1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/systm.h> 28 #include <sys/archsystm.h> 29 #include <sys/t_lock.h> 30 #include <sys/uadmin.h> 31 #include <sys/panic.h> 32 #include <sys/reboot.h> 33 #include <sys/autoconf.h> 34 #include <sys/machsystm.h> 35 #include <sys/promif.h> 36 #include <sys/membar.h> 37 #include <vm/hat_sfmmu.h> 38 #include <sys/cpu_module.h> 39 #include <sys/cpu_sgnblk_defs.h> 40 #include <sys/intreg.h> 41 #include <sys/consdev.h> 42 #include <sys/kdi_impl.h> 43 #include <sys/traptrace.h> 44 #include <sys/hypervisor_api.h> 45 #include <sys/vmsystm.h> 46 #include <sys/dtrace.h> 47 #include <sys/xc_impl.h> 48 #include <sys/callb.h> 49 #include <sys/mdesc.h> 50 #include <sys/mach_descrip.h> 51 #include <sys/wdt.h> 52 #include <sys/soft_state.h> 53 #include <sys/promimpl.h> 54 #include <sys/hsvc.h> 55 #include <sys/ldoms.h> 56 #include <sys/kldc.h> 57 #include <sys/clock_impl.h> 58 #include <sys/suspend.h> 59 #include <sys/dumphdr.h> 60 61 /* 62 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 63 * A value of NULL indicates that this area is not configured. 64 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 65 */ 66 67 caddr_t hvdump_buf_va; 68 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 69 static uint64_t hvdump_buf_pa; 70 71 u_longlong_t panic_tick; 72 73 extern u_longlong_t gettick(); 74 static void reboot_machine(char *); 75 static void update_hvdump_buffer(void); 76 77 /* 78 * For xt_sync synchronization. 79 */ 80 extern uint64_t xc_tick_limit; 81 extern uint64_t xc_tick_jump_limit; 82 extern uint64_t xc_sync_tick_limit; 83 84 /* 85 * We keep our own copies, used for cache flushing, because we can be called 86 * before cpu_fiximpl(). 87 */ 88 static int kdi_dcache_size; 89 static int kdi_dcache_linesize; 90 static int kdi_icache_size; 91 static int kdi_icache_linesize; 92 93 /* 94 * Assembly support for generic modules in sun4v/ml/mach_xc.s 95 */ 96 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 97 extern void kdi_flush_idcache(int, int, int, int); 98 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 99 100 101 #define BOOT_CMD_MAX_LEN 256 102 #define BOOT_CMD_BASE "boot " 103 104 /* 105 * In an LDoms system we do not save the user's boot args in NVRAM 106 * as is done on legacy systems. Instead, we format and send a 107 * 'reboot-command' variable to the variable service. The contents 108 * of the variable are retrieved by OBP and used verbatim for 109 * the next boot. 110 */ 111 static void 112 store_boot_cmd(char *args, boolean_t add_boot_str) 113 { 114 static char cmd_buf[BOOT_CMD_MAX_LEN]; 115 size_t len = 1; 116 pnode_t node; 117 size_t base_len = 0; 118 size_t args_len; 119 size_t args_max; 120 121 if (add_boot_str) { 122 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 123 124 base_len = strlen(BOOT_CMD_BASE); 125 len = base_len + 1; 126 } 127 128 if (args != NULL) { 129 args_len = strlen(args); 130 args_max = BOOT_CMD_MAX_LEN - len; 131 132 if (args_len > args_max) { 133 cmn_err(CE_WARN, "Reboot command too long (%ld), " 134 "truncating command arguments", len + args_len); 135 136 args_len = args_max; 137 } 138 139 len += args_len; 140 (void) strncpy(&cmd_buf[base_len], args, args_len); 141 } 142 143 node = prom_optionsnode(); 144 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 145 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 146 cmn_err(CE_WARN, "Unable to store boot command for " 147 "use on reboot"); 148 } 149 150 151 /* 152 * Machine dependent code to reboot. 153 * 154 * "bootstr", when non-null, points to a string to be used as the 155 * argument string when rebooting. 156 * 157 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 158 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 159 * we are in a normal shutdown sequence (interrupts are not blocked, the 160 * system is not panic'ing or being suspended). 161 */ 162 /*ARGSUSED*/ 163 void 164 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 165 { 166 extern void pm_cfb_check_and_powerup(void); 167 168 /* 169 * XXX - rconsvp is set to NULL to ensure that output messages 170 * are sent to the underlying "hardware" device using the 171 * monitor's printf routine since we are in the process of 172 * either rebooting or halting the machine. 173 */ 174 rconsvp = NULL; 175 176 switch (fcn) { 177 case AD_HALT: 178 /* 179 * LDoms: By storing a no-op command 180 * in the 'reboot-command' variable we cause OBP 181 * to ignore the setting of 'auto-boot?' after 182 * it completes the reset. This causes the system 183 * to stop at the ok prompt. 184 */ 185 if (domaining_enabled() && invoke_cb) 186 store_boot_cmd("noop", B_FALSE); 187 break; 188 189 case AD_POWEROFF: 190 break; 191 192 default: 193 if (bootstr == NULL) { 194 switch (fcn) { 195 196 case AD_BOOT: 197 bootstr = ""; 198 break; 199 200 case AD_IBOOT: 201 bootstr = "-a"; 202 break; 203 204 case AD_SBOOT: 205 bootstr = "-s"; 206 break; 207 208 case AD_SIBOOT: 209 bootstr = "-sa"; 210 break; 211 default: 212 cmn_err(CE_WARN, 213 "mdboot: invalid function %d", fcn); 214 bootstr = ""; 215 break; 216 } 217 } 218 219 /* 220 * If LDoms is running, we must save the boot string 221 * before we enter restricted mode. This is possible 222 * only if we are not being called from panic. 223 */ 224 if (domaining_enabled() && invoke_cb) 225 store_boot_cmd(bootstr, B_TRUE); 226 } 227 228 /* 229 * At a high interrupt level we can't: 230 * 1) bring up the console 231 * or 232 * 2) wait for pending interrupts prior to redistribution 233 * to the current CPU 234 * 235 * so we do them now. 236 */ 237 pm_cfb_check_and_powerup(); 238 239 /* make sure there are no more changes to the device tree */ 240 devtree_freeze(); 241 242 if (invoke_cb) 243 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 244 245 /* 246 * Clear any unresolved UEs from memory. 247 */ 248 page_retire_mdboot(); 249 250 /* 251 * stop other cpus which also raise our priority. since there is only 252 * one active cpu after this, and our priority will be too high 253 * for us to be preempted, we're essentially single threaded 254 * from here on out. 255 */ 256 stop_other_cpus(); 257 258 /* 259 * try and reset leaf devices. reset_leaves() should only 260 * be called when there are no other threads that could be 261 * accessing devices 262 */ 263 reset_leaves(); 264 265 watchdog_clear(); 266 267 if (fcn == AD_HALT) { 268 mach_set_soft_state(SIS_TRANSITION, 269 &SOLARIS_SOFT_STATE_HALT_MSG); 270 halt((char *)NULL); 271 } else if (fcn == AD_POWEROFF) { 272 mach_set_soft_state(SIS_TRANSITION, 273 &SOLARIS_SOFT_STATE_POWER_MSG); 274 power_down(NULL); 275 } else { 276 mach_set_soft_state(SIS_TRANSITION, 277 &SOLARIS_SOFT_STATE_REBOOT_MSG); 278 reboot_machine(bootstr); 279 } 280 /* MAYBE REACHED */ 281 } 282 283 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 284 /*ARGSUSED*/ 285 void 286 mdpreboot(int cmd, int fcn, char *bootstr) 287 { 288 } 289 290 /* 291 * Halt the machine and then reboot with the device 292 * and arguments specified in bootstr. 293 */ 294 static void 295 reboot_machine(char *bootstr) 296 { 297 flush_windows(); 298 stop_other_cpus(); /* send stop signal to other CPUs */ 299 prom_printf("rebooting...\n"); 300 /* 301 * For platforms that use CPU signatures, we 302 * need to set the signature block to OS and 303 * the state to exiting for all the processors. 304 */ 305 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 306 prom_reboot(bootstr); 307 /*NOTREACHED*/ 308 } 309 310 /* 311 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 312 * Once in panic_idle() they raise spl, record their location, and spin. 313 */ 314 static void 315 panic_idle(void) 316 { 317 (void) spl7(); 318 319 debug_flush_windows(); 320 (void) setjmp(&curthread->t_pcb); 321 322 CPU->cpu_m.in_prom = 1; 323 membar_stld(); 324 325 dumpsys_helper(); 326 327 for (;;) 328 ; 329 } 330 331 /* 332 * Force the other CPUs to trap into panic_idle(), and then remove them 333 * from the cpu_ready_set so they will no longer receive cross-calls. 334 */ 335 /*ARGSUSED*/ 336 void 337 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 338 { 339 cpuset_t cps; 340 int i; 341 342 (void) splzs(); 343 CPUSET_ALL_BUT(cps, cp->cpu_id); 344 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 345 346 for (i = 0; i < NCPU; i++) { 347 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 348 int ntries = 0x10000; 349 350 while (!cpu[i]->cpu_m.in_prom && ntries) { 351 DELAY(50); 352 ntries--; 353 } 354 355 if (!cpu[i]->cpu_m.in_prom) 356 printf("panic: failed to stop cpu%d\n", i); 357 358 cpu[i]->cpu_flags &= ~CPU_READY; 359 cpu[i]->cpu_flags |= CPU_QUIESCED; 360 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 361 } 362 } 363 } 364 365 /* 366 * Platform callback following each entry to panicsys(). If we've panicked at 367 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 368 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 369 * was made and so we re-enqueue an interrupt request structure to allow 370 * further level 14 interrupts to be processed once we lower PIL. This allows 371 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 372 */ 373 void 374 panic_enter_hw(int spl) 375 { 376 if (!panic_tick) { 377 panic_tick = gettick(); 378 if (mach_htraptrace_enable) { 379 uint64_t prev_freeze; 380 381 /* there are no possible error codes for this hcall */ 382 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 383 &prev_freeze); 384 } 385 #ifdef TRAPTRACE 386 TRAPTRACE_FREEZE; 387 #endif 388 } 389 390 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 391 392 if (spl == ipltospl(PIL_14)) { 393 uint_t opstate = disable_vec_intr(); 394 395 if (curthread->t_panic_trap != NULL) { 396 tickcmpr_disable(); 397 intr_dequeue_req(PIL_14, cbe_level14_inum); 398 } else { 399 if (!tickcmpr_disabled()) 400 intr_enqueue_req(PIL_14, cbe_level14_inum); 401 /* 402 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 403 * and SOFTINT<16> (STICK_INT) to indicate 404 * that the current level 14 has been serviced. 405 */ 406 wr_clr_softint((1 << PIL_14) | 407 TICK_INT_MASK | STICK_INT_MASK); 408 } 409 410 enable_vec_intr(opstate); 411 } 412 } 413 414 /* 415 * Miscellaneous hardware-specific code to execute after panicstr is set 416 * by the panic code: we also print and record PTL1 panic information here. 417 */ 418 /*ARGSUSED*/ 419 void 420 panic_quiesce_hw(panic_data_t *pdp) 421 { 422 extern uint_t getpstate(void); 423 extern void setpstate(uint_t); 424 425 /* 426 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 427 */ 428 if (!panic_tick) { 429 panic_tick = gettick(); 430 if (mach_htraptrace_enable) { 431 uint64_t prev_freeze; 432 433 /* there are no possible error codes for this hcall */ 434 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 435 &prev_freeze); 436 } 437 #ifdef TRAPTRACE 438 TRAPTRACE_FREEZE; 439 #endif 440 } 441 /* 442 * For Platforms that use CPU signatures, we 443 * need to set the signature block to OS, the state to 444 * exiting, and the substate to panic for all the processors. 445 */ 446 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 447 448 update_hvdump_buffer(); 449 450 /* 451 * Disable further ECC errors from the bus nexus. 452 */ 453 (void) bus_func_invoke(BF_TYPE_ERRDIS); 454 455 /* 456 * Redirect all interrupts to the current CPU. 457 */ 458 intr_redist_all_cpus_shutdown(); 459 460 /* 461 * This call exists solely to support dumps to network 462 * devices after sync from OBP. 463 * 464 * If we came here via the sync callback, then on some 465 * platforms, interrupts may have arrived while we were 466 * stopped in OBP. OBP will arrange for those interrupts to 467 * be redelivered if you say "go", but not if you invoke a 468 * client callback like 'sync'. For some dump devices 469 * (network swap devices), we need interrupts to be 470 * delivered in order to dump, so we have to call the bus 471 * nexus driver to reset the interrupt state machines. 472 */ 473 (void) bus_func_invoke(BF_TYPE_RESINTR); 474 475 setpstate(getpstate() | PSTATE_IE); 476 } 477 478 /* 479 * Platforms that use CPU signatures need to set the signature block to OS and 480 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 481 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 482 * reboot the machine if the dump never completes. 483 */ 484 /*ARGSUSED*/ 485 void 486 panic_dump_hw(int spl) 487 { 488 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 489 } 490 491 /* 492 * for ptl1_panic 493 */ 494 void 495 ptl1_init_cpu(struct cpu *cpu) 496 { 497 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 498 499 /*CONSTCOND*/ 500 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 501 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 502 "stack, sizeof (struct cpu) = %lu", 503 (unsigned long)sizeof (struct cpu)); 504 } 505 506 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 507 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 508 } 509 510 void 511 ptl1_panic_handler(ptl1_state_t *pstate) 512 { 513 static const char *ptl1_reasons[] = { 514 #ifdef PTL1_PANIC_DEBUG 515 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 516 #else 517 "unknown trap", /* PTL1_BAD_DEBUG */ 518 #endif 519 "register window trap", /* PTL1_BAD_WTRAP */ 520 "kernel MMU miss", /* PTL1_BAD_KMISS */ 521 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 522 "ISM MMU miss", /* PTL1_BAD_ISM */ 523 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 524 "kernel trap handler state", /* PTL1_BAD_TRAP */ 525 "floating point trap", /* PTL1_BAD_FPTRAP */ 526 #ifdef DEBUG 527 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 528 #else 529 "unknown trap", /* PTL1_BAD_INTR_VEC */ 530 #endif 531 #ifdef TRAPTRACE 532 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 533 #else 534 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 535 #endif 536 "stack overflow", /* PTL1_BAD_STACK */ 537 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 538 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 539 "CPU ECC error loop", /* PTL1_BAD_ECC */ 540 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 541 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 542 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 543 "unexpected RED mode trap", /* PTL1_BAD_RED */ 544 "return value EINVAL from hcall: "\ 545 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 546 "return value ENOMAP from hcall: "\ 547 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 548 "error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */ 549 "missing shared TSB" /* PTL1_NO_SCDTSB8K */ 550 }; 551 552 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 553 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 554 struct panic_trap_info ti = { 0 }; 555 556 /* 557 * Use trap_info for a place holder to call panic_savetrap() and 558 * panic_showtrap() to save and print out ptl1_panic information. 559 */ 560 if (curthread->t_panic_trap == NULL) 561 curthread->t_panic_trap = &ti; 562 563 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 564 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 565 else 566 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 567 } 568 569 void 570 clear_watchdog_on_exit(void) 571 { 572 if (watchdog_enabled && watchdog_activated) { 573 prom_printf("Debugging requested; hardware watchdog " 574 "suspended.\n"); 575 (void) watchdog_suspend(); 576 } 577 } 578 579 /* 580 * Restore the watchdog timer when returning from a debugger 581 * after a panic or L1-A and resume watchdog pat. 582 */ 583 void 584 restore_watchdog_on_entry() 585 { 586 watchdog_resume(); 587 } 588 589 int 590 kdi_watchdog_disable(void) 591 { 592 watchdog_suspend(); 593 594 return (0); 595 } 596 597 void 598 kdi_watchdog_restore(void) 599 { 600 watchdog_resume(); 601 } 602 603 void 604 mach_dump_buffer_init(void) 605 { 606 uint64_t ret, minsize = 0; 607 608 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 609 hvdump_buf_sz = HVDUMP_SIZE_MAX; 610 611 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 612 if (hvdump_buf_va == NULL) 613 return; 614 615 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 616 617 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 618 &minsize); 619 620 if (ret != H_EOK) { 621 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 622 hvdump_buf_va = NULL; 623 cmn_err(CE_NOTE, "!Error in setting up hvstate" 624 "dump buffer. Error = 0x%lx, size = 0x%lx," 625 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 626 hvdump_buf_pa); 627 628 if (ret == H_EINVAL) { 629 cmn_err(CE_NOTE, "!Buffer size too small." 630 "Available buffer size = 0x%lx," 631 "Minimum buffer size required = 0x%lx", 632 hvdump_buf_sz, minsize); 633 } 634 } 635 } 636 637 638 static void 639 update_hvdump_buffer(void) 640 { 641 uint64_t ret, dummy_val; 642 643 if (hvdump_buf_va == NULL) 644 return; 645 646 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 647 &dummy_val); 648 if (ret != H_EOK) { 649 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 650 "buffer. Error = 0x%lx", ret); 651 } 652 } 653 654 655 static int 656 getintprop(pnode_t node, char *name, int deflt) 657 { 658 int value; 659 660 switch (prom_getproplen(node, name)) { 661 case 0: 662 value = 1; /* boolean properties */ 663 break; 664 665 case sizeof (int): 666 (void) prom_getprop(node, name, (caddr_t)&value); 667 break; 668 669 default: 670 value = deflt; 671 break; 672 } 673 674 return (value); 675 } 676 677 /* 678 * Called by setcpudelay 679 */ 680 void 681 cpu_init_tick_freq(void) 682 { 683 md_t *mdp; 684 mde_cookie_t rootnode; 685 int listsz; 686 mde_cookie_t *listp = NULL; 687 int num_nodes; 688 uint64_t stick_prop; 689 690 if (broken_md_flag) { 691 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 692 return; 693 } 694 695 if ((mdp = md_get_handle()) == NULL) 696 panic("stick_frequency property not found in MD"); 697 698 rootnode = md_root_node(mdp); 699 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 700 701 num_nodes = md_node_count(mdp); 702 703 ASSERT(num_nodes > 0); 704 listsz = num_nodes * sizeof (mde_cookie_t); 705 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 706 707 if (listp == NULL) 708 panic("cannot allocate list for MD properties"); 709 710 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 711 md_find_name(mdp, "fwd"), listp); 712 713 ASSERT(num_nodes == 1); 714 715 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 716 panic("stick_frequency property not found in MD"); 717 718 sys_tick_freq = stick_prop; 719 720 prom_free((caddr_t)listp, listsz); 721 (void) md_fini_handle(mdp); 722 } 723 724 int shipit(int n, uint64_t cpu_list_ra); 725 726 #ifdef DEBUG 727 #define SEND_MONDO_STATS 1 728 #endif 729 730 #ifdef SEND_MONDO_STATS 731 uint32_t x_one_stimes[64]; 732 uint32_t x_one_ltimes[16]; 733 uint32_t x_set_stimes[64]; 734 uint32_t x_set_ltimes[16]; 735 uint32_t x_set_cpus[NCPU]; 736 #endif 737 738 void 739 send_one_mondo(int cpuid) 740 { 741 int retries, stat; 742 uint64_t starttick, endtick, tick, lasttick; 743 struct machcpu *mcpup = &(CPU->cpu_m); 744 745 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 746 starttick = lasttick = gettick(); 747 mcpup->cpu_list[0] = (uint16_t)cpuid; 748 stat = shipit(1, mcpup->cpu_list_ra); 749 endtick = starttick + xc_tick_limit; 750 retries = 0; 751 while (stat != H_EOK) { 752 if (stat != H_EWOULDBLOCK) { 753 if (panic_quiesce) 754 return; 755 if (stat == H_ECPUERROR) 756 cmn_err(CE_PANIC, "send_one_mondo: " 757 "cpuid: 0x%x has been marked in " 758 "error", cpuid); 759 else 760 cmn_err(CE_PANIC, "send_one_mondo: " 761 "unexpected hypervisor error 0x%x " 762 "while sending a mondo to cpuid: " 763 "0x%x", stat, cpuid); 764 } 765 tick = gettick(); 766 /* 767 * If there is a big jump between the current tick 768 * count and lasttick, we have probably hit a break 769 * point. Adjust endtick accordingly to avoid panic. 770 */ 771 if (tick > (lasttick + xc_tick_jump_limit)) 772 endtick += (tick - lasttick); 773 lasttick = tick; 774 if (tick > endtick) { 775 if (panic_quiesce) 776 return; 777 cmn_err(CE_PANIC, "send mondo timeout " 778 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 779 cpuid, retries, stat); 780 } 781 drv_usecwait(1); 782 stat = shipit(1, mcpup->cpu_list_ra); 783 retries++; 784 } 785 #ifdef SEND_MONDO_STATS 786 { 787 uint64_t n = gettick() - starttick; 788 if (n < 8192) 789 x_one_stimes[n >> 7]++; 790 else if (n < 15*8192) 791 x_one_ltimes[n >> 13]++; 792 else 793 x_one_ltimes[0xf]++; 794 } 795 #endif 796 } 797 798 void 799 send_mondo_set(cpuset_t set) 800 { 801 uint64_t starttick, endtick, tick, lasttick; 802 uint_t largestid, smallestid; 803 int i, j; 804 int ncpuids = 0; 805 int shipped = 0; 806 int retries = 0; 807 struct machcpu *mcpup = &(CPU->cpu_m); 808 809 ASSERT(!CPUSET_ISNULL(set)); 810 CPUSET_BOUNDS(set, smallestid, largestid); 811 if (smallestid == CPUSET_NOTINSET) { 812 return; 813 } 814 815 starttick = lasttick = gettick(); 816 endtick = starttick + xc_tick_limit; 817 818 /* 819 * Assemble CPU list for HV argument. We already know 820 * smallestid and largestid are members of set. 821 */ 822 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 823 if (largestid != smallestid) { 824 for (i = smallestid+1; i <= largestid-1; i++) { 825 if (CPU_IN_SET(set, i)) { 826 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 827 } 828 } 829 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 830 } 831 832 do { 833 int stat; 834 835 stat = shipit(ncpuids, mcpup->cpu_list_ra); 836 if (stat == H_EOK) { 837 shipped += ncpuids; 838 break; 839 } 840 841 /* 842 * Either not all CPU mondos were sent, or an 843 * error occurred. CPUs that were sent mondos 844 * have their CPU IDs overwritten in cpu_list. 845 * Reset cpu_list so that it only holds those 846 * CPU IDs that still need to be sent. 847 */ 848 for (i = 0, j = 0; i < ncpuids; i++) { 849 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 850 shipped++; 851 } else { 852 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 853 } 854 } 855 ncpuids = j; 856 857 /* 858 * Now handle possible errors returned 859 * from hypervisor. 860 */ 861 if (stat == H_ECPUERROR) { 862 int errorcpus; 863 864 if (!panic_quiesce) 865 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 866 867 /* 868 * Remove any CPUs in the error state from 869 * cpu_list. At this point cpu_list only 870 * contains the CPU IDs for mondos not 871 * succesfully sent. 872 */ 873 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 874 uint64_t state = CPU_STATE_INVALID; 875 uint16_t id = mcpup->cpu_list[i]; 876 877 (void) hv_cpu_state(id, &state); 878 if (state == CPU_STATE_ERROR) { 879 if (!panic_quiesce) 880 cmn_err(CE_CONT, "0x%x ", id); 881 errorcpus++; 882 } else if (errorcpus > 0) { 883 mcpup->cpu_list[i - errorcpus] = 884 mcpup->cpu_list[i]; 885 } 886 } 887 ncpuids -= errorcpus; 888 889 if (!panic_quiesce) { 890 if (errorcpus == 0) { 891 cmn_err(CE_CONT, "<none> have been " 892 "marked in error\n"); 893 cmn_err(CE_PANIC, "send_mondo_set: " 894 "hypervisor returned " 895 "H_ECPUERROR but no CPU in " 896 "cpu_list in error state"); 897 } else { 898 cmn_err(CE_CONT, "have been marked in " 899 "error\n"); 900 cmn_err(CE_PANIC, "send_mondo_set: " 901 "CPU(s) in error state"); 902 } 903 } 904 } else if (stat != H_EWOULDBLOCK) { 905 if (panic_quiesce) 906 return; 907 /* 908 * For all other errors, panic. 909 */ 910 cmn_err(CE_CONT, "send_mondo_set: unexpected " 911 "hypervisor error 0x%x while sending a " 912 "mondo to cpuid(s):", stat); 913 for (i = 0; i < ncpuids; i++) { 914 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 915 } 916 cmn_err(CE_CONT, "\n"); 917 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 918 "hypervisor error"); 919 } 920 921 tick = gettick(); 922 /* 923 * If there is a big jump between the current tick 924 * count and lasttick, we have probably hit a break 925 * point. Adjust endtick accordingly to avoid panic. 926 */ 927 if (tick > (lasttick + xc_tick_jump_limit)) 928 endtick += (tick - lasttick); 929 lasttick = tick; 930 if (tick > endtick) { 931 if (panic_quiesce) 932 return; 933 cmn_err(CE_CONT, "send mondo timeout " 934 "[retries: 0x%x] cpuids: ", retries); 935 for (i = 0; i < ncpuids; i++) 936 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 937 cmn_err(CE_CONT, "\n"); 938 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 939 } 940 941 while (gettick() < (tick + sys_clock_mhz)) 942 ; 943 retries++; 944 } while (ncpuids > 0); 945 946 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 947 948 #ifdef SEND_MONDO_STATS 949 { 950 uint64_t n = gettick() - starttick; 951 if (n < 8192) 952 x_set_stimes[n >> 7]++; 953 else if (n < 15*8192) 954 x_set_ltimes[n >> 13]++; 955 else 956 x_set_ltimes[0xf]++; 957 } 958 x_set_cpus[shipped]++; 959 #endif 960 } 961 962 void 963 syncfpu(void) 964 { 965 } 966 967 void 968 sticksync_slave(void) 969 { 970 suspend_sync_tick_stick_npt(); 971 } 972 973 void 974 sticksync_master(void) 975 {} 976 977 void 978 cpu_init_cache_scrub(void) 979 { 980 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 981 } 982 983 int 984 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 985 { 986 int ret, watched; 987 988 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 989 ret = dtrace_blksuword32(addr, data, 0); 990 if (watched) 991 watch_enable_addr((void *)addr, 4, S_WRITE); 992 993 return (ret); 994 } 995 996 int 997 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 998 { 999 if (suword32((void *)addr, *data) == -1) 1000 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 1001 dtrace_flush_sec(addr); 1002 1003 return (0); 1004 } 1005 1006 /*ARGSUSED*/ 1007 void 1008 cpu_faulted_enter(struct cpu *cp) 1009 { 1010 } 1011 1012 /*ARGSUSED*/ 1013 void 1014 cpu_faulted_exit(struct cpu *cp) 1015 { 1016 } 1017 1018 static int 1019 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 1020 { 1021 int rc, i; 1022 1023 for (rc = 0, i = 0; i < NCPU; i++) { 1024 if (CPU_IN_SET(cpu_ready_set, i)) 1025 rc += cb(i, arg); 1026 } 1027 1028 return (rc); 1029 } 1030 1031 /* 1032 * Sends a cross-call to a specified processor. The caller assumes 1033 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1034 * debugging). 1035 */ 1036 static int 1037 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1038 uintptr_t arg2) 1039 { 1040 int stat; 1041 struct machcpu *mcpup; 1042 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1043 1044 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1045 1046 /* 1047 * if (idsr_busy()) 1048 * return (KDI_XC_RES_ERR); 1049 */ 1050 1051 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1052 1053 mcpup->cpu_list[0] = (uint16_t)cpuid; 1054 stat = shipit(1, mcpup->cpu_list_ra); 1055 1056 if (stat == 0) 1057 return (KDI_XC_RES_OK); 1058 else 1059 return (KDI_XC_RES_NACK); 1060 } 1061 1062 static void 1063 kdi_tickwait(clock_t nticks) 1064 { 1065 clock_t endtick = gettick() + nticks; 1066 1067 while (gettick() < endtick) 1068 ; 1069 } 1070 1071 static void 1072 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1073 int icache_linesize) 1074 { 1075 kdi_dcache_size = dcache_size; 1076 kdi_dcache_linesize = dcache_linesize; 1077 kdi_icache_size = icache_size; 1078 kdi_icache_linesize = icache_linesize; 1079 } 1080 1081 /* used directly by kdi_read/write_phys */ 1082 void 1083 kdi_flush_caches(void) 1084 { 1085 /* Not required on sun4v architecture. */ 1086 } 1087 1088 /*ARGSUSED*/ 1089 int 1090 kdi_get_stick(uint64_t *stickp) 1091 { 1092 return (-1); 1093 } 1094 1095 void 1096 cpu_kdi_init(kdi_t *kdi) 1097 { 1098 kdi->kdi_flush_caches = kdi_flush_caches; 1099 kdi->mkdi_cpu_init = kdi_cpu_init; 1100 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1101 kdi->mkdi_xc_one = kdi_xc_one; 1102 kdi->mkdi_tickwait = kdi_tickwait; 1103 kdi->mkdi_get_stick = kdi_get_stick; 1104 } 1105 1106 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1107 static uint64_t soft_state_saved_state = (uint64_t)-1; 1108 static int soft_state_initialized = 0; 1109 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1110 static hsvc_info_t soft_state_hsvc = { 1111 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1112 1113 1114 static void 1115 sun4v_system_claim(void) 1116 { 1117 lbolt_debug_entry(); 1118 1119 watchdog_suspend(); 1120 kldc_debug_enter(); 1121 /* 1122 * For "mdb -K", set soft state to debugging 1123 */ 1124 if (soft_state_saved_state == -1) { 1125 mach_get_soft_state(&soft_state_saved_state, 1126 &SOLARIS_SOFT_STATE_SAVED_MSG); 1127 } 1128 /* 1129 * check again as the read above may or may not have worked and if 1130 * it didn't then soft state will still be -1 1131 */ 1132 if (soft_state_saved_state != -1) { 1133 mach_set_soft_state(SIS_TRANSITION, 1134 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1135 } 1136 } 1137 1138 static void 1139 sun4v_system_release(void) 1140 { 1141 watchdog_resume(); 1142 /* 1143 * For "mdb -K", set soft_state state back to original state on exit 1144 */ 1145 if (soft_state_saved_state != -1) { 1146 mach_set_soft_state(soft_state_saved_state, 1147 &SOLARIS_SOFT_STATE_SAVED_MSG); 1148 soft_state_saved_state = -1; 1149 } 1150 1151 lbolt_debug_return(); 1152 } 1153 1154 void 1155 plat_kdi_init(kdi_t *kdi) 1156 { 1157 kdi->pkdi_system_claim = sun4v_system_claim; 1158 kdi->pkdi_system_release = sun4v_system_release; 1159 } 1160 1161 /* 1162 * Routine to return memory information associated 1163 * with a physical address and syndrome. 1164 */ 1165 /* ARGSUSED */ 1166 int 1167 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1168 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1169 int *segsp, int *banksp, int *mcidp) 1170 { 1171 return (ENOTSUP); 1172 } 1173 1174 /* 1175 * This routine returns the size of the kernel's FRU name buffer. 1176 */ 1177 size_t 1178 cpu_get_name_bufsize() 1179 { 1180 return (UNUM_NAMLEN); 1181 } 1182 1183 /* 1184 * This routine is a more generic interface to cpu_get_mem_unum(), 1185 * that may be used by other modules (e.g. mm). 1186 */ 1187 /* ARGSUSED */ 1188 int 1189 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1190 char *buf, int buflen, int *lenp) 1191 { 1192 return (ENOTSUP); 1193 } 1194 1195 /* ARGSUSED */ 1196 int 1197 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1198 { 1199 return (ENOTSUP); 1200 } 1201 1202 /* ARGSUSED */ 1203 int 1204 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1205 { 1206 return (ENOTSUP); 1207 } 1208 1209 /* 1210 * xt_sync - wait for previous x-traps to finish 1211 */ 1212 void 1213 xt_sync(cpuset_t cpuset) 1214 { 1215 union { 1216 uint8_t volatile byte[NCPU]; 1217 uint64_t volatile xword[NCPU / 8]; 1218 } cpu_sync; 1219 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1220 uint_t largestid, smallestid; 1221 int i, j; 1222 1223 kpreempt_disable(); 1224 CPUSET_DEL(cpuset, CPU->cpu_id); 1225 CPUSET_AND(cpuset, cpu_ready_set); 1226 1227 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1228 if (smallestid == CPUSET_NOTINSET) 1229 goto out; 1230 1231 /* 1232 * Sun4v uses a queue for receiving mondos. Successful 1233 * transmission of a mondo only indicates that the mondo 1234 * has been written into the queue. 1235 * 1236 * We use an array of bytes to let each cpu to signal back 1237 * to the cross trap sender that the cross trap has been 1238 * executed. Set the byte to 1 before sending the cross trap 1239 * and wait until other cpus reset it to 0. 1240 */ 1241 bzero((void *)&cpu_sync, NCPU); 1242 cpu_sync.byte[smallestid] = 1; 1243 if (largestid != smallestid) { 1244 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1245 if (CPU_IN_SET(cpuset, i)) 1246 cpu_sync.byte[i] = 1; 1247 cpu_sync.byte[largestid] = 1; 1248 } 1249 1250 /* 1251 * To help debug xt_sync panic, each mondo is uniquely identified 1252 * by passing the tick value, traptrace_id as the second mondo 1253 * argument to xt_some which is logged in CPU's mondo queue, 1254 * traptrace buffer and the panic message. 1255 */ 1256 traptrace_id = gettick(); 1257 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1258 (uint64_t)cpu_sync.byte, traptrace_id); 1259 1260 starttick = lasttick = gettick(); 1261 endtick = starttick + xc_sync_tick_limit; 1262 1263 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1264 while (cpu_sync.xword[i] != 0) { 1265 tick = gettick(); 1266 /* 1267 * If there is a big jump between the current tick 1268 * count and lasttick, we have probably hit a break 1269 * point. Adjust endtick accordingly to avoid panic. 1270 */ 1271 if (tick > (lasttick + xc_tick_jump_limit)) { 1272 endtick += (tick - lasttick); 1273 } 1274 lasttick = tick; 1275 if (tick > endtick) { 1276 if (panic_quiesce) 1277 goto out; 1278 cmn_err(CE_CONT, "Cross trap sync timeout: " 1279 "at cpu_sync.xword[%d]: 0x%lx " 1280 "cpu_sync.byte: 0x%lx " 1281 "starttick: 0x%lx endtick: 0x%lx " 1282 "traptrace_id = 0x%lx\n", 1283 i, cpu_sync.xword[i], 1284 (uint64_t)cpu_sync.byte, 1285 starttick, endtick, traptrace_id); 1286 cmn_err(CE_CONT, "CPUIDs:"); 1287 for (j = (i * 8); j <= largestid; j++) { 1288 if (cpu_sync.byte[j] != 0) 1289 cmn_err(CE_CONT, " 0x%x", j); 1290 } 1291 cmn_err(CE_PANIC, "xt_sync: timeout"); 1292 } 1293 } 1294 } 1295 1296 out: 1297 kpreempt_enable(); 1298 } 1299 1300 #define QFACTOR 200 1301 /* 1302 * Recalculate the values of the cross-call timeout variables based 1303 * on the value of the 'inter-cpu-latency' property of the platform node. 1304 * The property sets the number of nanosec to wait for a cross-call 1305 * to be acknowledged. Other timeout variables are derived from it. 1306 * 1307 * N.B. This implementation is aware of the internals of xc_init() 1308 * and updates many of the same variables. 1309 */ 1310 void 1311 recalc_xc_timeouts(void) 1312 { 1313 typedef union { 1314 uint64_t whole; 1315 struct { 1316 uint_t high; 1317 uint_t low; 1318 } half; 1319 } u_number; 1320 1321 /* See x_call.c for descriptions of these extern variables. */ 1322 extern uint64_t xc_tick_limit_scale; 1323 extern uint64_t xc_mondo_time_limit; 1324 extern uint64_t xc_func_time_limit; 1325 extern uint64_t xc_scale; 1326 extern uint64_t xc_mondo_multiplier; 1327 extern uint_t nsec_shift; 1328 1329 /* Temp versions of the target variables */ 1330 uint64_t tick_limit; 1331 uint64_t tick_jump_limit; 1332 uint64_t mondo_time_limit; 1333 uint64_t func_time_limit; 1334 uint64_t scale; 1335 1336 uint64_t latency; /* nanoseconds */ 1337 uint64_t maxfreq; 1338 uint64_t tick_limit_save = xc_tick_limit; 1339 uint64_t sync_tick_limit_save = xc_sync_tick_limit; 1340 uint_t tick_scale; 1341 uint64_t top; 1342 uint64_t bottom; 1343 u_number tk; 1344 1345 md_t *mdp; 1346 int nrnode; 1347 mde_cookie_t *platlist; 1348 1349 /* 1350 * Look up the 'inter-cpu-latency' (optional) property in the 1351 * platform node of the MD. The units are nanoseconds. 1352 */ 1353 if ((mdp = md_get_handle()) == NULL) { 1354 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1355 "Unable to initialize machine description"); 1356 return; 1357 } 1358 1359 nrnode = md_alloc_scan_dag(mdp, 1360 md_root_node(mdp), "platform", "fwd", &platlist); 1361 1362 ASSERT(nrnode == 1); 1363 if (nrnode < 1) { 1364 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1365 goto done; 1366 } 1367 if (md_get_prop_val(mdp, platlist[0], 1368 "inter-cpu-latency", &latency) == -1) 1369 goto done; 1370 1371 /* 1372 * clock.h defines an assembly-language macro 1373 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1374 * units to nanoseconds. Since the inter-cpu-latency 1375 * units are nanoseconds and the xc_* variables require 1376 * %stick units, we need the inverse of that function. 1377 * The trick is to perform the calculation without 1378 * floating point, but also without integer truncation 1379 * or overflow. To understand the calculation below, 1380 * please read the discussion of the macro in clock.h. 1381 * Since this new code will be invoked infrequently, 1382 * we can afford to implement it in C. 1383 * 1384 * tick_scale is the reciprocal of nsec_scale which is 1385 * calculated at startup in setcpudelay(). The calc 1386 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1387 * except we use tick_scale instead of nsec_scale and 1388 * C instead of assembler. 1389 */ 1390 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1391 << (32 - nsec_shift)) / NANOSEC); 1392 1393 tk.whole = latency; 1394 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1395 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1396 tick_limit = top + bottom; 1397 1398 /* 1399 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1400 * and used it to derive some of the timeout variables that we 1401 * recalculate below. We can back into the original value by 1402 * using the inverse of one of those calculations. 1403 */ 1404 maxfreq = xc_mondo_time_limit / xc_scale; 1405 1406 /* 1407 * Don't allow the new timeout (xc_tick_limit) to fall below 1408 * the system tick frequency (stick). Allowing the timeout 1409 * to be set more tightly than this empirically determined 1410 * value may cause panics. 1411 */ 1412 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1413 1414 tick_jump_limit = tick_limit / 32; 1415 tick_limit *= xc_tick_limit_scale; 1416 1417 /* 1418 * Recalculate xc_scale since it is used in a callback function 1419 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1420 * Make the change in xc_scale proportional to the change in 1421 * xc_tick_limit. 1422 */ 1423 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1424 if (scale == 0) 1425 scale = 1; 1426 1427 mondo_time_limit = maxfreq * scale; 1428 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1429 1430 /* 1431 * Don't modify the timeouts if nothing has changed. Else, 1432 * stuff the variables with the freshly calculated (temp) 1433 * variables. This minimizes the window where the set of 1434 * values could be inconsistent. 1435 */ 1436 if (tick_limit != xc_tick_limit) { 1437 xc_tick_limit = tick_limit; 1438 xc_tick_jump_limit = tick_jump_limit; 1439 xc_scale = scale; 1440 xc_mondo_time_limit = mondo_time_limit; 1441 xc_func_time_limit = func_time_limit; 1442 } 1443 1444 done: 1445 /* 1446 * Increase the timeout limit for xt_sync() cross calls. 1447 */ 1448 xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR); 1449 xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ? 1450 xc_tick_limit : xc_sync_tick_limit; 1451 1452 /* 1453 * Force the new values to be used for future cross calls. 1454 * This is necessary only when we increase the timeouts. 1455 */ 1456 if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit > 1457 sync_tick_limit_save)) { 1458 cpuset_t cpuset = cpu_ready_set; 1459 xt_sync(cpuset); 1460 } 1461 1462 if (nrnode > 0) 1463 md_free_scan_dag(mdp, &platlist); 1464 (void) md_fini_handle(mdp); 1465 } 1466 1467 void 1468 mach_soft_state_init(void) 1469 { 1470 int i; 1471 uint64_t ra; 1472 1473 /* 1474 * Try to register soft_state api. If it fails, soft_state api has not 1475 * been implemented in the firmware, so do not bother to setup 1476 * soft_state in the kernel. 1477 */ 1478 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1479 return; 1480 } 1481 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1482 ASSERT(strlen((const char *)(void *) 1483 soft_state_message_strings + i) < SSM_SIZE); 1484 if ((ra = va_to_pa( 1485 (void *)(soft_state_message_strings + i))) == -1ll) { 1486 return; 1487 } 1488 soft_state_message_ra[i] = ra; 1489 } 1490 /* 1491 * Tell OBP that we are supporting Guest State 1492 */ 1493 prom_sun4v_soft_state_supported(); 1494 soft_state_initialized = 1; 1495 } 1496 1497 void 1498 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1499 { 1500 uint64_t rc; 1501 1502 if (soft_state_initialized && *string_ra) { 1503 rc = hv_soft_state_set(state, *string_ra); 1504 if (rc != H_EOK) { 1505 cmn_err(CE_WARN, 1506 "hv_soft_state_set returned %ld\n", rc); 1507 } 1508 } 1509 } 1510 1511 void 1512 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1513 { 1514 uint64_t rc; 1515 1516 if (soft_state_initialized && *string_ra) { 1517 rc = hv_soft_state_get(*string_ra, state); 1518 if (rc != H_EOK) { 1519 cmn_err(CE_WARN, 1520 "hv_soft_state_get returned %ld\n", rc); 1521 *state = -1; 1522 } 1523 } 1524 } 1525