473 xc_scale = scale; 1474 xc_mondo_time_limit = mondo_time_limit; 1475 xc_func_time_limit = func_time_limit; 1476 } 1477 1478 done: 1479 /* 1480 * Increase the timeout limit for xt_sync() cross calls. 1481 */ 1482 xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR); 1483 xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ? 1484 xc_tick_limit : xc_sync_tick_limit; 1485 1486 /* 1487 * Force the new values to be used for future cross calls. 1488 * This is necessary only when we increase the timeouts. 1489 */ 1490 if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit > 1491 sync_tick_limit_save)) { 1492 cpuset_t cpuset = cpu_ready_set; 1493 xt_sync(cpuset); 1494 } 1495 1496 if (nrnode > 0) 1497 md_free_scan_dag(mdp, &platlist); 1498 (void) md_fini_handle(mdp); 1499 } 1500 1501 void 1502 mach_soft_state_init(void) 1503 { 1504 int i; 1505 uint64_t ra; 1506 1507 /* 1508 * Try to register soft_state api. If it fails, soft_state api has not 1509 * been implemented in the firmware, so do not bother to setup 1510 * soft_state in the kernel. 1511 */ 1512 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1513 return; 1514 } 1515 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1516 ASSERT(strlen((const char *)(void *) 1517 soft_state_message_strings + i) < SSM_SIZE); 1518 if ((ra = va_to_pa( 1519 (void *)(soft_state_message_strings + i))) == -1ll) { 1520 return; 1521 } 1522 soft_state_message_ra[i] = ra; 1523 } 1524 /* 1525 * Tell OBP that we are supporting Guest State 1526 */ 1527 prom_sun4v_soft_state_supported(); 1528 soft_state_initialized = 1; 1529 } 1530 1531 void 1532 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1533 { 1534 uint64_t rc; 1535 1536 if (soft_state_initialized && *string_ra) { 1537 rc = hv_soft_state_set(state, *string_ra); 1538 if (rc != H_EOK) { 1539 cmn_err(CE_WARN, 1540 "hv_soft_state_set returned %ld\n", rc); 1541 } 1542 } 1543 } 1544 1545 void 1546 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1547 { 1548 uint64_t rc; 1549 1550 if (soft_state_initialized && *string_ra) { 1551 rc = hv_soft_state_get(*string_ra, state); 1552 if (rc != H_EOK) { 1553 cmn_err(CE_WARN, 1554 "hv_soft_state_get returned %ld\n", rc); 1555 *state = -1; 1556 } 1557 } 1558 } 1559