1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/machsystm.h> 28 #include <sys/sysmacros.h> 29 #include <sys/cpuvar.h> 30 #include <sys/async.h> 31 #include <sys/ontrap.h> 32 #include <sys/ddifm.h> 33 #include <sys/hypervisor_api.h> 34 #include <sys/errorq.h> 35 #include <sys/promif.h> 36 #include <sys/prom_plat.h> 37 #include <sys/x_call.h> 38 #include <sys/error.h> 39 #include <sys/fm/util.h> 40 #include <sys/ivintr.h> 41 #include <sys/machasi.h> 42 #include <sys/mmu.h> 43 #include <sys/archsystm.h> 44 45 #define MAX_CE_FLTS 10 46 #define MAX_ASYNC_FLTS 6 47 48 errorq_t *ue_queue; /* queue of uncorrectable errors */ 49 errorq_t *ce_queue; /* queue of correctable errors */ 50 51 /* 52 * Being used by memory test driver. 53 * ce_verbose_memory - covers CEs in DIMMs 54 * ce_verbose_other - covers "others" (ecache, IO, etc.) 55 * 56 * If the value is 0, nothing is logged. 57 * If the value is 1, the error is logged to the log file, but not console. 58 * If the value is 2, the error is logged to the log file and console. 59 */ 60 int ce_verbose_memory = 1; 61 int ce_verbose_other = 1; 62 63 int ce_show_data = 0; 64 int ce_debug = 0; 65 int ue_debug = 0; 66 int reset_debug = 0; 67 68 /* 69 * Tunables for controlling the handling of asynchronous faults (AFTs). Setting 70 * these to non-default values on a non-DEBUG kernel is NOT supported. 71 */ 72 int aft_verbose = 0; /* log AFT messages > 1 to log only */ 73 int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ 74 int aft_testfatal = 0; /* force all AFTs to panic immediately */ 75 76 /* 77 * Used for vbsc hostshutdown (power-off button) 78 */ 79 int err_shutdown_triggered = 0; /* only once */ 80 uint64_t err_shutdown_inum = 0; /* used to pull the trigger */ 81 82 /* 83 * Used to print NRE/RE via system variable or kmdb 84 */ 85 int printerrh = 0; /* see /etc/system */ 86 static void errh_er_print(errh_er_t *, const char *); 87 kmutex_t errh_print_lock; 88 89 /* 90 * Defined in bus_func.c but initialised in error_init 91 */ 92 extern kmutex_t bfd_lock; 93 94 static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ 95 96 static void cpu_queue_one_event(errh_async_flt_t *); 97 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); 98 static void errh_page_retire(errh_async_flt_t *, uchar_t); 99 static int errh_error_protected(struct regs *, struct async_flt *, int *); 100 static void errh_rq_full(struct async_flt *); 101 static void ue_drain(void *, struct async_flt *, errorq_elem_t *); 102 static void ce_drain(void *, struct async_flt *, errorq_elem_t *); 103 static void errh_handle_attr(errh_async_flt_t *); 104 static void errh_handle_asr(errh_async_flt_t *); 105 106 /*ARGSUSED*/ 107 void 108 process_resumable_error(struct regs *rp, uint32_t head_offset, 109 uint32_t tail_offset) 110 { 111 struct machcpu *mcpup; 112 struct async_flt *aflt; 113 errh_async_flt_t errh_flt; 114 errh_er_t *head_va; 115 116 mcpup = &(CPU->cpu_m); 117 118 while (head_offset != tail_offset) { 119 /* kernel buffer starts right after the resumable queue */ 120 head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + 121 CPU_RQ_SIZE); 122 /* Copy the error report to local buffer */ 123 bzero(&errh_flt, sizeof (errh_async_flt_t)); 124 bcopy((char *)head_va, &(errh_flt.errh_er), 125 sizeof (errh_er_t)); 126 127 mcpup->cpu_rq_lastre = head_va; 128 if (printerrh) 129 errh_er_print(&errh_flt.errh_er, "RQ"); 130 131 /* Increment the queue head */ 132 head_offset += Q_ENTRY_SIZE; 133 /* Wrap around */ 134 head_offset &= (CPU_RQ_SIZE - 1); 135 136 /* set error handle to zero so it can hold new error report */ 137 head_va->ehdl = 0; 138 139 switch (errh_flt.errh_er.desc) { 140 case ERRH_DESC_UCOR_RE: 141 /* 142 * Check error attribute, handle individual error 143 * if it is needed. 144 */ 145 errh_handle_attr(&errh_flt); 146 break; 147 148 case ERRH_DESC_WARN_RE: 149 /* 150 * Power-off requested, but handle it one time only. 151 */ 152 if (!err_shutdown_triggered) { 153 setsoftint(err_shutdown_inum); 154 ++err_shutdown_triggered; 155 } 156 continue; 157 158 default: 159 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 160 " invalid in resumable error handler", 161 (long long) errh_flt.errh_er.desc); 162 continue; 163 } 164 165 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 166 aflt->flt_id = gethrtime(); 167 aflt->flt_bus_id = getprocessorid(); 168 aflt->flt_class = CPU_FAULT; 169 aflt->flt_prot = AFLT_PROT_NONE; 170 aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) 171 >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); 172 173 if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) 174 /* If it is an error on other cpu */ 175 aflt->flt_panic = 1; 176 else 177 aflt->flt_panic = 0; 178 179 /* 180 * Handle resumable queue full case. 181 */ 182 if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { 183 (void) errh_rq_full(aflt); 184 } 185 186 /* 187 * Queue the error on ce or ue queue depend on flt_panic. 188 * Even if flt_panic is set, the code still keep processing 189 * the rest element on rq until the panic starts. 190 */ 191 (void) cpu_queue_one_event(&errh_flt); 192 193 /* 194 * Panic here if aflt->flt_panic has been set. 195 * Enqueued errors will be logged as part of the panic flow. 196 */ 197 if (aflt->flt_panic) { 198 fm_panic("Unrecoverable error on another CPU"); 199 } 200 } 201 } 202 203 void 204 process_nonresumable_error(struct regs *rp, uint64_t flags, 205 uint32_t head_offset, uint32_t tail_offset) 206 { 207 struct machcpu *mcpup; 208 struct async_flt *aflt; 209 errh_async_flt_t errh_flt; 210 errh_er_t *head_va; 211 int trampolined = 0; 212 int expected = DDI_FM_ERR_UNEXPECTED; 213 uint64_t exec_mode; 214 uint8_t u_spill_fill; 215 int u_kill = 1; 216 217 mcpup = &(CPU->cpu_m); 218 219 while (head_offset != tail_offset) { 220 /* kernel buffer starts right after the nonresumable queue */ 221 head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + 222 CPU_NRQ_SIZE); 223 224 /* Copy the error report to local buffer */ 225 bzero(&errh_flt, sizeof (errh_async_flt_t)); 226 227 bcopy((char *)head_va, &(errh_flt.errh_er), 228 sizeof (errh_er_t)); 229 230 mcpup->cpu_nrq_lastnre = head_va; 231 if (printerrh) 232 errh_er_print(&errh_flt.errh_er, "NRQ"); 233 234 /* Increment the queue head */ 235 head_offset += Q_ENTRY_SIZE; 236 /* Wrap around */ 237 head_offset &= (CPU_NRQ_SIZE - 1); 238 239 /* set error handle to zero so it can hold new error report */ 240 head_va->ehdl = 0; 241 242 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 243 244 trampolined = 0; 245 246 if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) 247 aflt->flt_class = BUS_FAULT; 248 else 249 aflt->flt_class = CPU_FAULT; 250 251 aflt->flt_id = gethrtime(); 252 aflt->flt_bus_id = getprocessorid(); 253 aflt->flt_pc = (caddr_t)rp->r_pc; 254 exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) 255 >> ERRH_MODE_SHIFT; 256 aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || 257 exec_mode == ERRH_MODE_UNKNOWN); 258 aflt->flt_prot = AFLT_PROT_NONE; 259 aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK); 260 aflt->flt_panic = ((aflt->flt_tl != 0) || 261 (aft_testfatal != 0)); 262 263 /* 264 * For the first error packet on the queue, check if it 265 * happened in user fill/spill trap. 266 */ 267 if (flags & ERRH_U_SPILL_FILL) { 268 u_spill_fill = 1; 269 /* clear the user fill/spill flag in flags */ 270 flags = (uint64_t)aflt->flt_tl; 271 } else 272 u_spill_fill = 0; 273 274 switch (errh_flt.errh_er.desc) { 275 case ERRH_DESC_PR_NRE: 276 if (u_spill_fill) { 277 aflt->flt_panic = 0; 278 break; 279 } 280 /* 281 * Context Register Parity - for reload of secondary 282 * context register, see nonresumable_error. 283 */ 284 if ((errh_flt.errh_er.attr & ERRH_ATTR_ASI) && 285 (errh_flt.errh_er.asi == ASI_MMU_CTX)) { 286 287 if (aflt->flt_tl) /* TL>0, so panic */ 288 break; 289 290 /* Panic on unknown context registers */ 291 if (errh_flt.errh_er.addr < MMU_PCONTEXT0 || 292 errh_flt.errh_er.addr + errh_flt.errh_er.sz 293 > MMU_SCONTEXT1 + sizeof (uint64_t)) { 294 cmn_err(CE_WARN, "Parity error on " 295 "unknown context register\n"); 296 aflt->flt_panic = 1; 297 break; 298 } 299 300 u_kill = 0; /* do not terminate */ 301 break; 302 } 303 /* 304 * All other PR_NRE fall through in order to 305 * check for protection. The list can include 306 * ERRH_ATTR_FRF, ERRH_ATTR_IRF, ERRH_ATTR_MEM, 307 * and ERRH_ATTR_PIO. 308 */ 309 /*FALLTHRU*/ 310 311 case ERRH_DESC_DEF_NRE: 312 /* 313 * If the trap occurred in privileged mode at TL=0, 314 * we need to check to see if we were executing 315 * in kernel under on_trap() or t_lofault 316 * protection. If so, and if it was a PIO or MEM 317 * error, then modify the saved registers so that 318 * we return from the trap to the appropriate 319 * trampoline routine. 320 */ 321 if (aflt->flt_priv == 1 && aflt->flt_tl == 0 && 322 ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) || 323 (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) { 324 trampolined = 325 errh_error_protected(rp, aflt, &expected); 326 } 327 328 if (!aflt->flt_priv || aflt->flt_prot == 329 AFLT_PROT_COPY) { 330 aflt->flt_panic |= aft_panic; 331 } else if (!trampolined && 332 (aflt->flt_class != BUS_FAULT)) { 333 aflt->flt_panic = 1; 334 } 335 336 /* 337 * Check error attribute, handle individual error 338 * if it is needed. 339 */ 340 errh_handle_attr(&errh_flt); 341 342 /* 343 * If PIO error, we need to query the bus nexus 344 * for fatal errors. 345 */ 346 if (aflt->flt_class == BUS_FAULT) { 347 aflt->flt_addr = errh_flt.errh_er.addr; 348 errh_cpu_run_bus_error_handlers(aflt, 349 expected); 350 } 351 352 break; 353 354 case ERRH_DESC_USER_DCORE: 355 /* 356 * User generated panic. Call panic directly 357 * since there are no FMA e-reports to 358 * display. 359 */ 360 361 panic("Panic - Generated at user request"); 362 363 break; 364 365 default: 366 cmn_err(CE_WARN, "Panic - Error Descriptor 0x%llx " 367 " invalid in non-resumable error handler", 368 (long long) errh_flt.errh_er.desc); 369 aflt->flt_panic = 1; 370 break; 371 } 372 373 /* 374 * Queue the error report for further processing. If 375 * flt_panic is set, code still process other errors 376 * in the queue until the panic routine stops the 377 * kernel. 378 */ 379 (void) cpu_queue_one_event(&errh_flt); 380 381 /* 382 * Panic here if aflt->flt_panic has been set. 383 * Enqueued errors will be logged as part of the panic flow. 384 */ 385 if (aflt->flt_panic) { 386 fm_panic("Unrecoverable hardware error"); 387 } 388 389 /* 390 * Call page_retire() to handle memory errors. 391 */ 392 if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) 393 errh_page_retire(&errh_flt, PR_UE); 394 395 /* 396 * If we queued an error for a thread that should terminate 397 * and it was in user mode or protected by t_lofault, set AST 398 * flag so the queue will be drained before returning to user 399 * mode. Note that user threads can be killed via pcb_flags. 400 */ 401 if (u_kill && (!aflt->flt_priv || 402 aflt->flt_prot == AFLT_PROT_COPY || u_spill_fill)) { 403 int pcb_flag = 0; 404 405 if (aflt->flt_class == CPU_FAULT) 406 pcb_flag |= ASYNC_HWERR; 407 else if (aflt->flt_class == BUS_FAULT) 408 pcb_flag |= ASYNC_BERR; 409 410 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 411 aston(curthread); 412 } 413 } 414 } 415 416 /* 417 * For PIO errors, this routine calls nexus driver's error 418 * callback routines. If the callback routine returns fatal, and 419 * we are in kernel or unknow mode without any error protection, 420 * we need to turn on the panic flag. 421 */ 422 void 423 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 424 { 425 int status; 426 ddi_fm_error_t de; 427 428 bzero(&de, sizeof (ddi_fm_error_t)); 429 430 de.fme_version = DDI_FME_VERSION; 431 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 432 de.fme_flag = expected; 433 de.fme_bus_specific = (void *)aflt->flt_addr; 434 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 435 436 /* 437 * If error is protected, it will jump to proper routine 438 * to handle the handle; if it is in user level, we just 439 * kill the user process; if the driver thinks the error is 440 * not fatal, we can drive on. If none of above are true, 441 * we panic 442 */ 443 if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && 444 (status == DDI_FM_FATAL)) 445 aflt->flt_panic = 1; 446 } 447 448 /* 449 * This routine checks to see if we are under any error protection when 450 * the error happens. If we are under error protection, we unwind to 451 * the protection and indicate fault. 452 */ 453 static int 454 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) 455 { 456 int trampolined = 0; 457 ddi_acc_hdl_t *hp; 458 459 if (curthread->t_ontrap != NULL) { 460 on_trap_data_t *otp = curthread->t_ontrap; 461 462 if (otp->ot_prot & OT_DATA_EC) { 463 aflt->flt_prot = AFLT_PROT_EC; 464 otp->ot_trap |= OT_DATA_EC; 465 rp->r_pc = otp->ot_trampoline; 466 rp->r_npc = rp->r_pc +4; 467 trampolined = 1; 468 } 469 470 if (otp->ot_prot & OT_DATA_ACCESS) { 471 aflt->flt_prot = AFLT_PROT_ACCESS; 472 otp->ot_trap |= OT_DATA_ACCESS; 473 rp->r_pc = otp->ot_trampoline; 474 rp->r_npc = rp->r_pc + 4; 475 trampolined = 1; 476 /* 477 * for peek and caut_gets 478 * errors are expected 479 */ 480 hp = (ddi_acc_hdl_t *)otp->ot_handle; 481 if (!hp) 482 *expected = DDI_FM_ERR_PEEK; 483 else if (hp->ah_acc.devacc_attr_access == 484 DDI_CAUTIOUS_ACC) 485 *expected = DDI_FM_ERR_EXPECTED; 486 } 487 } else if (curthread->t_lofault) { 488 aflt->flt_prot = AFLT_PROT_COPY; 489 rp->r_g1 = EFAULT; 490 rp->r_pc = curthread->t_lofault; 491 rp->r_npc = rp->r_pc + 4; 492 trampolined = 1; 493 } 494 495 return (trampolined); 496 } 497 498 /* 499 * Queue one event. 500 */ 501 static void 502 cpu_queue_one_event(errh_async_flt_t *errh_fltp) 503 { 504 struct async_flt *aflt = (struct async_flt *)errh_fltp; 505 errorq_t *eqp; 506 507 if (aflt->flt_panic) 508 eqp = ue_queue; 509 else 510 eqp = ce_queue; 511 512 errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), 513 aflt->flt_panic); 514 } 515 516 /* 517 * The cpu_async_log_err() function is called by the ce/ue_drain() function to 518 * handle logging for CPU events that are dequeued. As such, it can be invoked 519 * from softint context, from AST processing in the trap() flow, or from the 520 * panic flow. We decode the CPU-specific data, and log appropriate messages. 521 */ 522 void 523 cpu_async_log_err(void *flt) 524 { 525 errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; 526 errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; 527 528 switch (errh_erp->desc) { 529 case ERRH_DESC_UCOR_RE: 530 if (errh_erp->attr & ERRH_ATTR_MEM) { 531 /* 532 * Turn on the PR_UE flag. The page will be 533 * scrubbed when it is freed. 534 */ 535 errh_page_retire(errh_fltp, PR_UE); 536 } 537 538 break; 539 540 case ERRH_DESC_PR_NRE: 541 case ERRH_DESC_DEF_NRE: 542 if (errh_erp->attr & ERRH_ATTR_MEM) { 543 /* 544 * For non-resumable memory error, retire 545 * the page here. 546 */ 547 errh_page_retire(errh_fltp, PR_UE); 548 549 /* 550 * If we are going to panic, scrub the page first 551 */ 552 if (errh_fltp->cmn_asyncflt.flt_panic) 553 mem_scrub(errh_fltp->errh_er.addr, 554 errh_fltp->errh_er.sz); 555 } 556 break; 557 558 default: 559 break; 560 } 561 } 562 563 /* 564 * Called from ce_drain(). 565 */ 566 void 567 cpu_ce_log_err(struct async_flt *aflt) 568 { 569 switch (aflt->flt_class) { 570 case CPU_FAULT: 571 cpu_async_log_err(aflt); 572 break; 573 574 case BUS_FAULT: 575 cpu_async_log_err(aflt); 576 break; 577 578 default: 579 break; 580 } 581 } 582 583 /* 584 * Called from ue_drain(). 585 */ 586 void 587 cpu_ue_log_err(struct async_flt *aflt) 588 { 589 switch (aflt->flt_class) { 590 case CPU_FAULT: 591 cpu_async_log_err(aflt); 592 break; 593 594 case BUS_FAULT: 595 cpu_async_log_err(aflt); 596 break; 597 598 default: 599 break; 600 } 601 } 602 603 /* 604 * Turn on flag on the error memory region. 605 */ 606 static void 607 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag) 608 { 609 uint64_t flt_real_addr_start = errh_fltp->errh_er.addr; 610 uint64_t flt_real_addr_end = flt_real_addr_start + 611 errh_fltp->errh_er.sz - 1; 612 int64_t current_addr; 613 614 if (errh_fltp->errh_er.sz == 0) 615 return; 616 617 for (current_addr = flt_real_addr_start; 618 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 619 (void) page_retire(current_addr, flag); 620 } 621 } 622 623 void 624 mem_scrub(uint64_t paddr, uint64_t len) 625 { 626 uint64_t pa, length, scrubbed_len; 627 628 pa = paddr; 629 length = len; 630 scrubbed_len = 0; 631 632 while (length > 0) { 633 if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK) 634 break; 635 636 pa += scrubbed_len; 637 length -= scrubbed_len; 638 } 639 } 640 641 /* 642 * Call hypervisor to flush the memory region. 643 * Both va and len must be MMU_PAGESIZE aligned. 644 * Returns the total number of bytes flushed. 645 */ 646 uint64_t 647 mem_sync(caddr_t orig_va, size_t orig_len) 648 { 649 uint64_t pa, length, flushed; 650 uint64_t chunk_len = MMU_PAGESIZE; 651 uint64_t total_flushed = 0; 652 uint64_t va, len; 653 654 if (orig_len == 0) 655 return (total_flushed); 656 657 /* align va */ 658 va = P2ALIGN_TYPED(orig_va, MMU_PAGESIZE, uint64_t); 659 /* round up len to MMU_PAGESIZE aligned */ 660 len = P2ROUNDUP_TYPED(orig_va + orig_len, MMU_PAGESIZE, uint64_t) - va; 661 662 while (len > 0) { 663 pa = va_to_pa((caddr_t)va); 664 if (pa == (uint64_t)-1) 665 return (total_flushed); 666 667 length = chunk_len; 668 flushed = 0; 669 670 while (length > 0) { 671 if (hv_mem_sync(pa, length, &flushed) != H_EOK) 672 return (total_flushed); 673 674 pa += flushed; 675 length -= flushed; 676 total_flushed += flushed; 677 } 678 679 va += chunk_len; 680 len -= chunk_len; 681 } 682 683 return (total_flushed); 684 } 685 686 /* 687 * If resumable queue is full, we need to check if any cpu is in 688 * error state. If not, we drive on. If yes, we need to panic. The 689 * hypervisor call hv_cpu_state() is being used for checking the 690 * cpu state. And reset %tick_compr in case tick-compare was lost. 691 */ 692 static void 693 errh_rq_full(struct async_flt *afltp) 694 { 695 processorid_t who; 696 uint64_t cpu_state; 697 uint64_t retval; 698 uint64_t current_tick; 699 700 current_tick = (uint64_t)gettick(); 701 tickcmpr_set(current_tick); 702 703 for (who = 0; who < NCPU; who++) 704 if (CPU_IN_SET(cpu_ready_set, who)) { 705 retval = hv_cpu_state(who, &cpu_state); 706 if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { 707 afltp->flt_panic = 1; 708 break; 709 } 710 } 711 } 712 713 /* 714 * Return processor specific async error structure 715 * size used. 716 */ 717 int 718 cpu_aflt_size(void) 719 { 720 return (sizeof (errh_async_flt_t)); 721 } 722 723 #define SZ_TO_ETRS_SHIFT 6 724 725 /* 726 * Message print out when resumable queue is overflown 727 */ 728 /*ARGSUSED*/ 729 void 730 rq_overflow(struct regs *rp, uint64_t head_offset, 731 uint64_t tail_offset) 732 { 733 rq_overflow_count++; 734 } 735 736 /* 737 * Handler to process a fatal error. This routine can be called from a 738 * softint, called from trap()'s AST handling, or called from the panic flow. 739 */ 740 /*ARGSUSED*/ 741 static void 742 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 743 { 744 cpu_ue_log_err(aflt); 745 } 746 747 /* 748 * Handler to process a correctable error. This routine can be called from a 749 * softint. We just call the CPU module's logging routine. 750 */ 751 /*ARGSUSED*/ 752 static void 753 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 754 { 755 cpu_ce_log_err(aflt); 756 } 757 758 /* 759 * Handler to process vbsc hostshutdown (power-off button). 760 */ 761 static int 762 err_shutdown_softintr() 763 { 764 cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); 765 do_shutdown(); 766 767 /* 768 * just in case do_shutdown() fails 769 */ 770 (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); 771 return (DDI_INTR_CLAIMED); 772 } 773 774 /* 775 * Allocate error queue sizes based on max_ncpus. max_ncpus is set just 776 * after ncpunode has been determined. ncpus is set in start_other_cpus 777 * which is called after error_init() but may change dynamically. 778 */ 779 void 780 error_init(void) 781 { 782 char tmp_name[MAXSYSNAME]; 783 pnode_t node; 784 size_t size = cpu_aflt_size(); 785 786 /* 787 * Initialize the correctable and uncorrectable error queues. 788 */ 789 ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, 790 MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); 791 792 ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, 793 MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); 794 795 if (ue_queue == NULL || ce_queue == NULL) 796 panic("failed to create required system error queue"); 797 798 /* 799 * Setup interrupt handler for power-off button. 800 */ 801 err_shutdown_inum = add_softintr(PIL_9, 802 (softintrfunc)err_shutdown_softintr, NULL, SOFTINT_ST); 803 804 /* 805 * Initialize the busfunc list mutex. This must be a PIL_15 spin lock 806 * because we will need to acquire it from cpu_async_error(). 807 */ 808 mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 809 810 /* Only allow one cpu at a time to dump errh errors. */ 811 mutex_init(&errh_print_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 812 813 node = prom_rootnode(); 814 if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { 815 cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); 816 return; 817 } 818 819 if (((size = prom_getproplen(node, "reset-reason")) != -1) && 820 (size <= MAXSYSNAME) && 821 (prom_getprop(node, "reset-reason", tmp_name) != -1)) { 822 if (reset_debug) { 823 cmn_err(CE_CONT, "System booting after %s\n", tmp_name); 824 } else if (strncmp(tmp_name, "FATAL", 5) == 0) { 825 cmn_err(CE_CONT, 826 "System booting after fatal error %s\n", tmp_name); 827 } 828 } 829 } 830 831 /* 832 * Nonresumable queue is full, panic here 833 */ 834 /*ARGSUSED*/ 835 void 836 nrq_overflow(struct regs *rp) 837 { 838 fm_panic("Nonresumable queue full"); 839 } 840 841 /* 842 * This is the place for special error handling for individual errors. 843 */ 844 static void 845 errh_handle_attr(errh_async_flt_t *errh_fltp) 846 { 847 switch (errh_fltp->errh_er.attr & ~ERRH_MODE_MASK) { 848 case ERRH_ATTR_CPU: 849 case ERRH_ATTR_MEM: 850 case ERRH_ATTR_PIO: 851 case ERRH_ATTR_IRF: 852 case ERRH_ATTR_FRF: 853 case ERRH_ATTR_SHUT: 854 break; 855 856 case ERRH_ATTR_ASR: 857 errh_handle_asr(errh_fltp); 858 break; 859 860 case ERRH_ATTR_ASI: 861 case ERRH_ATTR_PREG: 862 case ERRH_ATTR_RQF: 863 break; 864 865 default: 866 break; 867 } 868 } 869 870 /* 871 * Handle ASR bit set in ATTR 872 */ 873 static void 874 errh_handle_asr(errh_async_flt_t *errh_fltp) 875 { 876 uint64_t current_tick; 877 878 switch (errh_fltp->errh_er.reg) { 879 case ASR_REG_VALID | ASR_REG_TICK: 880 /* 881 * For Tick Compare Register error, it only happens when 882 * the register is being read or compared with the %tick 883 * register. Since we lost the contents of the register, 884 * we set the %tick_compr in the future. An interrupt will 885 * happen when %tick matches the value field of %tick_compr. 886 */ 887 current_tick = (uint64_t)gettick(); 888 tickcmpr_set(current_tick); 889 /* Do not panic */ 890 errh_fltp->cmn_asyncflt.flt_panic = 0; 891 break; 892 893 default: 894 break; 895 } 896 } 897 898 /* 899 * Dump the error packet 900 */ 901 /*ARGSUSED*/ 902 static void 903 errh_er_print(errh_er_t *errh_erp, const char *queue) 904 { 905 typedef union { 906 uint64_t w; 907 uint16_t s[4]; 908 } errhp_t; 909 errhp_t *p = (errhp_t *)errh_erp; 910 int i; 911 912 mutex_enter(&errh_print_lock); 913 switch (errh_erp->desc) { 914 case ERRH_DESC_UCOR_RE: 915 cmn_err(CE_CONT, "\nResumable Uncorrectable Error "); 916 break; 917 case ERRH_DESC_PR_NRE: 918 cmn_err(CE_CONT, "\nNonresumable Precise Error "); 919 break; 920 case ERRH_DESC_DEF_NRE: 921 cmn_err(CE_CONT, "\nNonresumable Deferred Error "); 922 break; 923 default: 924 cmn_err(CE_CONT, "\nError packet "); 925 break; 926 } 927 cmn_err(CE_CONT, "received on %s\n", queue); 928 929 /* 930 * Print Q_ENTRY_SIZE bytes of epacket with 8 bytes per line 931 */ 932 for (i = Q_ENTRY_SIZE; i > 0; i -= 8, ++p) { 933 cmn_err(CE_CONT, "%016lx: %04x %04x %04x %04x\n", (uint64_t)p, 934 p->s[0], p->s[1], p->s[2], p->s[3]); 935 } 936 mutex_exit(&errh_print_lock); 937 } 938