1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/machsystm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/cpuvar.h> 32 #include <sys/async.h> 33 #include <sys/ontrap.h> 34 #include <sys/ddifm.h> 35 #include <sys/hypervisor_api.h> 36 #include <sys/errorq.h> 37 #include <sys/promif.h> 38 #include <sys/prom_plat.h> 39 #include <sys/x_call.h> 40 #include <sys/error.h> 41 #include <sys/fm/util.h> 42 #include <sys/ivintr.h> 43 #include <sys/archsystm.h> 44 45 #define MAX_CE_FLTS 10 46 #define MAX_ASYNC_FLTS 6 47 48 errorq_t *ue_queue; /* queue of uncorrectable errors */ 49 errorq_t *ce_queue; /* queue of correctable errors */ 50 51 /* 52 * Being used by memory test driver. 53 * ce_verbose_memory - covers CEs in DIMMs 54 * ce_verbose_other - covers "others" (ecache, IO, etc.) 55 * 56 * If the value is 0, nothing is logged. 57 * If the value is 1, the error is logged to the log file, but not console. 58 * If the value is 2, the error is logged to the log file and console. 59 */ 60 int ce_verbose_memory = 1; 61 int ce_verbose_other = 1; 62 63 int ce_show_data = 0; 64 int ce_debug = 0; 65 int ue_debug = 0; 66 int reset_debug = 0; 67 68 /* 69 * Tunables for controlling the handling of asynchronous faults (AFTs). Setting 70 * these to non-default values on a non-DEBUG kernel is NOT supported. 71 */ 72 int aft_verbose = 0; /* log AFT messages > 1 to log only */ 73 int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ 74 int aft_testfatal = 0; /* force all AFTs to panic immediately */ 75 76 /* 77 * Used for vbsc hostshutdown (power-off button) 78 */ 79 int err_shutdown_triggered = 0; /* only once */ 80 uint64_t err_shutdown_inum = 0; /* used to pull the trigger */ 81 82 /* 83 * Used to print NRE/RE via system variable or kmdb 84 */ 85 int printerrh = 0; /* see /etc/system */ 86 static void errh_er_print(errh_er_t *, const char *); 87 kmutex_t errh_print_lock; 88 89 /* 90 * Defined in bus_func.c but initialised in error_init 91 */ 92 extern kmutex_t bfd_lock; 93 94 static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ 95 96 static void cpu_queue_one_event(errh_async_flt_t *); 97 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); 98 static void errh_page_retire(errh_async_flt_t *, uchar_t); 99 static int errh_error_protected(struct regs *, struct async_flt *, int *); 100 static void errh_rq_full(struct async_flt *); 101 static void ue_drain(void *, struct async_flt *, errorq_elem_t *); 102 static void ce_drain(void *, struct async_flt *, errorq_elem_t *); 103 static void errh_handle_attr(errh_async_flt_t *); 104 static void errh_handle_asr(errh_async_flt_t *); 105 106 /*ARGSUSED*/ 107 void 108 process_resumable_error(struct regs *rp, uint32_t head_offset, 109 uint32_t tail_offset) 110 { 111 struct machcpu *mcpup; 112 struct async_flt *aflt; 113 errh_async_flt_t errh_flt; 114 errh_er_t *head_va; 115 116 mcpup = &(CPU->cpu_m); 117 118 while (head_offset != tail_offset) { 119 /* kernel buffer starts right after the resumable queue */ 120 head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + 121 CPU_RQ_SIZE); 122 /* Copy the error report to local buffer */ 123 bzero(&errh_flt, sizeof (errh_async_flt_t)); 124 bcopy((char *)head_va, &(errh_flt.errh_er), 125 sizeof (errh_er_t)); 126 127 mcpup->cpu_rq_lastre = head_va; 128 if (printerrh) 129 errh_er_print(&errh_flt.errh_er, "RQ"); 130 131 /* Increment the queue head */ 132 head_offset += Q_ENTRY_SIZE; 133 /* Wrap around */ 134 head_offset &= (CPU_RQ_SIZE - 1); 135 136 /* set error handle to zero so it can hold new error report */ 137 head_va->ehdl = 0; 138 139 switch (errh_flt.errh_er.desc) { 140 case ERRH_DESC_UCOR_RE: 141 /* 142 * Check error attribute, handle individual error 143 * if it is needed. 144 */ 145 errh_handle_attr(&errh_flt); 146 break; 147 148 case ERRH_DESC_WARN_RE: 149 /* 150 * Power-off requested, but handle it one time only. 151 */ 152 if (!err_shutdown_triggered) { 153 setsoftint(err_shutdown_inum); 154 ++err_shutdown_triggered; 155 } 156 continue; 157 158 default: 159 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 160 " invalid in resumable error handler", 161 (long long) errh_flt.errh_er.desc); 162 continue; 163 } 164 165 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 166 aflt->flt_id = gethrtime(); 167 aflt->flt_bus_id = getprocessorid(); 168 aflt->flt_class = CPU_FAULT; 169 aflt->flt_prot = AFLT_PROT_NONE; 170 aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) 171 >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); 172 173 if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) 174 /* If it is an error on other cpu */ 175 aflt->flt_panic = 1; 176 else 177 aflt->flt_panic = 0; 178 179 /* 180 * Handle resumable queue full case. 181 */ 182 if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { 183 (void) errh_rq_full(aflt); 184 } 185 186 /* 187 * Queue the error on ce or ue queue depend on flt_panic. 188 * Even if flt_panic is set, the code still keep processing 189 * the rest element on rq until the panic starts. 190 */ 191 (void) cpu_queue_one_event(&errh_flt); 192 193 /* 194 * Panic here if aflt->flt_panic has been set. 195 * Enqueued errors will be logged as part of the panic flow. 196 */ 197 if (aflt->flt_panic) { 198 fm_panic("Unrecoverable error on another CPU"); 199 } 200 } 201 } 202 203 void 204 process_nonresumable_error(struct regs *rp, uint64_t flags, 205 uint32_t head_offset, uint32_t tail_offset) 206 { 207 struct machcpu *mcpup; 208 struct async_flt *aflt; 209 errh_async_flt_t errh_flt; 210 errh_er_t *head_va; 211 int trampolined = 0; 212 int expected = DDI_FM_ERR_UNEXPECTED; 213 uint64_t exec_mode; 214 uint8_t u_spill_fill; 215 216 mcpup = &(CPU->cpu_m); 217 218 while (head_offset != tail_offset) { 219 /* kernel buffer starts right after the nonresumable queue */ 220 head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + 221 CPU_NRQ_SIZE); 222 223 /* Copy the error report to local buffer */ 224 bzero(&errh_flt, sizeof (errh_async_flt_t)); 225 226 bcopy((char *)head_va, &(errh_flt.errh_er), 227 sizeof (errh_er_t)); 228 229 mcpup->cpu_nrq_lastnre = head_va; 230 if (printerrh) 231 errh_er_print(&errh_flt.errh_er, "NRQ"); 232 233 /* Increment the queue head */ 234 head_offset += Q_ENTRY_SIZE; 235 /* Wrap around */ 236 head_offset &= (CPU_NRQ_SIZE - 1); 237 238 /* set error handle to zero so it can hold new error report */ 239 head_va->ehdl = 0; 240 241 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 242 243 trampolined = 0; 244 245 if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) 246 aflt->flt_class = BUS_FAULT; 247 else 248 aflt->flt_class = CPU_FAULT; 249 250 aflt->flt_id = gethrtime(); 251 aflt->flt_bus_id = getprocessorid(); 252 aflt->flt_pc = (caddr_t)rp->r_pc; 253 exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) 254 >> ERRH_MODE_SHIFT; 255 aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || 256 exec_mode == ERRH_MODE_UNKNOWN); 257 aflt->flt_prot = AFLT_PROT_NONE; 258 aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK); 259 aflt->flt_panic = ((aflt->flt_tl != 0) || 260 (aft_testfatal != 0)); 261 262 /* 263 * For the first error packet on the queue, check if it 264 * happened in user fill/spill trap. 265 */ 266 if (flags & ERRH_U_SPILL_FILL) { 267 u_spill_fill = 1; 268 /* clear the user fill/spill flag in flags */ 269 flags = (uint64_t)aflt->flt_tl; 270 } else 271 u_spill_fill = 0; 272 273 switch (errh_flt.errh_er.desc) { 274 case ERRH_DESC_PR_NRE: 275 if (u_spill_fill) { 276 aflt->flt_panic = 0; 277 break; 278 } 279 /* 280 * Fall through, precise fault also need to check 281 * to see if it was protected. 282 */ 283 /*FALLTHRU*/ 284 285 case ERRH_DESC_DEF_NRE: 286 /* 287 * If the trap occurred in privileged mode at TL=0, 288 * we need to check to see if we were executing 289 * in kernel under on_trap() or t_lofault 290 * protection. If so, and if it was a PIO or MEM 291 * error, then modify the saved registers so that 292 * we return from the trap to the appropriate 293 * trampoline routine. 294 */ 295 if (aflt->flt_priv == 1 && aflt->flt_tl == 0 && 296 ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) || 297 (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) { 298 trampolined = 299 errh_error_protected(rp, aflt, &expected); 300 } 301 302 if (!aflt->flt_priv || aflt->flt_prot == 303 AFLT_PROT_COPY) { 304 aflt->flt_panic |= aft_panic; 305 } else if (!trampolined && 306 (aflt->flt_class != BUS_FAULT)) { 307 aflt->flt_panic = 1; 308 } 309 310 /* 311 * Check error attribute, handle individual error 312 * if it is needed. 313 */ 314 errh_handle_attr(&errh_flt); 315 316 /* 317 * If PIO error, we need to query the bus nexus 318 * for fatal errors. 319 */ 320 if (aflt->flt_class == BUS_FAULT) { 321 aflt->flt_addr = errh_flt.errh_er.ra; 322 errh_cpu_run_bus_error_handlers(aflt, 323 expected); 324 } 325 326 break; 327 328 case ERRH_DESC_USER_DCORE: 329 /* 330 * User generated panic. Call panic directly 331 * since there are no FMA e-reports to 332 * display. 333 */ 334 335 panic("Panic - Generated at user request"); 336 337 break; 338 339 default: 340 cmn_err(CE_WARN, "Panic - Error Descriptor 0x%llx " 341 " invalid in non-resumable error handler", 342 (long long) errh_flt.errh_er.desc); 343 aflt->flt_panic = 1; 344 break; 345 } 346 347 /* 348 * Queue the error report for further processing. If 349 * flt_panic is set, code still process other errors 350 * in the queue until the panic routine stops the 351 * kernel. 352 */ 353 (void) cpu_queue_one_event(&errh_flt); 354 355 /* 356 * Panic here if aflt->flt_panic has been set. 357 * Enqueued errors will be logged as part of the panic flow. 358 */ 359 if (aflt->flt_panic) { 360 fm_panic("Unrecoverable hardware error"); 361 } 362 363 /* 364 * Call page_retire() to handle memory errors. 365 */ 366 if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) 367 errh_page_retire(&errh_flt, PR_UE); 368 369 /* 370 * If we queued an error and the it was in user mode, or 371 * protected by t_lofault, or user_spill_fill is set, we 372 * set AST flag so the queue will be drained before 373 * returning to user mode. 374 */ 375 if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY || 376 u_spill_fill) { 377 int pcb_flag = 0; 378 379 if (aflt->flt_class == CPU_FAULT) 380 pcb_flag |= ASYNC_HWERR; 381 else if (aflt->flt_class == BUS_FAULT) 382 pcb_flag |= ASYNC_BERR; 383 384 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 385 aston(curthread); 386 } 387 } 388 } 389 390 /* 391 * For PIO errors, this routine calls nexus driver's error 392 * callback routines. If the callback routine returns fatal, and 393 * we are in kernel or unknow mode without any error protection, 394 * we need to turn on the panic flag. 395 */ 396 void 397 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 398 { 399 int status; 400 ddi_fm_error_t de; 401 402 bzero(&de, sizeof (ddi_fm_error_t)); 403 404 de.fme_version = DDI_FME_VERSION; 405 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 406 de.fme_flag = expected; 407 de.fme_bus_specific = (void *)aflt->flt_addr; 408 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 409 410 /* 411 * If error is protected, it will jump to proper routine 412 * to handle the handle; if it is in user level, we just 413 * kill the user process; if the driver thinks the error is 414 * not fatal, we can drive on. If none of above are true, 415 * we panic 416 */ 417 if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && 418 (status == DDI_FM_FATAL)) 419 aflt->flt_panic = 1; 420 } 421 422 /* 423 * This routine checks to see if we are under any error protection when 424 * the error happens. If we are under error protection, we unwind to 425 * the protection and indicate fault. 426 */ 427 static int 428 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) 429 { 430 int trampolined = 0; 431 ddi_acc_hdl_t *hp; 432 433 if (curthread->t_ontrap != NULL) { 434 on_trap_data_t *otp = curthread->t_ontrap; 435 436 if (otp->ot_prot & OT_DATA_EC) { 437 aflt->flt_prot = AFLT_PROT_EC; 438 otp->ot_trap |= OT_DATA_EC; 439 rp->r_pc = otp->ot_trampoline; 440 rp->r_npc = rp->r_pc +4; 441 trampolined = 1; 442 } 443 444 if (otp->ot_prot & OT_DATA_ACCESS) { 445 aflt->flt_prot = AFLT_PROT_ACCESS; 446 otp->ot_trap |= OT_DATA_ACCESS; 447 rp->r_pc = otp->ot_trampoline; 448 rp->r_npc = rp->r_pc + 4; 449 trampolined = 1; 450 /* 451 * for peek and caut_gets 452 * errors are expected 453 */ 454 hp = (ddi_acc_hdl_t *)otp->ot_handle; 455 if (!hp) 456 *expected = DDI_FM_ERR_PEEK; 457 else if (hp->ah_acc.devacc_attr_access == 458 DDI_CAUTIOUS_ACC) 459 *expected = DDI_FM_ERR_EXPECTED; 460 } 461 } else if (curthread->t_lofault) { 462 aflt->flt_prot = AFLT_PROT_COPY; 463 rp->r_g1 = EFAULT; 464 rp->r_pc = curthread->t_lofault; 465 rp->r_npc = rp->r_pc + 4; 466 trampolined = 1; 467 } 468 469 return (trampolined); 470 } 471 472 /* 473 * Queue one event. 474 */ 475 static void 476 cpu_queue_one_event(errh_async_flt_t *errh_fltp) 477 { 478 struct async_flt *aflt = (struct async_flt *)errh_fltp; 479 errorq_t *eqp; 480 481 if (aflt->flt_panic) 482 eqp = ue_queue; 483 else 484 eqp = ce_queue; 485 486 errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), 487 aflt->flt_panic); 488 } 489 490 /* 491 * The cpu_async_log_err() function is called by the ce/ue_drain() function to 492 * handle logging for CPU events that are dequeued. As such, it can be invoked 493 * from softint context, from AST processing in the trap() flow, or from the 494 * panic flow. We decode the CPU-specific data, and log appropriate messages. 495 */ 496 void 497 cpu_async_log_err(void *flt) 498 { 499 errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; 500 errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; 501 502 switch (errh_erp->desc) { 503 case ERRH_DESC_UCOR_RE: 504 if (errh_erp->attr & ERRH_ATTR_MEM) { 505 /* 506 * Turn on the PR_UE flag. The page will be 507 * scrubbed when it is freed. 508 */ 509 errh_page_retire(errh_fltp, PR_UE); 510 } 511 512 break; 513 514 case ERRH_DESC_PR_NRE: 515 case ERRH_DESC_DEF_NRE: 516 if (errh_erp->attr & ERRH_ATTR_MEM) { 517 /* 518 * For non-resumable memory error, retire 519 * the page here. 520 */ 521 errh_page_retire(errh_fltp, PR_UE); 522 523 /* 524 * If we are going to panic, scrub the page first 525 */ 526 if (errh_fltp->cmn_asyncflt.flt_panic) 527 mem_scrub(errh_fltp->errh_er.ra, 528 errh_fltp->errh_er.sz); 529 } 530 break; 531 532 default: 533 break; 534 } 535 } 536 537 /* 538 * Called from ce_drain(). 539 */ 540 void 541 cpu_ce_log_err(struct async_flt *aflt) 542 { 543 switch (aflt->flt_class) { 544 case CPU_FAULT: 545 cpu_async_log_err(aflt); 546 break; 547 548 case BUS_FAULT: 549 cpu_async_log_err(aflt); 550 break; 551 552 default: 553 break; 554 } 555 } 556 557 /* 558 * Called from ue_drain(). 559 */ 560 void 561 cpu_ue_log_err(struct async_flt *aflt) 562 { 563 switch (aflt->flt_class) { 564 case CPU_FAULT: 565 cpu_async_log_err(aflt); 566 break; 567 568 case BUS_FAULT: 569 cpu_async_log_err(aflt); 570 break; 571 572 default: 573 break; 574 } 575 } 576 577 /* 578 * Turn on flag on the error memory region. 579 */ 580 static void 581 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag) 582 { 583 uint64_t flt_real_addr_start = errh_fltp->errh_er.ra; 584 uint64_t flt_real_addr_end = flt_real_addr_start + 585 errh_fltp->errh_er.sz - 1; 586 int64_t current_addr; 587 588 if (errh_fltp->errh_er.sz == 0) 589 return; 590 591 for (current_addr = flt_real_addr_start; 592 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 593 (void) page_retire(current_addr, flag); 594 } 595 } 596 597 void 598 mem_scrub(uint64_t paddr, uint64_t len) 599 { 600 uint64_t pa, length, scrubbed_len; 601 602 pa = paddr; 603 length = len; 604 scrubbed_len = 0; 605 606 while (length > 0) { 607 if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK) 608 break; 609 610 pa += scrubbed_len; 611 length -= scrubbed_len; 612 } 613 } 614 615 /* 616 * Call hypervisor to flush the memory region. 617 * Both va and len must be MMU_PAGESIZE aligned. 618 * Returns the total number of bytes flushed. 619 */ 620 uint64_t 621 mem_sync(caddr_t orig_va, size_t orig_len) 622 { 623 uint64_t pa, length, flushed; 624 uint64_t chunk_len = MMU_PAGESIZE; 625 uint64_t total_flushed = 0; 626 uint64_t va, len; 627 628 if (orig_len == 0) 629 return (total_flushed); 630 631 /* align va */ 632 va = P2ALIGN_TYPED(orig_va, MMU_PAGESIZE, uint64_t); 633 /* round up len to MMU_PAGESIZE aligned */ 634 len = P2ROUNDUP_TYPED(orig_va + orig_len, MMU_PAGESIZE, uint64_t) - va; 635 636 while (len > 0) { 637 pa = va_to_pa((caddr_t)va); 638 if (pa == (uint64_t)-1) 639 return (total_flushed); 640 641 length = chunk_len; 642 flushed = 0; 643 644 while (length > 0) { 645 if (hv_mem_sync(pa, length, &flushed) != H_EOK) 646 return (total_flushed); 647 648 pa += flushed; 649 length -= flushed; 650 total_flushed += flushed; 651 } 652 653 va += chunk_len; 654 len -= chunk_len; 655 } 656 657 return (total_flushed); 658 } 659 660 /* 661 * If resumable queue is full, we need to check if any cpu is in 662 * error state. If not, we drive on. If yes, we need to panic. The 663 * hypervisor call hv_cpu_state() is being used for checking the 664 * cpu state. And reset %tick_compr in case tick-compare was lost. 665 */ 666 static void 667 errh_rq_full(struct async_flt *afltp) 668 { 669 processorid_t who; 670 uint64_t cpu_state; 671 uint64_t retval; 672 uint64_t current_tick; 673 674 current_tick = (uint64_t)gettick(); 675 tickcmpr_set(current_tick); 676 677 for (who = 0; who < NCPU; who++) 678 if (CPU_IN_SET(cpu_ready_set, who)) { 679 retval = hv_cpu_state(who, &cpu_state); 680 if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { 681 afltp->flt_panic = 1; 682 break; 683 } 684 } 685 } 686 687 /* 688 * Return processor specific async error structure 689 * size used. 690 */ 691 int 692 cpu_aflt_size(void) 693 { 694 return (sizeof (errh_async_flt_t)); 695 } 696 697 #define SZ_TO_ETRS_SHIFT 6 698 699 /* 700 * Message print out when resumable queue is overflown 701 */ 702 /*ARGSUSED*/ 703 void 704 rq_overflow(struct regs *rp, uint64_t head_offset, 705 uint64_t tail_offset) 706 { 707 rq_overflow_count++; 708 } 709 710 /* 711 * Handler to process a fatal error. This routine can be called from a 712 * softint, called from trap()'s AST handling, or called from the panic flow. 713 */ 714 /*ARGSUSED*/ 715 static void 716 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 717 { 718 cpu_ue_log_err(aflt); 719 } 720 721 /* 722 * Handler to process a correctable error. This routine can be called from a 723 * softint. We just call the CPU module's logging routine. 724 */ 725 /*ARGSUSED*/ 726 static void 727 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 728 { 729 cpu_ce_log_err(aflt); 730 } 731 732 /* 733 * Handler to process vbsc hostshutdown (power-off button). 734 */ 735 static int 736 err_shutdown_softintr() 737 { 738 cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); 739 do_shutdown(); 740 741 /* 742 * just in case do_shutdown() fails 743 */ 744 (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); 745 return (DDI_INTR_CLAIMED); 746 } 747 748 /* 749 * Allocate error queue sizes based on max_ncpus. max_ncpus is set just 750 * after ncpunode has been determined. ncpus is set in start_other_cpus 751 * which is called after error_init() but may change dynamically. 752 */ 753 void 754 error_init(void) 755 { 756 char tmp_name[MAXSYSNAME]; 757 pnode_t node; 758 size_t size = cpu_aflt_size(); 759 760 /* 761 * Initialize the correctable and uncorrectable error queues. 762 */ 763 ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, 764 MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); 765 766 ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, 767 MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); 768 769 if (ue_queue == NULL || ce_queue == NULL) 770 panic("failed to create required system error queue"); 771 772 /* 773 * Setup interrupt handler for power-off button. 774 */ 775 err_shutdown_inum = add_softintr(PIL_9, 776 (softintrfunc)err_shutdown_softintr, NULL, SOFTINT_ST); 777 778 /* 779 * Initialize the busfunc list mutex. This must be a PIL_15 spin lock 780 * because we will need to acquire it from cpu_async_error(). 781 */ 782 mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 783 784 /* Only allow one cpu at a time to dump errh errors. */ 785 mutex_init(&errh_print_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 786 787 node = prom_rootnode(); 788 if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { 789 cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); 790 return; 791 } 792 793 if (((size = prom_getproplen(node, "reset-reason")) != -1) && 794 (size <= MAXSYSNAME) && 795 (prom_getprop(node, "reset-reason", tmp_name) != -1)) { 796 if (reset_debug) { 797 cmn_err(CE_CONT, "System booting after %s\n", tmp_name); 798 } else if (strncmp(tmp_name, "FATAL", 5) == 0) { 799 cmn_err(CE_CONT, 800 "System booting after fatal error %s\n", tmp_name); 801 } 802 } 803 } 804 805 /* 806 * Nonresumable queue is full, panic here 807 */ 808 /*ARGSUSED*/ 809 void 810 nrq_overflow(struct regs *rp) 811 { 812 fm_panic("Nonresumable queue full"); 813 } 814 815 /* 816 * This is the place for special error handling for individual errors. 817 */ 818 static void 819 errh_handle_attr(errh_async_flt_t *errh_fltp) 820 { 821 switch (errh_fltp->errh_er.attr & ~ERRH_MODE_MASK) { 822 case ERRH_ATTR_CPU: 823 case ERRH_ATTR_MEM: 824 case ERRH_ATTR_PIO: 825 case ERRH_ATTR_IRF: 826 case ERRH_ATTR_FRF: 827 case ERRH_ATTR_SHUT: 828 break; 829 830 case ERRH_ATTR_ASR: 831 errh_handle_asr(errh_fltp); 832 break; 833 834 case ERRH_ATTR_ASI: 835 case ERRH_ATTR_PREG: 836 case ERRH_ATTR_RQF: 837 break; 838 839 default: 840 break; 841 } 842 } 843 844 /* 845 * Handle ASR bit set in ATTR 846 */ 847 static void 848 errh_handle_asr(errh_async_flt_t *errh_fltp) 849 { 850 uint64_t current_tick; 851 852 switch (errh_fltp->errh_er.reg) { 853 case ASR_REG_VALID | ASR_REG_TICK: 854 /* 855 * For Tick Compare Register error, it only happens when 856 * the register is being read or compared with the %tick 857 * register. Since we lost the contents of the register, 858 * we set the %tick_compr in the future. An interrupt will 859 * happen when %tick matches the value field of %tick_compr. 860 */ 861 current_tick = (uint64_t)gettick(); 862 tickcmpr_set(current_tick); 863 /* Do not panic */ 864 errh_fltp->cmn_asyncflt.flt_panic = 0; 865 break; 866 867 default: 868 break; 869 } 870 } 871 872 /* 873 * Dump the error packet 874 */ 875 /*ARGSUSED*/ 876 static void 877 errh_er_print(errh_er_t *errh_erp, const char *queue) 878 { 879 typedef union { 880 uint64_t w; 881 uint16_t s[4]; 882 } errhp_t; 883 errhp_t *p = (errhp_t *)errh_erp; 884 int i; 885 886 mutex_enter(&errh_print_lock); 887 switch (errh_erp->desc) { 888 case ERRH_DESC_UCOR_RE: 889 cmn_err(CE_CONT, "\nResumable Uncorrectable Error "); 890 break; 891 case ERRH_DESC_PR_NRE: 892 cmn_err(CE_CONT, "\nNonresumable Precise Error "); 893 break; 894 case ERRH_DESC_DEF_NRE: 895 cmn_err(CE_CONT, "\nNonresumable Deferred Error "); 896 break; 897 default: 898 cmn_err(CE_CONT, "\nError packet "); 899 break; 900 } 901 cmn_err(CE_CONT, "received on %s\n", queue); 902 903 /* 904 * Print Q_ENTRY_SIZE bytes of epacket with 8 bytes per line 905 */ 906 for (i = Q_ENTRY_SIZE; i > 0; i -= 8, ++p) { 907 cmn_err(CE_CONT, "%016lx: %04x %04x %04x %04x\n", (uint64_t)p, 908 p->s[0], p->s[1], p->s[2], p->s[3]); 909 } 910 mutex_exit(&errh_print_lock); 911 } 912