1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/machsystm.h> 30 #include <sys/cpuvar.h> 31 #include <sys/async.h> 32 #include <sys/ontrap.h> 33 #include <sys/ddifm.h> 34 #include <sys/hypervisor_api.h> 35 #include <sys/errorq.h> 36 #include <sys/promif.h> 37 #include <sys/prom_plat.h> 38 #include <sys/x_call.h> 39 #include <sys/error.h> 40 #include <sys/fm/util.h> 41 #include <sys/ivintr.h> 42 43 #define MAX_CE_FLTS 10 44 #define MAX_ASYNC_FLTS 6 45 46 errorq_t *ue_queue; /* queue of uncorrectable errors */ 47 errorq_t *ce_queue; /* queue of correctable errors */ 48 49 /* 50 * Being used by memory test driver. 51 * ce_verbose_memory - covers CEs in DIMMs 52 * ce_verbose_other - covers "others" (ecache, IO, etc.) 53 * 54 * If the value is 0, nothing is logged. 55 * If the value is 1, the error is logged to the log file, but not console. 56 * If the value is 2, the error is logged to the log file and console. 57 */ 58 int ce_verbose_memory = 1; 59 int ce_verbose_other = 1; 60 61 int ce_show_data = 0; 62 int ce_debug = 0; 63 int ue_debug = 0; 64 int reset_debug = 0; 65 66 /* 67 * Tunables for controlling the handling of asynchronous faults (AFTs). Setting 68 * these to non-default values on a non-DEBUG kernel is NOT supported. 69 */ 70 int aft_verbose = 0; /* log AFT messages > 1 to log only */ 71 int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ 72 int aft_testfatal = 0; /* force all AFTs to panic immediately */ 73 74 /* 75 * Used for vbsc hostshutdown (power-off buton) 76 */ 77 int err_shutdown_triggered = 0; /* only once */ 78 uint_t err_shutdown_inum = 0; /* used to pull the trigger */ 79 80 /* 81 * Defined in bus_func.c but initialised in error_init 82 */ 83 extern kmutex_t bfd_lock; 84 85 static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ 86 87 static void cpu_queue_one_event(errh_async_flt_t *); 88 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); 89 static void errh_page_retire(errh_async_flt_t *, uchar_t); 90 static int errh_error_protected(struct regs *, struct async_flt *, int *); 91 static void errh_rq_full(struct async_flt *); 92 static void ue_drain(void *, struct async_flt *, errorq_elem_t *); 93 static void ce_drain(void *, struct async_flt *, errorq_elem_t *); 94 95 /*ARGSUSED*/ 96 void 97 process_resumable_error(struct regs *rp, uint32_t head_offset, 98 uint32_t tail_offset) 99 { 100 struct machcpu *mcpup; 101 struct async_flt *aflt; 102 errh_async_flt_t errh_flt; 103 errh_er_t *head_va; 104 105 mcpup = &(CPU->cpu_m); 106 107 while (head_offset != tail_offset) { 108 /* kernel buffer starts right after the resumable queue */ 109 head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + 110 CPU_RQ_SIZE); 111 /* Copy the error report to local buffer */ 112 bzero(&errh_flt, sizeof (errh_async_flt_t)); 113 bcopy((char *)head_va, &(errh_flt.errh_er), 114 sizeof (errh_er_t)); 115 116 /* Increment the queue head */ 117 head_offset += Q_ENTRY_SIZE; 118 /* Wrap around */ 119 head_offset &= (CPU_RQ_SIZE - 1); 120 121 /* set error handle to zero so it can hold new error report */ 122 head_va->ehdl = 0; 123 124 switch (errh_flt.errh_er.desc) { 125 case ERRH_DESC_UCOR_RE: 126 break; 127 128 case ERRH_DESC_WARN_RE: 129 /* 130 * Power-off requested, but handle it one time only. 131 */ 132 if (!err_shutdown_triggered) { 133 setsoftint(err_shutdown_inum); 134 ++err_shutdown_triggered; 135 } 136 continue; 137 138 default: 139 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 140 " invalid in resumable error handler", 141 (long long) errh_flt.errh_er.desc); 142 continue; 143 } 144 145 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 146 aflt->flt_id = gethrtime(); 147 aflt->flt_bus_id = getprocessorid(); 148 aflt->flt_class = CPU_FAULT; 149 aflt->flt_prot = AFLT_PROT_NONE; 150 aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) 151 >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); 152 153 if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) 154 /* If it is an error on other cpu */ 155 aflt->flt_panic = 1; 156 else 157 aflt->flt_panic = 0; 158 159 /* 160 * Handle resumable queue full case. 161 */ 162 if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { 163 (void) errh_rq_full(aflt); 164 } 165 166 /* 167 * Queue the error on ce or ue queue depend on flt_panic. 168 * Even if flt_panic is set, the code still keep processing 169 * the rest element on rq until the panic starts. 170 */ 171 (void) cpu_queue_one_event(&errh_flt); 172 173 /* 174 * Panic here if aflt->flt_panic has been set. 175 * Enqueued errors will be logged as part of the panic flow. 176 */ 177 if (aflt->flt_panic) { 178 fm_panic("Unrecoverable error on another CPU"); 179 } 180 } 181 } 182 183 void 184 process_nonresumable_error(struct regs *rp, uint64_t flags, 185 uint32_t head_offset, uint32_t tail_offset) 186 { 187 struct machcpu *mcpup; 188 struct async_flt *aflt; 189 errh_async_flt_t errh_flt; 190 errh_er_t *head_va; 191 int trampolined = 0; 192 int expected = DDI_FM_ERR_UNEXPECTED; 193 uint64_t exec_mode; 194 uint8_t u_spill_fill; 195 196 mcpup = &(CPU->cpu_m); 197 198 while (head_offset != tail_offset) { 199 /* kernel buffer starts right after the nonresumable queue */ 200 head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + 201 CPU_NRQ_SIZE); 202 203 /* Copy the error report to local buffer */ 204 bzero(&errh_flt, sizeof (errh_async_flt_t)); 205 206 bcopy((char *)head_va, &(errh_flt.errh_er), 207 sizeof (errh_er_t)); 208 209 /* Increment the queue head */ 210 head_offset += Q_ENTRY_SIZE; 211 /* Wrap around */ 212 head_offset &= (CPU_NRQ_SIZE - 1); 213 214 /* set error handle to zero so it can hold new error report */ 215 head_va->ehdl = 0; 216 217 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 218 219 trampolined = 0; 220 221 if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) 222 aflt->flt_class = BUS_FAULT; 223 else 224 aflt->flt_class = CPU_FAULT; 225 226 aflt->flt_id = gethrtime(); 227 aflt->flt_bus_id = getprocessorid(); 228 aflt->flt_pc = (caddr_t)rp->r_pc; 229 exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) 230 >> ERRH_MODE_SHIFT; 231 aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || 232 exec_mode == ERRH_MODE_UNKNOWN); 233 aflt->flt_prot = AFLT_PROT_NONE; 234 aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK); 235 aflt->flt_panic = ((aflt->flt_tl != 0) || 236 (aft_testfatal != 0)); 237 238 /* 239 * For the first error packet on the queue, check if it 240 * happened in user fill/spill trap. 241 */ 242 if (flags & ERRH_U_SPILL_FILL) { 243 u_spill_fill = 1; 244 /* clear the user fill/spill flag in flags */ 245 flags = (uint64_t)aflt->flt_tl; 246 } else 247 u_spill_fill = 0; 248 249 switch (errh_flt.errh_er.desc) { 250 case ERRH_DESC_PR_NRE: 251 if (u_spill_fill) { 252 aflt->flt_panic = 0; 253 break; 254 } 255 /* 256 * Fall through, precise fault also need to check 257 * to see if it was protected. 258 */ 259 /*FALLTHRU*/ 260 261 case ERRH_DESC_DEF_NRE: 262 /* 263 * If the trap occurred in privileged mode at TL=0, 264 * we need to check to see if we were executing 265 * in kernel under on_trap() or t_lofault 266 * protection. If so, and if it was a PIO or MEM 267 * error, then modify the saved registers so that 268 * we return from the trap to the appropriate 269 * trampoline routine. 270 */ 271 if (aflt->flt_priv == 1 && aflt->flt_tl == 0 && 272 ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) || 273 (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) { 274 trampolined = 275 errh_error_protected(rp, aflt, &expected); 276 } 277 278 if (!aflt->flt_priv || aflt->flt_prot == 279 AFLT_PROT_COPY) { 280 aflt->flt_panic |= aft_panic; 281 } else if (!trampolined && 282 (errh_flt.errh_er.attr & ERRH_ATTR_MEM)) { 283 aflt->flt_panic = 1; 284 } 285 286 /* 287 * If PIO error, we need to query the bus nexus 288 * for fatal errors. 289 */ 290 if (aflt->flt_class == BUS_FAULT) { 291 aflt->flt_addr = errh_flt.errh_er.ra; 292 errh_cpu_run_bus_error_handlers(aflt, 293 expected); 294 } 295 296 break; 297 298 default: 299 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 300 " invalid in nonresumable error handler", 301 (long long) errh_flt.errh_er.desc); 302 continue; 303 } 304 305 /* 306 * Queue the error report for further processing. If 307 * flt_panic is set, code still process other errors 308 * in the queue until the panic routine stops the 309 * kernel. 310 */ 311 (void) cpu_queue_one_event(&errh_flt); 312 313 /* 314 * Panic here if aflt->flt_panic has been set. 315 * Enqueued errors will be logged as part of the panic flow. 316 */ 317 if (aflt->flt_panic) { 318 fm_panic("Unrecoverable hardware error"); 319 } 320 321 /* 322 * Call page_retire() to handle memory errors. 323 */ 324 if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) 325 errh_page_retire(&errh_flt, PR_UE); 326 327 /* 328 * If we queued an error and the it was in user mode, or 329 * protected by t_lofault, or user_spill_fill is set, we 330 * set AST flag so the queue will be drained before 331 * returning to user mode. 332 */ 333 if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY || 334 u_spill_fill) { 335 int pcb_flag = 0; 336 337 if (aflt->flt_class == CPU_FAULT) 338 pcb_flag |= ASYNC_HWERR; 339 else if (aflt->flt_class == BUS_FAULT) 340 pcb_flag |= ASYNC_BERR; 341 342 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 343 aston(curthread); 344 } 345 } 346 } 347 348 /* 349 * For PIO errors, this routine calls nexus driver's error 350 * callback routines. If the callback routine returns fatal, and 351 * we are in kernel or unknow mode without any error protection, 352 * we need to turn on the panic flag. 353 */ 354 void 355 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 356 { 357 int status; 358 ddi_fm_error_t de; 359 360 bzero(&de, sizeof (ddi_fm_error_t)); 361 362 de.fme_version = DDI_FME_VERSION; 363 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 364 de.fme_flag = expected; 365 de.fme_bus_specific = (void *)aflt->flt_addr; 366 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 367 368 /* 369 * If error is protected, it will jump to proper routine 370 * to handle the handle; if it is in user level, we just 371 * kill the user process; if the driver thinks the error is 372 * not fatal, we can drive on. If none of above are true, 373 * we panic 374 */ 375 if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && 376 (status == DDI_FM_FATAL)) 377 aflt->flt_panic = 1; 378 } 379 380 /* 381 * This routine checks to see if we are under any error protection when 382 * the error happens. If we are under error protection, we unwind to 383 * the protection and indicate fault. 384 */ 385 static int 386 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) 387 { 388 int trampolined = 0; 389 ddi_acc_hdl_t *hp; 390 391 if (curthread->t_ontrap != NULL) { 392 on_trap_data_t *otp = curthread->t_ontrap; 393 394 if (otp->ot_prot & OT_DATA_EC) { 395 aflt->flt_prot = AFLT_PROT_EC; 396 otp->ot_trap |= OT_DATA_EC; 397 rp->r_pc = otp->ot_trampoline; 398 rp->r_npc = rp->r_pc +4; 399 trampolined = 1; 400 } 401 402 if (otp->ot_prot & OT_DATA_ACCESS) { 403 aflt->flt_prot = AFLT_PROT_ACCESS; 404 otp->ot_trap |= OT_DATA_ACCESS; 405 rp->r_pc = otp->ot_trampoline; 406 rp->r_npc = rp->r_pc + 4; 407 trampolined = 1; 408 /* 409 * for peek and caut_gets 410 * errors are expected 411 */ 412 hp = (ddi_acc_hdl_t *)otp->ot_handle; 413 if (!hp) 414 *expected = DDI_FM_ERR_PEEK; 415 else if (hp->ah_acc.devacc_attr_access == 416 DDI_CAUTIOUS_ACC) 417 *expected = DDI_FM_ERR_EXPECTED; 418 } 419 } else if (curthread->t_lofault) { 420 aflt->flt_prot = AFLT_PROT_COPY; 421 rp->r_g1 = EFAULT; 422 rp->r_pc = curthread->t_lofault; 423 rp->r_npc = rp->r_pc + 4; 424 trampolined = 1; 425 } 426 427 return (trampolined); 428 } 429 430 /* 431 * Queue one event. 432 */ 433 static void 434 cpu_queue_one_event(errh_async_flt_t *errh_fltp) 435 { 436 struct async_flt *aflt = (struct async_flt *)errh_fltp; 437 errorq_t *eqp; 438 439 if (aflt->flt_panic) 440 eqp = ue_queue; 441 else 442 eqp = ce_queue; 443 444 errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), 445 aflt->flt_panic); 446 } 447 448 /* 449 * The cpu_async_log_err() function is called by the ce/ue_drain() function to 450 * handle logging for CPU events that are dequeued. As such, it can be invoked 451 * from softint context, from AST processing in the trap() flow, or from the 452 * panic flow. We decode the CPU-specific data, and log appropriate messages. 453 */ 454 void 455 cpu_async_log_err(void *flt) 456 { 457 errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; 458 errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; 459 460 switch (errh_erp->desc) { 461 case ERRH_DESC_UCOR_RE: 462 if (errh_erp->attr & ERRH_ATTR_MEM) { 463 /* 464 * Turn on the PR_UE flag. The page will be 465 * scrubbed when it is freed. 466 */ 467 errh_page_retire(errh_fltp, PR_UE); 468 } 469 470 break; 471 472 case ERRH_DESC_PR_NRE: 473 case ERRH_DESC_DEF_NRE: 474 if (errh_erp->attr & ERRH_ATTR_MEM) { 475 /* 476 * For non-resumable memory error, retire 477 * the page here. 478 */ 479 errh_page_retire(errh_fltp, PR_UE); 480 481 /* 482 * If we are going to panic, scrub the page first 483 */ 484 if (errh_fltp->cmn_asyncflt.flt_panic) 485 mem_scrub(errh_fltp->errh_er.ra, 486 errh_fltp->errh_er.sz); 487 } 488 break; 489 490 default: 491 break; 492 } 493 } 494 495 /* 496 * Called from ce_drain(). 497 */ 498 void 499 cpu_ce_log_err(struct async_flt *aflt) 500 { 501 switch (aflt->flt_class) { 502 case CPU_FAULT: 503 cpu_async_log_err(aflt); 504 break; 505 506 case BUS_FAULT: 507 cpu_async_log_err(aflt); 508 break; 509 510 default: 511 break; 512 } 513 } 514 515 /* 516 * Called from ue_drain(). 517 */ 518 void 519 cpu_ue_log_err(struct async_flt *aflt) 520 { 521 switch (aflt->flt_class) { 522 case CPU_FAULT: 523 cpu_async_log_err(aflt); 524 break; 525 526 case BUS_FAULT: 527 cpu_async_log_err(aflt); 528 break; 529 530 default: 531 break; 532 } 533 } 534 535 /* 536 * Turn on flag on the error memory region. 537 */ 538 static void 539 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag) 540 { 541 uint64_t flt_real_addr_start = errh_fltp->errh_er.ra; 542 uint64_t flt_real_addr_end = flt_real_addr_start + 543 errh_fltp->errh_er.sz - 1; 544 int64_t current_addr; 545 546 if (errh_fltp->errh_er.sz == 0) 547 return; 548 549 for (current_addr = flt_real_addr_start; 550 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 551 (void) page_retire(current_addr, flag); 552 } 553 } 554 555 void 556 mem_scrub(uint64_t paddr, uint64_t len) 557 { 558 uint64_t pa, length, scrubbed_len; 559 560 pa = paddr; 561 length = len; 562 scrubbed_len = 0; 563 564 while (length > 0) { 565 if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK) 566 break; 567 568 pa += scrubbed_len; 569 length -= scrubbed_len; 570 } 571 } 572 573 /* 574 * Call hypervisor to flush the memory region. The memory region 575 * must be within the same page frame. 576 */ 577 void 578 mem_sync(caddr_t va, size_t len) 579 { 580 uint64_t pa, length, flushed; 581 582 pa = va_to_pa((caddr_t)va); 583 584 if (pa == (uint64_t)-1) 585 return; 586 587 ASSERT((pa >> MMU_PAGESHIFT) == ((pa + len - 1) >> MMU_PAGESHIFT)); 588 589 length = len; 590 flushed = 0; 591 592 while (length > 0) { 593 if (hv_mem_sync(pa, length, &flushed) != H_EOK) 594 break; 595 596 pa += flushed; 597 length -= flushed; 598 } 599 } 600 601 /* 602 * If resumable queue is full, we need to check if any cpu is in 603 * error state. If not, we drive on. If yes, we need to panic. The 604 * hypervisor call hv_cpu_state() is being used for checking the 605 * cpu state. 606 */ 607 static void 608 errh_rq_full(struct async_flt *afltp) 609 { 610 processorid_t who; 611 uint64_t cpu_state; 612 uint64_t retval; 613 614 for (who = 0; who < NCPU; who++) 615 if (CPU_IN_SET(cpu_ready_set, who)) { 616 retval = hv_cpu_state(who, &cpu_state); 617 if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { 618 afltp->flt_panic = 1; 619 break; 620 } 621 } 622 } 623 624 /* 625 * Return processor specific async error structure 626 * size used. 627 */ 628 int 629 cpu_aflt_size(void) 630 { 631 return (sizeof (errh_async_flt_t)); 632 } 633 634 #define SZ_TO_ETRS_SHIFT 6 635 636 /* 637 * Message print out when resumable queue is overflown 638 */ 639 /*ARGSUSED*/ 640 void 641 rq_overflow(struct regs *rp, uint64_t head_offset, 642 uint64_t tail_offset) 643 { 644 rq_overflow_count++; 645 } 646 647 /* 648 * Handler to process a fatal error. This routine can be called from a 649 * softint, called from trap()'s AST handling, or called from the panic flow. 650 */ 651 /*ARGSUSED*/ 652 static void 653 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 654 { 655 cpu_ue_log_err(aflt); 656 } 657 658 /* 659 * Handler to process a correctable error. This routine can be called from a 660 * softint. We just call the CPU module's logging routine. 661 */ 662 /*ARGSUSED*/ 663 static void 664 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 665 { 666 cpu_ce_log_err(aflt); 667 } 668 669 /* 670 * Handler to process vbsc hostshutdown (power-off button). 671 */ 672 static int 673 err_shutdown_softintr() 674 { 675 cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); 676 do_shutdown(); 677 678 /* 679 * just in case do_shutdown() fails 680 */ 681 (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); 682 return (DDI_INTR_CLAIMED); 683 } 684 685 /* 686 * Allocate error queue sizes based on max_ncpus. max_ncpus is set just 687 * after ncpunode has been determined. ncpus is set in start_other_cpus 688 * which is called after error_init() but may change dynamically. 689 */ 690 void 691 error_init(void) 692 { 693 char tmp_name[MAXSYSNAME]; 694 pnode_t node; 695 size_t size = cpu_aflt_size(); 696 697 /* 698 * Initialize the correctable and uncorrectable error queues. 699 */ 700 ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, 701 MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); 702 703 ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, 704 MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); 705 706 if (ue_queue == NULL || ce_queue == NULL) 707 panic("failed to create required system error queue"); 708 709 /* 710 * Setup interrupt handler for power-off button. 711 */ 712 err_shutdown_inum = add_softintr(PIL_9, 713 (softintrfunc)err_shutdown_softintr, NULL); 714 715 /* 716 * Initialize the busfunc list mutex. This must be a PIL_15 spin lock 717 * because we will need to acquire it from cpu_async_error(). 718 */ 719 mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 720 721 node = prom_rootnode(); 722 if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { 723 cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); 724 return; 725 } 726 727 if (((size = prom_getproplen(node, "reset-reason")) != -1) && 728 (size <= MAXSYSNAME) && 729 (prom_getprop(node, "reset-reason", tmp_name) != -1)) { 730 if (reset_debug) { 731 cmn_err(CE_CONT, "System booting after %s\n", tmp_name); 732 } else if (strncmp(tmp_name, "FATAL", 5) == 0) { 733 cmn_err(CE_CONT, 734 "System booting after fatal error %s\n", tmp_name); 735 } 736 } 737 } 738 739 /* 740 * Nonresumable queue is full, panic here 741 */ 742 /*ARGSUSED*/ 743 void 744 nrq_overflow(struct regs *rp) 745 { 746 fm_panic("Nonresumable queue full"); 747 } 748