xref: /titanic_41/usr/src/uts/sun4v/io/vsw.c (revision 323a81d93e2f58a7d62f6e523f9fddbc029d3d0b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/errno.h>
31 #include <sys/debug.h>
32 #include <sys/time.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/user.h>
36 #include <sys/stropts.h>
37 #include <sys/stream.h>
38 #include <sys/strlog.h>
39 #include <sys/strsubr.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/kmem.h>
43 #include <sys/conf.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/ksynch.h>
47 #include <sys/stat.h>
48 #include <sys/kstat.h>
49 #include <sys/vtrace.h>
50 #include <sys/strsun.h>
51 #include <sys/dlpi.h>
52 #include <sys/ethernet.h>
53 #include <net/if.h>
54 #include <sys/varargs.h>
55 #include <sys/machsystm.h>
56 #include <sys/modctl.h>
57 #include <sys/modhash.h>
58 #include <sys/mac.h>
59 #include <sys/mac_ether.h>
60 #include <sys/taskq.h>
61 #include <sys/note.h>
62 #include <sys/mach_descrip.h>
63 #include <sys/mac.h>
64 #include <sys/mdeg.h>
65 #include <sys/ldc.h>
66 #include <sys/vsw_fdb.h>
67 #include <sys/vsw.h>
68 #include <sys/vio_mailbox.h>
69 #include <sys/vnet_mailbox.h>
70 #include <sys/vnet_common.h>
71 #include <sys/vio_util.h>
72 #include <sys/sdt.h>
73 #include <sys/atomic.h>
74 #include <sys/callb.h>
75 #include <sys/vlan.h>
76 
77 /*
78  * Function prototypes.
79  */
80 static	int vsw_attach(dev_info_t *, ddi_attach_cmd_t);
81 static	int vsw_detach(dev_info_t *, ddi_detach_cmd_t);
82 static	int vsw_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
83 static	int vsw_get_md_physname(vsw_t *, md_t *, mde_cookie_t, char *);
84 static	int vsw_get_md_smodes(vsw_t *, md_t *, mde_cookie_t, uint8_t *, int *);
85 
86 /* MDEG routines */
87 static	int vsw_mdeg_register(vsw_t *vswp);
88 static	void vsw_mdeg_unregister(vsw_t *vswp);
89 static	int vsw_mdeg_cb(void *cb_argp, mdeg_result_t *);
90 static	int vsw_port_mdeg_cb(void *cb_argp, mdeg_result_t *);
91 static	int vsw_get_initial_md_properties(vsw_t *vswp, md_t *, mde_cookie_t);
92 static	int vsw_read_mdprops(vsw_t *vswp);
93 static	void vsw_vlan_read_ids(void *arg, int type, md_t *mdp,
94 	mde_cookie_t node, uint16_t *pvidp, uint16_t **vidspp,
95 	uint16_t *nvidsp, uint16_t *default_idp);
96 static	int vsw_port_read_props(vsw_port_t *portp, vsw_t *vswp,
97 	md_t *mdp, mde_cookie_t *node);
98 static	void vsw_read_pri_eth_types(vsw_t *vswp, md_t *mdp,
99 	mde_cookie_t node);
100 static	void vsw_update_md_prop(vsw_t *, md_t *, mde_cookie_t);
101 static void vsw_save_lmacaddr(vsw_t *vswp, uint64_t macaddr);
102 
103 /* Mac driver related routines */
104 static int vsw_mac_register(vsw_t *);
105 static int vsw_mac_unregister(vsw_t *);
106 static int vsw_m_stat(void *, uint_t, uint64_t *);
107 static void vsw_m_stop(void *arg);
108 static int vsw_m_start(void *arg);
109 static int vsw_m_unicst(void *arg, const uint8_t *);
110 static int vsw_m_multicst(void *arg, boolean_t, const uint8_t *);
111 static int vsw_m_promisc(void *arg, boolean_t);
112 static mblk_t *vsw_m_tx(void *arg, mblk_t *);
113 void vsw_mac_rx(vsw_t *vswp, mac_resource_handle_t mrh,
114     mblk_t *mp, vsw_macrx_flags_t flags);
115 
116 /*
117  * Functions imported from other files.
118  */
119 extern void vsw_setup_switching_timeout(void *arg);
120 extern void vsw_stop_switching_timeout(vsw_t *vswp);
121 extern int vsw_setup_switching(vsw_t *);
122 extern void vsw_switch_frame_nop(vsw_t *vswp, mblk_t *mp, int caller,
123     vsw_port_t *port, mac_resource_handle_t mrh);
124 extern int vsw_add_mcst(vsw_t *, uint8_t, uint64_t, void *);
125 extern int vsw_del_mcst(vsw_t *, uint8_t, uint64_t, void *);
126 extern void vsw_del_mcst_vsw(vsw_t *);
127 extern mcst_addr_t *vsw_del_addr(uint8_t devtype, void *arg, uint64_t addr);
128 extern int vsw_detach_ports(vsw_t *vswp);
129 extern int vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node);
130 extern int vsw_port_detach(vsw_t *vswp, int p_instance);
131 static int vsw_port_update(vsw_t *vswp, md_t *curr_mdp, mde_cookie_t curr_mdex,
132 	md_t *prev_mdp, mde_cookie_t prev_mdex);
133 extern	int vsw_port_attach(vsw_port_t *port);
134 extern vsw_port_t *vsw_lookup_port(vsw_t *vswp, int p_instance);
135 extern int vsw_mac_attach(vsw_t *vswp);
136 extern void vsw_mac_detach(vsw_t *vswp);
137 extern int vsw_mac_open(vsw_t *vswp);
138 extern void vsw_mac_close(vsw_t *vswp);
139 extern int vsw_set_hw(vsw_t *, vsw_port_t *, int);
140 extern int vsw_unset_hw(vsw_t *, vsw_port_t *, int);
141 extern void vsw_reconfig_hw(vsw_t *);
142 extern void vsw_unset_addrs(vsw_t *vswp);
143 extern void vsw_set_addrs(vsw_t *vswp);
144 extern void vsw_create_vlans(void *arg, int type);
145 extern void vsw_destroy_vlans(void *arg, int type);
146 extern void vsw_vlan_add_ids(void *arg, int type);
147 extern void vsw_vlan_remove_ids(void *arg, int type);
148 extern void vsw_vlan_unaware_port_reset(vsw_port_t *portp);
149 extern uint32_t vsw_vlan_frame_untag(void *arg, int type, mblk_t **np,
150 	mblk_t **npt);
151 extern mblk_t *vsw_vlan_frame_pretag(void *arg, int type, mblk_t *mp);
152 extern void vsw_hio_cleanup(vsw_t *vswp);
153 extern void vsw_hio_start_ports(vsw_t *vswp);
154 void vsw_hio_port_update(vsw_port_t *portp, boolean_t hio_enabled);
155 
156 /*
157  * Internal tunables.
158  */
159 int	vsw_num_handshakes = VNET_NUM_HANDSHAKES; /* # of handshake attempts */
160 int	vsw_wretries = 100;		/* # of write attempts */
161 int	vsw_desc_delay = 0;		/* delay in us */
162 int	vsw_read_attempts = 5;		/* # of reads of descriptor */
163 int	vsw_setup_switching_delay = 3;	/* setup sw timeout interval in sec */
164 int	vsw_mac_open_retries = 300;	/* max # of mac_open() retries */
165 					/* 300*3 = 900sec(15min) of max tmout */
166 int	vsw_ldc_tx_delay = 5;		/* delay(ticks) for tx retries */
167 int	vsw_ldc_tx_retries = 10;	/* # of ldc tx retries */
168 boolean_t vsw_ldc_rxthr_enabled = B_TRUE;	/* LDC Rx thread enabled */
169 boolean_t vsw_ldc_txthr_enabled = B_TRUE;	/* LDC Tx thread enabled */
170 
171 uint32_t	vsw_fdb_nchains = 8;	/* # of chains in fdb hash table */
172 uint32_t	vsw_vlan_nchains = 4;	/* # of chains in vlan id hash table */
173 uint32_t	vsw_ethermtu = 1500;	/* mtu of the device */
174 
175 /* sw timeout for boot delay only, in milliseconds */
176 int vsw_setup_switching_boot_delay = 100 * MILLISEC;
177 
178 /* delay in usec to wait for all references on a fdb entry to be dropped */
179 uint32_t vsw_fdbe_refcnt_delay = 10;
180 
181 /*
182  * Default vlan id. This is only used internally when the "default-vlan-id"
183  * property is not present in the MD device node. Therefore, this should not be
184  * used as a tunable; if this value is changed, the corresponding variable
185  * should be updated to the same value in all vnets connected to this vsw.
186  */
187 uint16_t	vsw_default_vlan_id = 1;
188 
189 /*
190  * Workaround for a version handshake bug in obp's vnet.
191  * If vsw initiates version negotiation starting from the highest version,
192  * obp sends a nack and terminates version handshake. To workaround
193  * this, we do not initiate version handshake when the channel comes up.
194  * Instead, we wait for the peer to send its version info msg and go through
195  * the version protocol exchange. If we successfully negotiate a version,
196  * before sending the ack, we send our version info msg to the peer
197  * using the <major,minor> version that we are about to ack.
198  */
199 boolean_t vsw_obp_ver_proto_workaround = B_TRUE;
200 
201 /*
202  * In the absence of "priority-ether-types" property in MD, the following
203  * internal tunable can be set to specify a single priority ethertype.
204  */
205 uint64_t vsw_pri_eth_type = 0;
206 
207 /*
208  * Number of transmit priority buffers that are preallocated per device.
209  * This number is chosen to be a small value to throttle transmission
210  * of priority packets. Note: Must be a power of 2 for vio_create_mblks().
211  */
212 uint32_t vsw_pri_tx_nmblks = 64;
213 
214 boolean_t vsw_hio_enabled = B_TRUE;	/* Enable/disable HybridIO */
215 int vsw_hio_max_cleanup_retries = 10;	/* Max retries for HybridIO cleanp */
216 int vsw_hio_cleanup_delay = 10000;	/* 10ms */
217 
218 /*
219  * External tunables.
220  */
221 /*
222  * Enable/disable thread per ring. This is a mode selection
223  * that is done a vsw driver attach time.
224  */
225 boolean_t vsw_multi_ring_enable = B_FALSE;
226 int vsw_mac_rx_rings = VSW_MAC_RX_RINGS;
227 
228 /* Number of transmit descriptors -  must be power of 2 */
229 uint32_t vsw_ntxds = VSW_RING_NUM_EL;
230 
231 /*
232  * Max number of mblks received in one receive operation.
233  */
234 uint32_t vsw_chain_len = (VSW_NUM_MBLKS * 0.6);
235 
236 /*
237  * Tunables for three different pools, that is, the size and
238  * number of mblks for each pool.
239  */
240 uint32_t vsw_mblk_size1 = VSW_MBLK_SZ_128;	/* size=128 for pool1 */
241 uint32_t vsw_mblk_size2 = VSW_MBLK_SZ_256;	/* size=256 for pool2 */
242 uint32_t vsw_mblk_size3 = VSW_MBLK_SZ_2048;	/* size=2048 for pool3 */
243 uint32_t vsw_num_mblks1 = VSW_NUM_MBLKS;	/* number of mblks for pool1 */
244 uint32_t vsw_num_mblks2 = VSW_NUM_MBLKS;	/* number of mblks for pool2 */
245 uint32_t vsw_num_mblks3 = VSW_NUM_MBLKS;	/* number of mblks for pool3 */
246 
247 /*
248  * vsw_max_tx_qcount is the maximum # of packets that can be queued
249  * before the tx worker thread begins processing the queue. Its value
250  * is chosen to be 4x the default length of tx descriptor ring.
251  */
252 uint32_t vsw_max_tx_qcount = 4 * VSW_RING_NUM_EL;
253 
254 /*
255  * MAC callbacks
256  */
257 static	mac_callbacks_t	vsw_m_callbacks = {
258 	0,
259 	vsw_m_stat,
260 	vsw_m_start,
261 	vsw_m_stop,
262 	vsw_m_promisc,
263 	vsw_m_multicst,
264 	vsw_m_unicst,
265 	vsw_m_tx,
266 	NULL,
267 	NULL,
268 	NULL
269 };
270 
271 static	struct	cb_ops	vsw_cb_ops = {
272 	nulldev,			/* cb_open */
273 	nulldev,			/* cb_close */
274 	nodev,				/* cb_strategy */
275 	nodev,				/* cb_print */
276 	nodev,				/* cb_dump */
277 	nodev,				/* cb_read */
278 	nodev,				/* cb_write */
279 	nodev,				/* cb_ioctl */
280 	nodev,				/* cb_devmap */
281 	nodev,				/* cb_mmap */
282 	nodev,				/* cb_segmap */
283 	nochpoll,			/* cb_chpoll */
284 	ddi_prop_op,			/* cb_prop_op */
285 	NULL,				/* cb_stream */
286 	D_MP,				/* cb_flag */
287 	CB_REV,				/* rev */
288 	nodev,				/* int (*cb_aread)() */
289 	nodev				/* int (*cb_awrite)() */
290 };
291 
292 static	struct	dev_ops	vsw_ops = {
293 	DEVO_REV,		/* devo_rev */
294 	0,			/* devo_refcnt */
295 	vsw_getinfo,		/* devo_getinfo */
296 	nulldev,		/* devo_identify */
297 	nulldev,		/* devo_probe */
298 	vsw_attach,		/* devo_attach */
299 	vsw_detach,		/* devo_detach */
300 	nodev,			/* devo_reset */
301 	&vsw_cb_ops,		/* devo_cb_ops */
302 	(struct bus_ops *)NULL,	/* devo_bus_ops */
303 	ddi_power		/* devo_power */
304 };
305 
306 extern	struct	mod_ops	mod_driverops;
307 static struct modldrv vswmodldrv = {
308 	&mod_driverops,
309 	"sun4v Virtual Switch",
310 	&vsw_ops,
311 };
312 
313 #define	LDC_ENTER_LOCK(ldcp)	\
314 				mutex_enter(&((ldcp)->ldc_cblock));\
315 				mutex_enter(&((ldcp)->ldc_rxlock));\
316 				mutex_enter(&((ldcp)->ldc_txlock));
317 #define	LDC_EXIT_LOCK(ldcp)	\
318 				mutex_exit(&((ldcp)->ldc_txlock));\
319 				mutex_exit(&((ldcp)->ldc_rxlock));\
320 				mutex_exit(&((ldcp)->ldc_cblock));
321 
322 /* Driver soft state ptr  */
323 static void	*vsw_state;
324 
325 /*
326  * Linked list of "vsw_t" structures - one per instance.
327  */
328 vsw_t		*vsw_head = NULL;
329 krwlock_t	vsw_rw;
330 
331 /*
332  * Property names
333  */
334 static char vdev_propname[] = "virtual-device";
335 static char vsw_propname[] = "virtual-network-switch";
336 static char physdev_propname[] = "vsw-phys-dev";
337 static char smode_propname[] = "vsw-switch-mode";
338 static char macaddr_propname[] = "local-mac-address";
339 static char remaddr_propname[] = "remote-mac-address";
340 static char ldcids_propname[] = "ldc-ids";
341 static char chan_propname[] = "channel-endpoint";
342 static char id_propname[] = "id";
343 static char reg_propname[] = "reg";
344 static char pri_types_propname[] = "priority-ether-types";
345 static char vsw_pvid_propname[] = "port-vlan-id";
346 static char vsw_vid_propname[] = "vlan-id";
347 static char vsw_dvid_propname[] = "default-vlan-id";
348 static char port_pvid_propname[] = "remote-port-vlan-id";
349 static char port_vid_propname[] = "remote-vlan-id";
350 static char hybrid_propname[] = "hybrid";
351 
352 /*
353  * Matching criteria passed to the MDEG to register interest
354  * in changes to 'virtual-device-port' nodes identified by their
355  * 'id' property.
356  */
357 static md_prop_match_t vport_prop_match[] = {
358 	{ MDET_PROP_VAL,    "id"   },
359 	{ MDET_LIST_END,    NULL    }
360 };
361 
362 static mdeg_node_match_t vport_match = { "virtual-device-port",
363 						vport_prop_match };
364 
365 /*
366  * Matching criteria passed to the MDEG to register interest
367  * in changes to 'virtual-device' nodes (i.e. vsw nodes) identified
368  * by their 'name' and 'cfg-handle' properties.
369  */
370 static md_prop_match_t vdev_prop_match[] = {
371 	{ MDET_PROP_STR,    "name"   },
372 	{ MDET_PROP_VAL,    "cfg-handle" },
373 	{ MDET_LIST_END,    NULL    }
374 };
375 
376 static mdeg_node_match_t vdev_match = { "virtual-device",
377 						vdev_prop_match };
378 
379 
380 /*
381  * Specification of an MD node passed to the MDEG to filter any
382  * 'vport' nodes that do not belong to the specified node. This
383  * template is copied for each vsw instance and filled in with
384  * the appropriate 'cfg-handle' value before being passed to the MDEG.
385  */
386 static mdeg_prop_spec_t vsw_prop_template[] = {
387 	{ MDET_PROP_STR,    "name",		vsw_propname },
388 	{ MDET_PROP_VAL,    "cfg-handle",	NULL	},
389 	{ MDET_LIST_END,    NULL,		NULL	}
390 };
391 
392 #define	VSW_SET_MDEG_PROP_INST(specp, val)	(specp)[1].ps_val = (val);
393 
394 #ifdef	DEBUG
395 /*
396  * Print debug messages - set to 0x1f to enable all msgs
397  * or 0x0 to turn all off.
398  */
399 int vswdbg = 0x0;
400 
401 /*
402  * debug levels:
403  * 0x01:	Function entry/exit tracing
404  * 0x02:	Internal function messages
405  * 0x04:	Verbose internal messages
406  * 0x08:	Warning messages
407  * 0x10:	Error messages
408  */
409 
410 void
411 vswdebug(vsw_t *vswp, const char *fmt, ...)
412 {
413 	char buf[512];
414 	va_list ap;
415 
416 	va_start(ap, fmt);
417 	(void) vsprintf(buf, fmt, ap);
418 	va_end(ap);
419 
420 	if (vswp == NULL)
421 		cmn_err(CE_CONT, "%s\n", buf);
422 	else
423 		cmn_err(CE_CONT, "vsw%d: %s\n", vswp->instance, buf);
424 }
425 
426 #endif	/* DEBUG */
427 
428 static struct modlinkage modlinkage = {
429 	MODREV_1,
430 	&vswmodldrv,
431 	NULL
432 };
433 
434 int
435 _init(void)
436 {
437 	int status;
438 
439 	rw_init(&vsw_rw, NULL, RW_DRIVER, NULL);
440 
441 	status = ddi_soft_state_init(&vsw_state, sizeof (vsw_t), 1);
442 	if (status != 0) {
443 		return (status);
444 	}
445 
446 	mac_init_ops(&vsw_ops, DRV_NAME);
447 	status = mod_install(&modlinkage);
448 	if (status != 0) {
449 		ddi_soft_state_fini(&vsw_state);
450 	}
451 	return (status);
452 }
453 
454 int
455 _fini(void)
456 {
457 	int status;
458 
459 	status = mod_remove(&modlinkage);
460 	if (status != 0)
461 		return (status);
462 	mac_fini_ops(&vsw_ops);
463 	ddi_soft_state_fini(&vsw_state);
464 
465 	rw_destroy(&vsw_rw);
466 
467 	return (status);
468 }
469 
470 int
471 _info(struct modinfo *modinfop)
472 {
473 	return (mod_info(&modlinkage, modinfop));
474 }
475 
476 static int
477 vsw_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
478 {
479 	vsw_t		*vswp;
480 	int		instance;
481 	char		hashname[MAXNAMELEN];
482 	char		qname[TASKQ_NAMELEN];
483 	enum		{ PROG_init = 0x00,
484 				PROG_locks = 0x01,
485 				PROG_readmd = 0x02,
486 				PROG_fdb = 0x04,
487 				PROG_mfdb = 0x08,
488 				PROG_taskq = 0x10,
489 				PROG_swmode = 0x20,
490 				PROG_macreg = 0x40,
491 				PROG_mdreg = 0x80}
492 			progress;
493 
494 	progress = PROG_init;
495 	int		rv;
496 
497 	switch (cmd) {
498 	case DDI_ATTACH:
499 		break;
500 	case DDI_RESUME:
501 		/* nothing to do for this non-device */
502 		return (DDI_SUCCESS);
503 	case DDI_PM_RESUME:
504 	default:
505 		return (DDI_FAILURE);
506 	}
507 
508 	instance = ddi_get_instance(dip);
509 	if (ddi_soft_state_zalloc(vsw_state, instance) != DDI_SUCCESS) {
510 		DERR(NULL, "vsw%d: ddi_soft_state_zalloc failed", instance);
511 		return (DDI_FAILURE);
512 	}
513 	vswp = ddi_get_soft_state(vsw_state, instance);
514 
515 	if (vswp == NULL) {
516 		DERR(NULL, "vsw%d: ddi_get_soft_state failed", instance);
517 		goto vsw_attach_fail;
518 	}
519 
520 	vswp->dip = dip;
521 	vswp->instance = instance;
522 	ddi_set_driver_private(dip, (caddr_t)vswp);
523 
524 	mutex_init(&vswp->hw_lock, NULL, MUTEX_DRIVER, NULL);
525 	mutex_init(&vswp->mca_lock, NULL, MUTEX_DRIVER, NULL);
526 	mutex_init(&vswp->swtmout_lock, NULL, MUTEX_DRIVER, NULL);
527 	rw_init(&vswp->if_lockrw, NULL, RW_DRIVER, NULL);
528 	rw_init(&vswp->mac_rwlock, NULL, RW_DRIVER, NULL);
529 	rw_init(&vswp->mfdbrw, NULL, RW_DRIVER, NULL);
530 	rw_init(&vswp->plist.lockrw, NULL, RW_DRIVER, NULL);
531 
532 	progress |= PROG_locks;
533 
534 	rv = vsw_read_mdprops(vswp);
535 	if (rv != 0)
536 		goto vsw_attach_fail;
537 
538 	progress |= PROG_readmd;
539 
540 	/* setup the unicast forwarding database  */
541 	(void) snprintf(hashname, MAXNAMELEN, "vsw_unicst_table-%d",
542 	    vswp->instance);
543 	D2(vswp, "creating unicast hash table (%s)...", hashname);
544 	vswp->fdb_nchains = vsw_fdb_nchains;
545 	vswp->fdb_hashp = mod_hash_create_ptrhash(hashname, vswp->fdb_nchains,
546 	    mod_hash_null_valdtor, sizeof (void *));
547 	vsw_create_vlans((void *)vswp, VSW_LOCALDEV);
548 	progress |= PROG_fdb;
549 
550 	/* setup the multicast fowarding database */
551 	(void) snprintf(hashname, MAXNAMELEN, "vsw_mcst_table-%d",
552 	    vswp->instance);
553 	D2(vswp, "creating multicast hash table %s)...", hashname);
554 	vswp->mfdb = mod_hash_create_ptrhash(hashname, vsw_fdb_nchains,
555 	    mod_hash_null_valdtor, sizeof (void *));
556 
557 	progress |= PROG_mfdb;
558 
559 	/*
560 	 * Create the taskq which will process all the VIO
561 	 * control messages.
562 	 */
563 	(void) snprintf(qname, TASKQ_NAMELEN, "vsw_taskq%d", vswp->instance);
564 	if ((vswp->taskq_p = ddi_taskq_create(vswp->dip, qname, 1,
565 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
566 		cmn_err(CE_WARN, "!vsw%d: Unable to create task queue",
567 		    vswp->instance);
568 		goto vsw_attach_fail;
569 	}
570 
571 	progress |= PROG_taskq;
572 
573 	/* prevent auto-detaching */
574 	if (ddi_prop_update_int(DDI_DEV_T_NONE, vswp->dip,
575 	    DDI_NO_AUTODETACH, 1) != DDI_SUCCESS) {
576 		cmn_err(CE_NOTE, "!Unable to set \"%s\" property for "
577 		    "instance %u", DDI_NO_AUTODETACH, instance);
578 	}
579 
580 	/*
581 	 * The null switching function is set to avoid panic until
582 	 * switch mode is setup.
583 	 */
584 	vswp->vsw_switch_frame = vsw_switch_frame_nop;
585 
586 	/*
587 	 * Setup the required switching mode,
588 	 * based on the mdprops that we read earlier.
589 	 * schedule a short timeout (0.1 sec) for the first time
590 	 * setup and avoid calling mac_open() directly here,
591 	 * others are regular timeout 3 secs.
592 	 */
593 	mutex_enter(&vswp->swtmout_lock);
594 
595 	vswp->swtmout_enabled = B_TRUE;
596 	vswp->swtmout_id = timeout(vsw_setup_switching_timeout, vswp,
597 	    drv_usectohz(vsw_setup_switching_boot_delay));
598 
599 	mutex_exit(&vswp->swtmout_lock);
600 
601 	progress |= PROG_swmode;
602 
603 	/* Register with mac layer as a provider */
604 	rv = vsw_mac_register(vswp);
605 	if (rv != 0)
606 		goto vsw_attach_fail;
607 
608 	progress |= PROG_macreg;
609 
610 	/*
611 	 * Now we have everything setup, register an interest in
612 	 * specific MD nodes.
613 	 *
614 	 * The callback is invoked in 2 cases, firstly if upon mdeg
615 	 * registration there are existing nodes which match our specified
616 	 * criteria, and secondly if the MD is changed (and again, there
617 	 * are nodes which we are interested in present within it. Note
618 	 * that our callback will be invoked even if our specified nodes
619 	 * have not actually changed).
620 	 *
621 	 */
622 	rv = vsw_mdeg_register(vswp);
623 	if (rv != 0)
624 		goto vsw_attach_fail;
625 
626 	progress |= PROG_mdreg;
627 
628 	WRITE_ENTER(&vsw_rw);
629 	vswp->next = vsw_head;
630 	vsw_head = vswp;
631 	RW_EXIT(&vsw_rw);
632 
633 	ddi_report_dev(vswp->dip);
634 	return (DDI_SUCCESS);
635 
636 vsw_attach_fail:
637 	DERR(NULL, "vsw_attach: failed");
638 
639 	if (progress & PROG_mdreg) {
640 		vsw_mdeg_unregister(vswp);
641 		(void) vsw_detach_ports(vswp);
642 	}
643 
644 	if (progress & PROG_macreg)
645 		(void) vsw_mac_unregister(vswp);
646 
647 	if (progress & PROG_swmode) {
648 		vsw_stop_switching_timeout(vswp);
649 		vsw_hio_cleanup(vswp);
650 		WRITE_ENTER(&vswp->mac_rwlock);
651 		vsw_mac_detach(vswp);
652 		vsw_mac_close(vswp);
653 		RW_EXIT(&vswp->mac_rwlock);
654 	}
655 
656 	if (progress & PROG_taskq)
657 		ddi_taskq_destroy(vswp->taskq_p);
658 
659 	if (progress & PROG_mfdb)
660 		mod_hash_destroy_hash(vswp->mfdb);
661 
662 	if (progress & PROG_fdb) {
663 		vsw_destroy_vlans(vswp, VSW_LOCALDEV);
664 		mod_hash_destroy_hash(vswp->fdb_hashp);
665 	}
666 
667 	if (progress & PROG_readmd) {
668 		if (VSW_PRI_ETH_DEFINED(vswp)) {
669 			kmem_free(vswp->pri_types,
670 			    sizeof (uint16_t) * vswp->pri_num_types);
671 		}
672 		(void) vio_destroy_mblks(vswp->pri_tx_vmp);
673 	}
674 
675 	if (progress & PROG_locks) {
676 		rw_destroy(&vswp->plist.lockrw);
677 		rw_destroy(&vswp->mfdbrw);
678 		rw_destroy(&vswp->mac_rwlock);
679 		rw_destroy(&vswp->if_lockrw);
680 		mutex_destroy(&vswp->swtmout_lock);
681 		mutex_destroy(&vswp->mca_lock);
682 		mutex_destroy(&vswp->hw_lock);
683 	}
684 
685 	ddi_soft_state_free(vsw_state, instance);
686 	return (DDI_FAILURE);
687 }
688 
689 static int
690 vsw_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
691 {
692 	vio_mblk_pool_t		*poolp, *npoolp;
693 	vsw_t			**vswpp, *vswp;
694 	int 			instance;
695 
696 	instance = ddi_get_instance(dip);
697 	vswp = ddi_get_soft_state(vsw_state, instance);
698 
699 	if (vswp == NULL) {
700 		return (DDI_FAILURE);
701 	}
702 
703 	switch (cmd) {
704 	case DDI_DETACH:
705 		break;
706 	case DDI_SUSPEND:
707 	case DDI_PM_SUSPEND:
708 	default:
709 		return (DDI_FAILURE);
710 	}
711 
712 	D2(vswp, "detaching instance %d", instance);
713 
714 	/* Stop any pending timeout to setup switching mode. */
715 	vsw_stop_switching_timeout(vswp);
716 
717 	if (vswp->if_state & VSW_IF_REG) {
718 		if (vsw_mac_unregister(vswp) != 0) {
719 			cmn_err(CE_WARN, "!vsw%d: Unable to detach from "
720 			    "MAC layer", vswp->instance);
721 			return (DDI_FAILURE);
722 		}
723 	}
724 
725 	vsw_mdeg_unregister(vswp);
726 
727 	/* remove mac layer callback */
728 	WRITE_ENTER(&vswp->mac_rwlock);
729 	if ((vswp->mh != NULL) && (vswp->mrh != NULL)) {
730 		mac_rx_remove(vswp->mh, vswp->mrh, B_TRUE);
731 		vswp->mrh = NULL;
732 	}
733 	RW_EXIT(&vswp->mac_rwlock);
734 
735 	if (vsw_detach_ports(vswp) != 0) {
736 		cmn_err(CE_WARN, "!vsw%d: Unable to unconfigure ports",
737 		    vswp->instance);
738 		return (DDI_FAILURE);
739 	}
740 
741 	rw_destroy(&vswp->if_lockrw);
742 
743 	/* cleanup HybridIO */
744 	vsw_hio_cleanup(vswp);
745 
746 	mutex_destroy(&vswp->hw_lock);
747 
748 	/*
749 	 * Now that the ports have been deleted, stop and close
750 	 * the physical device.
751 	 */
752 	WRITE_ENTER(&vswp->mac_rwlock);
753 
754 	vsw_mac_detach(vswp);
755 	vsw_mac_close(vswp);
756 
757 	RW_EXIT(&vswp->mac_rwlock);
758 
759 	rw_destroy(&vswp->mac_rwlock);
760 	mutex_destroy(&vswp->swtmout_lock);
761 
762 	/*
763 	 * Destroy any free pools that may still exist.
764 	 */
765 	poolp = vswp->rxh;
766 	while (poolp != NULL) {
767 		npoolp = vswp->rxh = poolp->nextp;
768 		if (vio_destroy_mblks(poolp) != 0) {
769 			vswp->rxh = poolp;
770 			return (DDI_FAILURE);
771 		}
772 		poolp = npoolp;
773 	}
774 
775 	/*
776 	 * Remove this instance from any entries it may be on in
777 	 * the hash table by using the list of addresses maintained
778 	 * in the vsw_t structure.
779 	 */
780 	vsw_del_mcst_vsw(vswp);
781 
782 	vswp->mcap = NULL;
783 	mutex_destroy(&vswp->mca_lock);
784 
785 	/*
786 	 * By now any pending tasks have finished and the underlying
787 	 * ldc's have been destroyed, so its safe to delete the control
788 	 * message taskq.
789 	 */
790 	if (vswp->taskq_p != NULL)
791 		ddi_taskq_destroy(vswp->taskq_p);
792 
793 	/*
794 	 * At this stage all the data pointers in the hash table
795 	 * should be NULL, as all the ports have been removed and will
796 	 * have deleted themselves from the port lists which the data
797 	 * pointers point to. Hence we can destroy the table using the
798 	 * default destructors.
799 	 */
800 	D2(vswp, "vsw_detach: destroying hash tables..");
801 	vsw_destroy_vlans(vswp, VSW_LOCALDEV);
802 	mod_hash_destroy_hash(vswp->fdb_hashp);
803 	vswp->fdb_hashp = NULL;
804 
805 	WRITE_ENTER(&vswp->mfdbrw);
806 	mod_hash_destroy_hash(vswp->mfdb);
807 	vswp->mfdb = NULL;
808 	RW_EXIT(&vswp->mfdbrw);
809 	rw_destroy(&vswp->mfdbrw);
810 
811 	/* free pri_types table */
812 	if (VSW_PRI_ETH_DEFINED(vswp)) {
813 		kmem_free(vswp->pri_types,
814 		    sizeof (uint16_t) * vswp->pri_num_types);
815 		(void) vio_destroy_mblks(vswp->pri_tx_vmp);
816 	}
817 
818 	ddi_remove_minor_node(dip, NULL);
819 
820 	rw_destroy(&vswp->plist.lockrw);
821 	WRITE_ENTER(&vsw_rw);
822 	for (vswpp = &vsw_head; *vswpp; vswpp = &(*vswpp)->next) {
823 		if (*vswpp == vswp) {
824 			*vswpp = vswp->next;
825 			break;
826 		}
827 	}
828 	RW_EXIT(&vsw_rw);
829 	ddi_soft_state_free(vsw_state, instance);
830 
831 	return (DDI_SUCCESS);
832 }
833 
834 static int
835 vsw_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
836 {
837 	_NOTE(ARGUNUSED(dip))
838 
839 	vsw_t	*vswp = NULL;
840 	dev_t	dev = (dev_t)arg;
841 	int	instance;
842 
843 	instance = getminor(dev);
844 
845 	switch (infocmd) {
846 	case DDI_INFO_DEVT2DEVINFO:
847 		if ((vswp = ddi_get_soft_state(vsw_state, instance)) == NULL) {
848 			*result = NULL;
849 			return (DDI_FAILURE);
850 		}
851 		*result = vswp->dip;
852 		return (DDI_SUCCESS);
853 
854 	case DDI_INFO_DEVT2INSTANCE:
855 		*result = (void *)(uintptr_t)instance;
856 		return (DDI_SUCCESS);
857 
858 	default:
859 		*result = NULL;
860 		return (DDI_FAILURE);
861 	}
862 }
863 
864 /*
865  * Get the value of the "vsw-phys-dev" property in the specified
866  * node. This property is the name of the physical device that
867  * the virtual switch will use to talk to the outside world.
868  *
869  * Note it is valid for this property to be NULL (but the property
870  * itself must exist). Callers of this routine should verify that
871  * the value returned is what they expected (i.e. either NULL or non NULL).
872  *
873  * On success returns value of the property in region pointed to by
874  * the 'name' argument, and with return value of 0. Otherwise returns 1.
875  */
876 static int
877 vsw_get_md_physname(vsw_t *vswp, md_t *mdp, mde_cookie_t node, char *name)
878 {
879 	int		len = 0;
880 	int		instance;
881 	char		*physname = NULL;
882 	char		*dev;
883 	const char	*dev_name;
884 	char		myname[MAXNAMELEN];
885 
886 	dev_name = ddi_driver_name(vswp->dip);
887 	instance = ddi_get_instance(vswp->dip);
888 	(void) snprintf(myname, MAXNAMELEN, "%s%d", dev_name, instance);
889 
890 	if (md_get_prop_data(mdp, node, physdev_propname,
891 	    (uint8_t **)(&physname), &len) != 0) {
892 		cmn_err(CE_WARN, "!vsw%d: Unable to get name(s) of physical "
893 		    "device(s) from MD", vswp->instance);
894 		return (1);
895 	} else if ((strlen(physname) + 1) > LIFNAMSIZ) {
896 		cmn_err(CE_WARN, "!vsw%d: %s is too long a device name",
897 		    vswp->instance, physname);
898 		return (1);
899 	} else if (strcmp(myname, physname) == 0) {
900 		/*
901 		 * Prevent the vswitch from opening itself as the
902 		 * network device.
903 		 */
904 		cmn_err(CE_WARN, "!vsw%d: %s is an invalid device name",
905 		    vswp->instance, physname);
906 		return (1);
907 	} else {
908 		(void) strncpy(name, physname, strlen(physname) + 1);
909 		D2(vswp, "%s: using first device specified (%s)",
910 		    __func__, physname);
911 	}
912 
913 #ifdef DEBUG
914 	/*
915 	 * As a temporary measure to aid testing we check to see if there
916 	 * is a vsw.conf file present. If there is we use the value of the
917 	 * vsw_physname property in the file as the name of the physical
918 	 * device, overriding the value from the MD.
919 	 *
920 	 * There may be multiple devices listed, but for the moment
921 	 * we just use the first one.
922 	 */
923 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, vswp->dip, 0,
924 	    "vsw_physname", &dev) == DDI_PROP_SUCCESS) {
925 		if ((strlen(dev) + 1) > LIFNAMSIZ) {
926 			cmn_err(CE_WARN, "vsw%d: %s is too long a device name",
927 			    vswp->instance, dev);
928 			ddi_prop_free(dev);
929 			return (1);
930 		} else {
931 			cmn_err(CE_NOTE, "vsw%d: Using device name (%s) from "
932 			    "config file", vswp->instance, dev);
933 
934 			(void) strncpy(name, dev, strlen(dev) + 1);
935 		}
936 
937 		ddi_prop_free(dev);
938 	}
939 #endif
940 
941 	return (0);
942 }
943 
944 /*
945  * Read the 'vsw-switch-mode' property from the specified MD node.
946  *
947  * Returns 0 on success and the number of modes found in 'found',
948  * otherwise returns 1.
949  */
950 static int
951 vsw_get_md_smodes(vsw_t *vswp, md_t *mdp, mde_cookie_t node,
952 						uint8_t *modes, int *found)
953 {
954 	int		len = 0;
955 	int		smode_num = 0;
956 	char		*smode = NULL;
957 	char		*curr_mode = NULL;
958 
959 	D1(vswp, "%s: enter", __func__);
960 
961 	/*
962 	 * Get the switch-mode property. The modes are listed in
963 	 * decreasing order of preference, i.e. prefered mode is
964 	 * first item in list.
965 	 */
966 	len = 0;
967 	smode_num = 0;
968 	if (md_get_prop_data(mdp, node, smode_propname,
969 	    (uint8_t **)(&smode), &len) != 0) {
970 		/*
971 		 * Unable to get switch-mode property from MD, nothing
972 		 * more we can do.
973 		 */
974 		cmn_err(CE_WARN, "!vsw%d: Unable to get switch mode property"
975 		    " from the MD", vswp->instance);
976 		*found = 0;
977 		return (1);
978 	}
979 
980 	curr_mode = smode;
981 	/*
982 	 * Modes of operation:
983 	 * 'switched'	 - layer 2 switching, underlying HW in
984 	 *			programmed mode.
985 	 * 'promiscuous' - layer 2 switching, underlying HW in
986 	 *			promiscuous mode.
987 	 * 'routed'	 - layer 3 (i.e. IP) routing, underlying HW
988 	 *			in non-promiscuous mode.
989 	 */
990 	while ((curr_mode < (smode + len)) && (smode_num < NUM_SMODES)) {
991 		D2(vswp, "%s: curr_mode = [%s]", __func__, curr_mode);
992 		if (strcmp(curr_mode, "switched") == 0) {
993 			modes[smode_num++] = VSW_LAYER2;
994 		} else if (strcmp(curr_mode, "promiscuous") == 0) {
995 			modes[smode_num++] = VSW_LAYER2_PROMISC;
996 		} else if (strcmp(curr_mode, "routed") == 0) {
997 			modes[smode_num++] = VSW_LAYER3;
998 		} else {
999 			DWARN(vswp, "%s: Unknown switch mode %s, "
1000 			    "setting to default 'switched' mode",
1001 			    __func__, curr_mode);
1002 			modes[smode_num++] = VSW_LAYER2;
1003 		}
1004 		curr_mode += strlen(curr_mode) + 1;
1005 	}
1006 	*found = smode_num;
1007 
1008 	D2(vswp, "%s: %d modes found", __func__, smode_num);
1009 
1010 	D1(vswp, "%s: exit", __func__);
1011 
1012 	return (0);
1013 }
1014 
1015 /*
1016  * Register with the MAC layer as a network device, so we
1017  * can be plumbed if necessary.
1018  */
1019 static int
1020 vsw_mac_register(vsw_t *vswp)
1021 {
1022 	mac_register_t	*macp;
1023 	int		rv;
1024 
1025 	D1(vswp, "%s: enter", __func__);
1026 
1027 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
1028 		return (EINVAL);
1029 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1030 	macp->m_driver = vswp;
1031 	macp->m_dip = vswp->dip;
1032 	macp->m_src_addr = (uint8_t *)&vswp->if_addr;
1033 	macp->m_callbacks = &vsw_m_callbacks;
1034 	macp->m_min_sdu = 0;
1035 	macp->m_max_sdu = vsw_ethermtu;
1036 	macp->m_margin = VLAN_TAGSZ;
1037 	rv = mac_register(macp, &vswp->if_mh);
1038 	mac_free(macp);
1039 	if (rv != 0) {
1040 		/*
1041 		 * Treat this as a non-fatal error as we may be
1042 		 * able to operate in some other mode.
1043 		 */
1044 		cmn_err(CE_NOTE, "!vsw%d: Unable to register as "
1045 		    "a provider with MAC layer", vswp->instance);
1046 		return (rv);
1047 	}
1048 
1049 	vswp->if_state |= VSW_IF_REG;
1050 
1051 	vswp->max_frame_size = vsw_ethermtu + sizeof (struct ether_header)
1052 	    + VLAN_TAGSZ;
1053 
1054 	D1(vswp, "%s: exit", __func__);
1055 
1056 	return (rv);
1057 }
1058 
1059 static int
1060 vsw_mac_unregister(vsw_t *vswp)
1061 {
1062 	int		rv = 0;
1063 
1064 	D1(vswp, "%s: enter", __func__);
1065 
1066 	WRITE_ENTER(&vswp->if_lockrw);
1067 
1068 	if (vswp->if_state & VSW_IF_REG) {
1069 		rv = mac_unregister(vswp->if_mh);
1070 		if (rv != 0) {
1071 			DWARN(vswp, "%s: unable to unregister from MAC "
1072 			    "framework", __func__);
1073 
1074 			RW_EXIT(&vswp->if_lockrw);
1075 			D1(vswp, "%s: fail exit", __func__);
1076 			return (rv);
1077 		}
1078 
1079 		/* mark i/f as down and unregistered */
1080 		vswp->if_state &= ~(VSW_IF_UP | VSW_IF_REG);
1081 	}
1082 	RW_EXIT(&vswp->if_lockrw);
1083 
1084 	D1(vswp, "%s: exit", __func__);
1085 
1086 	return (rv);
1087 }
1088 
1089 static int
1090 vsw_m_stat(void *arg, uint_t stat, uint64_t *val)
1091 {
1092 	vsw_t			*vswp = (vsw_t *)arg;
1093 
1094 	D1(vswp, "%s: enter", __func__);
1095 
1096 	WRITE_ENTER(&vswp->mac_rwlock);
1097 	if (vswp->mh == NULL) {
1098 		RW_EXIT(&vswp->mac_rwlock);
1099 		return (EINVAL);
1100 	}
1101 
1102 	/* return stats from underlying device */
1103 	*val = mac_stat_get(vswp->mh, stat);
1104 
1105 	RW_EXIT(&vswp->mac_rwlock);
1106 
1107 	return (0);
1108 }
1109 
1110 static void
1111 vsw_m_stop(void *arg)
1112 {
1113 	vsw_t		*vswp = (vsw_t *)arg;
1114 
1115 	D1(vswp, "%s: enter", __func__);
1116 
1117 	WRITE_ENTER(&vswp->if_lockrw);
1118 	vswp->if_state &= ~VSW_IF_UP;
1119 	RW_EXIT(&vswp->if_lockrw);
1120 
1121 	mutex_enter(&vswp->hw_lock);
1122 
1123 	(void) vsw_unset_hw(vswp, NULL, VSW_LOCALDEV);
1124 
1125 	if (vswp->recfg_reqd)
1126 		vsw_reconfig_hw(vswp);
1127 
1128 	mutex_exit(&vswp->hw_lock);
1129 
1130 	D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state);
1131 }
1132 
1133 static int
1134 vsw_m_start(void *arg)
1135 {
1136 	vsw_t		*vswp = (vsw_t *)arg;
1137 
1138 	D1(vswp, "%s: enter", __func__);
1139 
1140 	WRITE_ENTER(&vswp->if_lockrw);
1141 
1142 	vswp->if_state |= VSW_IF_UP;
1143 
1144 	if (vswp->switching_setup_done == B_FALSE) {
1145 		/*
1146 		 * If the switching mode has not been setup yet, just
1147 		 * return. The unicast address will be programmed
1148 		 * after the physical device is successfully setup by the
1149 		 * timeout handler.
1150 		 */
1151 		RW_EXIT(&vswp->if_lockrw);
1152 		return (0);
1153 	}
1154 
1155 	/* if in layer2 mode, program unicast address. */
1156 	if (vswp->mh != NULL) {
1157 		mutex_enter(&vswp->hw_lock);
1158 		(void) vsw_set_hw(vswp, NULL, VSW_LOCALDEV);
1159 		mutex_exit(&vswp->hw_lock);
1160 	}
1161 
1162 	RW_EXIT(&vswp->if_lockrw);
1163 
1164 	D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state);
1165 	return (0);
1166 }
1167 
1168 /*
1169  * Change the local interface address.
1170  *
1171  * Note: we don't support this entry point. The local
1172  * mac address of the switch can only be changed via its
1173  * MD node properties.
1174  */
1175 static int
1176 vsw_m_unicst(void *arg, const uint8_t *macaddr)
1177 {
1178 	_NOTE(ARGUNUSED(arg, macaddr))
1179 
1180 	return (DDI_FAILURE);
1181 }
1182 
1183 static int
1184 vsw_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1185 {
1186 	vsw_t		*vswp = (vsw_t *)arg;
1187 	mcst_addr_t	*mcst_p = NULL;
1188 	uint64_t	addr = 0x0;
1189 	int		i, ret = 0;
1190 
1191 	D1(vswp, "%s: enter", __func__);
1192 
1193 	/*
1194 	 * Convert address into form that can be used
1195 	 * as hash table key.
1196 	 */
1197 	for (i = 0; i < ETHERADDRL; i++) {
1198 		addr = (addr << 8) | mca[i];
1199 	}
1200 
1201 	D2(vswp, "%s: addr = 0x%llx", __func__, addr);
1202 
1203 	if (add) {
1204 		D2(vswp, "%s: adding multicast", __func__);
1205 		if (vsw_add_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) {
1206 			/*
1207 			 * Update the list of multicast addresses
1208 			 * contained within the vsw_t structure to
1209 			 * include this new one.
1210 			 */
1211 			mcst_p = kmem_zalloc(sizeof (mcst_addr_t), KM_NOSLEEP);
1212 			if (mcst_p == NULL) {
1213 				DERR(vswp, "%s unable to alloc mem", __func__);
1214 				(void) vsw_del_mcst(vswp,
1215 				    VSW_LOCALDEV, addr, NULL);
1216 				return (1);
1217 			}
1218 			mcst_p->addr = addr;
1219 			ether_copy(mca, &mcst_p->mca);
1220 
1221 			/*
1222 			 * Call into the underlying driver to program the
1223 			 * address into HW.
1224 			 */
1225 			WRITE_ENTER(&vswp->mac_rwlock);
1226 			if (vswp->mh != NULL) {
1227 				ret = mac_multicst_add(vswp->mh, mca);
1228 				if (ret != 0) {
1229 					cmn_err(CE_NOTE, "!vsw%d: unable to "
1230 					    "add multicast address",
1231 					    vswp->instance);
1232 					RW_EXIT(&vswp->mac_rwlock);
1233 					(void) vsw_del_mcst(vswp,
1234 					    VSW_LOCALDEV, addr, NULL);
1235 					kmem_free(mcst_p, sizeof (*mcst_p));
1236 					return (ret);
1237 				}
1238 				mcst_p->mac_added = B_TRUE;
1239 			}
1240 			RW_EXIT(&vswp->mac_rwlock);
1241 
1242 			mutex_enter(&vswp->mca_lock);
1243 			mcst_p->nextp = vswp->mcap;
1244 			vswp->mcap = mcst_p;
1245 			mutex_exit(&vswp->mca_lock);
1246 		} else {
1247 			cmn_err(CE_NOTE, "!vsw%d: unable to add multicast "
1248 			    "address", vswp->instance);
1249 		}
1250 		return (ret);
1251 	}
1252 
1253 	D2(vswp, "%s: removing multicast", __func__);
1254 	/*
1255 	 * Remove the address from the hash table..
1256 	 */
1257 	if (vsw_del_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) {
1258 
1259 		/*
1260 		 * ..and then from the list maintained in the
1261 		 * vsw_t structure.
1262 		 */
1263 		mcst_p = vsw_del_addr(VSW_LOCALDEV, vswp, addr);
1264 		ASSERT(mcst_p != NULL);
1265 
1266 		WRITE_ENTER(&vswp->mac_rwlock);
1267 		if (vswp->mh != NULL && mcst_p->mac_added) {
1268 			(void) mac_multicst_remove(vswp->mh, mca);
1269 			mcst_p->mac_added = B_FALSE;
1270 		}
1271 		RW_EXIT(&vswp->mac_rwlock);
1272 		kmem_free(mcst_p, sizeof (*mcst_p));
1273 	}
1274 
1275 	D1(vswp, "%s: exit", __func__);
1276 
1277 	return (0);
1278 }
1279 
1280 static int
1281 vsw_m_promisc(void *arg, boolean_t on)
1282 {
1283 	vsw_t		*vswp = (vsw_t *)arg;
1284 
1285 	D1(vswp, "%s: enter", __func__);
1286 
1287 	WRITE_ENTER(&vswp->if_lockrw);
1288 	if (on)
1289 		vswp->if_state |= VSW_IF_PROMISC;
1290 	else
1291 		vswp->if_state &= ~VSW_IF_PROMISC;
1292 	RW_EXIT(&vswp->if_lockrw);
1293 
1294 	D1(vswp, "%s: exit", __func__);
1295 
1296 	return (0);
1297 }
1298 
1299 static mblk_t *
1300 vsw_m_tx(void *arg, mblk_t *mp)
1301 {
1302 	vsw_t		*vswp = (vsw_t *)arg;
1303 
1304 	D1(vswp, "%s: enter", __func__);
1305 
1306 	mp = vsw_vlan_frame_pretag(vswp, VSW_LOCALDEV, mp);
1307 
1308 	if (mp == NULL) {
1309 		return (NULL);
1310 	}
1311 
1312 	vswp->vsw_switch_frame(vswp, mp, VSW_LOCALDEV, NULL, NULL);
1313 
1314 	D1(vswp, "%s: exit", __func__);
1315 
1316 	return (NULL);
1317 }
1318 
1319 /*
1320  * Register for machine description (MD) updates.
1321  *
1322  * Returns 0 on success, 1 on failure.
1323  */
1324 static int
1325 vsw_mdeg_register(vsw_t *vswp)
1326 {
1327 	mdeg_prop_spec_t	*pspecp;
1328 	mdeg_node_spec_t	*inst_specp;
1329 	mdeg_handle_t		mdeg_hdl, mdeg_port_hdl;
1330 	size_t			templatesz;
1331 	int			rv;
1332 
1333 	D1(vswp, "%s: enter", __func__);
1334 
1335 	/*
1336 	 * Allocate and initialize a per-instance copy
1337 	 * of the global property spec array that will
1338 	 * uniquely identify this vsw instance.
1339 	 */
1340 	templatesz = sizeof (vsw_prop_template);
1341 	pspecp = kmem_zalloc(templatesz, KM_SLEEP);
1342 
1343 	bcopy(vsw_prop_template, pspecp, templatesz);
1344 
1345 	VSW_SET_MDEG_PROP_INST(pspecp, vswp->regprop);
1346 
1347 	/* initialize the complete prop spec structure */
1348 	inst_specp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
1349 	inst_specp->namep = "virtual-device";
1350 	inst_specp->specp = pspecp;
1351 
1352 	D2(vswp, "%s: instance %d registering with mdeg", __func__,
1353 	    vswp->regprop);
1354 	/*
1355 	 * Register an interest in 'virtual-device' nodes with a
1356 	 * 'name' property of 'virtual-network-switch'
1357 	 */
1358 	rv = mdeg_register(inst_specp, &vdev_match, vsw_mdeg_cb,
1359 	    (void *)vswp, &mdeg_hdl);
1360 	if (rv != MDEG_SUCCESS) {
1361 		DERR(vswp, "%s: mdeg_register failed (%d) for vsw node",
1362 		    __func__, rv);
1363 		goto mdeg_reg_fail;
1364 	}
1365 
1366 	/*
1367 	 * Register an interest in 'vsw-port' nodes.
1368 	 */
1369 	rv = mdeg_register(inst_specp, &vport_match, vsw_port_mdeg_cb,
1370 	    (void *)vswp, &mdeg_port_hdl);
1371 	if (rv != MDEG_SUCCESS) {
1372 		DERR(vswp, "%s: mdeg_register failed (%d)\n", __func__, rv);
1373 		(void) mdeg_unregister(mdeg_hdl);
1374 		goto mdeg_reg_fail;
1375 	}
1376 
1377 	/* save off data that will be needed later */
1378 	vswp->inst_spec = inst_specp;
1379 	vswp->mdeg_hdl = mdeg_hdl;
1380 	vswp->mdeg_port_hdl = mdeg_port_hdl;
1381 
1382 	D1(vswp, "%s: exit", __func__);
1383 	return (0);
1384 
1385 mdeg_reg_fail:
1386 	cmn_err(CE_WARN, "!vsw%d: Unable to register MDEG callbacks",
1387 	    vswp->instance);
1388 	kmem_free(pspecp, templatesz);
1389 	kmem_free(inst_specp, sizeof (mdeg_node_spec_t));
1390 
1391 	vswp->mdeg_hdl = NULL;
1392 	vswp->mdeg_port_hdl = NULL;
1393 
1394 	return (1);
1395 }
1396 
1397 static void
1398 vsw_mdeg_unregister(vsw_t *vswp)
1399 {
1400 	D1(vswp, "vsw_mdeg_unregister: enter");
1401 
1402 	if (vswp->mdeg_hdl != NULL)
1403 		(void) mdeg_unregister(vswp->mdeg_hdl);
1404 
1405 	if (vswp->mdeg_port_hdl != NULL)
1406 		(void) mdeg_unregister(vswp->mdeg_port_hdl);
1407 
1408 	if (vswp->inst_spec != NULL) {
1409 		if (vswp->inst_spec->specp != NULL) {
1410 			(void) kmem_free(vswp->inst_spec->specp,
1411 			    sizeof (vsw_prop_template));
1412 			vswp->inst_spec->specp = NULL;
1413 		}
1414 
1415 		(void) kmem_free(vswp->inst_spec, sizeof (mdeg_node_spec_t));
1416 		vswp->inst_spec = NULL;
1417 	}
1418 
1419 	D1(vswp, "vsw_mdeg_unregister: exit");
1420 }
1421 
1422 /*
1423  * Mdeg callback invoked for the vsw node itself.
1424  */
1425 static int
1426 vsw_mdeg_cb(void *cb_argp, mdeg_result_t *resp)
1427 {
1428 	vsw_t		*vswp;
1429 	md_t		*mdp;
1430 	mde_cookie_t	node;
1431 	uint64_t	inst;
1432 	char		*node_name = NULL;
1433 
1434 	if (resp == NULL)
1435 		return (MDEG_FAILURE);
1436 
1437 	vswp = (vsw_t *)cb_argp;
1438 
1439 	D1(vswp, "%s: added %d : removed %d : curr matched %d"
1440 	    " : prev matched %d", __func__, resp->added.nelem,
1441 	    resp->removed.nelem, resp->match_curr.nelem,
1442 	    resp->match_prev.nelem);
1443 
1444 	/*
1445 	 * We get an initial callback for this node as 'added'
1446 	 * after registering with mdeg. Note that we would have
1447 	 * already gathered information about this vsw node by
1448 	 * walking MD earlier during attach (in vsw_read_mdprops()).
1449 	 * So, there is a window where the properties of this
1450 	 * node might have changed when we get this initial 'added'
1451 	 * callback. We handle this as if an update occured
1452 	 * and invoke the same function which handles updates to
1453 	 * the properties of this vsw-node if any.
1454 	 *
1455 	 * A non-zero 'match' value indicates that the MD has been
1456 	 * updated and that a virtual-network-switch node is
1457 	 * present which may or may not have been updated. It is
1458 	 * up to the clients to examine their own nodes and
1459 	 * determine if they have changed.
1460 	 */
1461 	if (resp->added.nelem != 0) {
1462 
1463 		if (resp->added.nelem != 1) {
1464 			cmn_err(CE_NOTE, "!vsw%d: number of nodes added "
1465 			    "invalid: %d\n", vswp->instance, resp->added.nelem);
1466 			return (MDEG_FAILURE);
1467 		}
1468 
1469 		mdp = resp->added.mdp;
1470 		node = resp->added.mdep[0];
1471 
1472 	} else if (resp->match_curr.nelem != 0) {
1473 
1474 		if (resp->match_curr.nelem != 1) {
1475 			cmn_err(CE_NOTE, "!vsw%d: number of nodes updated "
1476 			    "invalid: %d\n", vswp->instance,
1477 			    resp->match_curr.nelem);
1478 			return (MDEG_FAILURE);
1479 		}
1480 
1481 		mdp = resp->match_curr.mdp;
1482 		node = resp->match_curr.mdep[0];
1483 
1484 	} else {
1485 		return (MDEG_FAILURE);
1486 	}
1487 
1488 	/* Validate name and instance */
1489 	if (md_get_prop_str(mdp, node, "name", &node_name) != 0) {
1490 		DERR(vswp, "%s: unable to get node name\n",  __func__);
1491 		return (MDEG_FAILURE);
1492 	}
1493 
1494 	/* is this a virtual-network-switch? */
1495 	if (strcmp(node_name, vsw_propname) != 0) {
1496 		DERR(vswp, "%s: Invalid node name: %s\n",
1497 		    __func__, node_name);
1498 		return (MDEG_FAILURE);
1499 	}
1500 
1501 	if (md_get_prop_val(mdp, node, "cfg-handle", &inst)) {
1502 		DERR(vswp, "%s: prop(cfg-handle) not found\n",
1503 		    __func__);
1504 		return (MDEG_FAILURE);
1505 	}
1506 
1507 	/* is this the right instance of vsw? */
1508 	if (inst != vswp->regprop) {
1509 		DERR(vswp, "%s: Invalid cfg-handle: %lx\n",
1510 		    __func__, inst);
1511 		return (MDEG_FAILURE);
1512 	}
1513 
1514 	vsw_update_md_prop(vswp, mdp, node);
1515 
1516 	return (MDEG_SUCCESS);
1517 }
1518 
1519 /*
1520  * Mdeg callback invoked for changes to the vsw-port nodes
1521  * under the vsw node.
1522  */
1523 static int
1524 vsw_port_mdeg_cb(void *cb_argp, mdeg_result_t *resp)
1525 {
1526 	vsw_t		*vswp;
1527 	int		idx;
1528 	md_t		*mdp;
1529 	mde_cookie_t	node;
1530 	uint64_t	inst;
1531 	int		rv;
1532 
1533 	if ((resp == NULL) || (cb_argp == NULL))
1534 		return (MDEG_FAILURE);
1535 
1536 	vswp = (vsw_t *)cb_argp;
1537 
1538 	D2(vswp, "%s: added %d : removed %d : curr matched %d"
1539 	    " : prev matched %d", __func__, resp->added.nelem,
1540 	    resp->removed.nelem, resp->match_curr.nelem,
1541 	    resp->match_prev.nelem);
1542 
1543 	/* process added ports */
1544 	for (idx = 0; idx < resp->added.nelem; idx++) {
1545 		mdp = resp->added.mdp;
1546 		node = resp->added.mdep[idx];
1547 
1548 		D2(vswp, "%s: adding node(%d) 0x%lx", __func__, idx, node);
1549 
1550 		if ((rv = vsw_port_add(vswp, mdp, &node)) != 0) {
1551 			cmn_err(CE_WARN, "!vsw%d: Unable to add new port "
1552 			    "(0x%lx), err=%d", vswp->instance, node, rv);
1553 		}
1554 	}
1555 
1556 	/* process removed ports */
1557 	for (idx = 0; idx < resp->removed.nelem; idx++) {
1558 		mdp = resp->removed.mdp;
1559 		node = resp->removed.mdep[idx];
1560 
1561 		if (md_get_prop_val(mdp, node, id_propname, &inst)) {
1562 			DERR(vswp, "%s: prop(%s) not found in port(%d)",
1563 			    __func__, id_propname, idx);
1564 			continue;
1565 		}
1566 
1567 		D2(vswp, "%s: removing node(%d) 0x%lx", __func__, idx, node);
1568 
1569 		if (vsw_port_detach(vswp, inst) != 0) {
1570 			cmn_err(CE_WARN, "!vsw%d: Unable to remove port %ld",
1571 			    vswp->instance, inst);
1572 		}
1573 	}
1574 
1575 	for (idx = 0; idx < resp->match_curr.nelem; idx++) {
1576 		(void) vsw_port_update(vswp, resp->match_curr.mdp,
1577 		    resp->match_curr.mdep[idx],
1578 		    resp->match_prev.mdp,
1579 		    resp->match_prev.mdep[idx]);
1580 	}
1581 
1582 	D1(vswp, "%s: exit", __func__);
1583 
1584 	return (MDEG_SUCCESS);
1585 }
1586 
1587 /*
1588  * Scan the machine description for this instance of vsw
1589  * and read its properties. Called only from vsw_attach().
1590  * Returns: 0 on success, 1 on failure.
1591  */
1592 static int
1593 vsw_read_mdprops(vsw_t *vswp)
1594 {
1595 	md_t		*mdp = NULL;
1596 	mde_cookie_t	rootnode;
1597 	mde_cookie_t	*listp = NULL;
1598 	uint64_t	inst;
1599 	uint64_t	cfgh;
1600 	char		*name;
1601 	int		rv = 1;
1602 	int		num_nodes = 0;
1603 	int		num_devs = 0;
1604 	int		listsz = 0;
1605 	int		i;
1606 
1607 	/*
1608 	 * In each 'virtual-device' node in the MD there is a
1609 	 * 'cfg-handle' property which is the MD's concept of
1610 	 * an instance number (this may be completely different from
1611 	 * the device drivers instance #). OBP reads that value and
1612 	 * stores it in the 'reg' property of the appropriate node in
1613 	 * the device tree. We first read this reg property and use this
1614 	 * to compare against the 'cfg-handle' property of vsw nodes
1615 	 * in MD to get to this specific vsw instance and then read
1616 	 * other properties that we are interested in.
1617 	 * We also cache the value of 'reg' property and use it later
1618 	 * to register callbacks with mdeg (see vsw_mdeg_register())
1619 	 */
1620 	inst = ddi_prop_get_int(DDI_DEV_T_ANY, vswp->dip,
1621 	    DDI_PROP_DONTPASS, reg_propname, -1);
1622 	if (inst == -1) {
1623 		cmn_err(CE_NOTE, "!vsw%d: Unable to read %s property from "
1624 		    "OBP device tree", vswp->instance, reg_propname);
1625 		return (rv);
1626 	}
1627 
1628 	vswp->regprop = inst;
1629 
1630 	if ((mdp = md_get_handle()) == NULL) {
1631 		DWARN(vswp, "%s: cannot init MD\n", __func__);
1632 		return (rv);
1633 	}
1634 
1635 	num_nodes = md_node_count(mdp);
1636 	ASSERT(num_nodes > 0);
1637 
1638 	listsz = num_nodes * sizeof (mde_cookie_t);
1639 	listp = (mde_cookie_t *)kmem_zalloc(listsz, KM_SLEEP);
1640 
1641 	rootnode = md_root_node(mdp);
1642 
1643 	/* search for all "virtual_device" nodes */
1644 	num_devs = md_scan_dag(mdp, rootnode,
1645 	    md_find_name(mdp, vdev_propname),
1646 	    md_find_name(mdp, "fwd"), listp);
1647 	if (num_devs <= 0) {
1648 		DWARN(vswp, "%s: invalid num_devs:%d\n", __func__, num_devs);
1649 		goto vsw_readmd_exit;
1650 	}
1651 
1652 	/*
1653 	 * Now loop through the list of virtual-devices looking for
1654 	 * devices with name "virtual-network-switch" and for each
1655 	 * such device compare its instance with what we have from
1656 	 * the 'reg' property to find the right node in MD and then
1657 	 * read all its properties.
1658 	 */
1659 	for (i = 0; i < num_devs; i++) {
1660 
1661 		if (md_get_prop_str(mdp, listp[i], "name", &name) != 0) {
1662 			DWARN(vswp, "%s: name property not found\n",
1663 			    __func__);
1664 			goto vsw_readmd_exit;
1665 		}
1666 
1667 		/* is this a virtual-network-switch? */
1668 		if (strcmp(name, vsw_propname) != 0)
1669 			continue;
1670 
1671 		if (md_get_prop_val(mdp, listp[i], "cfg-handle", &cfgh) != 0) {
1672 			DWARN(vswp, "%s: cfg-handle property not found\n",
1673 			    __func__);
1674 			goto vsw_readmd_exit;
1675 		}
1676 
1677 		/* is this the required instance of vsw? */
1678 		if (inst != cfgh)
1679 			continue;
1680 
1681 		/* now read all properties of this vsw instance */
1682 		rv = vsw_get_initial_md_properties(vswp, mdp, listp[i]);
1683 		break;
1684 	}
1685 
1686 vsw_readmd_exit:
1687 
1688 	kmem_free(listp, listsz);
1689 	(void) md_fini_handle(mdp);
1690 	return (rv);
1691 }
1692 
1693 /*
1694  * Read the initial start-of-day values from the specified MD node.
1695  */
1696 static int
1697 vsw_get_initial_md_properties(vsw_t *vswp, md_t *mdp, mde_cookie_t node)
1698 {
1699 	int		i;
1700 	uint64_t 	macaddr = 0;
1701 
1702 	D1(vswp, "%s: enter", __func__);
1703 
1704 	if (vsw_get_md_physname(vswp, mdp, node, vswp->physname) != 0) {
1705 		return (1);
1706 	}
1707 
1708 	/* mac address for vswitch device itself */
1709 	if (md_get_prop_val(mdp, node, macaddr_propname, &macaddr) != 0) {
1710 		cmn_err(CE_WARN, "!vsw%d: Unable to get MAC address from MD",
1711 		    vswp->instance);
1712 		return (1);
1713 	}
1714 
1715 	vsw_save_lmacaddr(vswp, macaddr);
1716 
1717 	if (vsw_get_md_smodes(vswp, mdp, node, vswp->smode, &vswp->smode_num)) {
1718 		DWARN(vswp, "%s: Unable to read %s property from MD, "
1719 		    "defaulting to 'switched' mode",
1720 		    __func__, smode_propname);
1721 
1722 		for (i = 0; i < NUM_SMODES; i++)
1723 			vswp->smode[i] = VSW_LAYER2;
1724 
1725 		vswp->smode_num = NUM_SMODES;
1726 	} else {
1727 		ASSERT(vswp->smode_num != 0);
1728 	}
1729 
1730 	/* read vlan id properties of this vsw instance */
1731 	vsw_vlan_read_ids(vswp, VSW_LOCALDEV, mdp, node, &vswp->pvid,
1732 	    &vswp->vids, &vswp->nvids, &vswp->default_vlan_id);
1733 
1734 	/* read priority-ether-types */
1735 	vsw_read_pri_eth_types(vswp, mdp, node);
1736 
1737 	D1(vswp, "%s: exit", __func__);
1738 	return (0);
1739 }
1740 
1741 /*
1742  * Read vlan id properties of the given MD node.
1743  * Arguments:
1744  *   arg:          device argument(vsw device or a port)
1745  *   type:         type of arg; VSW_LOCALDEV(vsw device) or VSW_VNETPORT(port)
1746  *   mdp:          machine description
1747  *   node:         md node cookie
1748  *
1749  * Returns:
1750  *   pvidp:        port-vlan-id of the node
1751  *   vidspp:       list of vlan-ids of the node
1752  *   nvidsp:       # of vlan-ids in the list
1753  *   default_idp:  default-vlan-id of the node(if node is vsw device)
1754  */
1755 static void
1756 vsw_vlan_read_ids(void *arg, int type, md_t *mdp, mde_cookie_t node,
1757 	uint16_t *pvidp, uint16_t **vidspp, uint16_t *nvidsp,
1758 	uint16_t *default_idp)
1759 {
1760 	vsw_t		*vswp;
1761 	vsw_port_t	*portp;
1762 	char		*pvid_propname;
1763 	char		*vid_propname;
1764 	uint_t		nvids = 0;
1765 	uint32_t	vids_size;
1766 	int		rv;
1767 	int		i;
1768 	uint64_t	*data;
1769 	uint64_t	val;
1770 	int		size;
1771 	int		inst;
1772 
1773 	if (type == VSW_LOCALDEV) {
1774 
1775 		vswp = (vsw_t *)arg;
1776 		pvid_propname = vsw_pvid_propname;
1777 		vid_propname = vsw_vid_propname;
1778 		inst = vswp->instance;
1779 
1780 	} else if (type == VSW_VNETPORT) {
1781 
1782 		portp = (vsw_port_t *)arg;
1783 		vswp = portp->p_vswp;
1784 		pvid_propname = port_pvid_propname;
1785 		vid_propname = port_vid_propname;
1786 		inst = portp->p_instance;
1787 
1788 	} else {
1789 		return;
1790 	}
1791 
1792 	if (type == VSW_LOCALDEV && default_idp != NULL) {
1793 		rv = md_get_prop_val(mdp, node, vsw_dvid_propname, &val);
1794 		if (rv != 0) {
1795 			DWARN(vswp, "%s: prop(%s) not found", __func__,
1796 			    vsw_dvid_propname);
1797 
1798 			*default_idp = vsw_default_vlan_id;
1799 		} else {
1800 			*default_idp = val & 0xFFF;
1801 			D2(vswp, "%s: %s(%d): (%d)\n", __func__,
1802 			    vsw_dvid_propname, inst, *default_idp);
1803 		}
1804 	}
1805 
1806 	rv = md_get_prop_val(mdp, node, pvid_propname, &val);
1807 	if (rv != 0) {
1808 		DWARN(vswp, "%s: prop(%s) not found", __func__, pvid_propname);
1809 		*pvidp = vsw_default_vlan_id;
1810 	} else {
1811 
1812 		*pvidp = val & 0xFFF;
1813 		D2(vswp, "%s: %s(%d): (%d)\n", __func__,
1814 		    pvid_propname, inst, *pvidp);
1815 	}
1816 
1817 	rv = md_get_prop_data(mdp, node, vid_propname, (uint8_t **)&data,
1818 	    &size);
1819 	if (rv != 0) {
1820 		D2(vswp, "%s: prop(%s) not found", __func__, vid_propname);
1821 		size = 0;
1822 	} else {
1823 		size /= sizeof (uint64_t);
1824 	}
1825 	nvids = size;
1826 
1827 	if (nvids != 0) {
1828 		D2(vswp, "%s: %s(%d): ", __func__, vid_propname, inst);
1829 		vids_size = sizeof (uint16_t) * nvids;
1830 		*vidspp = kmem_zalloc(vids_size, KM_SLEEP);
1831 		for (i = 0; i < nvids; i++) {
1832 			(*vidspp)[i] = data[i] & 0xFFFF;
1833 			D2(vswp, " %d ", (*vidspp)[i]);
1834 		}
1835 		D2(vswp, "\n");
1836 	}
1837 
1838 	*nvidsp = nvids;
1839 }
1840 
1841 /*
1842  * This function reads "priority-ether-types" property from md. This property
1843  * is used to enable support for priority frames. Applications which need
1844  * guaranteed and timely delivery of certain high priority frames to/from
1845  * a vnet or vsw within ldoms, should configure this property by providing
1846  * the ether type(s) for which the priority facility is needed.
1847  * Normal data frames are delivered over a ldc channel using the descriptor
1848  * ring mechanism which is constrained by factors such as descriptor ring size,
1849  * the rate at which the ring is processed at the peer ldc end point, etc.
1850  * The priority mechanism provides an Out-Of-Band path to send/receive frames
1851  * as raw pkt data (VIO_PKT_DATA) messages over the channel, avoiding the
1852  * descriptor ring path and enables a more reliable and timely delivery of
1853  * frames to the peer.
1854  */
1855 static void
1856 vsw_read_pri_eth_types(vsw_t *vswp, md_t *mdp, mde_cookie_t node)
1857 {
1858 	int		rv;
1859 	uint16_t	*types;
1860 	uint64_t	*data;
1861 	int		size;
1862 	int		i;
1863 	size_t		mblk_sz;
1864 
1865 	rv = md_get_prop_data(mdp, node, pri_types_propname,
1866 	    (uint8_t **)&data, &size);
1867 	if (rv != 0) {
1868 		/*
1869 		 * Property may not exist if we are running pre-ldoms1.1 f/w.
1870 		 * Check if 'vsw_pri_eth_type' has been set in that case.
1871 		 */
1872 		if (vsw_pri_eth_type != 0) {
1873 			size = sizeof (vsw_pri_eth_type);
1874 			data = &vsw_pri_eth_type;
1875 		} else {
1876 			D3(vswp, "%s: prop(%s) not found", __func__,
1877 			    pri_types_propname);
1878 			size = 0;
1879 		}
1880 	}
1881 
1882 	if (size == 0) {
1883 		vswp->pri_num_types = 0;
1884 		return;
1885 	}
1886 
1887 	/*
1888 	 * we have some priority-ether-types defined;
1889 	 * allocate a table of these types and also
1890 	 * allocate a pool of mblks to transmit these
1891 	 * priority packets.
1892 	 */
1893 	size /= sizeof (uint64_t);
1894 	vswp->pri_num_types = size;
1895 	vswp->pri_types = kmem_zalloc(size * sizeof (uint16_t), KM_SLEEP);
1896 	for (i = 0, types = vswp->pri_types; i < size; i++) {
1897 		types[i] = data[i] & 0xFFFF;
1898 	}
1899 	mblk_sz = (VIO_PKT_DATA_HDRSIZE + ETHERMAX + 7) & ~7;
1900 	(void) vio_create_mblks(vsw_pri_tx_nmblks, mblk_sz, &vswp->pri_tx_vmp);
1901 }
1902 
1903 /*
1904  * Check to see if the relevant properties in the specified node have
1905  * changed, and if so take the appropriate action.
1906  *
1907  * If any of the properties are missing or invalid we don't take
1908  * any action, as this function should only be invoked when modifications
1909  * have been made to what we assume is a working configuration, which
1910  * we leave active.
1911  *
1912  * Note it is legal for this routine to be invoked even if none of the
1913  * properties in the port node within the MD have actually changed.
1914  */
1915 static void
1916 vsw_update_md_prop(vsw_t *vswp, md_t *mdp, mde_cookie_t node)
1917 {
1918 	char		physname[LIFNAMSIZ];
1919 	char		drv[LIFNAMSIZ];
1920 	uint_t		ddi_instance;
1921 	uint8_t		new_smode[NUM_SMODES];
1922 	int		i, smode_num = 0;
1923 	uint64_t 	macaddr = 0;
1924 	enum		{MD_init = 0x1,
1925 				MD_physname = 0x2,
1926 				MD_macaddr = 0x4,
1927 				MD_smode = 0x8,
1928 				MD_vlans = 0x10} updated;
1929 	int		rv;
1930 	uint16_t	pvid;
1931 	uint16_t	*vids;
1932 	uint16_t	nvids;
1933 
1934 	updated = MD_init;
1935 
1936 	D1(vswp, "%s: enter", __func__);
1937 
1938 	/*
1939 	 * Check if name of physical device in MD has changed.
1940 	 */
1941 	if (vsw_get_md_physname(vswp, mdp, node, (char *)&physname) == 0) {
1942 		/*
1943 		 * Do basic sanity check on new device name/instance,
1944 		 * if its non NULL. It is valid for the device name to
1945 		 * have changed from a non NULL to a NULL value, i.e.
1946 		 * the vsw is being changed to 'routed' mode.
1947 		 */
1948 		if ((strlen(physname) != 0) &&
1949 		    (ddi_parse(physname, drv,
1950 		    &ddi_instance) != DDI_SUCCESS)) {
1951 			cmn_err(CE_WARN, "!vsw%d: physical device %s is not"
1952 			    " a valid device name/instance",
1953 			    vswp->instance, physname);
1954 			goto fail_reconf;
1955 		}
1956 
1957 		if (strcmp(physname, vswp->physname)) {
1958 			D2(vswp, "%s: device name changed from %s to %s",
1959 			    __func__, vswp->physname, physname);
1960 
1961 			updated |= MD_physname;
1962 		} else {
1963 			D2(vswp, "%s: device name unchanged at %s",
1964 			    __func__, vswp->physname);
1965 		}
1966 	} else {
1967 		cmn_err(CE_WARN, "!vsw%d: Unable to read name of physical "
1968 		    "device from updated MD.", vswp->instance);
1969 		goto fail_reconf;
1970 	}
1971 
1972 	/*
1973 	 * Check if MAC address has changed.
1974 	 */
1975 	if (md_get_prop_val(mdp, node, macaddr_propname, &macaddr) != 0) {
1976 		cmn_err(CE_WARN, "!vsw%d: Unable to get MAC address from MD",
1977 		    vswp->instance);
1978 		goto fail_reconf;
1979 	} else {
1980 		uint64_t maddr = macaddr;
1981 		READ_ENTER(&vswp->if_lockrw);
1982 		for (i = ETHERADDRL - 1; i >= 0; i--) {
1983 			if (vswp->if_addr.ether_addr_octet[i]
1984 			    != (macaddr & 0xFF)) {
1985 				D2(vswp, "%s: octet[%d] 0x%x != 0x%x",
1986 				    __func__, i,
1987 				    vswp->if_addr.ether_addr_octet[i],
1988 				    (macaddr & 0xFF));
1989 				updated |= MD_macaddr;
1990 				macaddr = maddr;
1991 				break;
1992 			}
1993 			macaddr >>= 8;
1994 		}
1995 		RW_EXIT(&vswp->if_lockrw);
1996 		if (updated & MD_macaddr) {
1997 			vsw_save_lmacaddr(vswp, macaddr);
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * Check if switching modes have changed.
2003 	 */
2004 	if (vsw_get_md_smodes(vswp, mdp, node,
2005 	    new_smode, &smode_num)) {
2006 		cmn_err(CE_WARN, "!vsw%d: Unable to read %s property from MD",
2007 		    vswp->instance, smode_propname);
2008 		goto fail_reconf;
2009 	} else {
2010 		ASSERT(smode_num != 0);
2011 		if (smode_num != vswp->smode_num) {
2012 			D2(vswp, "%s: number of modes changed from %d to %d",
2013 			    __func__, vswp->smode_num, smode_num);
2014 		}
2015 
2016 		for (i = 0; i < smode_num; i++) {
2017 			if (new_smode[i] != vswp->smode[i]) {
2018 				D2(vswp, "%s: mode changed from %d to %d",
2019 				    __func__, vswp->smode[i], new_smode[i]);
2020 				updated |= MD_smode;
2021 				break;
2022 			}
2023 		}
2024 	}
2025 
2026 	/* Read the vlan ids */
2027 	vsw_vlan_read_ids(vswp, VSW_LOCALDEV, mdp, node, &pvid, &vids,
2028 	    &nvids, NULL);
2029 
2030 	/* Determine if there are any vlan id updates */
2031 	if ((pvid != vswp->pvid) ||		/* pvid changed? */
2032 	    (nvids != vswp->nvids) ||		/* # of vids changed? */
2033 	    ((nvids != 0) && (vswp->nvids != 0) &&	/* vids changed? */
2034 	    bcmp(vids, vswp->vids, sizeof (uint16_t) * nvids))) {
2035 		updated |= MD_vlans;
2036 	}
2037 
2038 	/*
2039 	 * Now make any changes which are needed...
2040 	 */
2041 
2042 	if (updated & (MD_physname | MD_smode)) {
2043 
2044 		/*
2045 		 * Stop any pending timeout to setup switching mode.
2046 		 */
2047 		vsw_stop_switching_timeout(vswp);
2048 
2049 		/* Cleanup HybridIO */
2050 		vsw_hio_cleanup(vswp);
2051 
2052 		/*
2053 		 * Remove unicst, mcst addrs of vsw interface
2054 		 * and ports from the physdev.
2055 		 */
2056 		vsw_unset_addrs(vswp);
2057 
2058 		/*
2059 		 * Stop, detach and close the old device..
2060 		 */
2061 		WRITE_ENTER(&vswp->mac_rwlock);
2062 
2063 		vsw_mac_detach(vswp);
2064 		vsw_mac_close(vswp);
2065 
2066 		RW_EXIT(&vswp->mac_rwlock);
2067 
2068 		/*
2069 		 * Update phys name.
2070 		 */
2071 		if (updated & MD_physname) {
2072 			cmn_err(CE_NOTE, "!vsw%d: changing from %s to %s",
2073 			    vswp->instance, vswp->physname, physname);
2074 			(void) strncpy(vswp->physname,
2075 			    physname, strlen(physname) + 1);
2076 		}
2077 
2078 		/*
2079 		 * Update array with the new switch mode values.
2080 		 */
2081 		if (updated & MD_smode) {
2082 			for (i = 0; i < smode_num; i++)
2083 				vswp->smode[i] = new_smode[i];
2084 
2085 			vswp->smode_num = smode_num;
2086 			vswp->smode_idx = 0;
2087 		}
2088 
2089 		/*
2090 		 * ..and attach, start the new device.
2091 		 */
2092 		rv = vsw_setup_switching(vswp);
2093 		if (rv == EAGAIN) {
2094 			/*
2095 			 * Unable to setup switching mode.
2096 			 * As the error is EAGAIN, schedule a timeout to retry
2097 			 * and return. Programming addresses of ports and
2098 			 * vsw interface will be done when the timeout handler
2099 			 * completes successfully.
2100 			 */
2101 			mutex_enter(&vswp->swtmout_lock);
2102 
2103 			vswp->swtmout_enabled = B_TRUE;
2104 			vswp->swtmout_id =
2105 			    timeout(vsw_setup_switching_timeout, vswp,
2106 			    (vsw_setup_switching_delay *
2107 			    drv_usectohz(MICROSEC)));
2108 
2109 			mutex_exit(&vswp->swtmout_lock);
2110 
2111 			return;
2112 
2113 		} else if (rv) {
2114 			goto fail_update;
2115 		}
2116 
2117 		/*
2118 		 * program unicst, mcst addrs of vsw interface
2119 		 * and ports in the physdev.
2120 		 */
2121 		vsw_set_addrs(vswp);
2122 
2123 		/* Start HIO for ports that have already connected */
2124 		vsw_hio_start_ports(vswp);
2125 
2126 	} else if (updated & MD_macaddr) {
2127 		/*
2128 		 * We enter here if only MD_macaddr is exclusively updated.
2129 		 * If MD_physname and/or MD_smode are also updated, then
2130 		 * as part of that, we would have implicitly processed
2131 		 * MD_macaddr update (above).
2132 		 */
2133 		cmn_err(CE_NOTE, "!vsw%d: changing mac address to 0x%lx",
2134 		    vswp->instance, macaddr);
2135 
2136 		READ_ENTER(&vswp->if_lockrw);
2137 		if (vswp->if_state & VSW_IF_UP) {
2138 
2139 			mutex_enter(&vswp->hw_lock);
2140 			/*
2141 			 * Remove old mac address of vsw interface
2142 			 * from the physdev
2143 			 */
2144 			(void) vsw_unset_hw(vswp, NULL, VSW_LOCALDEV);
2145 			/*
2146 			 * Program new mac address of vsw interface
2147 			 * in the physdev
2148 			 */
2149 			rv = vsw_set_hw(vswp, NULL, VSW_LOCALDEV);
2150 			mutex_exit(&vswp->hw_lock);
2151 			if (rv != 0) {
2152 				cmn_err(CE_NOTE,
2153 				    "!vsw%d: failed to program interface "
2154 				    "unicast address\n", vswp->instance);
2155 			}
2156 			/*
2157 			 * Notify the MAC layer of the changed address.
2158 			 */
2159 			mac_unicst_update(vswp->if_mh,
2160 			    (uint8_t *)&vswp->if_addr);
2161 
2162 		}
2163 		RW_EXIT(&vswp->if_lockrw);
2164 
2165 	}
2166 
2167 	if (updated & MD_vlans) {
2168 		/* Remove existing vlan ids from the hash table. */
2169 		vsw_vlan_remove_ids(vswp, VSW_LOCALDEV);
2170 
2171 		/* save the new vlan ids */
2172 		vswp->pvid = pvid;
2173 		if (vswp->nvids != 0) {
2174 			kmem_free(vswp->vids, sizeof (uint16_t) * vswp->nvids);
2175 			vswp->nvids = 0;
2176 		}
2177 		if (nvids != 0) {
2178 			vswp->nvids = nvids;
2179 			vswp->vids = vids;
2180 		}
2181 
2182 		/* add these new vlan ids into hash table */
2183 		vsw_vlan_add_ids(vswp, VSW_LOCALDEV);
2184 	} else {
2185 		if (nvids != 0) {
2186 			kmem_free(vids, sizeof (uint16_t) * nvids);
2187 		}
2188 	}
2189 
2190 	return;
2191 
2192 fail_reconf:
2193 	cmn_err(CE_WARN, "!vsw%d: configuration unchanged", vswp->instance);
2194 	return;
2195 
2196 fail_update:
2197 	cmn_err(CE_WARN, "!vsw%d: re-configuration failed",
2198 	    vswp->instance);
2199 }
2200 
2201 /*
2202  * Read the port's md properties.
2203  */
2204 static int
2205 vsw_port_read_props(vsw_port_t *portp, vsw_t *vswp,
2206 	md_t *mdp, mde_cookie_t *node)
2207 {
2208 	uint64_t		ldc_id;
2209 	uint8_t			*addrp;
2210 	int			i, addrsz;
2211 	int			num_nodes = 0, nchan = 0;
2212 	int			listsz = 0;
2213 	mde_cookie_t		*listp = NULL;
2214 	struct ether_addr	ea;
2215 	uint64_t		macaddr;
2216 	uint64_t		inst = 0;
2217 	uint64_t		val;
2218 
2219 	if (md_get_prop_val(mdp, *node, id_propname, &inst)) {
2220 		DWARN(vswp, "%s: prop(%s) not found", __func__,
2221 		    id_propname);
2222 		return (1);
2223 	}
2224 
2225 	/*
2226 	 * Find the channel endpoint node(s) (which should be under this
2227 	 * port node) which contain the channel id(s).
2228 	 */
2229 	if ((num_nodes = md_node_count(mdp)) <= 0) {
2230 		DERR(vswp, "%s: invalid number of nodes found (%d)",
2231 		    __func__, num_nodes);
2232 		return (1);
2233 	}
2234 
2235 	D2(vswp, "%s: %d nodes found", __func__, num_nodes);
2236 
2237 	/* allocate enough space for node list */
2238 	listsz = num_nodes * sizeof (mde_cookie_t);
2239 	listp = kmem_zalloc(listsz, KM_SLEEP);
2240 
2241 	nchan = md_scan_dag(mdp, *node, md_find_name(mdp, chan_propname),
2242 	    md_find_name(mdp, "fwd"), listp);
2243 
2244 	if (nchan <= 0) {
2245 		DWARN(vswp, "%s: no %s nodes found", __func__, chan_propname);
2246 		kmem_free(listp, listsz);
2247 		return (1);
2248 	}
2249 
2250 	D2(vswp, "%s: %d %s nodes found", __func__, nchan, chan_propname);
2251 
2252 	/* use property from first node found */
2253 	if (md_get_prop_val(mdp, listp[0], id_propname, &ldc_id)) {
2254 		DWARN(vswp, "%s: prop(%s) not found\n", __func__,
2255 		    id_propname);
2256 		kmem_free(listp, listsz);
2257 		return (1);
2258 	}
2259 
2260 	/* don't need list any more */
2261 	kmem_free(listp, listsz);
2262 
2263 	D2(vswp, "%s: ldc_id 0x%llx", __func__, ldc_id);
2264 
2265 	/* read mac-address property */
2266 	if (md_get_prop_data(mdp, *node, remaddr_propname,
2267 	    &addrp, &addrsz)) {
2268 		DWARN(vswp, "%s: prop(%s) not found",
2269 		    __func__, remaddr_propname);
2270 		return (1);
2271 	}
2272 
2273 	if (addrsz < ETHERADDRL) {
2274 		DWARN(vswp, "%s: invalid address size", __func__);
2275 		return (1);
2276 	}
2277 
2278 	macaddr = *((uint64_t *)addrp);
2279 	D2(vswp, "%s: remote mac address 0x%llx", __func__, macaddr);
2280 
2281 	for (i = ETHERADDRL - 1; i >= 0; i--) {
2282 		ea.ether_addr_octet[i] = macaddr & 0xFF;
2283 		macaddr >>= 8;
2284 	}
2285 
2286 	/* now update all properties into the port */
2287 	portp->p_vswp = vswp;
2288 	portp->p_instance = inst;
2289 	portp->addr_set = VSW_ADDR_UNSET;
2290 	ether_copy(&ea, &portp->p_macaddr);
2291 	if (nchan > VSW_PORT_MAX_LDCS) {
2292 		D2(vswp, "%s: using first of %d ldc ids",
2293 		    __func__, nchan);
2294 		nchan = VSW_PORT_MAX_LDCS;
2295 	}
2296 	portp->num_ldcs = nchan;
2297 	portp->ldc_ids =
2298 	    kmem_zalloc(sizeof (uint64_t) * nchan, KM_SLEEP);
2299 	bcopy(&ldc_id, (portp->ldc_ids), sizeof (uint64_t) * nchan);
2300 
2301 	/* read vlan id properties of this port node */
2302 	vsw_vlan_read_ids(portp, VSW_VNETPORT, mdp, *node, &portp->pvid,
2303 	    &portp->vids, &portp->nvids, NULL);
2304 
2305 	/* Check if hybrid property is present */
2306 	if (md_get_prop_val(mdp, *node, hybrid_propname, &val) == 0) {
2307 		D1(vswp, "%s: prop(%s) found\n", __func__, hybrid_propname);
2308 		portp->p_hio_enabled = B_TRUE;
2309 	} else {
2310 		portp->p_hio_enabled = B_FALSE;
2311 	}
2312 	/*
2313 	 * Port hio capability determined after version
2314 	 * negotiation, i.e., when we know the peer is HybridIO capable.
2315 	 */
2316 	portp->p_hio_capable = B_FALSE;
2317 	return (0);
2318 }
2319 
2320 /*
2321  * Add a new port to the system.
2322  *
2323  * Returns 0 on success, 1 on failure.
2324  */
2325 int
2326 vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node)
2327 {
2328 	vsw_port_t	*portp;
2329 	int		rv;
2330 
2331 	portp = kmem_zalloc(sizeof (vsw_port_t), KM_SLEEP);
2332 
2333 	rv = vsw_port_read_props(portp, vswp, mdp, node);
2334 	if (rv != 0) {
2335 		kmem_free(portp, sizeof (*portp));
2336 		return (1);
2337 	}
2338 
2339 	rv = vsw_port_attach(portp);
2340 	if (rv != 0) {
2341 		DERR(vswp, "%s: failed to attach port", __func__);
2342 		return (1);
2343 	}
2344 
2345 	return (0);
2346 }
2347 
2348 static int
2349 vsw_port_update(vsw_t *vswp, md_t *curr_mdp, mde_cookie_t curr_mdex,
2350 	md_t *prev_mdp, mde_cookie_t prev_mdex)
2351 {
2352 	uint64_t	cport_num;
2353 	uint64_t	pport_num;
2354 	vsw_port_list_t	*plistp;
2355 	vsw_port_t	*portp;
2356 	boolean_t	updated_vlans = B_FALSE;
2357 	uint16_t	pvid;
2358 	uint16_t	*vids;
2359 	uint16_t	nvids;
2360 	uint64_t	val;
2361 	boolean_t	hio_enabled = B_FALSE;
2362 
2363 	/*
2364 	 * For now, we get port updates only if vlan ids changed.
2365 	 * We read the port num and do some sanity check.
2366 	 */
2367 	if (md_get_prop_val(curr_mdp, curr_mdex, id_propname, &cport_num)) {
2368 		return (1);
2369 	}
2370 
2371 	if (md_get_prop_val(prev_mdp, prev_mdex, id_propname, &pport_num)) {
2372 		return (1);
2373 	}
2374 	if (cport_num != pport_num)
2375 		return (1);
2376 
2377 	plistp = &(vswp->plist);
2378 
2379 	READ_ENTER(&plistp->lockrw);
2380 
2381 	portp = vsw_lookup_port(vswp, cport_num);
2382 	if (portp == NULL) {
2383 		RW_EXIT(&plistp->lockrw);
2384 		return (1);
2385 	}
2386 
2387 	/* Read the vlan ids */
2388 	vsw_vlan_read_ids(portp, VSW_VNETPORT, curr_mdp, curr_mdex, &pvid,
2389 	    &vids, &nvids, NULL);
2390 
2391 	/* Determine if there are any vlan id updates */
2392 	if ((pvid != portp->pvid) ||		/* pvid changed? */
2393 	    (nvids != portp->nvids) ||		/* # of vids changed? */
2394 	    ((nvids != 0) && (portp->nvids != 0) &&	/* vids changed? */
2395 	    bcmp(vids, portp->vids, sizeof (uint16_t) * nvids))) {
2396 		updated_vlans = B_TRUE;
2397 	}
2398 
2399 	if (updated_vlans == B_TRUE) {
2400 
2401 		/* Remove existing vlan ids from the hash table. */
2402 		vsw_vlan_remove_ids(portp, VSW_VNETPORT);
2403 
2404 		/* save the new vlan ids */
2405 		portp->pvid = pvid;
2406 		if (portp->nvids != 0) {
2407 			kmem_free(portp->vids,
2408 			    sizeof (uint16_t) * portp->nvids);
2409 			portp->nvids = 0;
2410 		}
2411 		if (nvids != 0) {
2412 			portp->vids = kmem_zalloc(sizeof (uint16_t) *
2413 			    nvids, KM_SLEEP);
2414 			bcopy(vids, portp->vids, sizeof (uint16_t) * nvids);
2415 			portp->nvids = nvids;
2416 			kmem_free(vids, sizeof (uint16_t) * nvids);
2417 		}
2418 
2419 		/* add these new vlan ids into hash table */
2420 		vsw_vlan_add_ids(portp, VSW_VNETPORT);
2421 
2422 		/* reset the port if it is vlan unaware (ver < 1.3) */
2423 		vsw_vlan_unaware_port_reset(portp);
2424 	}
2425 
2426 	/* Check if hybrid property is present */
2427 	if (md_get_prop_val(curr_mdp, curr_mdex, hybrid_propname, &val) == 0) {
2428 		D1(vswp, "%s: prop(%s) found\n", __func__, hybrid_propname);
2429 		hio_enabled = B_TRUE;
2430 	}
2431 
2432 	if (portp->p_hio_enabled != hio_enabled) {
2433 		vsw_hio_port_update(portp, hio_enabled);
2434 	}
2435 
2436 	RW_EXIT(&plistp->lockrw);
2437 
2438 	return (0);
2439 }
2440 
2441 /*
2442  * vsw_mac_rx -- A common function to send packets to the interface.
2443  * By default this function check if the interface is UP or not, the
2444  * rest of the behaviour depends on the flags as below:
2445  *
2446  *	VSW_MACRX_PROMISC -- Check if the promisc mode set or not.
2447  *	VSW_MACRX_COPYMSG -- Make a copy of the message(s).
2448  *	VSW_MACRX_FREEMSG -- Free if the messages cannot be sent up the stack.
2449  */
2450 void
2451 vsw_mac_rx(vsw_t *vswp, mac_resource_handle_t mrh,
2452     mblk_t *mp, vsw_macrx_flags_t flags)
2453 {
2454 	mblk_t		*mpt;
2455 
2456 	D1(vswp, "%s:enter\n", __func__);
2457 	READ_ENTER(&vswp->if_lockrw);
2458 	/* Check if the interface is up */
2459 	if (!(vswp->if_state & VSW_IF_UP)) {
2460 		RW_EXIT(&vswp->if_lockrw);
2461 		/* Free messages only if FREEMSG flag specified */
2462 		if (flags & VSW_MACRX_FREEMSG) {
2463 			freemsgchain(mp);
2464 		}
2465 		D1(vswp, "%s:exit\n", __func__);
2466 		return;
2467 	}
2468 	/*
2469 	 * If PROMISC flag is passed, then check if
2470 	 * the interface is in the PROMISC mode.
2471 	 * If not, drop the messages.
2472 	 */
2473 	if (flags & VSW_MACRX_PROMISC) {
2474 		if (!(vswp->if_state & VSW_IF_PROMISC)) {
2475 			RW_EXIT(&vswp->if_lockrw);
2476 			/* Free messages only if FREEMSG flag specified */
2477 			if (flags & VSW_MACRX_FREEMSG) {
2478 				freemsgchain(mp);
2479 			}
2480 			D1(vswp, "%s:exit\n", __func__);
2481 			return;
2482 		}
2483 	}
2484 	RW_EXIT(&vswp->if_lockrw);
2485 	/*
2486 	 * If COPYMSG flag is passed, then make a copy
2487 	 * of the message chain and send up the copy.
2488 	 */
2489 	if (flags & VSW_MACRX_COPYMSG) {
2490 		mp = copymsgchain(mp);
2491 		if (mp == NULL) {
2492 			D1(vswp, "%s:exit\n", __func__);
2493 			return;
2494 		}
2495 	}
2496 
2497 	D2(vswp, "%s: sending up stack", __func__);
2498 
2499 	mpt = NULL;
2500 	(void) vsw_vlan_frame_untag(vswp, VSW_LOCALDEV, &mp, &mpt);
2501 	if (mp != NULL) {
2502 		mac_rx(vswp->if_mh, mrh, mp);
2503 	}
2504 	D1(vswp, "%s:exit\n", __func__);
2505 }
2506 
2507 /* copy mac address of vsw into soft state structure */
2508 static void
2509 vsw_save_lmacaddr(vsw_t *vswp, uint64_t macaddr)
2510 {
2511 	int	i;
2512 
2513 	WRITE_ENTER(&vswp->if_lockrw);
2514 	for (i = ETHERADDRL - 1; i >= 0; i--) {
2515 		vswp->if_addr.ether_addr_octet[i] = macaddr & 0xFF;
2516 		macaddr >>= 8;
2517 	}
2518 	RW_EXIT(&vswp->if_lockrw);
2519 }
2520