1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/machsystm.h> 31 #include <sys/cpuvar.h> 32 #include <sys/async.h> 33 #include <sys/ontrap.h> 34 #include <sys/ddifm.h> 35 #include <sys/hypervisor_api.h> 36 #include <sys/errorq.h> 37 #include <sys/promif.h> 38 #include <sys/prom_plat.h> 39 #include <sys/x_call.h> 40 #include <sys/error.h> 41 #include <sys/fm/util.h> 42 #include <sys/ivintr.h> 43 44 #define MAX_CE_FLTS 10 45 #define MAX_ASYNC_FLTS 6 46 47 errorq_t *ue_queue; /* queue of uncorrectable errors */ 48 errorq_t *ce_queue; /* queue of correctable errors */ 49 50 /* 51 * Being used by memory test driver. 52 * ce_verbose_memory - covers CEs in DIMMs 53 * ce_verbose_other - covers "others" (ecache, IO, etc.) 54 * 55 * If the value is 0, nothing is logged. 56 * If the value is 1, the error is logged to the log file, but not console. 57 * If the value is 2, the error is logged to the log file and console. 58 */ 59 int ce_verbose_memory = 1; 60 int ce_verbose_other = 1; 61 62 int ce_show_data = 0; 63 int ce_debug = 0; 64 int ue_debug = 0; 65 int reset_debug = 0; 66 67 /* 68 * Tunables for controlling the handling of asynchronous faults (AFTs). Setting 69 * these to non-default values on a non-DEBUG kernel is NOT supported. 70 */ 71 int aft_verbose = 0; /* log AFT messages > 1 to log only */ 72 int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ 73 int aft_testfatal = 0; /* force all AFTs to panic immediately */ 74 75 /* 76 * Used for vbsc hostshutdown (power-off buton) 77 */ 78 int err_shutdown_triggered = 0; /* only once */ 79 uint_t err_shutdown_inum = 0; /* used to pull the trigger */ 80 81 /* 82 * Defined in bus_func.c but initialised in error_init 83 */ 84 extern kmutex_t bfd_lock; 85 86 static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ 87 88 static void cpu_queue_one_event(errh_async_flt_t *); 89 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); 90 static void errh_page_settoxic(errh_async_flt_t *, uchar_t); 91 static void errh_page_retire(errh_async_flt_t *); 92 static int errh_error_protected(struct regs *, struct async_flt *, int *); 93 static void errh_rq_full(struct async_flt *); 94 static void ue_drain(void *, struct async_flt *, errorq_elem_t *); 95 static void ce_drain(void *, struct async_flt *, errorq_elem_t *); 96 97 /*ARGSUSED*/ 98 void 99 process_resumable_error(struct regs *rp, uint32_t head_offset, 100 uint32_t tail_offset) 101 { 102 struct machcpu *mcpup; 103 struct async_flt *aflt; 104 errh_async_flt_t errh_flt; 105 errh_er_t *head_va; 106 107 mcpup = &(CPU->cpu_m); 108 109 while (head_offset != tail_offset) { 110 /* kernel buffer starts right after the resumable queue */ 111 head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + 112 CPU_RQ_SIZE); 113 /* Copy the error report to local buffer */ 114 bzero(&errh_flt, sizeof (errh_async_flt_t)); 115 bcopy((char *)head_va, &(errh_flt.errh_er), 116 sizeof (errh_er_t)); 117 118 /* Increment the queue head */ 119 head_offset += Q_ENTRY_SIZE; 120 /* Wrap around */ 121 head_offset &= (CPU_RQ_SIZE - 1); 122 123 /* set error handle to zero so it can hold new error report */ 124 head_va->ehdl = 0; 125 126 switch (errh_flt.errh_er.desc) { 127 case ERRH_DESC_UCOR_RE: 128 break; 129 130 case ERRH_DESC_WARN_RE: 131 /* 132 * Power-off requested, but handle it one time only. 133 */ 134 if (!err_shutdown_triggered) { 135 setsoftint(err_shutdown_inum); 136 ++err_shutdown_triggered; 137 } 138 continue; 139 140 default: 141 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 142 " invalid in resumable error handler", 143 (long long) errh_flt.errh_er.desc); 144 continue; 145 } 146 147 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 148 aflt->flt_id = gethrtime(); 149 aflt->flt_bus_id = getprocessorid(); 150 aflt->flt_class = CPU_FAULT; 151 aflt->flt_prot = AFLT_PROT_NONE; 152 aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) 153 >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); 154 155 if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) 156 /* If it is an error on other cpu */ 157 aflt->flt_panic = 1; 158 else 159 aflt->flt_panic = 0; 160 161 /* 162 * Handle resumable queue full case. 163 */ 164 if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { 165 (void) errh_rq_full(aflt); 166 } 167 168 /* 169 * Queue the error on ce or ue queue depend on flt_panic. 170 * Even if flt_panic is set, the code still keep processing 171 * the rest element on rq until the panic starts. 172 */ 173 (void) cpu_queue_one_event(&errh_flt); 174 175 /* 176 * Panic here if aflt->flt_panic has been set. 177 * Enqueued errors will be logged as part of the panic flow. 178 */ 179 if (aflt->flt_panic) { 180 fm_panic("Unrecoverable error on another CPU"); 181 } 182 } 183 } 184 185 void 186 process_nonresumable_error(struct regs *rp, uint64_t tl, 187 uint32_t head_offset, uint32_t tail_offset) 188 { 189 struct machcpu *mcpup; 190 struct async_flt *aflt; 191 errh_async_flt_t errh_flt; 192 errh_er_t *head_va; 193 int trampolined = 0; 194 int expected = DDI_FM_ERR_UNEXPECTED; 195 uint64_t exec_mode; 196 197 mcpup = &(CPU->cpu_m); 198 199 while (head_offset != tail_offset) { 200 /* kernel buffer starts right after the nonresumable queue */ 201 head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + 202 CPU_NRQ_SIZE); 203 204 /* Copy the error report to local buffer */ 205 bzero(&errh_flt, sizeof (errh_async_flt_t)); 206 207 bcopy((char *)head_va, &(errh_flt.errh_er), 208 sizeof (errh_er_t)); 209 210 /* Increment the queue head */ 211 head_offset += Q_ENTRY_SIZE; 212 /* Wrap around */ 213 head_offset &= (CPU_NRQ_SIZE - 1); 214 215 /* set error handle to zero so it can hold new error report */ 216 head_va->ehdl = 0; 217 218 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 219 220 trampolined = 0; 221 222 if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) 223 aflt->flt_class = BUS_FAULT; 224 else 225 aflt->flt_class = CPU_FAULT; 226 227 aflt->flt_id = gethrtime(); 228 aflt->flt_bus_id = getprocessorid(); 229 aflt->flt_pc = (caddr_t)rp->r_pc; 230 exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) 231 >> ERRH_MODE_SHIFT; 232 aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || 233 exec_mode == ERRH_MODE_UNKNOWN); 234 aflt->flt_tl = (uchar_t)tl; 235 aflt->flt_prot = AFLT_PROT_NONE; 236 aflt->flt_panic = ((aflt->flt_tl != 0) || 237 (aft_testfatal != 0)); 238 239 switch (errh_flt.errh_er.desc) { 240 case ERRH_DESC_PR_NRE: 241 /* 242 * Fall through, precise fault also need to check 243 * to see if it was protected. 244 */ 245 246 case ERRH_DESC_DEF_NRE: 247 /* 248 * If the trap occurred in privileged mode at TL=0, 249 * we need to check to see if we were executing 250 * in kernel under on_trap() or t_lofault 251 * protection. If so, modify the saved registers 252 * so that we return from the trap to the 253 * appropriate trampoline routine. 254 */ 255 if (aflt->flt_priv == 1 && aflt->flt_tl == 0) 256 trampolined = 257 errh_error_protected(rp, aflt, &expected); 258 259 if (!aflt->flt_priv || aflt->flt_prot == 260 AFLT_PROT_COPY) { 261 aflt->flt_panic |= aft_panic; 262 } else if (!trampolined && 263 aflt->flt_class != BUS_FAULT) { 264 aflt->flt_panic = 1; 265 } 266 267 /* 268 * If PIO error, we need to query the bus nexus 269 * for fatal errors. 270 */ 271 if (aflt->flt_class == BUS_FAULT) { 272 aflt->flt_addr = errh_flt.errh_er.ra; 273 errh_cpu_run_bus_error_handlers(aflt, 274 expected); 275 } 276 277 break; 278 279 default: 280 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 281 " invalid in nonresumable error handler", 282 (long long) errh_flt.errh_er.desc); 283 continue; 284 } 285 286 /* 287 * Queue the error report for further processing. If 288 * flt_panic is set, code still process other errors 289 * in the queue until the panic routine stops the 290 * kernel. 291 */ 292 (void) cpu_queue_one_event(&errh_flt); 293 294 /* 295 * Panic here if aflt->flt_panic has been set. 296 * Enqueued errors will be logged as part of the panic flow. 297 */ 298 if (aflt->flt_panic) { 299 fm_panic("Unrecoverable hardware error"); 300 } 301 302 /* 303 * If it is a memory error, we turn on the PAGE_IS_TOXIC 304 * flag. The page will be retired later and scrubbed when 305 * it is freed. 306 */ 307 if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) 308 (void) errh_page_settoxic(&errh_flt, PAGE_IS_TOXIC); 309 310 /* 311 * If we queued an error and the it was in user mode or 312 * protected by t_lofault, 313 * set AST flag so the queue will be drained before 314 * returning to user mode. 315 */ 316 if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) { 317 int pcb_flag = 0; 318 319 if (aflt->flt_class == CPU_FAULT) 320 pcb_flag |= ASYNC_HWERR; 321 else if (aflt->flt_class == BUS_FAULT) 322 pcb_flag |= ASYNC_BERR; 323 324 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 325 aston(curthread); 326 } 327 } 328 } 329 330 /* 331 * For PIO errors, this routine calls nexus driver's error 332 * callback routines. If the callback routine returns fatal, and 333 * we are in kernel or unknow mode without any error protection, 334 * we need to turn on the panic flag. 335 */ 336 void 337 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 338 { 339 int status; 340 ddi_fm_error_t de; 341 342 bzero(&de, sizeof (ddi_fm_error_t)); 343 344 de.fme_version = DDI_FME_VERSION; 345 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 346 de.fme_flag = expected; 347 de.fme_bus_specific = (void *)aflt->flt_addr; 348 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 349 350 /* 351 * If error is protected, it will jump to proper routine 352 * to handle the handle; if it is in user level, we just 353 * kill the user process; if the driver thinks the error is 354 * not fatal, we can drive on. If none of above are true, 355 * we panic 356 */ 357 if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && 358 (status == DDI_FM_FATAL)) 359 aflt->flt_panic = 1; 360 } 361 362 /* 363 * This routine checks to see if we are under any error protection when 364 * the error happens. If we are under error protection, we unwind to 365 * the protection and indicate fault. 366 */ 367 static int 368 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) 369 { 370 int trampolined = 0; 371 ddi_acc_hdl_t *hp; 372 373 if (curthread->t_ontrap != NULL) { 374 on_trap_data_t *otp = curthread->t_ontrap; 375 376 if (otp->ot_prot & OT_DATA_EC) { 377 aflt->flt_prot = AFLT_PROT_EC; 378 otp->ot_trap |= OT_DATA_EC; 379 rp->r_pc = otp->ot_trampoline; 380 rp->r_npc = rp->r_pc +4; 381 trampolined = 1; 382 } 383 384 if (otp->ot_prot & OT_DATA_ACCESS) { 385 aflt->flt_prot = AFLT_PROT_ACCESS; 386 otp->ot_trap |= OT_DATA_ACCESS; 387 rp->r_pc = otp->ot_trampoline; 388 rp->r_npc = rp->r_pc + 4; 389 trampolined = 1; 390 /* 391 * for peek and caut_gets 392 * errors are expected 393 */ 394 hp = (ddi_acc_hdl_t *)otp->ot_handle; 395 if (!hp) 396 *expected = DDI_FM_ERR_PEEK; 397 else if (hp->ah_acc.devacc_attr_access == 398 DDI_CAUTIOUS_ACC) 399 *expected = DDI_FM_ERR_EXPECTED; 400 } 401 } else if (curthread->t_lofault) { 402 aflt->flt_prot = AFLT_PROT_COPY; 403 rp->r_g1 = EFAULT; 404 rp->r_pc = curthread->t_lofault; 405 rp->r_npc = rp->r_pc + 4; 406 trampolined = 1; 407 } 408 409 return (trampolined); 410 } 411 412 /* 413 * Queue one event. 414 */ 415 static void 416 cpu_queue_one_event(errh_async_flt_t *errh_fltp) 417 { 418 struct async_flt *aflt = (struct async_flt *)errh_fltp; 419 errorq_t *eqp; 420 421 if (aflt->flt_panic) 422 eqp = ue_queue; 423 else 424 eqp = ce_queue; 425 426 errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), 427 aflt->flt_panic); 428 } 429 430 /* 431 * The cpu_async_log_err() function is called by the ce/ue_drain() function to 432 * handle logging for CPU events that are dequeued. As such, it can be invoked 433 * from softint context, from AST processing in the trap() flow, or from the 434 * panic flow. We decode the CPU-specific data, and log appropriate messages. 435 */ 436 void 437 cpu_async_log_err(void *flt) 438 { 439 errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; 440 errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; 441 442 switch (errh_erp->desc) { 443 case ERRH_DESC_UCOR_RE: 444 if (errh_erp->attr & ERRH_ATTR_MEM) { 445 /* 446 * Turn on the PAGE_IS_TOXIC flag. The page will be 447 * scrubbed when it is freed. 448 */ 449 (void) errh_page_settoxic(errh_fltp, PAGE_IS_TOXIC); 450 } 451 452 break; 453 454 case ERRH_DESC_PR_NRE: 455 case ERRH_DESC_DEF_NRE: 456 if (errh_erp->attr & ERRH_ATTR_MEM) { 457 /* 458 * For non-resumable memory error, retire 459 * the page here. 460 */ 461 errh_page_retire(errh_fltp); 462 } 463 break; 464 465 default: 466 break; 467 } 468 } 469 470 /* 471 * Called from ce_drain(). 472 */ 473 void 474 cpu_ce_log_err(struct async_flt *aflt) 475 { 476 switch (aflt->flt_class) { 477 case CPU_FAULT: 478 cpu_async_log_err(aflt); 479 break; 480 481 case BUS_FAULT: 482 cpu_async_log_err(aflt); 483 break; 484 485 default: 486 break; 487 } 488 } 489 490 /* 491 * Called from ue_drain(). 492 */ 493 void 494 cpu_ue_log_err(struct async_flt *aflt) 495 { 496 switch (aflt->flt_class) { 497 case CPU_FAULT: 498 cpu_async_log_err(aflt); 499 break; 500 501 case BUS_FAULT: 502 cpu_async_log_err(aflt); 503 break; 504 505 default: 506 break; 507 } 508 } 509 510 /* 511 * Turn on flag on the error memory region. 512 */ 513 static void 514 errh_page_settoxic(errh_async_flt_t *errh_fltp, uchar_t flag) 515 { 516 page_t *pp; 517 uint64_t flt_real_addr_start = errh_fltp->errh_er.ra; 518 uint64_t flt_real_addr_end = flt_real_addr_start + 519 errh_fltp->errh_er.sz - 1; 520 int64_t current_addr; 521 522 if (errh_fltp->errh_er.sz == 0) 523 return; 524 525 for (current_addr = flt_real_addr_start; 526 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 527 pp = page_numtopp_nolock((pfn_t) 528 (current_addr >> MMU_PAGESHIFT)); 529 530 if (pp != NULL) { 531 page_settoxic(pp, flag); 532 } 533 } 534 } 535 536 /* 537 * Retire the page(s) indicated in the error report. 538 */ 539 static void 540 errh_page_retire(errh_async_flt_t *errh_fltp) 541 { 542 page_t *pp; 543 uint64_t flt_real_addr_start = errh_fltp->errh_er.ra; 544 uint64_t flt_real_addr_end = flt_real_addr_start + 545 errh_fltp->errh_er.sz - 1; 546 int64_t current_addr; 547 548 if (errh_fltp->errh_er.sz == 0) 549 return; 550 551 for (current_addr = flt_real_addr_start; 552 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 553 pp = page_numtopp_nolock((pfn_t) 554 (current_addr >> MMU_PAGESHIFT)); 555 556 if (pp != NULL) { 557 (void) page_retire(pp, PAGE_IS_TOXIC); 558 } 559 } 560 } 561 562 void 563 mem_scrub(uint64_t paddr, uint64_t len) 564 { 565 uint64_t pa, length, scrubbed_len; 566 uint64_t ret = H_EOK; 567 568 pa = paddr; 569 length = len; 570 scrubbed_len = 0; 571 572 while (ret == H_EOK) { 573 ret = hv_mem_scrub(pa, length, &scrubbed_len); 574 575 if (ret == H_EOK || scrubbed_len >= length) { 576 break; 577 } 578 579 pa += scrubbed_len; 580 length -= scrubbed_len; 581 } 582 } 583 584 void 585 mem_sync(caddr_t va, size_t len) 586 { 587 uint64_t pa, length, flushed; 588 uint64_t ret = H_EOK; 589 590 pa = va_to_pa((caddr_t)va); 591 592 if (pa == (uint64_t)-1) 593 return; 594 595 length = len; 596 flushed = 0; 597 598 while (ret == H_EOK) { 599 ret = hv_mem_sync(pa, length, &flushed); 600 601 if (ret == H_EOK || flushed >= length) { 602 break; 603 } 604 605 pa += flushed; 606 length -= flushed; 607 } 608 } 609 610 /* 611 * If resumable queue is full, we need to check if any cpu is in 612 * error state. If not, we drive on. If yes, we need to panic. The 613 * hypervisor call hv_cpu_state() is being used for checking the 614 * cpu state. 615 */ 616 static void 617 errh_rq_full(struct async_flt *afltp) 618 { 619 processorid_t who; 620 uint64_t cpu_state; 621 uint64_t retval; 622 623 for (who = 0; who < NCPU; who++) 624 if (CPU_IN_SET(cpu_ready_set, who)) { 625 retval = hv_cpu_state(who, &cpu_state); 626 if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { 627 afltp->flt_panic = 1; 628 break; 629 } 630 } 631 } 632 633 /* 634 * Return processor specific async error structure 635 * size used. 636 */ 637 int 638 cpu_aflt_size(void) 639 { 640 return (sizeof (errh_async_flt_t)); 641 } 642 643 #define SZ_TO_ETRS_SHIFT 6 644 645 /* 646 * Message print out when resumable queue is overflown 647 */ 648 /*ARGSUSED*/ 649 void 650 rq_overflow(struct regs *rp, uint64_t head_offset, 651 uint64_t tail_offset) 652 { 653 rq_overflow_count++; 654 } 655 656 /* 657 * Handler to process a fatal error. This routine can be called from a 658 * softint, called from trap()'s AST handling, or called from the panic flow. 659 */ 660 /*ARGSUSED*/ 661 static void 662 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 663 { 664 cpu_ue_log_err(aflt); 665 } 666 667 /* 668 * Handler to process a correctable error. This routine can be called from a 669 * softint. We just call the CPU module's logging routine. 670 */ 671 /*ARGSUSED*/ 672 static void 673 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 674 { 675 cpu_ce_log_err(aflt); 676 } 677 678 /* 679 * Handler to process vbsc hostshutdown (power-off button). 680 */ 681 static int 682 err_shutdown_softintr() 683 { 684 cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); 685 do_shutdown(); 686 687 /* 688 * just in case do_shutdown() fails 689 */ 690 (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); 691 return (DDI_INTR_CLAIMED); 692 } 693 694 /* 695 * Allocate error queue sizes based on max_ncpus. max_ncpus is set just 696 * after ncpunode has been determined. ncpus is set in start_other_cpus 697 * which is called after error_init() but may change dynamically. 698 */ 699 void 700 error_init(void) 701 { 702 char tmp_name[MAXSYSNAME]; 703 dnode_t node; 704 size_t size = cpu_aflt_size(); 705 706 /* 707 * Initialize the correctable and uncorrectable error queues. 708 */ 709 ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, 710 MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); 711 712 ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, 713 MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); 714 715 if (ue_queue == NULL || ce_queue == NULL) 716 panic("failed to create required system error queue"); 717 718 /* 719 * Setup interrupt handler for power-off button. 720 */ 721 err_shutdown_inum = add_softintr(PIL_9, 722 (softintrfunc)err_shutdown_softintr, NULL); 723 724 /* 725 * Initialize the busfunc list mutex. This must be a PIL_15 spin lock 726 * because we will need to acquire it from cpu_async_error(). 727 */ 728 mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 729 730 node = prom_rootnode(); 731 if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { 732 cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); 733 return; 734 } 735 736 if (((size = prom_getproplen(node, "reset-reason")) != -1) && 737 (size <= MAXSYSNAME) && 738 (prom_getprop(node, "reset-reason", tmp_name) != -1)) { 739 if (reset_debug) { 740 cmn_err(CE_CONT, "System booting after %s\n", tmp_name); 741 } else if (strncmp(tmp_name, "FATAL", 5) == 0) { 742 cmn_err(CE_CONT, 743 "System booting after fatal error %s\n", tmp_name); 744 } 745 } 746 } 747